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Abstract—This paper describes a simple yet efficient repetition-
based modular system for speeding up air-traffic controllers
(ATCos) training. E.g., a human pilot is still required
in EUROCONTROL’s ESCAPE lite simulator https://
www.eurocontrol.int/simulator/escape during ATCo
training. However, this need can be substituted by an automatic
system that could act as a pilot. In this paper, we aim to develop
and integrate a pseudo-pilot agent into the ATCo training pipeline
by merging diverse artificial intelligence (AI) powered modules.
The system understands the voice communications issued by
the ATCo, and, in turn, it generates a spoken prompt that
follows the pilot’s phraseology to the initial communication. Our
system mainly relies on open-source AI tools and air traffic
control (ATC) databases, thus, proving its simplicity and ease of
replicability. The overall pipeline is composed of the following: (1)
a submodule that receives and pre-processes the input stream of
raw audio, (2) an automatic speech recognition (ASR) system that
transforms audio into a sequence of words; (3) a high-level ATC-
related entity parser, which extracts relevant information from
the communication, i.e., callsigns and commands, and finally, (4)
a speech synthesizer submodule that generates responses based
on the high-level ATC entities previously extracted. Overall, we
show that this system could pave the way toward developing a
real proof-of-concept pseudo-pilot system. Hence, speeding up
the training of ATCos while drastically reducing its overall cost.

Index Terms—Machine learning, air traffic controller training,
air traffic management, BERT, automatic speech recognition,
speech synthesis

I. INTRODUCTION

The communication between air-traffic controllers (ATCos)
and pilots often requires the ATCos to issue commands
for the safe travel of an aircraft. Although different means
of communication such as CPDLC1 messages, flight strips,
or shortcodes are used, voice is the central part of these
communications. Recent research has focused on improving
the assistant-based speech recognition system (ABSR) for
ATCos to reduce overall workload while increasing safety [1],

1Controller Pilot Data Link Communications (CPDLC). CPDLC is a two-
way data-link system by which controllers can transmit non-urgent strategic
messages to an aircraft as an alternative to voice communications. The
message is displayed on a flight deck visual display.

[2]. Another application in which speech recognition can be
used in is the training of the ATCos. Training air-traffic
controllers (ATCos) usually require a human pseudo-pilot.
The pseudo-pilots respond or issues requests to the ATCo
trainee to simulate a standard ATC communication scenario
for an ATCo. The ATCo training is a human-intensive task,
specialized workforce, and the overall cost is usually high. The
pseudo-pilots are required to follow the commands issued by
the ATCos. Also, they update the simulator so the ATCos can
see if the pilots follow the orders similar to the actual situation.

An autonomous pilot agent could aid different parts of
ATCo’s training process to reduce the training costs due
to specialized human involvement. For instance, previous
research [3], [4] has investigated deep learning based
framework for only repetition generator. In this work, we
develop a modular, simple, and easy-to-deploy artificial
intelligence (AI) based system for simulating a pilot, i.e., a
pseudo-pilot. The main focus is to develop a pipeline from
transcribing a controller’s speech to generating the entities,
which produces a response to simulate a pilot. Figure 1
describes the overall pipeline used in our system. The first
module uses an automatic speech recognition (ASR) system to
convert the voice communication issued by the ATCo trainee
into text. The following module is a Named Entity Recognition
(NER) system2 that maps the text to different ATC-related
categories such as callsigns, commands, and values. The last
module is a repetition generator that returns the pilot response
based on ATCo’s voice message. This module consists of
two submodules: (i) a rule-based system to convert the text
into an appropriate pilot response, and (ii) a text-to-speech
(TTS) system3 that generates the corresponding response into a
spoken form, i.e., speech play in the headphones of the ATCO
trainee.

The proposed system handles the most frequent commands
in ATC communications (see a list of commands and words in
Figure 1). In summary, the proposed pseudo-pilot agent is well

2We also refer to it as ‘high-level entity parser’ in several parts of the paper.
3Also known as a speech synthesizer system.
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Figure 1. Overall pipeline for simulating a pilot for air traffic controller training. The pipeline starts with an ATCo issuing a communication and its
capture after the end of the PTT signal. Then, the speech-to-text and high-level entity parser modules transcribe and extract the ATC-related entities from the
voice communication. The output is then accustomed to ‘pilots’ structured grammar. The speech synthesizer then uses the generated text to create a WAV file
containing the spoken textual prompt. In the end, a pseudo-pilot response is produced that can provide pertinent feedback to ATCo trainees.

suited for the early stages of ATCo training, where potential
controllers are required to build fundamental knowledge and
skills. The proposed system can be adapted easily to specific
conditions based on different airports where the spoken
language is foreign. Finally, our system is versatile due to its
simplicity and modularity nature. For example, we can plug in
or out different modules depending on the need of the specific
training setup.

The rest of the paper is organized as follows. Section II
briefly describes previous research in the field of ASR, NER
and TTS systems. This is followed by Section III that describes
the data used in this work for training and evaluating different
systems. Section IV describes the details of the modules used
in this research and presents experimental results for ASR and
NER systems. This is followed by conclusions in Section V.

II. RELATED WORK

A. Air-traffic Controller Training System

Air traffic control communications between ATCos and
pilots are crucial for the safe travel of an aircraft. The
prominent part of this communication comes from the ATCos.
They issue commands from tens to hundreds of aircraft
in a short period, and this number varies depending on
the airspace condition and period of the year (e.g., ATC
operations shows increased workload during summer for
ATCos). Hence, ATCo trainees must learn how to handle
stressful and complex airspace situations. They also undergo
different training procedures, for instance, communication
with pilots, and this often happens in a simulation environment
with human pseudo-pilots.

As previously covered in [5], the ATCos have 3 stages
of training: (i) initial, (ii) operational, and (iii) continuation

training. As the training of controllers is a crucial component
in air-traffic management (ATM), efforts have been made to
develop simulation devices for the same [6]–[8]. Research
also focused on the post-evaluation of this simulation-based
training [9], [10] and optimizing the training procedure [11]
which still includes the involvement of human pseudo-pilot
and the cost of training is still high. However, in the recent
works of [3], [4], the authors develop a deep learning-
based framework for the repetition generator to implement an
autonomous pilot agent (APA). In [3], the authors develop
APA with the main focus on repetition generator and text-
to-speech system. The authors used a sequence-to-sequence
mapping for the repetition generator and a transformer
model [12] to generate speech.

B. Automatic Speech Recognition

Automatic Speech Recognition (ASR) also termed a speech-
to-text system converts speech in a given language to text. A
standard ASR system employs an acoustic model (AM) and a
language model (LM) to achieve this task. The former, AM, is
trained with a set of speech recordings with a corresponding
text, also referred to as transcripts. The AM represents the
relationship between a speech signal and phonemes, or other
linguistic units, that make up the speech. The latter, LM, is
trained on a large corpus of text data. The LM is usually
represented by a probability distribution over sequences of
words. The LM provides context to distinguish between words
and phrases that sound similar. Using the knowledge of AM
and LM, a decoding graph is usually built as a Weighted
Finite State Transducer (WFST) [13]–[15]. The WFST graph
generates text output given an observation sequence as shown
in Figure 2.
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Generally, recorded speech is represented as a sequence of
acoustic feature vectors or observations, X; and the output
word sequence, W . During recognition or decoding, the main
goal is finding the most likely W given the input sequence X .
To solve this task, statistical models are trained using a corpus
D of labelled training utterances, (Xn, Wn). In general, if
X is the sequence of acoustic features and W denotes a word
sequence, the most likely word sequence is given by Ŵ :

Ŵ = arg m
W
ax P (W |X). (1)

The problem is further reformulated using Bayes Theorem:

P (W |X) =
p(X|W )p(W )

p(X)
, (2)

where, P (X|W ) stands for the likelihood of the feature
sequence X , given the hypothesized word sequence, W .
P (W ) is the probability of the word sequence (normally,
computed from a pretrained LM). P (X) is the a-priori
probability of the feature sequence X , but it is ignored during
the maximization operation due to its non-dependency to the
AM and LM. Equation 3 is further simplified as P (X) is a
constant for any word sequence, as follows:

Ŵ = arg m
W
ax p(X|W ) p(W ). (3)

Standard ASR systems rely on a lexicon, language, and
acoustic model as stated above. Currently, there are two main
ASR paradigms, where different strategies, architectures, and
procedures are employed for blending all these modules in one
“system”.

1) Hybrid Based ASR: Automatic speech recognition with
hybrid systems is based on Hidden Markov Models (HMM)
and Deep Neural Networks (DNN) [16], [17]. DNNs are an
effective module for the estimating the posterior probability of
a given set of possible outputs (e.g., phone-state or tri-phone
state probability estimator, in ASR systems). These posterior
probabilities can be seen as pseudo-likelihoods or “scale
likelihoods”, which can be interfaced with HMM modules.
HMMs provide a structure for mapping a temporal sequence of
acoustic features, X , e.g., Mel-frequency cepstral coefficients
(MFCCs) into a sequence of states [18], [19]. Hybrid systems
remain one of the best approaches for building ASR engines.
Currently, HMM-DNNs based ASR is the state-of-the-art
systems for ASR in ATC domain [20]–[22].

Moreover, recent work in ASR has targeted different
areas in ATC. For instance, a benchmark for ASR on ATC
communications databases is established in [23]. Leveraging
non-transcribed ATC audio data by semi-supervised learning
has been covered in [20], [21], [24]. Previous work related
to the large-scale automatic collection of ATC audio data
from different airports worldwide is covered in [22], [25].
Additionally, innovative research targeted to improve callsign
recognition by integrating surveillance data into the pipeline
is covered by [26]–[28].
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Figure 2. Traditional automatic speech recognition system based on
hidden Markov models and deep neural networks. The system receives as
input an ATCo voice communication, and it produces transcripts as output.

As depicted in Figure 2, the main components of a hybrid
system are: a pronunciation lexicon, language model, and
acoustic model. One key advantage of a hybrid system versus
other ASR techniques is that the text data (e.g., words,
dictionary) and pronunciation of new words are collected and
added beforehand, hoping to match the target domain of the
recognizer. Standard hybrid-based ASR approaches still rely
on word-based lexicons, i.e., missing or out-of-vocabulary
words from the lexicon cannot be hypothesized by the ASR
decoder.

2) End-to-End ASR: End-to-end (E2E) speech recognition
is another paradigm for performing ASR. E2E-ASR aims
at directly transcribing speech to text without requiring
alignments between acoustic frames (i.e., input features) and
output characters/words, which is normally required in hybrid-
based ASR (see Section II-B1). Unlike the hybrid approaches,
the E2E model learns a direct mapping between acoustic
frames and character units or words in one step towards the
final objective of interest.

Recent work on encoder-decoder ASR can be categorized in
two main approaches: Connectionist Temporal Classification
(CTC) [29] and attention-based encoder-decoder systems
[30]. CTC uses intermediate label representation, allowing
repetitions of labels and occurrences of the so-called ‘blank
output’ to label an output with ‘no label’. Attention-
based encoders-decoders directly learn a mapping from input
acoustic frames to character sequences. At each output time
step, the model emits a character unit conditioned on the inputs
and the history of the produced outputs. Related work on
self-supervised learning [31] for speech representation covers
bidirectional models [32], [33] and autoregressive models [34],
[35]. An innovative research on E2E-ASR for ATC domain is
covered in [36] in which the authors fine-tuned a Wav2Vec 2.0
model [32] with public and private ATC databases, reaching
on-par performances with hybrid-based ASR models.

C. High-Level Entity Parser

A high-level entity parser4 system has the task to detect,
classify and extract keywords from a given snippet of text
or transcribed ATC communication. These keywords normally

4In a more technical domain, for instance, natural language processing,
the task above-mentioned is called named-entity recognition (NER). For
simplicity and because it is more aligned to ATC domain, we term it
‘high-level entity parsing’.
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[1] - ATCO - 00.10 - 00.20: ryanair nine two bravo quebec turn right heading zero nine zero

[2] - PILOT - 00.24 - 00.40: nine zero degrees ryanair nine two bravo quebec

[3] - ATCO - 00.42 - 00.50: qantas seven thirty three contact departures

[4] - PILOT - 01.01 - 01.10: contact departures qantas seven thirty three 

Figure 3. Detailed outputs of the main ML-based submodules of our proposed pseudo-pilot system. It includes pre-processing from the input audio
stream, speaker role detection by push-to-talk (PTT) signal, transcripts generation and high-level ATC entities extraction with our speech-to-text and NER
modules, respectively. All the data is later aggregated, packaged and sent to the repetition generator and TTS module. Note that this data can also be logged
into a database for control and record.

fall into certain pre-defined categories such as parts of speech,
location, organizations, or proper nouns like persons’ names.
Based on the domain, these entities can differ. In the field of
ATC we have defined as ‘key entities’: callsigns, commands,
values, and units. For example, the following transcribed
communication (example taken from Figure 3):

Input: ryanair nine two bravo quebec turn right heading zero
nine zero,

would be parsed to high-level entity format:

Output: <callsign> ryanair nine two bravo quebec </callsign>
<command> turn right heading </command> <value> zero
nine zero </value>

Early research [37] on high-level entity parsing or ‘NER’,
used to obtain these tags from handcrafted dictionaries and
ontologies. This, in turn, increased the overall complexity and
was prone to human errors when escaling up to more entities
or when adapting the system to a different domain. Collobert
et al. [38] introduced machine learning-based methods for text
processing in topics such as part-of-speech tagging, chunking,
NER, and semantic role labeling. Further work on NER was
carried by [39], [40]. In practice, a high-level entity parser
system can be developed by fine-tuning a pre-trained LM on
the downstream NER task. State-of-the-art NER systems are
based on well-known pretrained LMs such as, BERT [41],
RoBERTa [42], or DeBERTa [43]. In our experiments, we
adopted one of the most well-known and simple to use LM,
i.e., BERT.

D. Speech Synthesis

Speech synthesis also known as text-to-speech (TTS) is a
technology involving several research fields such as linguistics,
acoustics, speech signal processing, among others. TTS aims
at transforming input text into a speech signal. There have been
several approaches in the framework of TTS such as, formant-
based parametric synthesis [44], waveform concatenation [45],
or SPSS-based5 models [46]. Akin to language modeling,
recent advances in deep learning has also impacted TTS.
For instance, the widely known Tacotron model [47] was
proposed in 2017 and Tacotron2 [48], an updated version, in
2018. These models are end-to-end generative TTS systems
capable to synthesize speech from characters (or words). More
recently, FastSpeech2 [49] has gained a lot of popularity in
the TTS research field due to its simplicity and because it
works in a non-autoregressive manner. We refer the reader to
the references cited above to get a more technical background
behind these state-of-the-art end-to-end TTS systems.

III. DATASETS

This section briefly describes the public and private
databases used for training and evaluating the ASR and high-
level entity parser modules. Table I lists a summary of the
databases employed in this research. It also lists the amount
of train/test samples and their open-source status.

LDC-ATCC corpus: the Air Traffic Control Corpus6

(ATCC) consists of recorded speech for use in ATC research

5SPSS stands for statistical parametric speech synthesis.
6LDC-ATCC: https://catalog.ldc.upenn.edu/LDC94S14A.
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TABLE I. AIR TRAFFIC CONTROL COMMUNICATIONS-RELATED
DATABASES USED FOR DEVELOPING OUR SYSTEMS. †TOTAL NUMBER OF
HOURS OF AUDIO AFTER SILENCE REMOVAL.

Database Duration† Open Ref
Train Test source

Private databases

HAAWAII 43 4 % [36]
Internal Data 95 - % [23]

Public databases

ATCOSIM 8 - ✓ [50]
UWB-ATCC 10.4 - ✓ [51]
LDC-ATCC 23 2.6 ✓ [52]
ATCO2-PL 100 4 ✓ [25]

in the area of ASR and NLP. The audio data contains voice
communication traffic between various ATCos and pilots. The
audio files are sampled at 8 kHz, 16-bit linear, representing
continuous monitoring without squelch or silence elimination.
Each file has a single frequency over one to two hours of
audio. The corpus contains gold annotations and metadata.7

The corpus consists of approximately 70 h and after silence
removal, the total duration of data is around 25 h of ATCo
and pilot transmissions.

UWB-ATCC corpus: the UWB-ATCC8 corpus is a free and
public resource for research on ATC. It contains recordings
of communication between ATCos and pilots. The speech is
manually transcribed and labeled with the speaker information,
i.e., pilot/controller. The total amount of speech after removing
silences is 13 hrs. The audio data is mono-channel sampled at
8kHz and 16-bit PCM.

ATCO2 corpus: dataset built for the development and
evaluation of ASR and NLP technologies for English
ATC communications. The dataset consists of English
coming from LKTB, LKPR, LZIB, LSGS, LSZH, LSZB
and YSSY airports. There are two official partitions,
namely, ATCO2 test set 1h corpus and the ATCO2 test
set corpus. The first corpus contains 1.1 hr of open-
sourced transcribed annotations, and it can be accessed
for free in https://www.atco2.org/data. The
latter contains around 3 hrs of extra annotated data,
and the full corpus is available for purchase through
ELDA in http://catalog.elra.info/en-us/
repository/browse/ELRA-S0484. The recordings of
both corpus are mono-channel sampled at 16kHz and 16-bit
PCM.

HAAWAII corpus9: dataset based on an exploratory
research project that aims to research and develop a reliable
and adaptable solution to automatically transcribe voice
commands issued by both ATCos and pilots. The controller

7Metadata covers voice activity segmentation details, speaker role
information (who is talking), and callsigns in ICAO format.

8Corpus released by the University of West Bohemia: https:
//lindat.mff.cuni.cz/repository/xmlui/handle/11858/
00-097C-0000-0001-CCA1-0.

9Highly Advanced Air Traffic Controller Workstation with Artificial
Intelligence Integration: https://www.haawaii.de.
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Figure 4. Pipeline breakdown of data selection and filtering for training
of the speech-to-text system. SNR: signal-to-noise ratio; English LID:
English language identification score. We apply these filters on top of
the released version of ATCO2 pseudo labeled set corpus available for
purchase through ELDA in http://catalog.elra.info/en-us/
repository/browse/ELRA-S0484.

and pilot conversations are obtained from two Air Navigation
Service Providers (ANSPs): (i) NATS for London Approach
and (ii) ISAVIA for Icelandic en-route. The total amount of
manually transcribed data available is around 47 h (partitioned
into 43 h for train and 4 h for test). Similar to another corpus,
the audio files are sampled at 8 kHz and 16-bit PCM.

IV. AIR-TRAFFIC CONTROLLER TRAINING SYSTEM

In this section, we describe the core modules and present the
obtained results of the proposed pseudo-pilot system. The first
part covers pre-processing, automatic speech recognition, and
high-level ATC-entity parsing, as described in Figure 3. The
final output of these modules then creates the spoken sentence
using the speech synthesizer to simulate a pilot (second part).
Figure 1 gives a broad overview of the system.

A. Pre-processing

As mentioned in Section III, the sampling rate of all
databases are not the same. Thus, the audio data is first
up/down sampled to 16kHz. For ATCOs’ data, the following
steps are applied to select the best audio data from the
open-source ATCO2 PL set corpus10, which is described in
Figure 4. Firstly, the available data is filtered to remove
very long (>120 s) and short recordings (<0.5 s). Next, we
remove segments with SNR below 0 dB in order to have
reasonably good audio quality. As described previously, the
ATCO2 corpus consists of data from different airports, and
thus, there are some non-English recordings. However, our
ASR and NLP systems are trained with only English data.
Thus, in the next step, we apply English language detection

10The ATCO2 PL set corpus is composed of generated ASR transcripts,
i.e., it is not manually annotated or corroborated by a human.
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TABLE II. COMPARISON OF WORD ERROR RATES (WER) IN
PERCENTAGES FOR AM AND LM TRAINED WITH DIFFERENT ATC
SUBSETS DESCRIBED IN SECTION III. (I) MODEL 1- ALL DATA EXCEPT
ATCO2-PL (190 H), (II) MODEL 2- TRAINED WITH PUBLIC DATASETS
(LDC-ATCC + UWB-ATCC = 33 H), AND (III) MODEL 3- ONLY ATCO2-
PL (100 H). EACH MODEL IS EVALUATED SEPARATELY ON HAAWAII,
LDC-ATCC AND ATCO2 test set corpus. WERS IN BOLD DENOTES THE
TOP PERFORMANCE PER TEST SET.

Model Test sets WER (%)
HAAWAII LDC ATCO2

Model 1 10.3 13.5 36.6
Model 2 39.8 14.3 44.8
Model 3 38.1 58.3 29.6

and remove the samples that have less than 0.5 points on
English language score (see [53]).11 Finally, we select ∼100 h
subset for training our system.

B. Automatic Speech Recognition

In this work, we present results for hybrid-based ASR
systems trained with the corpora listed in Table I.

Experimental details: in our experiments, conventional
biphone Convolutional Neural Network (CNN) [54] + TDNN-
F [55] based acoustic models trained with Kaldi [56] toolkit
(i.e., nnet3 model architecture) are used. AMs are trained with
the LF-MMI training framework, considered to produce state-
of-the-art performance for hybrid ASR. In all the experiments,
3-fold speed perturbation with MFCCs and i-vectors features
are used. Language model (LM) is trained as a statistical
3-gram model using the manual transcripts. The results are
presented for the AM and LM trained with the following 3
scenarios: (i) all data except the ATCO2 dataset, (ii) public
dataset (ATCOSIM + LDC-ATCC + UWB-ATCC), and (iii)
100 h of ATCO2-PL data. We tag these models in Table II as
Model-1, Model-2 and Model-3, respectively.

Results: to show the performance of the ASR on various
subsets of data described in Section III, we report results of
the ASR on 3 test sets, a private data set and 2 public datasets:
(i) HAAWAII, (ii) LDC, and (iii) ATCO2 test set corpus. Each
test set is a combination of both ATCo and pilot speech. As
shown in Table II, the best performance for each test set is
reached when the ASR is trained with the respective data.
For reproducible experiments, ASR trained with open-source
data can be used. An error-resilient ASR is critical in the ATM
domain. In [57], the authors show that achieving a lower WER
increases the command recognition performance. The results
in Table II also show that ATC communications in different
environments result in various performances. Thus, depending
on the condition of the environment, a suitable model can be
used. E.g., evaluating the ASR on the ATCo subset of the
HAAWAII test set results in a WER of ∼4% which implies
that 4 out of 100 words of an ATCo are wrong, which is
acceptable in practical applications.

11This score ranges from 0 to 1. The higher the score, the more probability
that the ATC communication is in English. The authors of ATCO2-PL database
supply this information as metadata.
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Figure 5. High-level ATC-entity parser system. This submodule is based on
a pretrained BERT language model fetched from HuggingFace platform [59].
We fine-tune BERT in the named entity recognition task for identification of
key entities in transcribed ATC communications.

C. High-level ATC-Entity Parser

Air traffic control communications follow a structured
grammar and set of rules. Thus, it is logical to expect that some
words and phases carry special meaning in the communication.
Normally, these words uttered by ATCos are translated to
some actions by pilots. We categorize three classes of entities
following the ATCO2 test set corpus [22], [25], [58], i.e.,
callsigns, commands and values. We developed a baseline
system for recognition of these entities based on NER, as
depicted in Figure 5. We name this model: High-level ATC-
Entity Parser. An early implementation of this system was
covered in [28]. However, the authors only focus on private
databases.

Datasets: we use the ATCO2 corpus for experiments. We
split the initial subset into an 80/20 ratio to train and test our
system. We did not use the other datasets from Table I because
none of them contain gold annotations (i.e., annotations at
word level) of high-level ATC-related entities.

Experimental details: a NER system is trained that parses
text12 into high-level entities relevant to ATC communications.
The NER module is depicted in Figure 5. First, a BERT13 [41]
model is downloaded from HuggingFace [59], [60] which is
then fine-tuned on the NER task with 3k sentences (∼3 hours
of speech) using the ATCO2 test set corpus, where each word
has a tag. The final layer of the BERT model is replaced by
a linear layer with a dimension of 8 (following the classes
structure from Section 3.3 of [61], two outputs for each class).
As only 3k sentences are used, a 5-fold cross-validation is
conducted. Further details about experimentation are covered
in [28]. We redirected the reader to the public and open-
source GitHub repository of the ATCO2 corpus (https://
github.com/idiap/atco2-corpus). Here, the authors
released Python scripts to replicate part of the results presented
in this work.

12In our case, it parses transcripts generated by our ASR system or ground
truth annotations as a proof-of-concept.

13The pre-trained version of BERT-base-uncased with 110
million parameters is used. URL: https://huggingface.co/
bert-base-uncased.
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TABLE III. MEAN AND STANDARD DEVIATION (STD) OF DIFFERENT
PERFORMANCE METRICS FOR EACH ENTITY FROM OUR NER
SYSTEM. PRECISION (INDICATES HOW ACCURATE THE MODEL IS AT
WHAT IT PREDICTED), RECALL (HOW ACCURATE THE MODEL IS AT
IDENTIFYING THE CORRECT CLASS), AND F1-SCORE METRICS ARE USED
TO EVALUATE OUR HIGH-LEVEL ATC-ENTITY PARSER SYSTEM TRAINED
AND EVALUATED ON ATCO2 TEST SET. A 5-FOLD CROSS-VALIDATION
SCHEME IS CARRIED OUT, AS THE TRAIN AND TEST SPLIT ARE SMALL.
RESULTS ARE PRESENTED FOR EACH CLASS, I.E., CALLSIGN, COMMAND,
AND VALUE. NOTE THAT THE RESULTS ARE OBTAINED ON TOP OF GOLD
ANNOTATIONS.

Class Nb. Tokens Metrics: Mean (Std)

Mean (Std) Precision Recall F1-score

Callsign 2274 (45) 0.97 (0.004) 0.98 (0.004) 0.97 (0.005)
Command 1030 ( 7) 0.80 (0.016) 0.83 (0.023) 0.82 (0.020)
Values 2175 (49) 0.86 (0.008) 0.88 (0.015) 0.87 (0.006)

Results: Table III shows the results on ATCO2 test set.
For each class, the results are presented using the precision,
recall and F1-score metrics. The BERT-based model yielded
an average of 0.97/0.82/0.87 F1-score for callsign, commands
and values, respectively. We observe that the command class
is the most challenging among all the classes, as they
carry extra complexity compared to values and callsigns. For
instance, a value is mainly composed of cardinal numbers
(e.g., one, one hundred, one thousand) and some additional
words, e.g., flight level. While a callsign is composed of
an airline designator along with numbers and radiotelephony
alphabet [62]. Overall, the recognition rates are above 80
points in all metrics (see Table III). However, in practical
terms, further experimentation and validation needs to be
undertaken with in real-life scenarios, in order to determine
the minimum required performance to make the system viable.
Similarly, there is still space for improvement, for instance, by
adding real-time surveillance data into the system. An example
is covered in [28]. Also, we should test the performance of the
ATC-entity parser on top of ASR output rather than ground
truths.

D. Repetition Generator

The repetition generator (RG) is the core of the pseudo-
pilot agent. It receives the output of the NER system, which
contains the callsign, commands, and values uttered by the
ATCo, and it produces a spoken response. The response is
a WAV file that is played back over the ATCos’ trainee
headphones. It can also be stored along with the metadata
for future control and assessment. In essence, this response
matches the grammar of what a typical pseudo-pilot (or
pilot) would reply based on the initial commands issued
by the ATCo. In addition, the RG system comprises three
submodules: a grammar converter, a word fixer, and a text-
to-speech module (also known as a speech synthesizer). An
overview of the RG system is in the red box of Figure 1.

Grammar converter module: is built based on the fact that
in ATC communications, pilots typically mention the callsign
at the end, while ATCos do at the beginning. This module
swaps the order of the entities detected by our NER system
(see Section IV-C) to match the pilots’ ‘grammar’ structure.

Word fixer module: it modifies the commands to match
what a pseudo-pilot should reply.14 We perform this by
applying some mapping rules, e.g., descend → descending or
turn → heading. These rules ensure that the reply generated by
the RG is as close as possible to standard ICAO phraseology.
Our current word fixer module contains a list of 15 commands.
Adding additional mapping rules to a rules.txt file can
easily update this module, allowing the system to work in
different environments, e.g., ground tower or control approach.

Text-to-Speech module: finally, when the final textual
prompt is assembled, an out-of-the-box TTS system converts
the generated prompt into spoken format.

Experimental details: a recently proposed non-
autoregressive speech synthesizer, FastSpeech2 model [49]
is used in our experiments. A brief description of the
details and implementation is in Section IV-D. We
download and use out-of-the-box a well-known pre-
trained TTS model. Specifically, we use FastSpeech2
model from HuggingFace hub [59], which is available
at the following link: https://huggingface.co/
facebook/fastspeech2-en-ljspeech. We use this
model out-of-the-box by simply performing inference with
the sentence produced by the repetition generator, i.e., the
prompt of the pseudo-pilot. Additional models, such as
Tacotron [47] or Tacotron2 [48],15 can be also fine-tuned and
deployed for the ATC data.

System analysis: during the experiments, we found out
that the model can handle complicated word sequences16,
which are common in ATC. However, we did not perform
any qualitative analysis of the produced voice/speech by the
TTS. We leave this field as future line of work. Also, one can
anticipate that akin to the NER system, the TTS module can be
fine-tuned on the specific field, i.e., ATC. We did not explore
this area, as the main idea of the paper was to implement a
simple, yet efficient pseudo-pilot system with already available
open-source models. Adapting the TTS system with ATC
audio is also a future line of work.

V. CONCLUSIONS AND FUTURE WORK

In this work, we investigated an approach to generate
a pseudo-pilot agent using speech and natural language
processing techniques that are developed and implemented
efficiently. The main modules comprise: transcribing ATCo
communication with an ASR, parsing the ATC-related entities
from the transcript with a NER module, and rendering a pilot-
alike response using a simple repetition generator module.
The ASR experimental results are presented for three different
training scenarios: (i) using all available ATC data, (ii) using

14Based on the type of communication requirements, a similar approach
can be deployed to update the response. e.g., ‘create’ a desirable read-back
error. This can be useful in training ATCos to spot these errors. One example:
turn right → turn left.

15Tacotron2 model is public and free to access in the HuggingFace
hub in the following link: https://huggingface.co/speechbrain/
tts-tacotron2-ljspeech.

16For example, pilot’s read backs that include more than one command and
values.
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only open-source data, and (iii) using open-source but noisy
data. These ASR models are then evaluated on three different
test sets. The results show that each test set performs better
when the data is seen during training, and it indicates that ASR
is essential as the correct transcript is required to generate a
pilot response. The high-level entity parser tags the sequence
of words to callsigns, commands, and values are trained and
evaluated on the ATCO2 test set and has F1-scores above 0.80
for all the classes. And, as the primary goal in this work is
to generate a simple and efficient pseudo-pilot, we deploy a
rule-based dialogue system along with a generic state-of-the-
art TTS system to generate a pseudo-pilot agent.

We investigated hybrid-based systems for ASR, which can
further be improved by incorporating (i) surveillance data as
an additional modality and (ii) end-to-end training techniques.
As mentioned earlier, the repetition generator uses a simple
grammar converter and a pre-trained TTS system. As part
of our future work, we consider investigating the grammar
converter to (i) include greetings and complex responses and
(ii) based on the surveillance data, to initiate a request from
a pilot and TTS system to fine-tune it to the ATC domain.
We also consider developing techniques to have a quantitative
metric for evaluating the system.
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