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A systems approach towards remote health-monitoring in
older adults: Introducing a zero-interaction digital exhaust
Narayan Schütz 1✉, Samuel E. J. Knobel1, Angela Botros1, Michael Single1, Bruno Pais 2, Valérie Santschi2, Daniel Gatica-Perez3,4,
Philipp Buluschek 5, Prabitha Urwyler1, Stephan M. Gerber1, René M. Müri1,6, Urs P. Mosimann1, Hugo Saner1,7,8 and Tobias Nef1,6,8

Using connected sensing devices to remotely monitor health is a promising way to help transition healthcare from a rather reactive
to a more precision medicine oriented proactive approach, which could be particularly relevant in the face of rapid population
ageing and the challenges it poses to healthcare systems. Sensor derived digital measures of health, such as digital biomarkers or
digital clinical outcome assessments, may be used to monitor health status or the risk of adverse events like falls. Current research
around such digital measures has largely focused on exploring the use of few individual measures obtained through mobile
devices. However, especially for long-term applications in older adults, this choice of technology may not be ideal and could further
add to the digital divide. Moreover, large-scale systems biology approaches, like genomics, have already proven beneficial in
precision medicine, making it plausible that the same could also hold for remote-health monitoring. In this context, we introduce
and describe a zero-interaction digital exhaust: a set of 1268 digital measures that cover large parts of a person’s activity, behavior
and physiology. Making this approach more inclusive of older adults, we base this set entirely on contactless, zero-interaction
sensing technologies. Applying the resulting digital exhaust to real-world data, we then demonstrate the possibility to create
multiple ageing relevant digital clinical outcome assessments. Paired with modern machine learning, we find these assessments to
be surprisingly powerful and often on-par with mobile approaches. Lastly, we highlight the possibility to discover novel digital
biomarkers based on this large-scale approach.
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INTRODUCTION
Rapid population ageing is a global phenomenon that affects
virtually every country on earth1. A major challenge in this regard
is the increased disease burden and related disability associated
with ageing, which is posed to further increase already high
healthcare expenditures and significantly reduces older adults’
quality of life1. While there is unlikely to be a single solution to
those challenges, concepts from precision medicine could play an
integral part2,3. One idea here is the systems medicine approach,
aiming to move from reactive to predictive, preventive, persona-
lized, and participatory (P4) medicine4,5, a concept that was
initially introduced by Leroy Hood and colleagues, more than two
decades ago. A key aspect of systems, or P4, medicine is to
monitor a holistic view of a person’s wellbeing in order to better
manage their health and gain a deeper understanding of disease
processes4,6. This is ought to be achieved by comprehensive
systems approaches, like multi-omics profiling but more recently
also by means of remote health-monitoring3,6–8. That is, by using
connected sensing devices, such as smartphones, wearables or
embedded internet of things sensing units, to continuously and
objectively monitor health relevant information in everyday
life9,10. This is in contrast to the currently often employed on-
site visits that tend to merely provide a, potentially biased,
snapshot of health states3,11. Today, such remote health-
monitoring approaches are mostly focusing on a select few
individual aspects of older adults’ lives, instead of employing more
comprehensive systems approaches as advocated by P4 medicine.
This focus, likely results in many phenotypes of health and disease

to be missed and may limit the potential of large scale machine
learning (ML) approaches. Furthermore, the used technologies
tend to include sensing devices that are rather optimized towards
younger demographics and may thus prove suboptimal for use by
many (but certainly not all) older adults, particularly long-term.
Something that could further increase the digital divide,
potentially excluding seniors that would benefit the most from
remote health-monitoring approaches. More comprehensive
approaches towards remote health-monitoring in older adults,
with a particular emphasis on ageing-inclusive sensing technol-
ogies, may thus be of high relevance for the future of remote
health-monitoring in this growing demographic.
In the past decade an impressive number of studies have

demonstrated the potential of digital measures, such as their use
as digital analogs to biomarkers12–17 (hence, digital biomarkers18)
and clinical outcome assessments (COAs)19–22 (hence, digital
COAs18). Much of this research revolved around clinical research in
neuropsychiatric disorders23–25 which are often linked to ageing
and act as major contributors to disease burden26. In view of the
above, it is not far fetched to assume that long-term monitoring of
digital measures may provide continuous and objective informa-
tion about an older individual’s functional status and health
changes. This, in turn, could facilitate earlier and more persona-
lised interventions2,3. Eventually, this may also help facilitate older
adult’s independence, allowing them to stay at home longer, and
increase their quality of life9. For instance, Rantz et al. show how
sensor technologies linked to early alert systems led to better
health outcomes amongst older adults9. Another example of long-

1ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland. 2LaSource School of Nursing Sciences, HES-SO University of Applied Sciences and
Arts Western Switzerland, Lausanne, Switzerland. 3Idiap Research Institute, Martigny, Switzerland. 4School of Engineering, Ecole Polytechnique Fédérale de Lausanne
(EPFL), Lausanne, Switzerland. 5DomoHealth SA, Lausanne, Switzerland. 6Department of Neurology, Inselspital, Bern, Switzerland. 7Institute of Social and Preventive Medicine,
University of Bern, Bern, Switzerland. 8These authors contributed equally: Hugo Saner, Tobias Nef. ✉email: narayan.schuetz@unibe.ch

www.nature.com/npjdigitalmed

Published in partnership with Seoul National University Bundang Hospital

1
2
3
4
5
6
7
8
9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41746-022-00657-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41746-022-00657-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41746-022-00657-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41746-022-00657-y&domain=pdf
http://orcid.org/0000-0001-5069-407X
http://orcid.org/0000-0001-5069-407X
http://orcid.org/0000-0001-5069-407X
http://orcid.org/0000-0001-5069-407X
http://orcid.org/0000-0001-5069-407X
http://orcid.org/0000-0002-4457-0983
http://orcid.org/0000-0002-4457-0983
http://orcid.org/0000-0002-4457-0983
http://orcid.org/0000-0002-4457-0983
http://orcid.org/0000-0002-4457-0983
http://orcid.org/0000-0001-6577-200X
http://orcid.org/0000-0001-6577-200X
http://orcid.org/0000-0001-6577-200X
http://orcid.org/0000-0001-6577-200X
http://orcid.org/0000-0001-6577-200X
https://doi.org/10.1038/s41746-022-00657-y
mailto:narayan.schuetz@unibe.ch
www.nature.com/npjdigitalmed


term monitoring is presented by Austin et al., where they
managed to assess loneliness using connected sensing technol-
ogies27. Finally, in one of the earliest long-term monitoring efforts
related to older adults, Hayes et al. demonstrate that variations in
sensor-derived gait speed and physical activity differ significantly
between older adults with mild cognitive impairment (MCI) and
healthy older adults28.
A large part of conducted research around digital measures,

however, has focused on shorter-term studies in combination with
mobile technologies, such as smartphones, smartwatches, as well
as activity and fitness trackers. While there is no doubt that mobile
technologies are a great way to derive health relevant informa-
tion, they may not necessarily be ideal for long-term monitoring in
the broader population of older adults. There are multiple reasons
for this: (1) older adults tend to be more wary of novel
technologies29; (2) since monitoring durations may become very
long or even unlimited, it is ideal if there is no interaction (zero-
interaction) with the system, as there is, for instance, evidence of
wear-time-dependent compliance issues30; (3) there is a certain
stigma attached to the use of wearable devices, whereby many
older adults tend to fear being seen as frail if they wear a device -
even if it is just an alarm clock29; (4) for seniors with potential
memory issues, wearing and maintaining devices may not be
feasible. As a result, many older adults that are affected by the
digital divide31 may be excluded, this may be even more
problematic in those of lower socio-economic background32–34,
those living in harder to access rural areas32, or those living with
certain conditions like cognitive impairments or late-life depres-
sion33. Not too surprisingly, most successful real-world, long-term
research using sensor technology with older adults has focused on
contactless, zero-interaction approaches9,13,28,35–40. Such technol-
ogies include passive infrared (PIR) motion sensors that capture an
individual’s activity in a given room9,28,35,36,38,41,42, contact door
sensors that can signal when a person leaves or enters the
home36–38,43, pressure sensors on or under a mattress that capture
sleep measures9,36,39, and electronic pillboxes to track medication
adherence44, along with more obtrusive depth-sensing cameras
that track silhouettes to detect falls and monitor gait parameters9.
Currently, digital measures are commonly used individually or

by combining several specific ones based on concepts of interest.
While this approach is entirely reasonable, it may limit the
potential of digital measures as many potential characteristics of
health and disease may simply go unnoticed. Furthermore, it is
oftentimes not clear in advance, which, amongst correlated
measures, may be the most relevant13. We therefore hypothesise
that a more holistic systems approach — inspired by systems
biology and applied to remote health-monitoring — may be
highly promising. This involves deriving larger sets of digital
measures, potentially in the hundreds to thousands, which may be
particularly helpful in exploratory research and could also enable
the creation of strong digital COAs by leveraging large-scale
machine learning approaches20. This is in some ways analogous to
more classical biological settings, where measurements can assess
individual blood tests or genes (for instance, by means of single-
nucleotide polymorphisms) but also whole sets, such as metabo-
lomes or genomes, to identify new phenotypes of health and
disease, such as is being proposed with the systems-oriented P4
medicine. In the context of zero-interaction, contactless technol-
ogies, a systems approach could also help to counteract some of
the downsides of contactless technologies, such as lower accuracy
as a result of the indirect measurement modality. In the context of
digital measures, an extensive set of measures may be referred to
as some sort of digital “ome”, such as a digital behaviorome45, or a
digital exhaust46 — where the basic measurement unit is a digital
measure. In this work, we will use the latter term as it is likely less
controversial47.
Two notable real-world examples of using extensive sets of

digital measures are studies by Cook et al.42 and Chen et al.20,

which demonstrate the feasibility of using a digital exhaust based
on wearable and contactless sensors to predict multiple clinical
scores (in the former) and MCI (in the latter). Building on their
work, we aim to evaluate the potential of a systems oriented
approach towards long-term remote health-monitoring in the
demographics of older adults. To this end, we first introduce an
extensive set of 1268 well-documented digital measures that are
entirely obtainable with sensing technologies that demonstrate
extensive long-term, real-world evidence in older adults. Thus, all
of these measures are based on a small set of zero-interaction,
contactless, and cost-effective sensors that, as shown by Baettie
et al., scale well to large ageing-related remote-monitoring
projects36; this also means that these sensors should be
compatible with most long-term monitoring projects in
community-dwelling older adults. Using the resulting compre-
hensive set of digital measures, or digital exhaust, we further
demonstrate how powerful ML based ageing-relevant digital
COAs for fall risk, frailty, late-life depression, and MCI can be
created. Finally, we highlight the possibility to leverage a digital
exhaust to discover new potential digital biomarkers, demonstrat-
ing how a comprehensive systems approach could also help in
establishing new phenotypes of health and disease.

RESULTS
A zero-interaction digital exhaust
We introduce a set of 94 hypothesis-driven base measures, from
which we further derive a total of 1268 digital measures using
aggregation and frequency analysis. All measures are obtainable
through zero-interaction and privacy-preserving (neither video nor
audio) contactless (thus no direct physical contact) sensing
devices, which do not require any user interaction. Of these
1268 digital measures, 224 were extracted by means of PIR motion
sensors in essential rooms (the entrance, bathroom, living room,
bedroom, and kitchen) and magnetic door sensors on the
refrigerator and entrance door. An additional 1044 measures
were extracted on the basis of sleep data from a quasi-
piezoelectric bed sensor placed under the mattress. Detailed
descriptions and derivations, as well as associated hypotheses, are
provided in the Supplementary Methods, together with a high-
level overview of all presented digital measures (see Dataset 1).
Furthermore, an extensive online version with interactive visua-
lisations, along with additional data, including measure distribu-
tions and correlations with various ageing-relevant health
indicators and outcomes, is available on GitHub ((https://
narayanschuetz.github.io/digital-exhaust/) and serves as an online
supplementary to this article. An example of averaged digital
exhausts is shown in Fig. 1.

Machine learning based digital clinical outcome assessments
Here, we demonstrate how the introduced digital exhaust could
be useful for ageing and ageing related research. To this end, we
created machine learning-derived digital COAs, aimed at auto-
matically classifying ageing-relevant health outcomes. We created
five datasets, one based on each clinical assessment, including fall
risk, frailty, late-life depression, and MCI. This analysis is based on
remote-monitoring data from two observational longitudinal pilot
studies in Switzerland, where independently living, community-
dwelling older adults were equipped with pervasive computing
systems and monitored over the course of a year, while
simultaneously being subject to regular visits and clinical
assessments. The results on predicting ageing-relevant positive
and negative health outcomes are summarised in Tables 1 and 2.
The differences between using the digital exhaust alone versus
using the exhaust in addition to demographics were minimal and,
judging by overlapping 95% CIs, non-significant. The highest
discriminative power, in terms of ROC AUC (area under the
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receiver-operating characteristic curve), was achieved with the
Tinetti Performance-Oriented Mobility Assessment (POMA)-based
fall-risk dataset when including both demographic and digital
exhaust information (ROC AUC = 0.805). Notably, however,
demographic information alone was sufficient to produce good
performance (ROC AUC = 0.777) in this particular case.
Performances on the fall-risk related Timed Up and Go Test
(TUG), the MCI-related Montreal Cognitive Assessment (MoCA),
and the frailty-related Edmonton Frail Scale (EFS) datasets were
also relatively high, with ROC AUC values of 0.786, 0.780, and
0.704, respectively, when using only the digital exhaust. The worst

performance was achieved with the dataset based on the Geriatric
Depression Scale (GDS) (ROC AUC = 0.620), when using only the
digital exhaust. Here, the difference between using only demo-
graphics versus using the digital exhaust was also minimal, with a
slight but non-significant advantage in favour of the exhaust-only
scenario. Overall, though, the addition of the digital exhaust
resulted, in all cases, in higher ROC AUC and PrAUC (Area Under
the Precision-Recall Curve) values than those obtained when using
only demographic information. These differences were statistically
significant in all but the POMA and GDS datasets (which were
based on rather conservative, non-overlapping CI intervals). The

Fig. 1 Exemplary visualizations of averaged digital exhausts. Depicts an example of z-normalised, averaged digital exhausts of participants
with mild cognitive impairment (MCI) (based on a Montreal Cognitive Assessment screening < 23 points). Digital measures > 0 (in blue)
indicate above-average values for that group, while < 0 (red) indicates below-average values. Many digital measures visually differ in both
examples. It should be noted that this is a down-scaled visualisation, as not all measures would fit in the figure. For the complete and
interactive version, see the supplementary online version (Note the zoom-in functionality).
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largest differences were found with the MoCA and TUG datasets,
for which the objectives were to identify participants with an
indication of MCI or increased fall risk, respectively.

Discovering novel digital biomarkers
The importance of individual digital measures (that may be
interesting as digital biomarker candidates) with respect to the
COAs were evaluated by means of SHapley Additive exPlanations
(SHAP) values48,49. In Fig. 2, we present the most important digital
measure, based on global SHAP values, across all 100 simulations
of each single dataset - corresponding to the different COAs. A
more detailed table, highlighting the top 10 highest-ranked
measures based on global SHAP values, is available in Supple-
mentary Table 3. Furthermore, in Fig. 3, we display beeswarm plots
of SHAP values for the individual COAs. These show how the nine
most important digital measures - as well as the sum of all other
measures combined - influence the log odds ratio of having a
negative health outcome on the various datasets. Values shown in
Fig. 3 mostly align with the global SHAP importance rankings,
although there are minor differences. Since the global SHAP
rankings are based on 100 iterations (and thus 100 models), and
since the importances shown in Fig. 3 are based on a single
model, we generally place greater emphasis on the global SHAP
values. Nonetheless, the beeswarm plots are still useful, as they
provide insights into the direction of effects.

DISCUSSION
The present study evaluated the idea of a comprehensive digital
exhaust for long-term remote monitoring in older adults. To this
end, we introduced 1268 well-documented digital measures that
aim to cover a large part of a person’s activity, behavior and
physiology (extensive online documentation can be found on
https://narayanschuetz.github.io/digital-exhaust/). Since most suc-
cessful long-term remote-monitoring projects in older adults have
employed zero-interaction, contactless sensing technologies, we
based all introduced digital measures on such technologies. Using
the resulting digital exhaust, in combination with real-world data,
we could successfully create large-scale ML derived digital COAs
for common ageing-relevant outcomes, including fall risk, frailty,
MCI, and to a lesser degree late-life depression. Furthermore, we
were able to showcase the discovery of potentially interesting
new digital biomarkers related to the created digital COAs.
Beginning with the digital COAs, we found good discriminative

performances across all but late-life depression, resulting in ROC
AUC values of ≥ 0.7. Notably, these results are based on a very
limited sample size, which makes it probable that this is a rather
conservative estimate of what could be possible. In all cases,
digital COAs based on the digital exhaust led to higher ROC AUC
(see Table 1) and PrAUC (see Table 2) values than those obtained
from only using demographics information. These differences
were significant in three (TUG, EFS, and MoCA) out of the five
outcome datasets, indicating that a digital exhaust captures
information beyond just simple demographics. It is also notable
that adding demographic information to the digital exhaust did
not result in significantly better performance across outcomes,
which may indicate that this type of information was already
latently captured by the measures making up the exhaust. While
we used digital COAs here more as an example for feasibility
purposes, those could in fact be highly useful for continuously
assessing an older adult’s health and functional status with
respect to specific outcomes and may allow for the implementa-
tion of early preventive interventions, fitting in well with the
proactive nature of precision medicine. For instance, if an older
adult exhibits increased fall risk, it may be reasonable for them to
see a fall prevention specialist, as opposed to taking action after a
fall has already occurred.
Putting the above mentioned results into perspective, passive

sensor-based fall-risk assessments were shown to yield AUC values
in the range of 0.65–0.8950. It should be noted that these values
were obtained using wearables by means of accelerometry and
predominantly with very few digital measures of gait (and
sometimes with accelerometer signal characteristics). Further-
more, none of the studies mentioned in this paper used long-term
data, and some were performed under laboratory conditions far
removed from real life. Our results, with ROC AUC values of 0.786
(TUG dataset) and 0.805 (POMA dataset), are thus in line and
satisfactory by comparison. Meanwhile, in terms of relevant digital
measures, it is notable that not only physical activity and broadly
gait-related measures (such as the number of room transitions)
but also sleep and rhythmicity measures, such as activity in bed,
bed-exit count, or activity fragmentation, were of major impor-
tance in discriminating between participants with high and low
fall risk (see Fig. 3). Although prospective data would be necessary
to form clear conclusions, this may suggest that behavioural data
beyond just gait and physical activity may be relevant for fall-risk
assessments in older adults. Moreover, results from Piau et al.
show that PIR array-based gait speed may help identify future
fallers15. In this regard, the inclusion of gait-speed information
thorough zero-interaction approaches would likely further
increase performance on fall-risk related COAs.
In terms of frailty, comparable studies report ROC AUC values

between 0.72 and 0.86, based on wearable sensors51–53. These
results were primarily obtained on the basis of gait and physical

Table 1. Performance Evaluation based on ROC AUC.

Dataset Demographics Digital Exhaust Digital
Exhaust+Demographics

TUG 0.662 ± 0.041 0.786 ± 0.037 0.783 ± 0.036

POMA 0.777 ± 0.028 0.782 ± 0.035 0.805 ± 0.027

EFS 0.564 ± 0.034 0.704 ± 0.039 0.698 ± 0.038

GDS 0.602 ± 0.046 0.620 ± 0.048 0.616 ± 0.048

MoCA 0.430 ± 0.038 0.780 ± 0.039 0.757 ± 0.038

ROC AUC based results for the creation of machine learning-derived digital
COAs based on clinical assessments for fall risk (TUG & POMA), frailty (EFS),
late-life depression (GDS), and mild cognitive impairment (MoCA).
TUG Timed Up and Go Test
POMA Performance-Oriented Mobility Assessment
EFS Edmonton Frail Scale
MoCA Montreal Cognitive Assessment

Table 2. Performance Evaluation based on PrAUC.

Dataset Demographics Digital Exhaust Digital
Exhaust+Demographics

TUG 0.681 ± 0.035 0.816 ± 0.033 0.805 ± 0.034

POMA 0.615 ± 0.046 0.650 ± 0.047 0.678 ± 0.044

EFS 0.523 ± 0.041 0.625 ± 0.045 0.603 ± 0.044

GDS 0.397 ± 0.051 0.477 ± 0.054 0.458 ± 0.053

MoCA 0.653 ± 0.027 0.863 ± 0.028 0.839 ± 0.028

PrAUC based results for the creation of machine learning-derived digital
COAs based on clinical assessments for fall risk (TUG & POMA), frailty (EFS),
late-life depression (GDS), and mild cognitive impairment (MoCA).
TUG Timed Up and Go Test
POMA Performance-Oriented Mobility Assessment
EFS Edmonton Frail Scale
MoCA Montreal Cognitive Assessment
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Fall-Risk (TUG Dataset)Fall-Risk (TUG Dataset)
Measure ID: q50_bed_act_rel_bandpower0.000000-0.002501_Hz

Description:
A measure of in-bed activity bandpower
between the 0 and 6.6 minute periods. 
Since the signal is not detrended beforhand
this likely corresponds to mean differences
in the activity signals.

Observation:
Higher overall in-bed activity (possibly 
restless and worse quality sleep) seems 
associated with higher fall-risk. Power Spectral Density [V2/Hz]

Low Fall-Risk Group

High Fall-Risk Group

Fall-Risk (POMA Dataset)Fall-Risk (POMA Dataset)
Measure ID: q75_transition_count

Description:
A measure of the 75th quantile of the daily 
number of transitions between rooms in an 
apartment.

Observation:
Older adults with a higher number of daily 
room-transitions (more movement in the 
apartment) seem to exhibit a decreased
fall-risk. Number Room-Transitions [transitions/day]

Low Fall-Risk Group

High Fall-Risk Group

Frailty (EFS Dataset)Frailty (EFS Dataset)
Measure ID: q50_fridge_door_tod_first

Description:
Measures the median time of the day when the 
fridge door was opened the first time 
(as minutes since midnight).

Observation:
Older adults that open their fridge door later in
the day may be more frail. Time of 1st Fridge Usage [min since mindnight]

Non-Frail

Frail

Late-Life Depression (GDS Dataset)Late-Life Depression (GDS Dataset)
Measure ID: q50_bed_duration_in_bed

Description:
Measures the median of total time spent in the 
bed per night (includes sleeping and awake
states).

Observation:
Older adults that spend more time in the bed
tend to be more likely to have symptoms of 
late-life depression. Total Duration in Bed [s]

Asymptomatic

Symptoms of Depression

Mild Cognitive Impairment (MoCA Dataset)Mild Cognitive Impairment (MoCA Dataset)
Measure ID: iqr_bed_hr_q75_q25

Description:
Aims to measure variation in nightly heart rate 
dipping as the  variance in the quotients of 
the 75th and 25th nightly heart rate quantile.

Observation:
Older adults with symptoms of mild cognitive 
impairment seem to have, in certain instances,
more variation in  nightly heart rate dipping. IQR of Nightly HR Dipping [q75/q25 bpm]

Asymptomatic

Symptoms of MCI

Fig. 2 Most important digital measure for each outcome. Displays descriptions and density plots of the most important digital measure for
each outcome. Across all density plots, blue indicates a positive/neutral outcome, while orange indicates a negative outcome. It should be
noted that the proposed associations reflect correlation and not causation and should be interpreted accordingly.
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activity measures. Additionally, frailty definitions, study type, and
participant characteristics differ quite widely, so at best this gives a
broad idea of what is possible. With a ROC AUC value of 0.704, our
results are on the lower end of this spectrum. However, given the
types of sensors we employed, this seems realistic. Indeed, some
of the most important measures related to frailty were related to
fridge usage, physical activity (room-transition counts), and sleep
duration (see Fig. 3), all of which seem plausible as potential
digital biomarkers for frailty.
For late-life depression, comparable studies are lacking. Several

studies have demonstrated the utility of using wearable-based
digital measures in assessing general depression54–56. Further-
more, one instance reported on the assessment of late-life

depression using PIR-derived information on activities of daily
living (ADL)57. However, it is unclear whether their methodology
prevented data leakage, judging by the unusually high ROC AUC
values ≥ 0.95. Our own results, by contrast, show modest
performance in assessing late-life depression, with a ROC AUC
value of 0.620. While this may be due to the low number of
participants with a GDS score above 5 in our cohorts, it could also
indicate some inherent difficulties in measuring this outcome.
Many of the most important individual measures for late-life
depression assessments are related to sleep duration (see Fig. 3),
which is known to be associated with depression. More
interestingly, variations in fridge usage and behaviour complexity

Fig. 3 Beeswarm plot indicating digital measure importances across outcomes. Shows beeswarm plots of the 9 most important digital
measures based on SHAP values on all outcome datasets: TUG (Timed Up and Go) & POMA (Performance Oriented Mobility Assessment = fall
risk, GDS (Geriatric Depression Scale) = late-life depression, EFS (Edmonton Frail Scale) = frailty, MoCA (Montreal Cognitive Assessment) =
mild cognitive impairment. Finally, the contributions of the sum of the remaining measures is displayed. Digital measures are ordered
according to their importance, from top to bottom. The x-axis represents log odds, where values above zero indicate relevance for a negative
outcome. Colouring further shows the direction of this association, where blue indicates lower values of a given measure and red indicates
higher respective measure values. Detailed explanations of the individual measure names are given in the supplementary material or on the
supplementary website. Note that these plots are based on models trained on the whole respective dataset and are therefore slightly different
from the global importances shown in Supplementary Table 3, which are based on 100 simulation iterations.
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were relevant; however, due to the relatively low discriminative
power, further interpretation may not be meaningful.
Regarding the distinction between healthy older adults and

those with MCI, recent work has shown ROC AUC values of
0.62–0.80, based on comparable time intervals20,58. These values
were achieved with wearable devices but also when using
additional modalities such as smartphone and computerised
assessments. Our result, with a ROC AUC value of 0.780, is thus
aligned with similar research and shows that good discriminative
performance may potentially be achieved through an entirely
passive, zero-interaction set of sensors here as well. Further
supporting the plausibility of our results, a respectable body of
literature shows how individual digital measures based on PIR and
door sensors — such as variability in PIR array-based gait
speed59–61, ADL regularity41, regularity in physical activity28, sleep
disturbances62, and outing duration63 — differed between older
adults with MCI and healthy controls. Finally, with regards to MCI,
highly important measures include those related to physical
activity, such as the number of room-transitions or the total
amount of PIR-based activity. Moreover, sleep-related measures
such as sleep duration, activity in bed, and variation in in-bed
activity were found to be important (see Fig. 3). Regarding MCI,
however, the most noteworthy finding is the inclusion of various
sleep-related heart-rate measures - most importantly, the variation
in nightly heart-rate dipping behaviour, where unusually high
variation seems indicative of MCI (see Fig. 2). This is especially
interesting, as it has not been previously reported in connection
with digital measures. However, it is known that heart-rate
dipping is associated with cardiovascular disease64 and that
cardiovascular risk factors may be involved in cognitive decline65.
As such, it could be beneficial to further investigate the
relationship between nightly heart rate and mild cognitive
impairment.
Overall, our findings not only suggest that a more comprehen-

sive systems approach towards remote health-monitoring may be
promising for long-term clinical care and research, particularly
when combined with modern ML approaches, but also demon-
strate a potential alternative to commonly employed wearable
monitoring of digital measures. As such, although this should be
seen as early evidence, employing a digital exhaust, as opposed to
using few individual measures, could enable powerful ML derived
digital COAs and help to profile and discover novel characteristics
of health and disease, eventually empowering the idea of
precision (or systems) medicine. The value of a digital exhaust in
creating ML derived digital COAs is also supported by the
observation that, across all outcomes, the sum of the remaining
SHAP values — that is, all digital measures except for the 9 most
important ones combined — was highly important in explaining
model outcomes (see Fig. 3). Since zero-interaction technologies
could be very relevant for long-term remote health-monitoring in
older adults, the proposed digital exhaust would also give seniors,
that are not comfortable, or not able, to use wearable devices
(anymore), a promising alternative. This may be particularly
important when considering the still existing digital divide, that
was recently shown not to narrow for older adults with serious
conditions66. Nonetheless, it must be mentioned that most, if not
all, digital measures presented could also, at least in theory, be
derived by wearable devices, which may be suitable for some but
likely not all older adults.
Furthermore, by relying entirely on contactless, zero-interaction

technologies, large sets of digital measures can be derived and
used without major ethical concerns related to burdening subjects
with unnecessary sensing modalities. Best practices laid out by
Goldsack et at., for instance, discourage efforts towards sensor-
symptoms mapping, which is, to some degree, what a systems
approach is doing67. However, since in this case sensor
technologies respect privacy (no video or audio recordings, for
instance) and do not add any additional burden (hence zero-

interaction), there are scarcely any downsides, as would occur with
adding additional wearables or even active tasks that require
interactions. Despite the positives, our findings also suggest that,
at least with the presented digital measures and zero-interaction
technologies, some modalities may not be easily assessed, such as
in our case the assessment of late-life depression. Eventually, we
thus believe that the presented digital exhaust has the potential
to serve as a baseline set of measures that may be calculated over
long time frames (ranging from years to potentially decades), but
which could also be supplemented (potentially over shorter time
periods) with digital measures based on more specific sensors,
such as pillbox sensors, wearables, smartphones, or even non-
invasive biomolecular sensors (for instance on the basis of sweat68

or saliva69), depending on the specific needs, circumstances, and
conditions. In clinical care, a baseline set of digital measures could
make for a first defense, a basic monitoring layer that helps to
indicate when more elaborate, but also more obtrusive and
potentially expensive, measurement modalities are necessary (be
it based on specific sensing devices, such as a Holter electro-
cardiogram, or more biological modalities like blood panels or
even multi-omics profiling).
Future research should emphasise further analytical and

prospective, clinical validation of the included digital measures70.
Here it will also be of high relevance, to implement clinical grade
software infrastructure to support robust long-term collection of
the proposed measures as well as integration of new ones. While
this will likely require industry participation, a solid first effort has
been made with the recently established Collaborative Aging
Research Using Technology (CART) initiative, which seeks to make
ageing-related digital health approaches more accessible to the
broader research community36. Moreover, analysing long-term
temporal dynamics will be essential, as it would enable the
identification of trajectories of certain digital measures or even
whole groups thereof. Evaluating trajectories, could be extremely
valuable, as was shown by Akl et al., who showcased impressive
results regarding MCI classification based on long-term trajectories
of several individual digital measures61. When considering long-
itudinal aspects, also concepts around digital resilience biomar-
kers69 may be of interest, by, for instance, monitoring how certain
measures change as a result of disturbances to others. For
instance, how a night of restless sleep influences certain
physiological or activity measures the next day. In addition, future
research may seek to combine a digital exhaust, such as the one
we utilised, with traditional multi-omics profiling and mobile bio
molecule sensing in a deep phenotyping effort. This may enable a
wide range of new research insights into ageing and ageing-
related conditions, as it adds a new layer of objective information
for characterising phenotypes of health and disease. As a final
caveat, a digital exhaust such as this should never be assumed to
be complete or fixed. Future research will add new digital
measures while old measures may be merged if they exhibit
closely correlated behaviour. As such, in the immediate future, it
may be of major value to add more accurate gait-related digital
measures to the introduced set, as these have consistently been
shown to be highly important across many ageing-relevant health
outcomes. Consequently, they are likely to add significant value.
Also the addition of novel contactless sensing technologies that
support a zero-interaction approach, could be promising. Good
candidates here would be sensors based on radio signal
technologies.
Although this work provides promising results we would like to

point out some of the major shortcomings. First, some of the
introduced measures have not been validated beyond the scope
of this research (the use or validation of a digital measure in other
studies is indicated in the Supplementary Information). This
implies that some measures may not quantify what we
hypothesise, which could lead to inaccurate interpretations and
conclusions. Here it is also important to stress that associations
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revealed by the employed model explainability approach do not
imply causality. One potential way to overcome this would be to
apply approaches around computational causal discovery71.
Another limitation is the relatively small number of participants
used to demonstrate the potential of the presented digital
exhaust. Therefore, our results should be treated as early evidence
and interpreted with caution, although general tendencies are
likely to be valid. Furthermore, in the feasibility demonstration, we
use a cross-sectional approach that fails to leverage the temporal
trajectories of sequentially collected slices. Indeed, we strongly
believe that data collected over multiple years would be necessary
to fully explore the utility of digital exhaust based approaches.
Here, further longitudinal (ideally over multiple years) studies will
be necessary to evaluate this potential. Finally, one drawback of
simple PIR and door sensors is that not all digital measures based
on this technologies can be calculated when more than one
person is living in an apartment. Here a potential solution may be
found in wireless radio signal technologies14,72,73, that could not
only provide more accurate digital measures, compared to simple
PIR motion sensors, but should also be able to differentiate
between multiple persons, by detecting specific signatures (such
as gait characteristics)74.
To concluded, we introduce a comprehensive set of digital

measures, what may be referred to as a digital exhaust, for long-
term remote health-monitoring in the older adult demographic.
Overall, the digital exhaust consists of 1268 digital measures
derived from 94 hypothesis-driven base measures, covering large
parts of a person’s daily activity, behavior and physiology. All
included digital measures are derived from a small set of zero-
interaction, contactless sensing devices that have been success-
fully used in numerous ageing-related, long-term, remote-
monitoring projects around the world. For each measure, we
provide a detailed description, background information, and
additional real-world data as supplementary online material
(https://narayanschuetz.github.io/digital-exhaust/). While use
cases for the introduced digital exhaust are diverse, we

demonstrate the case of creating multiple large-scale machine
learning-derived digital COAs and evaluate their discriminative
performance. To this end, we show how ageing-relevant out-
comes such as fall risk, frailty, and MCI may be assessed. Our
results with this systems approach not only show that combined
information from the digital exhaust significantly outperformed
basic demographic information, but also that the digital exhaust
based digital COAs could often match the performance reported
in studies employing more obtrusive wearable sensors. Finally, we
highlight the possibility of using the digital exhaust to discover
novel digital biomarker candiates, using a model explainability
approach on the basis of the ML models used to create the
aforementioned digital COAs. The respective results show that the
most important digital measures are reasonable digital biomarker
candidates, while also revealing two potentially relevant insights.
The first being, that while fall risk may be primarily associated with
gait and physical activity, it also potentially exhibits strong
associations with sleep-related measures. The second indicating
that unusually high variation in nocturnal heart-rate dipping may
be uniquely related to MCI.

METHODS
Creating a zero-interaction digital exhaust
The introduced digital measures are based on three sensor types that have
been commonly used in remote-monitoring projects with older adults: PIR
sensors, contact door sensors, and a sleep sensor. The PIR motion sensors
were placed in the essential rooms of older adults’ apartments. Essential
rooms included the living room, bedroom, entrance, bathroom/toilet, and
kitchen. The employed PIR sensors sampled with 0.5 Hz, and thus reported
activity on or off states every 2 s. The reed switch-based door sensors,
meanwhile, were placed at the entrance and the refrigerator door. Both PIR
and door sensors were part of the DOMO Care® (DomoHealth SA,
Lausanne, Switzerland) home-monitoring system. Finally, for the sleep
sensor, we used an EMFIT QS ferroelectret sensor (Emfit Ltd, Vaajakoski,
Finland), which was fixed beneath the mattress at approximately chest
height. A summary of these three devices, as well as their respective source
data streams, is given in Table 3.

Table 3. Sensing devices data stream summary.

Sensor Device Location Device type Data stream Sampling rate Channels

PIR Motion DomoCare Wall/ Ceiling Contactless Activity 0.5 Hz Entrance

Toilet

Bedroom

Livingroom

Kitchen

Others

Door Sensor DomoCare Door Contactless Open/ Close Events Entrance

Fridge

Bed Sensor EMFIT QS Beneath Mattress Contactless Heart Rate 0.25 Hz N/A

Respiration Rate 0.25 Hz N/A

Activity 0.25 Hz N/A

Toss & Turns Events N/A

Sleep Phases 0.25 Hz Awake

REM

Deep

Light

Raw Lowband 50 Hz N/A

Raw Highband 100 Hz N/A

Bed Exits Events N/A

Statistics Daily N/A

A summary of the contactless pervasive computing devices used, including the respective data streams they provide.
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The creation of the digital 94 base measures was mostly hypothesis-
driven or based on measures from the existing literature. The majority of
base measures was calculated on a daily or nightly basis (for instance, daily
total activity, daily outing duration, or average heart rate during a night).
Subsequently, we calculated derivates of those measures by means of
descriptive statistics over non-overlapping bi-weekly segments, resulting in
the final number of 1268 digital measures. While bi-weekly segments may
be somewhat arbitrary, two weeks is a sufficient period to capture variation
in behaviour that often follows daily or weekly cycles while still being short
enough to capture temporally limited behaviours. Additionally, it serves to
increase the number of data points (data augmentation) and facilitates the
process of working with sensor recordings of various lengths or with data
gaps. For cases of certain behavioural or rhythmicity measures, such as
Cosinor regression-based measures, raw data from the whole bi-weekly
segment was used directly. To avoid the inclusion of measures with
insufficient data, we set a minimum number of 10 days for which raw
source data was available throughout a given bi-weekly segment;
otherwise, the measure was set as missing. The criteria for including a
day’s worth of data for each sensor type are explained in detail in the
supplementary material (Supplementary Note 1).
For all daily or sub-daily base measures, derivates based on summary

statistics were calculated over the bi-weekly segments. Summary statistics
include various quantiles, denoted as qn (e.g., q10), the interquartile range
(iqr), the mean, median (= q50), coefficient of variation (coefvar), and
robust measures of kurtosis and skewness (kr3 and sk3, respectively),
following the naming convention proposed by Kim and White75. Figure 4
summarises this workflow visually. Eventually, this left 1268 dimensional
vectors (one per bi-weekly segment). Of those, 224 dimensions are related
to PIR and door sensors, while the remaining 1044 are based on sleep-
sensor data. Detailed information regarding the exact calculation of each
measure, as well as individual distributions across our cohort, can be found
at online.

Example visualisation
We provide an example of averaged digital exhausts with respect to MCI.
These visualisations were created by first averaging the digital exhausts on
a per-participant basis, followed by z-normalisation. After that, the
exhausts were split into the positive and negative outcome groups and
averaged once more. Finally, heatmaps for both conditions were created.
As a result, the values of individual digital measures > 0 indicate above-
average values, while those < 0 indicate below-average values.

Machine learning based digital clinical outcome assessments
To test the feasibility of using the previously described digital exhaust to
create ageing-relevant digital COAs, we used real-world remote-monitor-
ing data from two cohorts of older Swiss adults (pooled age years= 87 ± 7;
sex 67% [30/45] female). The original studies were both pilots designed to
assess novel computing technologies for ageing-in-place scenarios in the
German- and French-speaking cantons of Switzerland76,77. They were
conducted between 2017 and 2018 and monitored participants over one
year with a set of pervasive computing devices and clinical assess-
ments76,77. The inclusion criteria between cohorts were similar in the sense
that both aimed to recruit a natural sample of community-dwelling older

adults (aged ≥ 70 years) who lived alone and without pets. On the other
hand, the exclusion criteria between cohorts differed. For cohort 1, the
only exclusion criterion was an unwillingness to comply with the study
protocol. But, for cohort 2, the exclusion criteria were as follows: (1) severe
cognitive impairment rendering the individual unable to follow study
protocol (clock-drawing score ≥ 4); (2) skin problems such as irritations,
itching, or serious redness; (3) undergoing dialysis; (4) unwillingness to
comply with the study protocol; (5) an inability to understand the study
aim; or (6) hospitalisation planned within a short period of time76. Both
studies were conducted based on principles declared in the Declaration of
Helsinki and approved by the Ethics Committees of the cantons of Bern
and Vaud (KEK-ID: 2016-00406 and CER-VD ID: 2016-00762, respectively).
All subjects signed and returned informed consent forms before
participating in the study. Detailed participant characteristics and cohort
differences are shown in Table 4. The differences between cohorts were
statistically examined on the basis of unpaired, two-sided, two-sample t-
tests (α= 0.05). In every analysis involving participant data, all participants
with any available data (depending on sensor data and the availability of
clinical assessments) were included; this also applies to participants that
dropped out of the studies.
Participants in both cohorts were subject to an overlapping set of

standardised clinical assessments. These include the following six
assessments: (1) the Timed Up and Go Test (TUG), which is often used in
geriatrics to assess fall risk78; (2) the Tinneti Performance-Oriented Mobility
Assessment (POMA), which, as with the TUG, also measures balance and
gait characteristics that are often indicators for elevated fall risk among
older adults79; (3) the Edmonton Frail Scale (EFS), a frequently used
measure of frailty among older adults80; (4) the short version (15-item) of
the Geriatric Depression Scale (GDS), a commonly used late-life depression
screening tool81; (5) the Montreal Cognitive Assessment (MoCA), which
measures cognitive function and is often used as a brief screening tool for
the detection of MCI in older adults82. In each cohort, these assessments
were planned to be conducted at least once during the one-year study
duration. Detailed assessment intervals are summarised in Table 5.

Sensor Streams Time-Slicing
2-Weeks

t

1

Measure Extraction

2
>= 10 day 
raw data

discard 
(set to NaN)

Assemble Behaviorome

yes

no

Fig. 4 Digital measure extraction flowchart. Shows a broad summary of how digital measures were calculated, starting with raw sensor data
from PIR sensors, door sensors, and bed sensors. Raw data streams were first segmented into non-overlapping bi-weekly segments. Then, for
each bi-weekly segment, digital measures were calculated. If, for a given measure, less than 10 days of data were present, the measure was
encoded as missing, which eventually left 1268 dimensional vectors - one per bi-weekly segment.

Table 4. Participant Characteristics.

Characteristic Cohort 1
(n= 24)

Cohort 2
(n= 21)

Pooled
(n= 45)

Differences
(p-value)

Age (years) 88 ± 7 86 ± 7 87 ± 7 0.50

Sex female (%) 79 52 67 0.06

TUG 14.0 ± 10.0 15.3 ± 4.8 14.5 ± 8.2 0.58

POMA 21.4 ± 7.4 24.1 ± 3.3 22.5 ± 6.1 0.13

EFS 4.6 ± 3.6 5.0 ± 1.7 4.7 ± 2.9 0.65

GDS 2.3 ± 2.3 4.2 ± 3.2 3.1 ± 2.9 0.04

MoCA 20.5 ± 5.1 20.6 ± 3.7 20.5 ± 4.7 0.95

Details characteristics of the participants from the two pilot studies we
used in the presented real-world evaluations.
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To evaluate the potential for creating digital COAs that may help
differentiate between positive and negative ageing-relevant health
outcomes based on the proposed digital exhaust, we categorise
participants into one of the two categories for each clinical assessment.
This was done on the basis of validated cut-offs for each assessment, as
described before. The respective cut-off values for the negative groups are
shown in Table 5. Next, we calculated the digital exhaust for all
participants. For each assessment, we then combined the positive/
negative labels with the bi-weekly segments of a given participant. If
multiple records of the same clinical assessments were obtained
throughout the study, we assigned the target label corresponding to the
assessment closest in time. After this procedure, we obtained one dataset
per assessment.
Note that measures derived from PIR and door sensors stem from one

sensor system (meaning that technical failure usually affect both sensor
types, except for instances were an individual sensor unit failed, which
happened rarely), while sleep stems from another sensor; thus, for a bi-
weekly segment to be valid, at least 30% of measures from both sensor
systems must be valid. This led to a significant reduction in the number of
bi-weekly segments, as a large number of sleep sensor data were missing
due to technical issues, as has been discussed in prior work39. These two
issues — lacking sensor data from both PIR/door and bed sensors and the
unavailability of respective assessments — are responsible for the
generally lower numbers of participants who could be included in this
analysis (the exact numbers with regards to each assessment are given in
Table 6). In Fig. 5, we present the high-level flowchart of dataset creation.
A small forenote aimed at a more technically oriented audience: what

we call digital measures throughout this work can be seen as synonymous
to the more abstract and general term “features”. To evaluate digital COAs
based on the digital exhaust, we largely followed the approach set out by
Chen et al., albeit with some minor changes20. As such, we use the gradient
boosting-based XGBoost algorithm83 as a classifier, since it generally
performs impressively on tabular data, tends to deal reasonably well with
high-dimensional feature spaces (even in p > > n-type scenarios, as here),
and can inherently deal with missing values, all of which means it is close
to being the gold standard for this kind of application20,54,84. Furthermore,
gradient boosting-based tree approaches tend to be more easily
explainable than modern neural network approaches such as

Table 5. Clinical assessments and employed cut-off points.

Assessment Interval
cohort 1

Interval
cohort 2

Cut-
off points

Outcome

TUG 6 weeks 6 weeks ≥12 s88 Fall-risk

POMA half year half year <19 points89 Fall-risk

EFS begin/end begin/end >5 points90 Frailty

GDS begin/end begin/end ≥5 points91 Depression

MoCA begin/end end <23 points92 MCI

Displays an overview of clinical assessments used to evaluate the health
status of study participants, including the measurement interval and cut-
off points used to divide participants into groups with positive/neutral or
negative health outcomes.

Table 6. Dataset Characteristics.

Dataset Participants total Participants with
negative outcome

Number Bi-
weekly segments

TUG 28 14 277

POMA 28 10 277

EFS 28 10 277

GDS 28 7 277

MoCA 25 16 260

Displayed are the detailed characteristics of the individual outcome
datasets. This includes the total number of participants per dataset, the
number of participants exhibiting a negative health outcome, as well as
the total number of resulting bi-weekly segments (data samples).

Fig. 5 Dataset creation overview. Highlights the workflow of creating datasets, subsequently used for the creation of digital clinical outcome
assessments. First, digital measures were separately calculated for the PIR+ door and bed sensors and segmented into non-overlapping, bi-
weekly segments. After that, the measures from bi-weekly segments, where the percentage of missing digital measures from either sensor
system was < 30%, were combined. Next, the clinical assessments from each participant were matched with the respective bi-weekly digital
measure vectors to combine 5 datasets --- one for each assessment.
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convolutional neural networks, while also retaining high accuracy,
especially on tabular data structures49. To better account for stochasticity
in participant selection, we further adapted the simulation strategy of Chen
et al.20, in which 70% of participants were repeatedly drawn from the
entire participant pool to form a training set, while the remaining 30%
were used as a test set (the splits are stratified for the respective clinical
assessment labels). This procedure was repeated for 100 iterations. Note,
that this way each new draw represents a shuffling of the dataset without
introducing data leakage between training and test splits. Throughout
each iteration, hyperparameters were first optimised within the training
split by means of stratified 3-fold cross-validation coupled with random
search (consisting of 50 search trials). For more detailed explanation of this
strategy, we refer to the original article by Chen et al. where it is
demonstrated in detail20.
Eventually, for each iteration, we calculated the Area Under the Receiver-

Operating Curve (ROC AUC) and the Area Under the Precision Recall Curve
(PrAUC) on the test set, where multiple bi-weekly segments from a single
participant were combined into one score by averaging their predictions
(soft voting), as was done in20. Likewise, if multiple assessment results were
available, they were first averaged, which should have also reduced some
of the inherent noise; these results were then dichotomised on the basis of
the previously introduced cut-off points (see Table 5) to yield a single label
per participant. We removed three digital measures (Measure IDs:
iqr_entrance_door_tod_first, q50_entrance_door_tod_first, and q50_fridge_-
door_tod_middle) from the full set for this portion of the analysis, as they
were biased towards identifying one of the two cohorts (to account for
further less-obvious biases in this regard, we included cohort information
in the demographics). Note that the PrAUC is sensitive to label distribution,
which means it only lends itself to comparisons within the same dataset.
For each assessment, we ran three different scenarios, one with only
demographic information (age, sex, and cohort membership) as baseline,
one with only the digital exhaust, and one with both the exhaust and
demographic information combined. Differences between these scenarios
were deemed statistically significant if the 95% CIs of two conditions do
not overlap. Model hyperparameter ranges are given in Supplementary
Table 1. We used the original Python (version 3.6) implementation of
XGBoost (version 1.3.3). Model training was performed on UBELIX (http://
www.id.unibe.ch/hpc), the HPC cluster at the University of Bern.

Discovering novel digital biomarkers
To better understand the role of individual digital measures in machine
learning-based COAs, we used SHapley Additive exPlanations (SHAP), a
game-theoretic approach for explaining complex machine learning
models. With this approach, exact solutions can be found in the case of
tree-based models48,49. SHAP values have been used fairly extensively in
recent biomedical applications20,85–87. For each of the assessments, we
provide overall global SHAP values across all 100 simulations. That is, we
give the mean absolute value of the SHAP values for a given digital
measure m in a single simulation, summed up over all simulations, as
depicted in equation (1).

SHAPglobalm ¼
X100

i¼1

meanðjSHAPimjÞ: (1)

While global SHAP values reveal the overall importance of a given digital
measure, they do not say anything about the direction in which the digital
measure influences a model. Therefore, we additionally calculate
beeswarm plots of the SHAP values. These are based on a model trained
over the entire respective dataset, with manually set hyperparameters
(reported in the supplementary material). SHAP values were calculated
using Python (version 3.6) with the shap package (version 0.39.0).

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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