
Acceptée sur proposition du jury

pour l’obtention du grade de Docteur ès Sciences

par

Gradient-based Methods for Deep Model
Interpretability

Suraj SRINIVAS

Thèse n° 8606

2021

Présentée le 11 novembre 2021

Prof. A. Skrivervik Favre, présidente du jury
Prof. F. Fleuret, Prof. P. Frossard, directeurs de thèse
Dr B. Kim, rapporteuse
Dr L. Denoyer, rapporteur
Prof. A. Alahi, rapporteur

Faculté des sciences et techniques de l’ingénieur
Laboratoire de l’IDIAP
Programme doctoral en génie électrique

Abstract
In this dissertation, we propose gradient-based methods for characterizing model be-
haviour for the purposes of knowledge transfer and post-hoc model interpretation. Broadly,
gradients capture the variation of some output feature of the model upon unit variation
of an input feature, and thus encodes the local model behaviour while being agnostic to
the underlying model architectural choices.

Our first contribution is to propose a sample-efficient method to mimic the behaviour of
a pre-trained teacher model with an untrained student model using gradient information.
We interpret our approach as an efficient alternative to data augmentation used with
canonical knowledge transfer approaches, where noise is added to the inputs. We apply
this to distillation and a transfer learning task, where we show improved performance
for small datasets.

Our second contribution is to propose a novel saliency method to visualize the input
features that are most relevant for predictions made by a given model. We first propose
the full-gradient representation, which satisfies a property called completeness which
provably cannot be satisfied by gradient-based saliency methods. Based on this, we
propose an approximate saliency map representation called FullGrad which naturally
captures the information within a model across feature hierarchies. Our experimental
results show that FullGrad captures model behaviour better than other saliency methods.

Our final contribution is to take a step back and ask why input-gradients are informative
for standard neural network models in the first place, especially when gradient structure
is un-regularized and may be arbitrary. Our analysis here reveals that for a subset
of gradient-based saliency maps, the map relies not on the underlying discriminative
model p(y | x) but on a hidden density model p(x | y) implicit within softmax-based
disciminative models. Thus we find that the reason input-gradients are informative is
due to the alignment of the implicit density model with that of the ground truth density,
which we verify experimentally.

Keywords: Deep neural networks, knowledge transfer, distillation, saliency maps, in-
terpretability

i

Résumé
Dans cette thèse, nous nous intéressons à des méthodes utilisant le gradient pour carac-
tériser le comportement d’un modèle à des fins de transfert de connaissances et d’inter-
prétation post-hoc des modèles. De façon générale, les gradients capturent la variation
d’une caractéristique de sortie du modèle lors de la variation d’une caractéristique d’en-
trée, et encodent ainsi le comportement local du modèle tout en étant indépendants des
choix architecturaux.

Notre première contribution est une méthode efficace (en termes du nombre d’exemples
d’entraînement) pour transférer le comportement d’un modèle enseignant pré-entraîné
vers un modèle élève non entraîné, en utilisant l’information du gradient. Nous voyons
notre approche comme une alternative efficace à l’augmentation des données utilisée
avec les approches canoniques de transfert de connaissances, dans lesquelles du bruit
est ajouté aux entrées. Nous appliquons cette approche à la distillation et à une tâche
d’apprentissage par transfert, où nous montrons des performances améliorées sur des
ensembles de données de petites tailles.

Notre deuxième contribution est une nouvelle méthode de saillance pour visualiser les
caractéristiques d’entrée qui sont les plus pertinentes pour les prédictions faites par un
modèle donné. Nous proposons d’abord la représentation full-gradient, qui satisfait une
propriété appelée complétude qui ne peut pas être satisfaite par les méthodes de saillance
basées sur le gradient. Partant de ce constat, nous proposons une représentation approxi-
mative de la carte de saillance appelée FullGrad qui capture naturellement l’information
au sein des différentes couches d’un modèle. Nos résultats expérimentaux montrent que
FullGrad capture mieux le comportement du modèle que les autres méthodes existantes.

Notre dernière contribution consiste à analyser pourquoi les gradients d’entrée sont in-
formatifs pour les modèles de réseaux neuronaux standards, en particulier alors que leur
structure peut être arbitraire. Notre analyse révèle ici que, pour un sous-ensemble des
cartes de saillance basées sur le gradient, la carte ne repose non pas sur le modèle discri-
minant sous-jacent p(y | x) mais sur un modèle de densité caché p(x | y) implicite dans
les modèles discriminants dotés d’une couche softmax. Ainsi, nous découvrons que c’est
grâce à l’alignement du modèle de densité implicite avec celui de la densité réelle que les
gradients d’entrée sont informatifs, propriété que nous confirmons expérimentalement.

Mots-clés : Réseaux neuronaux profonds, transfert de connaissances, distillation, cartes
de saillance, interprétabilité.

iii

Acknowledgements
This thesis is the result of the support of several people, to whom I am extremely
grateful. I would first like to express my thanks and gratitude to my supervisor Prof.
François Fleuret for providing the opportunity to work with him. He is truly one of the
most brilliant people I have met in my life, and yet carries himself with a sense of deep
humility which continues to inspire me both personally and professionally.

I would like to thank the jury members of my thesis: Prof. Pascal Frossard, Prof. Anja
Skrivervik, Prof. Alexander Alahi, Dr. Been Kim and Dr. Ludovic Denoyer for their
insightful questions and comments. I would also like to thank Swiss National Science
Foundation for funding my research through the ISUL and CORTI projects, which helped
me pursue a curiosity-driven research agenda.

My gratitude also goes to the model efficiency team at Qualcomm AI Research, partic-
ularly my mentor Tijmen Blankevoort, for giving me an internship opportunity and the
freedom to explore my unusual research directions. This six-month internship at Am-
sterdam in the middle of the pandemic while working from home was made enjoyable
due to my housemates and friends at Hotel Jansen, whom I fondly remember.

I am indebted to the administrative team at Idiap Research Institute, who made life
simple for non-French speaking foreigners such as myself in helping transition to life
in Switzerland. I would also like to thank the Idiap systems team for maintaining an
impressive computing infrastructure, which made experimentation hassle-free.

One of the best parts of working at Idiap and EPFL was the brilliant, kind and supportive
peer group that I had access to, and with whom I had the privilege of sharing many
hikes, ski trips, dinners, coffee breaks and gossip sessions. I shall cherish my memories
with the Amigos, the SAM-ers, the summer hikers, the skiers and snowboarders, the
members of Martigny cricket club, and all the foosball players. I especially thank PJ
for being my family away from family all these years, and also for tolerating my PJs.
I would also like to thank the members of the Martigny Badminton Club for accepting
me as one of their own, and helping me rediscover my passion for the game.

Last but not the least, I would like to thank my parents and my sister, without whose
constant support and encouragement I wouldn’t have been able to pursue nor persist
with this outlandish dream of moving to Switzerland for my PhD.

Martigny, September 2021 Suraj Srinivas

v

Publications based on the Thesis

Chapter 2 of this thesis is based on:

• S. Srinivas & F. Fleuret, “Local Affine Approximations for Improving Knowledge
Transfer”, Workshop on Learning with Limited Data (LLD), Advances in Neural
Information Processing Systems (NeurIPS), 2017 [Best Paper Award]

• S. Srinivas & F. Fleuret, “Knowledge Transfer with Jacobian Matching”, Interna-
tional Conference on Machine Learning (ICML), 2018

Chapter 3 of this thesis is based on:

• S. Srinivas & F. Fleuret, “Full-Gradient Representation for Neural Network Visu-
alization”, Advances in Neural Information Processing Systems (NeurIPS), 2019

Chapter 5 of this thesis is based on:

• S. Srinivas & F. Fleuret, “Are Input-Gradients Meaningful For Interpretability?”,
Workshop on Human Interpretability (WHI), International Conference on Machine
Learning (ICML), 2020

• S. Srinivas & F. Fleuret, “Rethinking the Role of Gradient-based Attribution Meth-
ods for Model Interpretability”, International Conference on Learning Represen-
tations (ICLR), 2021 [Oral Presentation]

vii

Contents
Abstract (English / French) i

Acknowledgements v

Publications based on the Thesis vii

List of Figures xiii

List of Tables xv

1 Introduction & Background 1
1.1 Deep Neural Networks as Black Boxes 1
1.2 Geometry of ReLU Neural Networks . 2
1.3 Knowledge Transfer Between Deep Models 3

1.3.1 Related Work on Knowledge Transfer 4
1.4 Post-hoc Interpretability of Machine Learning Models 8

1.4.1 Input-Gradients: Feature Importance via Sensitivity 9
1.4.2 Integrated Gradients: Feature Importance via Completeness . . . 9
1.4.3 Related Work on Interpretability 11

1.5 Density Modelling via Discriminative Models 14
1.5.1 Sampling from EBMs . 15
1.5.2 Training EBMs . 16

1.6 Research Questions & Contributions . 16
1.7 Notations . 18

2 Knowledge Transfer with Jacobian Matching 19
2.1 Introduction . 19
2.2 Related Work . 20
2.3 Jacobians of Neural Networks . 21

2.3.1 Special case: ReLU and MaxPool 21
2.3.2 What information does the gradient capture? 21
2.3.3 Invariance to weight and architecture specification 22

2.4 Distillation . 23
2.4.1 Approximating the Full Jacobian 26

ix

Contents

2.5 Transfer Learning . 26
2.5.1 LwF as Distillation . 28
2.5.2 Matching attention maps . 29

2.6 Experiments . 31
2.6.1 Distillation . 31
2.6.2 Noise robustness . 32
2.6.3 Transfer Learning . 33

2.7 Conclusion . 36

Appendix 37
2.8 Proof of Proposition 1 . 37
2.9 Proof of Proposition 2 . 39
2.10 Proof of Proposition 3 . 42

2.10.1 Proof for Corollary . 43
2.11 Justification for gradient loss . 43
2.12 Experimental details . 43

2.12.1 VGG Network Architectures . 43
2.12.2 Loss function . 44
2.12.3 Optimization . 44

3 Full-Gradient Representation for Neural Network Visualization 45
3.1 Introduction . 45
3.2 Related Work . 47
3.3 Local vs. Global Attribution . 48
3.4 Full-Gradient Representation . 50

3.4.1 Properties of Full-Gradients . 51
3.4.2 FullGrad: Full-Gradient Saliency Maps for Convolutional Nets . 52

3.5 Experiments . 54
3.5.1 Pixel perturbation . 54
3.5.2 Remove and Retrain . 55
3.5.3 Visual Inspection . 55

3.6 How to Choose ψ(·) . 58
3.7 Conclusions and Future Work . 58

Appendix 61
3.8 Proof of Incompatibility . 61
3.9 Full-gradient Proofs . 62
3.10 Experiments to Illustrate Post-Processing Trade-offs 63

3.10.1 Digit Flipping . 64
3.10.2 Pixel Perturbation . 64

3.11 Saliency Results . 64

4 Knowledge Transfer with Full-Gradient Matching 69

x

Contents

4.1 Introduction . 69
4.2 Full-Gradient Matching . 70
4.3 Bias-Gradient Regularization . 71
4.4 Experiments . 72

4.4.1 Distillation . 72
4.4.2 Regularization . 76

4.5 Conclusion . 77

Appendix 79
4.6 Proofs . 79
4.7 Experimental details . 79

4.7.1 Network Architectures . 79
4.7.2 Loss function . 80

5 Rethinking the Role of Gradient-based Saliency Methods 83
5.1 Introduction . 84
5.2 Input-Gradients are not Unique . 85
5.3 Implicit Density Models Within Discriminative Classifiers 86

5.3.1 Score-Matching . 87
5.3.2 Efficient estimation of Hessian-trace 87
5.3.3 Stabilized Score-matching . 88

5.4 Implications of the Density Modelling Viewpoint 88
5.4.1 Activity Maximization as Sampling from the Implicit Density Model 89
5.4.2 Pixel Perturbation as a Density Ratio Test 89
5.4.3 Connecting Score-Matching to Adversarial Training 90

5.5 Experiments . 90
5.5.1 Evaluating the Efficacy of Score-Matching and Anti-Score-Matching 91
5.5.2 Evaluating the Effect of Density Alignment on Gradient Explana-

tions . 93
5.6 Conclusion . 94

Appendix 97
5.7 Fooling Gradients is simple . 97

5.7.1 Manipulating Loss-Gradients . 97
5.7.2 Experiments on Fooling Gradient Explanations 98
5.7.3 Implications for Saliency Regularization Methods 99

5.8 Score-Matching Approximation . 99
5.9 Evaluating Effect of Score-Matching on Gradient Explanations on CIFAR10 101
5.10 Denoising via Implicit Density Models on CIFAR100 102
5.11 Hyper-parameter Sweep on Score-Matched Training 102

6 Conclusions, Limitations & Open Problems 105

xi

Contents

Bibliography 107

Curriculum Vitae 117

xii

List of Figures
2.1 Illustration of distillation using Jacobian Matching 23
2.2 Illustration of transfer learning using Jacobian matching 27

3.1 Visualization of bias-gradients at different layers of a pre-trained VGG-16
on Imagenet dataset . 53

3.2 Quantitative results on saliency map faithfulness using the Pixel pertur-
bation and remove-and-retrain tests . 56

3.3 Qualitative comparison between different neural network saliency methods 57
3.4 Additional qualitative comparison between neural network saliency meth-

ods . 67

4.1 Plots of evolution of input-gradient angle upon applying distillation . . 75

5.1 Density ratio plots for comparing implicit density models across different
discriminative models . 92

5.2 Visualization of samples generated from implicit density models of various
discriminative models . 93

5.3 Saliency map interpretability using the discriminative pixel perturbation
test on CIFAR100 dataset . 95

5.4 Visualization of input-gradients of CIFAR100 models trained with differ-
ent regularizers . 96

5.5 Results of fooling neural network logit-gradients using model regularization 98
5.6 Saliency map interpretability using the discriminative pixel perturbation

test on CIFAR10 dataset . 101
5.7 Visualization of input-gradients on CIFAR10 models trained with differ-

ent regularizers . 102
5.8 Results on denoising noisy inputs by performing gradient ascent on im-

plicit density models . 102

xiii

List of Tables
1.1 General rules of thumb for interpretable model families that apply to

different use cases. Table from Rudin et al. (2021). 12
1.2 Notations used in the thesis. 18

2.1 Distillation results for Jacobian matching on CIFAR100 dataset 32
2.2 Robustness for gradient norm regularization on CIFAR100 dataset . . . 33
2.3 Results on Jacobian matching applied to transfer learning from Imagenet

to MIT scenes dataset . 34
2.4 Ablation results over choice of feature matching depth for transfer learning

task . 34
2.5 Ablation experiments over gradient accumulation strategies for transfer

learning task . 35

3.1 Comparison of saliency methods on digit flipping task on MNIST dataset 64
3.2 Comparison of saliency methods on the pixel perturbation task on MNIST

dataset . 65

4.1 Distillation results for full-gradient matching on CIFAR100 dataset . . . 74
4.2 Distillation results for full-gradient matching on CIFAR10 dataset . . . 76
4.3 Regularization results for bias-gradient regularization on CIFAR100 dataset 76

5.1 GAN-test scores of class-conditional samples generated from implicit den-
sity models of various ResNets on CIFAR100 dataset 93

5.2 Results of hyper-parameter sweep on regularization constants for the pro-
posed score-matching algorithm . 103

xv

1 Introduction & Background

One thing that connectionist networks
have in common with brains is that if
you open them up and peer inside, all
you can see is a big pile of goo.

Mozer and Smolensky (1989)

1.1 Deep Neural Networks as Black Boxes

Machine learning is a branch of artificial intelligence that studies how artificial agents can
learn from experience and produce intelligent behaviours. This learning-based approach
is primarily used for tasks where explicit modelling by human engineers is not possible.
Recent deep learning-based approaches particularly excel at this, and these have enabled
significant advances in tasks such as image classification, speech recognition and machine
translation. However, the complexity of these deep models makes the internal decision-
making logic within them far too complex for humans to understand, and rightfully so,
as the underlying tasks themselves are complex.

However as such models continue to be applied to increasingly critical applications such
as medicine, law, public policy and autonomous driving, there is a growing need to
carefully understand their internal decision-making process, primarily to characterize
their failure modes and understand any unintended biases they exhibit. We thus require
effective tools that are able to capture the behavioural aspects of these models. Such
tools can help not only domain experts involved in machine learning applications better
understand the models they are working with, but these can also help researchers engag-
ing in fundamental machine learning research, as rigorously understanding the failure
modes of current models is crucial to eliminating them.

1

Chapter 1. Introduction & Background

In this thesis, we study the functional behaviour of deep neural network models us-
ing gradient-based tools. In particular, we consider two broad testbeds to understand
functional behaviour.

1. Knowledge Transfer: In this application, we wish to mimic the functional behaviour
of a “teacher” model in another “student” model with a different architecture.
Efficiently solving this problem requires having access to a useful characterization
of model behaviour that can be used for learning.

2. Post-hoc Interpretability: Here, we wish to communicate model behaviour of a pre-
trained model to human experts. However unlike knowledge transfer, the intent
here is not for the human to mimic the model behaviour, but simply to verify its
correctness.

In the rest of this chapter, we shall provide background relevant to the topics of this
thesis, which we shall use to state our main contributions at the end of the chapter.

1.2 Geometry of ReLU Neural Networks

In this section, we shall introduce ReLU neural networks, which are a popular class
of neural network models used in practice, and which is the main model family we
consider in this thesis. A ReLU neural network is defined as the composition of functions
f(·) = wn(·)◦...w2(·)◦σ(·)◦w1(·), where wi(·) refers to matrix multiplication with weight
matrix wi (with an optional bias term bi) and σ(·) refers to the ReLU non-linearity,
which is defined as follows for some scalar x.

σ(x) =

0 x ≤ 0
x otherwise

In this case, as the ReLU neural network f(·) consists of only linear and piecewise linear
functions, the overall composition is also a piecewise linear function. Further, it can also
be shown that the input region is divided into convex polytopes, where each polytope
contains one linear piece (Montufar et al., 2014). This implies that the function is
locally affine almost everywhere, and the local Taylor series expansions are exact in a
small neighbourhood around an input x ∈ Rd.

f(x + ε) = f(x) + ε>∇xf(x) ; for ‖ε‖2 ≤M

2

1.3. Knowledge Transfer Between Deep Models

In other words, there exists a ball of some radius M > 0 (which is itself a function
of f and x) such that the above Taylor expansion is exact. This also implies that
the Hessian of the model w.r.t. input is either zero almost everywhere and undefined
at the boundary between pieces. These facts imply that the local neighbourhood of
ReLU neural networks is characterized completely by the gradient term ∇xf(x), which
motivates its use for our case.

Further, consider the special case of ReLU neural networks without bias, i.e., bi = 0.
Such models have a special property called non-negative homogeneity, which implies
that f(kx) = kf(x) for any non-negative scalar k ≥ 0. This is due to the fact that both
matrix multiplication with wi and the ReLU non-linearity share this property, and as
such their composition also retains this property. Now let ε ∈ R+ be a small positive
scalar. We can now use first-order Taylor series to write the following. f((1 + ε)x) =
f(x) + εf(x) = f(x) + εxT∇xf(x). Using this we have

f(x) = x>∇xf(x)

This implies that as a result of the non-negative homogeneity property, the output of
the model can be written purely in terms of the input, and the gradients of the output
w.r.t. input. Thus in this case, the gradient conveys all the information required to
compute the model output in a parameterization independent manner. We shall call
this property of gradients as completeness, as it completely captures all information
required to compute the function output.

Thus while the gradient is a powerful tool in general for the analysis of non-linear models,
it seems particularly relevant for the case of ReLU neural networks because of the two
properties discussed above: piecewise linearity and completeness in case of zero-bias
models.

In the next section, we shall introduce the task of knowledge transfer in the context of
our contributions, and then proceed to review relevant literature.

1.3 Knowledge Transfer Between Deep Models

Assume we have a (teacher) model f trained on a particular dataset. We would now
like to train another (student) model g with a different architecture on the same, or
a related dataset. Is it possible to leverage f to train g more efficiently? This is the
research question which knowledge transfer aims to address. Distillation (Buciluǎ et al.,
2006) is a form of knowledge transfer where f and g are trained on the same dataset, but
have different architectures. Transfer Learning (Pan and Yang, 2010) is another form of

3

Chapter 1. Introduction & Background

knowledge transfer where f and g are trained on different (but related) datasets. If the
architectures are the same, we can in both cases simply copy weights from f to g. The
problem becomes more challenging when f and g have different architectures, which is
exactly the problem we wish to solve. In other words, we have that f ∈ F and g ∈ G
belong to different model classes, such that g /∈ F .

A common strategy to solve this problem is to align the underlying functions themselves
by minimizing some pointwise distance D between function outputs for some set of inputs
X = {x1,x2, ...xN}:

min
g∈G

Ex∈XD(f(x), g(x))

Common choices for the distance function D include mean-squared error (Ba and Caru-
ana, 2014) or the cross-entropy loss between softmax-normalized outputs (Hinton et al.,
2015). Often, this strategy alone is insufficient, and can be improved upon by assum-
ing some similarities in the architectures between f and g. For instance, if we assume
that both models are deep and convolutional, then it is possible to align intermediate
representations (Romero et al., 2014; Zagoruyko and Komodakis, 2017) in addition to
aligning function outputs.

One drawback of such distillation approaches is that they often require large datasets to
be able to accurately mimic the teacher. One way to work around this problem for small
datasets is to use data augmentation to increase the size of the dataset. While these are
effective, these require domain knowledge to design good data augmentation schemes. If
uninformed random inputs are used for distillation, then the student model performance
on real data suffers, as mimicing is performed on a subset of data not relevant for the
task. Thus the usage of good data augmentation schemes is crucial.

In Chapter 2, we shall propose a distillation procedure for small datasets based on
matching gradients of the input-output map, which we show is equivalent to performing
data augmentation, where random noise is added to the inputs. In the rest of the section
we shall provide more information about such input-gradients, especially for ReLU neural
networks.

1.3.1 Related Work on Knowledge Transfer

In this thesis, we combine two well-known areas of transfer learning and distillation
into one broad term of knowledge transfer. Broadly, distillation involves transferring
representations from one model to another for the same dataset, and transfer learning
involves transferring the representations learnt for one task to use for another task. In

4

1.3. Knowledge Transfer Between Deep Models

this part, we shall review literature to both distillation and transfer learning approaches
that are related to distillation.

Knowledge Distillation

The study of distillation is commonly viewed via the lens of model compression (Bu-
ciluǎ et al., 2006; Ba and Caruana, 2014; Hinton et al., 2015), where one is required to
train student models that are smaller than pre-trained teacher models. Such student
models can be designed to be smaller either in terms of number of parameters, num-
ber of FLOPs, or run-time taking into account hardware constraints (Gou et al., 2021).
An example of such a use-case is in the area of speech synthesis (Oord et al., 2018),
where the teacher model is a highly performant but slow autoregressive model, and the
student is a typically less accurate but fast convolutional model. Using techniques of
distillation, Oord et al. (2018) were able to improve the accuracy of the student convo-
lutional model, which resulted in a synthesis speed-up of several orders of magnitude.
Canonical distillation approaches train the student with a linear combination of two loss
functions, one encouraging the student to mimic the teacher with either a cross-entropy
or a mean-squared error loss, and the other encouraging the student to fit the ground
truth labels hard labels well. The soft targets produced by teacher models in this case
are typically more informative than hard target labels, which is one explanation for the
success of these approaches.

Feature-matching for Distillation

The standard distillation approach can be improved upon by incorporating additional
information from the teacher model, thus providing the student with stronger supervi-
sion for learning, which can potentially improve learning outcomes. One possible way
to do this would be to match intermediate features from a teacher to a student model.
However, one problem here is that feature dimensionality (width) and number of features
(depth) may be different from the student and teacher models. To overcome the differ-
ence in depths, a common approach is to only match layers whose width is most similar
across the two models. To overcome difference in width, there are different strategies
employed in practice. While Romero et al. (2014) use a fully connected or 1×1 convolu-
tional adaptor layer to match the number of channels and spatial resizing to match the
spatial dimensions, (Zagoruyko and Komodakis, 2017) collapse the channel dimension
in convolutional layers using an aggregation function and match only the aggregated
map. Such aggregated feature maps are termed “attention” maps, and thus make a
compelling connection between interpretability and distillation, that of using saliency
map techniques for improving distillation performance. In Chapters 2 and 4, we use
input-gradients and full-gradients, which are interpretability methods, for distillation
and find that these improve distillation performance. Another strategy for aggregating

5

Chapter 1. Introduction & Background

information involves computing a correlation matrix between two layers with activations
which have the same spatial size, thus resulting in a matrix whose dimensions are equal
to the widths or number of channels of the two layers involved (Yim et al., 2017). Then
proceeds to match this quantity between two models. This procedure can be applied to
early and later layers of a resnet block for instance, and the correlation matrix, called
the FSP matrix (Yim et al., 2017) captures the change in information within such layers.

Data-free Distillation

One of the main problems with knowledge distillation approaches is that they require
access to large datasets to obtain a well performing student model. However, there may
exist situations where one may not have access to the dataset for privacy reasons, or if the
dataset is too large to store. The straightforward approach in this scenario is to simply
perform distillation with random data points instead of points from the dataset. However
matching on random points leads to imperfect matching on dataset points and thus leads
to suboptimal performance (Buciluǎ et al., 2006). It is instead preferable to build a class-
conditional or joint density model of the dataset and then use samples from this density
model for distillation. While early approaches to this use simple heuristics to increase
dataset size (Buciluǎ et al., 2006), modern approaches typically involve using GANs
to generate samples (Yoo et al., 2019; Micaelli and Storkey, 2019). While (Yoo et al.,
2019) train a class conditional Generative Adversarial Networks (GAN) to approximate
the dataset directly, (Micaelli and Storkey, 2019) instead use GANs to approximate the
density of samples where the teacher and student predictions disagree the most, and
then improve distillation on these adversarial samples. In contrast, (Nayak et al., 2019;
Yin et al., 2020) also use an implied generative model using only the teacher model and
without using additional models such as GANs. In particular, the implied generative
model involves optimizing the input such that either softmax outputs agree with dataset
statistics (Nayak et al., 2019), or such that the batchnorm statistics match that of the
dataset (Yin et al., 2020). Using these procedures they are able to generate data for
distillation purposes. However, it is unclear whether this avoids problems with privacy,
especially when generative models can still leak sensitive information learnt from the
data, but can still be useful in avoiding to explicitly store datasets.

Self-Distillation

In most applications involving distillation, the student model is simpler than the teacher.
However, in a form of distillation called self-distillation, the teacher and student models
are identical. The motivation for this form of distillation is no longer a transfer of
representations, which is trivial to perform in this case, but to improve optimization of
the teacher model. In Furlanello et al. (2018), it was found that if a student model is
iteratively distilled on previously obtained teacher models, then the performance of the

6

1.3. Knowledge Transfer Between Deep Models

student are found to be better than the teachers. In this case, the terminology “teacher”
and “student” is made to relate to the distillation literature, however the algorithm
itself is reminiscent of functional optimization strategies such as natural gradient descent
which ensure that successive optimization steps are close in function space as opposed
to parameter space. A related approach by Xie et al. (2020) proposed usage of noise
addition to the student during training, which was found to further improve performance.
Other forms of self distillation in literature include approaches that distill information
from early layers of the model to later ones (Phuong and Lampert, 2019b; Zhang et al.,
2019), and those that distill information from early epochs to later ones (Yang et al.,
2019) in a manner analogous to Furlanello et al. (2018).

Theory of Distillation

The empirical success of distillation methods still leave an unanswered question of what
factors cause this success, and why soft labels used in distillation lead to efficient learning.
Phuong and Lampert (2019a) analyze this problem for the case of single-layer and deep
linear models, and derive generalization bounds for (self) distillation in this case. They
find here that the important factors that determine learning efficiency are data geometry,
optimization bias, and size of the dataset which results in a property called strong
monotonicity. Mobahi et al. (2020) also analyze the self-distillation problem for non-
linear models in hilbert space, and show that self-distillation procedure acts as a form
of regularization and restricts the number of basis vectors that can be used represent
the solution. Cho and Hariharan (2019) empirically show that more accurate teacher
models do not necessarily lead to better student models, and that a mis-match between
the capacities of these models leads to worse performance. They also suggest one way
to guard against this phenomenon by performing early stopping during the training of
the teacher which restricts the complexity of the learnt hypothesis.

Transfer Learning and Continual Learning

Related to distillation is the task of transfer learning which involves transferring rep-
resentations learnt on one task A to another task B. Another related task is that of
continual learning, which requires that the transfer happen such that the representation
still be suitable for both tasks, whereas transfer learning only cares about performance
on task B. In both cases, we assume that samples used to learn task A are unavoidable
when transferring to task B. The canonical method for transfer learning is fine-tuning,
which involves learning on task B with a model initialized with the learnt weights of
another model trained on task A. However, one problem with fine-tuning is that during
the course of learning the model could diverge significantly from the representations of
task A, thus reducing performance on task B. Rozantsev et al. (2018) propose to tackle
this problem by penalizing deviations from the parameters learnt for task A while learn-

7

Chapter 1. Introduction & Background

ing to solve task B. While this penalizes deviations in parameter space, it is preferred to
directly penalize deviations in function space, as the two often do not coincide especially
for the deep neural networks where parameter space is degenerate. To alleviate this,
Kirkpatrick et al. (2017); Zenke et al. (2017) propose to penalize deviations in function
space by using local quadratic approximations to the function deviation which results in
the usage of the Fisher information matrix or the Hessian. In contrast, the LwF method
(Li and Hoiem, 2016) directly penalizes deviation in function space using an explicit
distillation objective, which thus connects distillation to the auxiliary tasks of transfer
learning and continual learning. LwF performs transfer learning by learning a student
model which mimics the response of a teacher model trained for task A, on samples
used to learn task B. This is done in addition to learning task B itself. While the first
objective transfers representations from task A, the second objective learns task B, thus
enabling transfer learning. When the student model is initialized from the teacher, this
enables continual learning, as it requires the model’s representations change very little
from the initialization. Rebuffi et al. (2017) use a similar principle for class-incremental
learning, where examples from individual classes constitute tasks. However, in addition,
they also build and update a small exemplar set of examples from previous tasks which
aids learning.

This concludes our discussion on knowledge transfer. In the next section, we shall intro-
duce post-hoc interpretation of neural networks, discuss our contributions and similarly
review literature on the broader area of interpretability.

1.4 Post-hoc Interpretability of Machine Learning Models

We are often required to explain the internal decision-making process of machine learn-
ing models to human experts such that they are able to effectively interface with such
models. These are called post-hoc interpretations, where model behaviour is explained
after training. In this context, we are required to communicate model behaviour to an
expert in a human-friendly manner. One such human-friendly modality of explanation
is that of feature importance methods, which provides importance scores to each input
feature of the model. Ideally, the magnitude of the importance value indicates the ex-
tent to which the model relies on a particular feature, with high importance indicating
high reliance and zero importance indicating no reliance on that feature. However, there
are many ways to define such importance scores and this is an active topic of research.
In particular, each definition of importance leads to a different feature importance ap-
proach, thus explaining the plethora of such methods in literature. Here we shall review
two popular feature importance methods based on two different notions of importance.

8

1.4. Post-hoc Interpretability of Machine Learning Models

1.4.1 Input-Gradients: Feature Importance via Sensitivity

One popular method to define feature importance is based sensitivity to perturbation of
inputs. In this case, a feature is deemed more important than another if the model is
highly sensitive to random perturbations to that feature over another. This definition of
feature importance is called sensitivity. When the noise added is infinitesimally small,
this sensitivity to perturbations is exactly captured by the magnitude of the input-
gradients of the model. More formally, for a model f , we have the feature importance
map, or the saliency map S(f,x) defined as follows (Simonyan et al., 2013).

S(f,x) = |∇xf(x)|

While this is an appealing method to define feature importance, this suffers from the
problem of non-attribution during saturation (Shrikumar et al., 2017). In other words,
consider some x at the local extrema, saddle points, or flat regions of f . For these points,
the gradient is always equal to zero and thus all features are assigned zero importance.
While this agrees with the definition of sensitivity, it is incorrect and misleading to
state that model output does not rely on any input feature, as the output is explicitly
a function of the input. Another problem with using sensitivity to small perturbations
is that model behaviour can change drastically over larger noise scales, thus diverging
from the importance scores provided by input-gradients.

A straightforward solution to both these problems is to simply measure sensitivity to
large noise scales directly, for instance by measuring the input-Hessian. However for
these we have an additional problem of having to account for the joint effects of per-
turbing multiple features together. In other words, while the gradient has only N terms
for an N-dimensional input, the Hessian has O(N2) terms, and in general for larger scales
we need to account for O(NN) interactions terms, which are intractable to compute and
visualize. This means that in general we need to measure not just importances of in-
dividual features, but also of collections of features together, if we want to completely
characterize model behaviour at larger noise scales.

1.4.2 Integrated Gradients: Feature Importance via Completeness

A different principle to define feature importance is based on the idea of completeness. In
this view, each input feature is assumed to have an contribution towards producing the
output such that the sum of contributions of each input feature equals that of the model
output. To formalize this idea, the principle of Shapley values from economics is often
used (Lundberg and Lee, 2017; Sundararajan et al., 2017), where an analogy is drawn to
N-player co-operative games, where any reward received by the team as a whole must be

9

Chapter 1. Introduction & Background

re-distributed to individual players in a ‘fair’ manner. The considerations for such fair
re-distribution are (a) a weak notion of dependence, where if a variable (player) does not
contribute mathematically, then its attribution is zero (b) linearity-preservation, i.e., a
linear combination of functions (teams) leads to a similar linear combination of their
attributions of each player, (c) symmetry preservation, which states that if a function
is symmetric w.r.t. two variables (players), then their attributions are equal. These
considerations are shown to lead to a saliency method termed as integrated gradients
(Sundararajan et al., 2017), which are defined as follows for the ith input feature, and
for a fixed baseline input x′.

S(f,x,x′)i = (xi − x′i)×
∫ α=1

α=0

∂fi(x′ + α(x− x′))
∂xi

Note that from the fundamental theorem of calculus, the following holds

∑
i

S(f,x,x′)i = f(x)− f(x′)

Here, x′ is a so-called reference or baseline input representing an input with ‘zero’ signal.
Often this can be chosen to be zero, but can also be for instance, mean or noise input.
The property above is called completeness with a baseline.

This method solves the problem of non-attribution during saturation, as a non-zero
model output always results in non-zero attributions irrespective of the input being at a
local extrema of the function. However, this now has the problem that the dependency
condition it satisfies is very weak, in that it only implies that if a function that does not
depend mathematically on a variable for all inputs, then its attribution is zero. This
means that if one feature is assigned a higher importance than another, the precise
meaning of this is unclear, as this score is given based on multiple considerations for
a ‘fair’ re-distribution, not a single simple principle like sensitivity. In particular for
integrated gradients, the score for some ith feature cannot be interpreted as the change
in model output upon changing the ith feature from xi to x′i (or vice versa), as the score
in this case is computed by changing all features together, and not individual features
in isolation. For linear models, there is no interaction between features and thus this
interpretation is valid for this case, however this is not true for more general non-linear
models.

Overall, feature importance methods are based on defining importance scores to each
input feature, whereas commonly used non-linear models such as deep models have a
large number of feature-wise interactions, limiting the utility of such methods in practice.

10

1.4. Post-hoc Interpretability of Machine Learning Models

In Chapter 3, we shall define a representation which captures both completeness and
a strong notion of sensitivity, and naturally captures importance of not just individual
features, but that of patches at different scales for convolutional models.

1.4.3 Related Work on Interpretability

While the topic of this thesis focusses on post-hoc interpretability, in this part we shall
briefly discuss the broader literature around interpretability and how post-hoc inter-
pretability relates to the rest of the field.

Definition and Goals of Interpretability

The goals of interpretability in machine learning are to be able to perform human intro-
spection for models for a wide variety of use cases such as debugging, reasoning about
model behaviour in unknown settings for safety, verifying fairness claims, the ability
to audit model decisions and reasoning about mis-matched objectives (Doshi-Velez and
Kim, 2017; Weller, 2019). Note that these goals are distinct from one another, and as
such, methods that achieve one goal may not achieve others. For instance, existing work
in the fairness literature provides methods to achieve model fairness (Barocas et al.,
2019), however these do not necessarily fall under the purview of interpretable machine
learning as they do not help with the other goals of interpretability. To further clar-
ify what constitutes interpretability, Lipton (2018) make a classification into three types
of interpretability, namely, simulatability, decomposability, and algorithmic transparency.
While simulatability refers to being able to simulate the model computations by humans,
decomposability refers to each part of the model and the input being simulable, and al-
gorithmic transparency refers to the overall learning algorithm being well understood
analytically. Thus these different requirements might lead to different models that may
be interpretable with respect to one definition but not another. For example, Lipton
(2018) argue that linear models are not interpretable for high dimensional inputs when
it comes to simulatability or decomposability, but are so when considering algorithmic
transparency. On the other hand, post-hoc interpretability approaches which assign
concept labels to intermediate neurons within neural network models may render them
interpretable w.r.t. decomposability, but not other notions. Thus it is important that
interpretability approaches clearly specify under which sense they are interpretable.

Interpretable Model Families

One challenge in interpretable machine learning is the identification of model families
that are interpretable according to one of the senses described above. Note that the
model families that are interpretable may be distinct for each use case. For instance,
linear models are typically considered to be interpretable due to the simplicity of the

11

Chapter 1. Introduction & Background

Model Family Application

decision trees / sets

clean tabular data with interactions, includ-
ing multiclass problems. Particularly useful
for categorical data with complex interac-
tions (i.e., more than quadratic)

scoring systems (sparse linear mod-
els with integer co-efficients)

somewhat clean tabular data, typically used
in medicine and criminal justice because
they are small enough that they can be
memorized by humans.

generalized additive models
(GAMs)

continuous data with at most quadratic
interactions, useful for large-scale medical
record data.

case-based reasoning
any data type (different methods exist for
different data types), including multiclass
problems.

disentangled neural networks
data with raw inputs (computer vision, time
series, textual data), suitable for multiclass
problems.

Table 1.1 – General rules of thumb for interpretable model families that apply to different
use cases. Table from Rudin et al. (2021).

model, however as discussed above, this may not be true for high-dimensional inputs
(Lipton, 2018). Setting aside such special cases, Rudin et al. (2021) specify rules of
thumb for what models classes are interpretable for different applications, which we
show in Table 1.1. In the table, decision trees, decision lists and decision sets are log-
ical models that process inputs using if-else type rules. While decision trees and lists
typically check whether certain constraints are satisfied between the inputs, decision
sets use or-and type rules to process inputs. These are models typically applicable to
tabular data, and are interpretable for small tree sizes. Other models include scoring
systems that are sparse linear models with integer co-efficients that are also applicable
in similar domains. Generalized Additive Models (GAMs) (Hastie and Tibshirani, 1986)
are a class of models that process each input co-ordinate separately using non-linear
transformations, and are thus still interpretable due to the absence of across feature
interactions. These have also been used with neural network features, in a model class
called ‘neural additive model’ (Agarwal et al., 2020). Similar approaches which process
images patch-wise have also shown promise for large scale tasks such as image classifica-
tion despite the restrictive nature of the model (Brendel and Bethge, 2019). Case-based
reasoning refers to a general strategy of modelling where predictions are made based
on exemplars in the training set, examples being nearest neighbour and kernel-based
classifiers. Neural network models that use such case-based reasoning have also been
used shown to achieve good performance on large scale tasks (Li et al., 2018; Chen et al.,
2019). Finally, disentangled neural networks refer to models where the hidden neurons

12

1.4. Post-hoc Interpretability of Machine Learning Models

represent one semantic concept as opposed to a mixture of them. However encouraging
such disentanglement has been show to adversely affect model performance Leavitt and
Morcos (2021). Overall, once we have identified the correct model class, the only remain-
ing challenge is to be able to train these models well. However, given that these model
classes are often less expressive when compared to their non-interpretable counterparts,
predictive performance is likely to suffer.

Post-hoc Interpretability

Post-hoc interpretability involves explaining existing pre-trained models. This is con-
venient, as it does not require model re-training, and interpretation can be achieved
without sacrificing model performance. However, this assumes that such pre-trained
models are amenable to interpretation in the first place, which need not strictly be
true. Some common approaches to post-hoc interpretability include, feature attribution
methods, and case-based reasoning methods. Feature attribution methods or local ex-
planation methods assign importance scores to each input feature typically in a local
neighbourhood. A canonical approach here is to approximate the model locally using
a linear model (Ribeiro et al., 2016). Lundberg and Lee (2017) extend and generalize
this to the class of additive models and propose SHAP, which uses Shapley values to
assign feature importance. Gradient-based saliency methods (Simonyan et al., 2013;
Smilkov et al., 2017; Sundararajan et al., 2017; Zeiler and Fergus, 2014; Springenberg
et al., 2014; Montavon et al., 2017; Shrikumar et al., 2017; Selvaraju et al., 2017) on
the other hand, define feature importance using criteria such as sensitivity or complete-
ness, which was described in the previous sections. There also exist non-gradient based
methods (Zintgraf et al., 2017; Chang et al., 2019) which measure importance using
input perturbation. Case-based reasoning is another general explanation paradigm for
explaining individual predictions by relating them to predictions made on other known
points, such as those in the training set. Canonical approaches here include the use of
influence functions (Koh and Liang, 2017), which estimate the effect of each training
sample on the final test prediction, using which they are able to obtain critical training
examples for prediction.

Limitations of Post-hoc Interpretability

One limitation of post-hoc interpretability is that the explanation mechanism is distinct
from the model, and in general the two can diverge significantly (Rudin, 2019). This
particularly holds true in the realm of gradient-based feature importance methods ap-
plied to deep neural networks, as these models are typically highly non-linear and thus
gradients are only applicable in a small neighbourhood. As a result, it is important
to quantitatively evaluate such saliency maps to ensure that they do indeed capture
meaningful aspects of the model. A common test in this regime is the pixel perturba-

13

Chapter 1. Introduction & Background

tion test (Samek et al., 2016), which consists of perturbing the least (or most) salient
pixels according to a saliency map, by replacing them with zero information pixels and
measuring the resulting change in model output. A good saliency map is that which
shows smaller output change upon perturbing less important pixels and vice verse for
important ones. Another such test was proposed by Adebayo et al. (2018) who propose
to measure the variation of the saliency map to model randomization. In particular, it is
expected that the saliency map must be random upon model randomization. However,
Adebayo et al. (2018) showed that several gradient-based saliency methods are invariant
to such randomization. This shows that saliency map structure in these cases depends
on statistical properties of the model weights and not the input-output map itself, which
is an undesirable property. This was proven rigorously (Nie et al., 2018) for the case of
saliency maps such as guided backprop and deconvolution.

Orthogonal to this, there has also been work showing that saliency map explanations
are easy to fool. In particular, Ghorbani et al. (2019); Zhang et al. (2020) show that it
is possible to find “adversarial” images close to the original images such that while the
predicted label remains the same, the saliency map is vastly different. Similar observa-
tions are made by Dombrowski et al. (2019) who show that this is possible because of the
geometry of neural network models, and in particular their large curvature. Similarly,
Subramanya et al. (2019) show that it is possible to fool both saliency maps and predic-
tions by simply imperceptibly modifying the same image patch for all images. Distinct
from this, Heo et al. (2019) show that it is possible to modify the model parameters, such
that model prediction is still accurate but the explanations are arbitrary. We expand
on this problem and provide an explanation for this phenomenon in Chapter 5 based on
the shift-invariance of softmax. Overall, the susceptibility of neural network models to
adversarial manipulation indicates that these maps may not capture model behaviour
in all cases.

In the next section, we shall discuss an alternative approach to knowledge transfer and
interpretability, based on density models implicit within standard discriminative ones.

1.5 Density Modelling via Discriminative Models

For both knowledge transfer and interpretability, we require tools that capture the knowl-
edge encoded within neural network models. One set of tools that has shows promise
for this purpose are generative models embedded within discriminative ones. Such tools
have been used for zero-shot knowledge transfer (Nayak et al., 2019; Yin et al., 2020;
Haroush et al., 2020), where data to perform knowledge transfer is generated from the
‘teacher’ model using a heuristic data-generating process usually involving optimization
of inputs to maximize certain neuronal activations. This generated data is fed to the
‘student’ after which usual knowledge transfer methods are applied. While these meth-
ods do not consider these data-generating process as sampling methods from an explicit

14

1.5. Density Modelling via Discriminative Models

generative model, we observe that the procedures used bear a striking resemblance to
sampling from energy-based generative models (EBMs). In Chapter 5, we consider an
energy-based generative modelling interpretation for softmax-based generative models
and connect this to the interpretability properties of input-gradients. In the rest of this
section, we shall provide the requisite background on EBMs.

Given a set of data points X = {xi ∈ RD} from some distribution pdata(x), the objective
of generative modelling is to recover pdata(x) using only the samples X . Energy-based
generative models are generative models parameterized by an un-normalized energy
function h, as follows:

pebm(x) = exp (h(x))∫
x′ exp (h(x′)) dx′

Thus we define a density function pebm(x) indirectly by defining an arbitrary function
h which constitutes the numerator. The denominator is obtained by integrating this
quantity over the input domain, and is called the partition function. The objective
of generative modelling in this case is to find h such that pdata(x) ≈ pebm(x). In the
sections below we shall discuss more about how to train and sample from such energy
based models.

1.5.1 Sampling from EBMs

The general procedure to sample from EBMs is to use Markov Chain Monte Carlo
(MCMC) procedures, which are designed to sample without computing the partition
function. Algorithms in this family include the classical Metropolis-Hastings algorithm
(Hastings, 1970). However this typically has a large ‘burn-in’ time, i.e., time taken to
reach a high density region from low density ones, that scales with dimensionality, which
makes them impractical for use with high-dimensional densities. An alternate approach
is to use Langevin Dynamics (Neal et al., 2011), which roughly performs noisy gradient
ascent on the density model for i ∈ [1,K] steps, as follows

x0 ∼ p0(x), xi+1 ← xi − ε∇xpebm(xi) +
√

2ε zi, zi ∼ N (0, I)

Here p0(x) is some arbitrary initial distribution, a common choice for which is the
uniform distribution over the input domain. When ε → 0 as number of steps K → ∞,
this procedure converges to samples from p(x) (Neal et al., 2011). However usually
in practice, a fixed ε is chosen and noise is added independent of that resulting in a

15

Chapter 1. Introduction & Background

biased sampler (Grathwohl et al., 2020). When no noise is added to the step above, the
algorithm recovers the mode of the density pebm(x) rather than samples.

1.5.2 Training EBMs

While there are a multitude of methods to train EBMs, we shall here focus on the canon-
ical approach, that being approximate maximum likelihood. Here we wish to maximize
the likelihood of pebm(x) on the data samples X . Assume that the energy function in
this case has parameters θ. We can now compute the gradient of the log density w.r.t.
these parameters, which is usually approximated with the following expression.

∇θ log pebm(x; θ) ≈ Epebm(x′;θ)∇θh(x′; θ)−∇θh(x; θ)

In order to compute the expectation in the expression above, we require MCMC based
approaches such as Langevin Dynamics to sample from pebm, which can make training
slow.

In Chapter 5 we shall describe an alternate method of training EBMs, called score-
matching, which does not require use of such MCMC procedures at train time.

1.6 Research Questions & Contributions

Having discussed the relevant background material, we are now ready to state the con-
crete research questions we consider in this thesis.

Research Question 1 Is it possible to perform efficient knowledge transfer in a
parameterization-independent manner?

We answer this in the affirmative in Chapter 2 by proposing the use of the gradients
of the input-output map for knowledge transfer. Here we first establish an equivalence
between gradient matching and a data augmentation procedure, where noise is added to
the inputs. We then rely on this analysis to apply gradient matching to transfer learning
by establishing equivalence of a recent transfer learning procedure to distillation. We
show experimentally on standard image datasets that gradient-based penalties improve
distillation, robustness to noisy inputs, and transfer learning.

Research Question 2 Is it possible to define feature importance maps that satisfy both
‘sensitivity’ and ‘completeness’ properties?

16

1.6. Research Questions & Contributions

We answer this in the negative in Chapter 3, where we show that no feature importance
map can satisfy both these properties at once. We then define an alternate representation
called the full-gradient representation that is more expressive than feature importance
maps, and captures both properties simultaneously. Based on this representation, we
also define an approximate saliency map representation for convolutional nets, called
FullGrad which is obtained by aggregating gradient information across layers, and thus
naturally captures the hierarchical nature of computation. Experiments show that Full-
Grad captures model behaviour better than other saliency methods in literature. In
addition, we also show that the full-gradient representation can improve sample com-
plexity of distillation, and can also be used to regularize intermediate layers of neural
networks, which we show in Chapter 4.

Research Question 3 Why are gradient-based feature importance maps successful in
capturing model behaviour?

In Chapter 5 we take a bird’s eye view on gradient-based feature importance methods,
and ask what makes them successful in predicting model discriminiative behaviour pθ(y |
x) in the first place. We start with the observation that commonly used saliency maps
which use the gradients of the logits w.r.t. input can be arbitrary due to the shift-
invariance of softmax. This leaves an open question of why these gradients are structured
when in fact they can be completely arbitrary. To resolve this, we re-interpret logits of
softmax-based discriminative models as unnormalized energy functions of the underlying
data distribution, and show that logit-gradients are gradients of this class-conditional
generative model pθ(x | y). We hypothesize that the interpretability properties of logit-
gradients relate to the alignment of this latent generative model to the ground truth
pdata(x | y), which we show via experiments. Overall, this work shows two things, (1)
logit-gradients capture properties of a implicit generative model, and hence we must
rethinking their use for interpreting discriminative models, (2) the structure of such
gradient based maps relies on the alignment of the implicit generative model with the
ground truth, which is independent of the properties of the discriminative model.

17

Chapter 1. Introduction & Background

1.7 Notations

Symbol Description
x, y Input data (x) and corresponding output label (y) for classification tasks
X Dataset consisting of N input-output data pairs, i.e., X = {(xi, yi); i ∈ [1, N]}
D Dimensionality of x, i.e., x ∈ RD

N # points in dataset X
f, g Neural Network functions
θ, φ Vector of parameters for the models f, g respectively

pθ(y | x) Probabilistic discriminative model with parameters θ
pθ(x | y) Class-conditional density model of x given y with parameters θ
pdata(x) Ground truth density model of input x

Table 1.2 – Notations used in the thesis.

18

2 Knowledge Transfer with Jaco-
bian Matching

Classical distillation methods transfer representations from a “teacher” neural network
to a “student” network by matching their output activations. Recent methods also
match their Jacobians, or the gradient of output activations with the input. However,
this involves making some ad hoc decisions, in particular, the choice of the loss function.
In this chapter, we first establish an equivalence between Jacobian matching and dis-
tillation with input noise, from which we derive appropriate loss functions for Jacobian
matching. We then rely on this analysis to apply Jacobian matching to transfer learn-
ing by establishing equivalence of a recent transfer learning procedure to distillation.
We then show experimentally on standard image datasets that Jacobian-based penalties
improve distillation, robustness to noisy inputs, and transfer learning.

2.1 Introduction

Consider that we are given a neural network A trained on a particular dataset, and want
to train another neural network B on a similar (or related) dataset. Is it possible to
leverage A to train B more efficiently? We call this the problem of knowledge transfer.
Distillation (Hinton et al., 2015) is a form of knowledge transfer where A and B are
trained on the same dataset, but have different architectures. Transfer Learning (Pan
and Yang, 2010) is another form of knowledge transfer where A and B are trained on
different (but related) datasets. If the architectures are the same, we can in both cases
simply copy weights from A to B. The problem becomes more challenging when A and
B have different architectures.

A perfect distillation method would enable us to easily transform one neural network
architecture into another, while preserving generalization. This capability would allow
us to easily explore the space of neural network architectures, which can be used for
neural network architecture search, model compression, or creating diverse ensembles.
A perfect transfer learning method, on the other hand, would use little data to train B,

19

Chapter 2. Knowledge Transfer with Jacobian Matching

optimally using the limited samples at its disposal.

This chapter deals with improving knowledge transfer by matching the Jacobians of the
networks’ outputs with respect to their inputs. This approach has also been recently
explored for the case of distillation by Czarnecki et al. (2017), who considered the gen-
eral idea of matching gradients, and by Zagoruyko and Komodakis (2017) who viewed
gradients as attention maps. However it was unclear how these methods were related to
classical distillation approaches (Ba and Caruana, 2014; Hinton et al., 2015), making it
difficult to identify reasons for improved performance.

Recently Li and Hoiem (2016) proposed a distillation-like approach to perform transfer
learning. However its precise relationship to distillation was unclear, making it difficult
to predict whether improvements in distillation would lead to improvements in transfer
learning.

The overall contributions of this chapter are:

1. We show that matching Jacobians is a special case of classical distillation, where
noise is added to the inputs.

2. We show that a recent transfer learning method (LwF by Li and Hoiem, 2016) can
be viewed as distillation, which allows us to match Jacobians for this case.

3. We provide methods to match Jacobians of practical deep networks, where archi-
tecture of both networks are arbitrary.

We experimentally validate these results by providing evidence that Jacobian matching
helps both distillation and transfer learning, and that gradient-norm penalties can be
used to learn models robust to noise.

2.2 Related Work

Several gradient-based regularizers have been proposed in literature. Sobolev train-
ing (Czarnecki et al., 2017; Wang et al., 2016), showed that using higher order deriva-
tives along with the targets can help in training with less data. This work is similar to
ours. While we also make similar claims, we clarify the relationship of this method with
regular distillation based on matching activations. Specifically, we show how specifying
the loss function used for activation matching also specifies the loss function for Jacobian
matching. Zagoruyko and Komodakis (2017) introduced the idea of matching attention
maps, of which gradients were an instance. This work found that combining both acti-
vation matching and gradient matching was helpful, which is a natural consequence of
analysis in our work.

20

2.3. Jacobians of Neural Networks

Drucker and Le Cun (1992) considered penalizing the gradient norm of neural networks.
The intuition was to make the model more robust to small changes in the input. We
find that this conforms to our analysis as well.

Knowledge Distillation (Hinton et al., 2015) first showed that one can use softmax
with temperature to perform knowledge transfer with neural nets. Ba and Caruana
(2014) found that squared error between logits worked better than the softmax method,
and they used this method to train shallow nets with equivalent performance to deep
nets. Romero et al. (2014) and Zagoruyko and Komodakis (2017) showed how to en-
hance distillation by matching intermediate features along with the outputs, but used
different methods to do so. Sau and Balasubramanian (2016) found that adding noise to
logits helps during teacher-student training. We show that the use of the gradient can
be interpreted as adding such noise to the inputs analytically.

2.3 Jacobians of Neural Networks

Let us consider the first order Taylor series expansion of a function f : RD → R around
a small neighborhood {x + ∆x : ‖∆x‖ ≤ ε}. It can be written as

f(x + ∆x) = f(x) +∇xf(x)T (∆x) +O(ε2) (2.1)

We can apply this linearization to neural nets. The source of non-linearity for neural nets
lie in the elementwise non-linear activations (like ReLU, sigmoid) and pooling operators.
It is easy to see that to linearize the entire neural network, one must only linearize such
non-linearities.

2.3.1 Special case: ReLU and MaxPool

For the ReLU nonlinearity, the Taylor approximation is locally exact and simple to
compute, as the derivative dσ(z)

dz is either 0 or 1 (except at z = 0, where it is undefined).
A similar statement holds for max-pooling. Going back to the definition in Equation
2.1, for piecewise linear nets there exist ε > 0 such that the super-linear terms are zero,
i.e.; f(x + ∆x) = f(x) +∇xf(x)T (∆x) exactly.

2.3.2 What information does the gradient capture?

Consider piecewise linear functions with the non-differentiability at zero. Also consider
neural networks with no external bias units among the model parameters. For such
cases we see that the affine approximation reduces to a linear approximation, i.e.; the
overall ‘bias’ term is zero. This means the following: let x0 be a point arbitrarily close
to zero such that f(x0 + ∆x) = f(x0) + ∇xf(x0)T (∆x). Then, given f(x0) → 0,

21

Chapter 2. Knowledge Transfer with Jacobian Matching

∆x = x − x0 → x and the fact that x and x0 have the same gradient, we have the
following - f(x) = ∇xf(x)Tx. In other words, the output can be obtained by multiplying
the gradient with the input. We find that this relation holds approximately even for
ReLU nets with a bias unit as they are typically quite small (e.g. VGG19). Thus in this
case the gradient captures almost all of the information required to make a decision.
However, this breaks down for ReLU nets with batch normalization (e.g. ResNets) as
they introduce their own mean subtraction terms. Even in such cases, one can always
arbitrarily increase the scale of the input image such that the batch normalization terms
are negligible and f(x) = ∇xf(x)Tx holds in the limit.

As a corollary for other non-linearities, even with no external bias units, the overall ‘bias’
may be non-zero. For example, consider the hard-tanh nonlinearity, which is given by
σ(z) = z for −1 ≤ z ≤ 1, and saturates to −1 on the left and +1 on the right. In
such a case, when the non-linearity saturates, the corresponding slope is zero and we
get σ(z + dz) = σ(z) = ±1 bias depending on where it saturates. This reminds us
that in general the gradient does not capture all information about the neural network,
especially in the case of such saturating non-linearities.

2.3.3 Invariance to weight and architecture specification

One useful property of the Jacobian is that its dimensionality does not depend on the
network architecture. For k output classes, and input dimension D , the Jacobian of a
neural network is of dimension D × k. This means that one can compare Jacobians of
different architectures.

Another useful property is that for a given neural network architecture, different weight
configurations can lead to the same Jacobian. One simple example of this is permu-
tation symmetry of neurons in intermediate hidden layers. It is easy to see different
permutations of neurons leave the Jacobian unchanged (as they have the same under-
lying function mapping). In general, because of redundancy of neural network models
and non-convexity of the loss surface, several different weight configurations can end up
having similar Jacobians.

Thus gradients and Jacobians naturally captures similarities between neural network
mappings, making it desirable to use for knowledge transfer. Note that these properties
hold trivially for output activations as well. Thus it seems sensible that both these quan-
tities must be used for knowledge transfer. However, the important practical question
remains: how exactly should this be done?

22

2.4. Distillation

Teacher

Solution 1:

Match with

input noise

Solution 2:

Match

Jacobians

Figure 2.1 – Illustration of teacher-student learning in a simple 1D case. Here, x-axis
is the input data, and y-axis denotes function outputs. Given a limited number of data
points, there exist multiple student functions consistent with the data. How do we select
the hypothesis closest to the teacher’s? There are two equivalent solutions: either by
augmenting the data set by adding noise to the inputs or by directly matching slopes
(Jacobians) of the function at the data points.

2.4 Distillation

This problem of distillation is as follows: given a teacher network T which is trained
on a dataset D, we wish to enhance the training of a student network S on D using
“hints” from T . Classically, such “hints” involve activations of the output layer or some
intermediate layers. Recent works (Czarnecki et al., 2017; Zagoruyko and Komodakis,
2017) sought to also match the Jacobians of S and T . However, two aspects are not
clear in these formalisms: (i) what penalty term must be used between Jacobians, and
(ii) how this idea of matching Jacobians relates to simpler methods such as classical
distillation or activation matching (Ba and Caruana, 2014; Hinton et al., 2015). To
resolve these issues, we make the following claim.

Claim. Matching Jacobians of two networks is equivalent to matching soft targets with
noise added to the inputs during training.

More concretely, we make the following proposition.

Proposition 1. Consider the squared error cost function for matching soft targets of two
neural networks with k-length targets (∈ Rk), given by `(T (x),S(x)) = ∑k

i=1(T i(x) −
Si(x))2, where x ∈ RD is an input data point. Let ξ (∈ RD) = σ z be a scaled version
of a unit normal random variable z ∈ RD with scaling factor σ ∈ R. Then,

23

Chapter 2. Knowledge Transfer with Jacobian Matching

Eξ

[
k∑
i=1

(
T i(x + ξ)− Si(x + ξ)

)2
]

=
k∑
i=1

(
T i(x)− Si(x)

)2

+ σ2
k∑
i=1
‖∇xT i(x)−∇xSi(x)‖22 +O(σ4).

Notice that in this expression, we have decomposed the loss function into two com-
ponents: one representing the usual distillation loss on the samples, and the second
regularizer term representing the Jacobian matching loss. The higher order error terms
are small for small σ and can be ignored. The above proposition is a simple consequence
of using the first-order Taylor series expansion around x. Note that the error term is
exactly zero for piecewise-linear nets. An analogous statement is true for the case of
cross entropy error between soft targets, leading to:

Eξ

[
−

k∑
i=1
T is (x + ξ) log

(
Sis(x + ξ)

)]
(2.2)

≈ −
k∑
i=1
T is (x) log(Sis(x)) − σ2

k∑
i=1

∇xT is (x)T∇xSis(x)
Sis(x)

where T is (x) denotes the same network T i(x) but with a softmax or sigmoid (with
temperature parameter T if needed) added at the end. We do not write the super-
linear error terms for convenience. This shows that the Jacobian matching loss does not
need to be specified seperately, and that it arises naturally from the choice of activation
matching loss and the noise model. This observation can be used in practice to pick
appropriate loss function by choosing a specific noise model of interest.

These statements show that matching Jacobians is a natural consequence of matching
not only the raw network outputs at given data points, but also at the infinitely many
data points nearby. This is illustrated in Figure 2.1, which shows that by matching on
a noise-augmented dataset, the student is able to mimic the teacher better.

We can use the idea of noise augmentation to derive regularizers for the case of regular
neural network training as well. These regularizers seek to make the underlying model
robust to small amounts of noise added to the inputs.

Proposition 2. Consider the squared error cost function for training a neural network
with k targets, given by `(y(x),S(x)) = ∑k

i=1(yi(x)−Si(x))2, where x ∈ RD is an input

24

2.4. Distillation

data point, and yi(x) is the ith target output. Let ξ (∈ RD) = σ z be a scaled version of
a unit normal random variable z ∈ RD with scaling factor σ ∈ R. Then the following
is true.

Eξ

[
k∑
i=1

(
yi(x)− Si(x + ξ)

)2
]

=
k∑
i=1

(
yi(x)− Si(x)

)2
+ σ2

k∑
i=1
‖∇xSi(x)‖22 +O(σ4)

A statement similar to Proposition 2 has been previously derived by Bishop (1995), who
observed that the regularizer term for linear models corresponds exactly to the well-
known Tikhonov regularizer. This regularizer was also proposed by Drucker and Le Cun
(1992). The `2 weight decay regularizer for neural networks can be derived by applying
this regularizer layer-wise separately. However, we see here that a more appropriate way
to ensure noise robustness is to penalize the norm of the gradient rather than weights.
We can derive a similar result for the case of cross-entropy error as well, which is given
by -

Eξ

[
−

k∑
i=1

yi(x) log(Sis(x + ξ))
]

(2.3)

≈ −
k∑
i=1

yi(x) log(Sis(x)) + σ2
k∑
i=1

yi(x)‖∇xS
i
s(x)‖22

Sis(x)2

We notice here again that the regularizer involves Sis(x), which has the sigmoid / soft-
max nonlinearity applied on top of the final layer of Si(x). Deriving all the above
results is a simple matter of using first-order Taylor series expansions, and additionally
a second-order expansion for log in the case of Equation 2.3. Proof is provided in the
supplementary material.

Note that we can re-write the penalties for cross entropy error in a more numerically
stable form. In general, we found that the penalties for squared error worked better
experimentally and were easier to tune. As a result, we use squared error loss for
distillation.

Why does Jacobian matching improve performance? One reason is that Jacobian match-
ing is derived from the expected value of the activation matching loss with noise, and
computing this expected loss is intractable in practice. However it can be approximated
by averaging over a large number N of noise instances, i.e. a Monte Carlo approxima-
tion. This is a form of data augmentation with noise. Thus with Jacobian matching we

25

Chapter 2. Knowledge Transfer with Jacobian Matching

analytically perform an otherwise intractable data augmentation procedure. For exam-
ple, for CIFAR100 we found that we needed N ∼ 104 which is intractable in practice. A
more learning-theoretic reason for improvement is presented in the next section, mainly
applied to transfer learning.

However it can be approximated by averaging over a large number N of noise instances,
i.e. a Monte Carlo approximation. This scheme increases the computational cost by
a factor of N. In contrast, Jacobian matching only increases computational cost by a
factor of 2, because of the double backward pass.

2.4.1 Approximating the Full Jacobian

One can see that both in the case of Proposition 1 and 2, we are required to compute
the full Jacobian. This is computationally expensive, and sometimes unnecessary. For
example, Equation 2.3 requires only the terms where yi(x) is non-zero.

In general, we can approximate the summation of Jacobian terms with the one with
largest magnitude. However, we cannot estimate this without computing the Jacobians
themselves. As a result, we use a heuristic where the only output variable involving the
correct answer c ∈ [1, k] is used for computing the Jacobian. This corresponds to the
case of Equation 2.3. Alternately, if we do not want to use the labels, we may instead
use the output variable with the largest magnitude, as it often corresponds to the right
label (for good models).

2.5 Transfer Learning

We now apply our Jacobian matching machinery to transfer learning problems. In
computer vision, transfer learning is often done by fine-tuning (Yosinski et al., 2014),
where models pre-trained on a large source dataset Ds, such as Imagenet (Russakovsky
et al., 2015), are used as initialization for training on another smaller target dataset Dt.
Practically, this means that the architecture used for fine-tuning must be the same as
that of the pre-trained network, which is restrictive. We would like to develop transfer
learning methods where the architectures of the pre-trained network and target “fine-
tuned” network can be arbitrarily different.

One way to achieve this is by distillation: we can match output activations of a pre-
trained teacher network and an untrained student network. However, this procedure
is not general as the target dataset may not share the same label space as the source
dataset. To overcome this, we can design the student network to have two sets of outputs
(or two output “branches”), one with the label space of the smaller target dataset, while
the other with that of the larger source dataset. This leads to the method proposed
by Li and Hoiem (2016), called “Learning without Forgetting” (LwF). Note that similar

26

2.5. Transfer Learning

Student

Teacher

(Pre-trained net)

Input
(target

dataset)
Match output

activations

Match with ground

truth labels (from

target dataset)

Match attention maps

and their Jacobians

Figure 2.2 – Illustration of our proposed method for transfer learning. We match the
output activations of a pre-trained Imagenet network similar to LwF (Li and Hoiem,
2016). We also match aggregated activations or “attention” maps between networks,
similar to the work of Zagoruyko and Komodakis (2017). We propose to match Jacobians
of (aggregated) attention maps w.r.t. inputs.

methods were concurrently developed by Jung et al. (2016) and Furlanello et al. (2016).
In this method, the student network is trained with a composite loss function involving
two terms, one in each output branch. The two objectives are (1)matching ground truth
labels on the target dataset, and (2) matching the activations of the student network
and a pre-trained teacher network on the target dataset. This is illustrated in Figure
2.2. Crucially, these losses are matched only on the target dataset, and the source data
is untouched. This is conceptually different from distillation, where the teacher network
is trained on the dataset being distilled. In LwF, the pre-trained teacher is not trained
on the target dataset.

This makes it problematic to apply our Jacobian matching framework to LwF. For dis-
tillation, it is clear that adding input noise (or Jacobian matching) can improve overall
matching as shown in Figure 2.1. For the case of LwF, it is not clear whether improving
matching between teacher and student will necessarily improve transfer learning perfor-
mance. This is especially because the teacher is not trained on the target dataset, and
can potentially produce noisy or incorrect results on this unseen data. To resolve this
ambiguity, we shall now connect LwF with distillation.

27

Chapter 2. Knowledge Transfer with Jacobian Matching

2.5.1 LwF as Distillation

In the discussion below we shall only consider the distillation-like loss of LwF, and ignore
the branch which matches ground truth labels. For LwF to work well, it must be the
case that the activations of the pre-trained teacher network on the target dataset must
contain information about the source dataset (i.e.; Imagenet). The attractiveness of
LwF lies in the fact that this is done without explicitly using Imagenet. Here, we make
the claim that LwF approximates distillation on (a part of) Imagenet.

Let f(·) be an untrained neural network, g(·) be a pre-trained network, x,y be the
input image and corresponding ground truth label respectively. Let |D| be the size of
the dataset D. Let us denote ρ(x) = `(f(x), g(x)) for convenience, where `(·, ·) is a loss
function. Assume Lipschitz continuity for ρ(x) with Lipschitz constant K, and distance
metric ψx in the input space

‖ρ(x1)− ρ(x2)‖ ≤ Kψx(x1,x2) (2.4)

Note here that the distance in the input space need not be in terms of pixelwise distances,
but can also be a learnt feature distance, for example. Let us also define an assymetric
version of the Hausdorff distance between two sets A,B:

Ha(A,B) = sup
a∈A

inf
b∈B

ψx(a, b). (2.5)

Note that this is no longer a valid distance metric unlike the Hausdorff. Given these
assumptions, we are now ready to state our result.

Proposition 3. Given the assumptions and notations described above, we have

1
|Ds|

∑
x∼Ds

`(f(x), g(x)) ≤ max
x∼Dt

`(f(x), g(x)) + KHa(Ds,Dt) (2.6)

On the left side of 2.6 we have the distillation loss on the source dataset, and on the right
we have a max-loss term on the target dataset. Note that the LwF loss is an average
loss on the target dataset. As expected, the slack terms in the inequality depends on the
distance between the source and target datasets (2.6). This bounds a loss related to the
LwF loss (i.e. max-loss instead of average) with the distillation loss. If the Hausdorff
distance is small, then reducing the max-loss would reduce the distillation loss as well.
A similar theory was previously presented by Ben-David et al. (2010), but with different
formalisms. Our formalism allows us to connect with Jacobian matching, which is our
primary objective. Note that this inequality can also be viewed as a learning-theoretic
generalization bound for distillation by replacing the source and target datasets with
train and test sets for distillation instead.

28

2.5. Transfer Learning

In practice, the target dataset is often much smaller than Imagenet and has different
overall statistics. For example, the target dataset could be a restricted dataset of flower
images. In such a case, we can restrict the source dataset to its “best” subset, in
particular with all the irrelevant samples (those far from target dataset) removed. This
would make the Hausdorff distance smaller, and provide a tighter bound. In our example,
this involves keeping only flowers from Imagenet.

This makes intuitive sense as well: if the source and target datasets are completely
different, we do not expect transfer learning (and thus LwF) to help. The greater the
overlap between source and target datasets, the smaller is the Hausdorff distance, the
tighter is the bound, and the more we expect knowledge transfer to help. Our results
capture this intuition in a rigorous manner. In addition, this predicts that Lipschitz-
smooth teacher neural nets that produce small feature distance between source and
target images are expected to do well in transfer learning. Lipschitz-smoothness of
models has been previously related to adversarial noise robustness (Cisse et al., 2017),
and to learning theory as a sufficient condition for generalization (Xu and Mannor, 2012).
It is interesting that this relates to transfer learning as well.

More importantly, this establishes LwF as an approximate distillation method. The
following result motivates input noise added to the target dataset.

Corollary. For any superset D′t ⊇ Dt of the target dataset, Ha(Ds,D′t) ≤ Ha(Ds,Dt)

Thus if we augment the target dataset Dt by adding noise, we expect the bound in
Proposition 3 to get tighter. This is because when we add noise to points in Dt, the
minimum distance between points from Ds to Dt decreases. Proofs are provided in the
supplementary material.

To summarize, we have showed that a loss related to the LwF loss (max-loss) is an upper
bound on the true distillation loss. Thus by minimizing the upper bound, we can expect
to reduce the distillation loss also.

Now that input noise and thus Jacobian matching is well motivated, we can incorporate
these losses into LwF. When we implemented this for practical deep networks we found
that the optimizer was not able to reduce the Jacobian loss at all. We conjecture that
it might be because of a vanishing gradient effect / network degeneracy on propagation
of second order gradients through the network (and not the first). Hence we need an
alternate way to match Jacobians.

2.5.2 Matching attention maps

It is often insufficient to match only output activations between a teacher and a stu-
dent network, especially when both networks are deep. In such cases we can consider

29

Chapter 2. Knowledge Transfer with Jacobian Matching

matching intermediate feature maps as well. In general it is not possible to match the
full feature maps between an arbitrary teacher and student network as they may have
different architectures, and features sizes may never match at any layer. However, for
modern convolutional architectures, spatial sizes of certain features often match across
architectures even when the number of channels does not. Zagoruyko and Komodakis
(2017) noticed that it in such cases it helps to match channelwise aggregated activations,
which they call attention maps. Specifically, this aggregation is performed by summing
over squared absolute value of channels of a feature activation Z, and is given by -

A = AttMap(Z) =
∑

i∈channels
|Zi|2 (2.7)

Further, the loss function used to match these activations is

Match Activations =
∣∣∣∣∣∣∣∣ At
‖At‖2

− As
‖As‖2

∣∣∣∣∣∣∣∣
2

(2.8)

Here, At, As are the attention maps of the teacher and student respectively. Zagoruyko
and Komodakis (2017) note that this choice of loss function is especially crucial.

Incorporating Jacobian loss

As the activation maps have large spatial dimensions, it is computationally costly to
compute the full Jacobians. We hence resort to computing approximate Jacobians in
the same manner as previously discussed. In this case, this leads to picking the pixel
in the attention map with the largest magnitude, and computing the Jacobian of this
quantity w.r.t. input. We compute the index (i, j) of this maximum-valued pixel for the
teacher network and use the same index to compute the student’s Jacobian. We then
use a loss function similar to Equation 2.8, given by

Match gradients =
∣∣∣∣∣∣∣∣ ∇xf(x)
‖∇xf(x)‖2

− ∇xg(x)
‖∇xg(x)‖2

∣∣∣∣∣∣∣∣2
2

(2.9)

Justification for Jacobian loss

We can show that the above loss term corresponds to adding a noise term ξf ∝ ‖∇xf(x)‖−1
2

for f(x) and ξg ∝ ‖∇xg(x)‖−1
2 for g(x) for the distillation loss. From the first order

Taylor series expansion, we see that g(x + ξ) = g(x) + ξg∇xg(x). Thus for networks
f(·) and g(·) with different Jacobian magnitudes, we expect different responses for the
same noisy inputs. Specifically, we see that Eξg‖g(x + ξg) − g(x)‖22 = σ2

g‖∇xg(x)‖22 =
σ2 ‖∇xg(x)‖2

2
‖∇xg(x)‖2

2
= σ2 for a gaussian model with covariance matrix being σ times the identity.

30

2.6. Experiments

2.6 Experiments

We perform three experiments to show the effectiveness of using Jacobians. First, we
perform distillation in a limited data setting on the CIFAR100 dataset (Krizhevsky and
Hinton, 2009). Second, we show on that same dataset that penalizing gradient norm
increases stability of networks to random noise. Finally, we perform transfer learning
experiments on the MIT Scenes dataset (Quattoni and Torralba, 2009). We provide
more detail about the experimental setups in the supplementary material.

2.6.1 Distillation

For the distillation experiments, we use VGG-like (Simonyan and Zisserman, 2014) ar-
chitectures with batch normalization. The main difference is that we retain the convo-
lutional layers and have one fully connected layer rather than three. Our workflow is
as follows. First, a 9-layer “teacher” network is trained on the full CIFAR100 dataset.
Then, a smaller 4-layer “student” network is trained, but this time on small subsets
rather than the full dataset. As the teacher is trained on much more data than the
student, we expect distillation to improve the student’s performance.

A practical scenario where this would be useful is the case of architecture search and
ensemble training, where we require to train many candidate neural network architec-
tures on the same task. Distillation methods can help speed up such methods by using
already trained networks to accelerate training of newer models. One way to achieve
acceleration is by using less data to train the student.

We compare our methods against the following baselines.

1. Cross-Entropy (CE) training – Here we train the student using only the ground
truth (hard labels) available with the dataset without invoking the teacher network.

2. CE + match activations – This is the classical form of distillation, where the
activations of the teacher network are matched with that of the student. This is
weighted with the cross-entropy term which uses ground truth targets.

3. Match activations only – Same as above, except that the cross-entropy term is
not used in the loss function.

We compare these methods by appending the Jacobian matching term in each case. In
all cases, we use the squared-error distillation loss shown in Proposition 1. We found
that squared loss worked much better than the cross-entropy loss for distillation and it
was much easier to tune.

From Table 2.1 we can conclude that (1) it is generally beneficial to do any form of

31

Chapter 2. Knowledge Transfer with Jacobian Matching

Table 2.1 – Distillation performance on the CIFAR100 dataset. Table shows test ac-
curacy (%). We find that matching both activations and Jacobians along with cross-
entropy error performs the best for limited-data settings. The student network is VGG-4
while the teacher is a VGG-9 network which achieves 64.78% accuracy.

of Data points per class → 1 5 10 50 100 500
Cross-Entropy (CE) 5.69 13.9 20.03 37.6 44.92 54.28
CE + match activations (A) 12.13 26.97 33.92 46.47 50.92 56.65
CE + match Jacobians (J) 6.78 23.94 32.03 45.71 51.47 53.44
CE + match {A + J} 13.78 33.39 39.55 49.49 52.43 54.57
Match activations (A) only 10.73 28.56 33.6 45.73 50.15 56.59
Match {A + J} 13.09 33.31 38.16 47.79 50.06 51.33

distillation to improve performance, (2) matching Jacobians along with activations out-
performs matching only activations in low-data settings, (3) not matching Jacobians is
often beneficial for large data.

One interesting phenomenon we observe is that having a cross-entropy (CE) error term
is often not crucial to achieve good performance. It performs only slightly worse than
using ground truth labels.

For Table 2.1, we see that when training with activations, Jacobians and regular cross-
entropy training (fourth row), we reach an accuracy of 52.43% when training with 100
data points per class. We observe that the overall accuracy of raw training using the full
dataset is 54.28%. Thus we are able to reach close to the full training accuracy using
only about 1/5th of the data.

2.6.2 Noise robustness

We perform experiments where we penalize the gradient norm to improve robustness of
models to random noise. We train 9-layer VGG networks on CIFAR100 with varying
amount of the regularization strength (λ), and measure their classification accuracy in
presence of noise added to the normalized images. From Table 2.2 we find that using
higher regularization strengths is better for robustness, even when the initial accuracy at
the zero-noise case is lower. This aligns remarkably well with the theory. Surprisingly,
we find that popular regularizers such as `2 regularization and dropout (Srivastava et al.,
2014) are not robust.

32

2.6. Experiments

Table 2.2 – Robustness of various VGG-9 models to gaussian noise added to CIFAR100
images at test time. Table shows test accuracy (%). λ is the regularization strength of
the gradient-norm penalty regularizer. γ = 1e− 3 is the `2 regularization strength and
p = 0.25 is the dropout value. We see that the gradient-norm penalty can be remarkably
robust to noise, unlike `2 regularization and dropout.

Noise (σ) → 0 0.1 0.2 0.3 0.4
λ = 0 64.78 61.9± 0.07 47.53± 0.23 29.63± 0.16 17.69± 0.17
λ = 0.01 64.67 61.85± 0.15 49.47± 0.07 32.24± 0.28 19.63± 0.17
λ = 0.1 65.62 63.36 ± 0.18 53.57± 0.23 37.38± 0.18 23.99± 0.19
λ = 1.0 63.59 62.66± 0.13 57.53± 0.17 47.48± 0.14 35.43± 0.11
λ = 10.0 61.37 60.78± 0.05 58.28 ± 0.13 52.82 ± 0.10 44.96 ± 0.19
`2 reg. 66.92 60.41± 0.27 39.93± 0.28 23.32± 0.25 13.76± 0.16
Dropout 66.8 61.53± 0.10 44.34± 0.19 26.70± 0.24 15.77± 0.11

2.6.3 Transfer Learning

For transfer learning, our objective is to improve training on the target dataset (MIT
Scenes) by using Imagenet pre-trained models. Crucially, we want our MIT Scenes
model to have a different architecture than the Imagenet model. The teacher model we
use is a ResNet-34 (He et al., 2016) pre-trained on Imagenet, while the student model
is an untrained VGG-9 model with batch normalization. We choose VGG-9 because
its architecture is based on fundamentally different design principles than ResNets. In
principle we can use any architecture for the student. We modify this VGG-9 architecture
such that it has two sets of outputs, one sharing the label space with Imagenet (1000
classes), and another with MIT Scenes (67 classes). The pre-final layer is common to
both outputs.

Our baselines are the following.

1. Cross-Entropy (CE) training of student with ground truth – Here we
ignore the VGG-9 branch with 1000 classes and optimize the cross-entropy error
on MIT Scenes data. The loss function on this branch is always the same for all
methods.

2. CE on pre-trained network – This is exactly the same as the first baseline,
except that the VGG-9 model is initialized from Imagenet pre-trained weights.
We consider this as our “oracle” method and strive to match its performance.

3. CE + match activations (LwF) – This corresponds to the method of Li and
Hoiem (2016), where the Imagenet branch output activations of the student are
matched with those of the teacher.

33

Chapter 2. Knowledge Transfer with Jacobian Matching

4. CE + match {activations + attention} – This corresponds to the method
of Zagoruyko and Komodakis (2017), where attention maps are matched between
some intermediate layers.

We add our Jacobian matching terms to the baselines 3 and 4. We provide our results
in Table 2.3. In all cases, we vary the number of images per class on MIT Scenes to
observe the performance on low-data settings as well. In this case we average our results
over two runs by choosing different random subsets.

Table 2.3 – Transfer Learning from Imagenet to MIT Scenes dataset. Table shows test
accuracy (%). The student network (VGG9) is trained from scratch unless otherwise
mentioned. The teacher network used is a pre-trained ResNet34. Here CE denote
training with cross-entropy loss, J denotes Jacobian and att denotes attention. Results
are averaged over two runs.

data per class → 5 10 25 50 Full
CE on untrained student 11.64 20.30 35.19 46.38 59.33
CE on pre-trained student (Oracle) 25.93 43.81 57.65 64.18 71.42
CE + match activations (A) 17.08 27.13 45.08 55.22 65.22
CE + match {A + J} 17.88 28.25 45.26 56.49 66.04
CE + match {A + att.} 16.53 28.35 46.01 57.80 67.24
CE + match {A + att. + J} 18.02 29.25 47.31 58.35 67.31

Table 2.4 – Ablation experiments over choice of feature matching depth. (T , S) de-
notes teacher (ResNet34) and student (VGG9) feature depths. These pairs are chosen
such that resulting features have same spatial dimensions. We see that matching the
shallowest feature works the best. Results are averaged over two runs.

Feature matching
depth (T , S) (7, 2) (15, 4) (27, 6) (33, 8)

Accuracy (%) 22.39 21.98 20.45 20.03
gradient loss
reduction (%) 25.88 15.59 11.55 1.25

Experiments show that matching activations and attention maps increases performance
at all levels of data size. It also shows that Jacobians improve performance of all these
methods. However, we observe that none of the methods match the oracle performance
of using a pre-trained model. The gap in performance is especially large at intermediate
data sizes of 10 and 25 images per class.

34

2.6. Experiments

Table 2.5 – Ablation experiments over the computation of gradient. Here, s is the size of
the attention map. “Full” is global average pooling, and “None” is no average pooling.
We see that using average pooling while computing Jacobians helps performance. Results
are averaged over two runs.

Average Pool
Window size Full s/3 s/5 s/7 None

Accuracy (%) 20.00 21.20 21.87 21.09 19.74

Which features to match?

An important practical question is the choice of intermediate features to compute atten-
tion maps for matching. The recipe followed by Zagoruyko and Komodakis (2017) for
ResNets is to consider features at the end of a residual block. 1 As there are typically 3-5
max-pooling layers in most modern networks, we have 3-5 intermediate features to match
between any typical teacher and student network. Note that we require the attention
maps (channelwise aggregated features) to be of similar spatial size to match. Zagoruyko
and Komodakis (2017) match at all such possible locations.

However, computing Jacobians at all such locations is computationally demanding and
perhaps unnecessary. We observe that if we compute Jacobians at later layers, we
are still not able to reduce training Jacobian loss, possibly due to a “second-order”
vanishing gradient effect. At suitable intermediate layers, we see that loss reduction
occurs. This is reflected in Table 2.4, where we vary the feature matching depth and
observe performance. We observe that the Jacobian loss reduction (during training) is
highest for the shallowest layers, and this corresponds to good test performance as well.
These ablation experiments are done on the MIT Scenes dataset picking only 10 points
per class.

Feature Pooling to compute Jacobians

Instead of considering a single pixel per attention map to compute Jacobians, we can
aggregate a large number of large-magnitude pixels. One way to do this is by average
pooling over the attention map, and then picking the maximum pixel over the average
pooled map. In Table 2.5 we vary the window size for average pooling and observe
performance. We observe that it is beneficial to do average pooling, we find that using
a window size of (feature size)/5 works the best. These ablation experiments are done
on the MIT Scenes dataset picking only 10 points per class.

1A residual block is the set of all layers in between two consecutive max-pooling layers in a ResNet.
All features in a block have the same dimensions.

35

Chapter 2. Knowledge Transfer with Jacobian Matching

2.7 Conclusion

In this chapter we considered matching Jacobians of deep neural networks for knowledge
transfer. Viewing Jacobian matching as a form of data augmentation with gaussian
noise motivates their usage, and also informs us about the loss functions to use. We
also connected a recent transfer learning method (LwF) to distillation, enabling us to
incorporate Jacobian matching.

Despite our advances, there is still a large gap between distillation-based methods and
the oracle method of using pre-trained nets for transfer learning. Future work can focus
on closing this gap by considering more structured forms of data augmentation than
simple noise addition.

36

Appendix

2.8 Proof of Proposition 1

Proposition. Consider the squared error cost function for matching soft targets of two
neural networks with k-length targets (∈ Rk), given by `(T (x),S(x)) = ∑k

i=1(T i(x) −
Si(x))2, where x ∈ RD is an input data point. Let ξ (∈ RD) = σ z be a scaled version
of a unit normal random variable z ∈ RD with scaling factor σ ∈ R. Then,

Eξ
k∑
i=1

(
T i(x + ξ)− Si(x + ξ)

)2

=
k∑
i=1

(
T i(x)− Si(x)

)2
+ σ2

k∑
i=1
‖∇xT i(x)−∇xSi(x)‖22 +O(σ4)

Proof. There exists σ and ξ small enough that first-order Taylor series expansion holds
true

Eξ
k∑
i=1

(
T i(x + ξ)− Si(x + ξ)

)2

=Eξ
k∑
i=1

(
T i(x) + ξ>∇xT i(x)− Si(x)− ξ>∇xSi(x)

)2
(Taylor series)

+O(σ4)

=
k∑
i=1

(
T i(x)− Si(x)

)2
(expand the square)

+Eξ
k∑
i=1

[
ξ>
(
∇xT i(x)−∇xSi(x)

)]2
+2Eξ

k∑
i=1

[
ξ>
(
∇xT i(x)−∇xSi(x)

)]
[T i(x)− Si(x)] (=0, as ξ is zero mean)

37

Chapter 2. Knowledge Transfer with Jacobian Matching

+O(σ4)

=
k∑
i=1

(
T i(x)− Si(x)

)2

+
k∑
i=1

[(
∇xT i(x)−∇xSi(x)

)>
Eξξξ>

(
∇xT i(x)−∇xSi(x)

)]
(linearity of expectation)

+O(σ4)

=
k∑
i=1

(
T i(x)− Si(x)

)2

+
k∑
i=1

σ2‖∇xT i(x)−∇xSi(x)‖2 (Eξξξ> = σI)

+O(σ4)

Proposition. Consider the cross-entropy cost function for matching soft targets of
two neural networks with k-length targets (∈ Rk), given by `(T (x),S(x)) = ∑k

i=1 T i(x) log
(Si(x)

)
,

where x ∈ RD is an input data point. Let ξ (∈ RD) = σ z be a scaled version of a unit
normal random variable z ∈ RD with scaling factor σ ∈ R. Then,

Eξ −
k∑
i=1
T is (x + ξ) log

(
Sis(x + ξ)

)

= −
k∑
i=1
T is (x) log(Sis(x)) − σ2

k∑
i=1

∇xT is (x)T∇xSis(x)
Sis(x) −O(σ4)

Proof. There exists σ and ξ small enough that first-order Taylor series expansion holds
true

Eξ −
k∑
i=1
T i(x + ξ) log

(
Si(x + ξ)

)

=Eξ −
k∑
i=1

(
T i(x) + ξ>∇xT i(x)

) (
logSi(x) + ξ>∇x logSi(x)

)
(Taylor series)

−O(σ4)

=−
k∑
i=1
T i(x) logSi(x)

38

2.9. Proof of Proposition 2

−Eξ
k∑
i=1
ξ>∇xT i(x)ξ>∇x logSi(x)

−Eξ
k∑
i=1

(T i(x)ξ>∇x logSi(x))(logSi(x)ξ>∇xT i(x)) (=0, as ξ is zero mean)

−O(σ4)

=−
k∑
i=1
T i(x) logSi(x)

−
k∑
i=1
∇xT i(x)>Eξξξ>∇x logSi(x) (linearity of expectation)

−O(σ4)

=−
k∑
i=1
T i(x) logSi(x)

−σ2
k∑
i=1
∇xT i(x)>∇x logSi(x) (Eξξξ> = σI)

−O(σ4)

2.9 Proof of Proposition 2

Proposition. Consider the squared error cost function for training a neural network
with k targets, given by `(y(x),S(x)) = ∑k

i=1(yi(x)−Si(x))2, where x ∈ RD is an input
data point, and yi(x) is the ith target output. Let ξ (∈ RD) = σ z be a scaled version of
a unit normal random variable z ∈ RD with scaling factor σ ∈ R. Then the following
is true.

Eξ
k∑
i=1

(
yi(x)− Si(x + ξ)

)2

=
k∑
i=1

(
yi(x)− Si(x)

)2
+ σ2

k∑
i=1
‖∇xSi(x)‖22 +O(σ4)

Proof. There exists σ and ξ small enough that first-order Taylor series expansion holds
true

Eξ
k∑
i=1

(
yi(x)− Si(x + ξ)

)2

39

Chapter 2. Knowledge Transfer with Jacobian Matching

=Eξ
k∑
i=1

(
yi(x)− Si(x)− ξ>∇xSi(x)

)2
(Taylor series)

+O(σ4)

=
k∑
i=1

(
yi(x)− Si(x)

)2
(expand the square)

+Eξ
k∑
i=1

[
ξ>∇xSi(x)

]2
−Eξ

k∑
i=1
ξ>∇xSi(x)[yi(x)− Si(x)] (=0, as ξ is zero mean)

+O(σ4)

=
k∑
i=1

(
yi(x)− Si(x)

)2

+
k∑
i=1
∇xSi(x)>Eξξξ>∇xSi(x) (linearity of expectation)

+O(σ4)

=
k∑
i=1

(
yi(x)− Si(x)

)2

+
k∑
i=1

σ2‖∇xSi(x)‖2 (Eξξξ> = σI)

+O(σ4)

Proposition. Consider the cross-entropy cost function for training a neural network
with k targets, given by `(y(x),S(x)) = ∑k

i=1−yi(x) logSi(x), where x ∈ RD is an input
data point, and yi(x) is the ith target output. Let ξ (∈ RD) = σ z be a scaled version of
a unit normal random variable z ∈ RD with scaling factor σ ∈ R. Then the following
is true.

Eξ

[
−

k∑
i=1

yi(x) log(Sis(x + ξ))
]

(2.10)

≈ −
k∑
i=1

yi(x) log(Sis(x)) + σ2
k∑
i=1

yi(x)‖∇xS
i
s(x)‖22

Sis(x)2

Proof. There exists σ and ξ small enough that first-order Taylor series expansion holds
true

40

2.9. Proof of Proposition 2

Eξ −
k∑
i=1

yi(x) logSi(x + ξ)

=Eξ −
k∑
i=1

yi(x)
(

logSi(x) + ξ>∇x logSi(x) + 1
2ξ
>∇2

x logSi(x)ξ
)

(Taylor series)

−O(σ3)

=−
k∑
i=1

yi(x) logSi(x)

−1
2Eξ

k∑
i=1

yi(x)ξ>∇2
x logSi(x)ξ

−Eξ
k∑
i=1

yi(x)ξ>∇x logSi(x) (=0, as ξ is zero mean)

−O(σ4)

=−
k∑
i=1
T i(x) logSi(x)

−1
2

k∑
i=1

yi(x)Eξξ>∇2
x logSi(x)ξ (linearity of expectation)

−O(σ4)

Now, we approximate the Hessian term with the Fisher Information matrix, which is a
common trick used to simplify Hessian computations. Specifically we have,∇2

x logSi(x) =
∇2

xSi(x)/Si(x) − ∇x logSi(x)∇x logSi(x)> ≈ −∇x logSi(x)∇x logSi(x)>. This as-
sumes that ∇2

xSi(x) ≈ 0 which is true for pre-softmax logits of ReLU nets but not
necessarily for post-softmax probabilities. Using this approximation, we have

≈−
k∑
i=1
T i(x) logSi(x)

+1
2

k∑
i=1

yi(x)Eξ(∇x logSi(x)>ξ)2 (Fisher approximation)

≈−
k∑
i=1
T i(x) logSi(x)

+σ2

2

k∑
i=1

yi(x)‖∇x logSi(x)‖2

41

Chapter 2. Knowledge Transfer with Jacobian Matching

2.10 Proof of Proposition 3

Proposition. From the notations in the main text, we have

1
|Ds|

∑
x∼Ds

`(f(x), g(x)) ≤ max
x∼Dt

`(f(x), g(x))

+ KHa(Ds,Dt)

Proof. Let us denote ρ(x) = `(f(x), g(x)) for convenience. Assume Lipschitz continuity
for ρ(x) with Lipschitz constant K, and distance metric ψx(·, ·) in the input space -

‖ρ(x1)− ρ(x2)‖1 ≤ Kψx(x1,x2)
=⇒ ρ(x1) ≤ ρ(x2) + Kψx(x1,x2)

Assuming that ρ(x1) ≥ ρ(x2). Note that it holds even otherwise, but is trivial.

Now, for every datapoint xs ∈ Ds, there exists a point xt ∈ Dt such that ψx(xt,xs) is
the smallest among all points in Dt. In other words, we look at the point in Dt closest
to each point xs. Note that in this process only a subset of points dt ⊆ Dt are chosen,
and individual points can be chosen multiple times. For these points, we can write

ρ(xs) ≤ ρ(xt) + Kψx(xt,xs)

=⇒ 1
|Ds|

∑
xs∼Ds

ρ(xs) ≤
1
|Ds|

∑
xt closest to xs

ρ(xt)

+ 1
|Ds|

∑
xt closest to xs

Kψx(xt,xs)

We see that 1
|Ds|

∑
xt
ρ(xt) ≤ maxx∼dt ρ(x) ≤ maxx∼Dt ρ(x), which is a consequence of

the fact that the max is greater than any convex combination of elements.

Also, we have ψx(xs,xt) ≤ Ha(Ds,Dt), which is the maximum distance between any
two ‘closest’ points from Ds to Dt (by definition).

Applying these bounds, we have the final result.

42

2.11. Justification for gradient loss

2.10.1 Proof for Corollary

Corollary. For any superset D′t ⊇ Dt of the target dataset, Ha(Ds,D′t) ≤ Ha(Ds,Dt)

Proof. From the previous proof, we have ρ(xs) ≤ ρ(xt) + Kψx(xt,xs) for an individual
point xs. Now if we have D′t ⊇ Dt, then we have ρ(xs) ≤ ρ(x′t) + Kψx(x′t,xs), where x′t
is the new point closest to xs. It is clear that ψx(x′t,xs) ≤ ψx(xt,xs) for all xs. Hence
it follows that Ha(Ds,D′t) ≤ Ha(Ds,Dt).

2.11 Justification for gradient loss

We use the following loss term for gradient matching for transfer learning.

Match gradients =
∣∣∣∣∣∣∣∣ ∇xf(x)
‖∇xf(x)‖2

− ∇xg(x)
‖∇xg(x)‖2

∣∣∣∣∣∣∣∣2
2

(2.11)

We can show that the above loss term corresponds to adding a noise term ξf ∝ ‖∇xf(x)‖−1
2

for f(x) and ξg ∝ ‖∇xg(x)‖−1
2 for g(x) for the distillation loss. From the first order

Taylor series expansion, we see that g(x + ξ) = g(x) + ξg∇xg(x). Thus for networks
f(·) and g(·) with different gradient magnitudes, we expect different responses for the
same noisy inputs. Specifically, we see that Eξg‖g(x + ξg) − g(x)‖22 = σ2

g‖∇xg(x)‖22 =
σ2 ‖∇xg(x)‖2

2
‖∇xg(x)‖2

2
= σ2 for a gaussian model with covariance matrix being σ times the identity.

2.12 Experimental details

2.12.1 VGG Network Architectures

The architecture for our networks follow the VGG design philosophy. Specifically, we
have blocks with the following elements:

• 3× 3 conv kernels with c channels of stride 1

• Batch Normalization

• ReLU

Whenever we use Max-pooling (M), we use stride 2 and window size 2.

43

Chapter 2. Knowledge Transfer with Jacobian Matching

The architecture for VGG-9 is - [64−M − 128−M − 256− 256−M − 512− 512−M −
512− 512−M]. Here, the number stands for the number of convolution channels, and
M represents max-pooling. At the end of all the convolutional and max-pooling layers,
we have a Global Average Pooling (GAP) layer, after which we have a fully connected
layer leading up to the final classes. Similar architecture is used for the case of both
CIFAR and MIT Scene experiments.

The architecture for VGG-4 is - [64−M − 128−M − 512−M].

2.12.2 Loss function

The loss function for distillation experiments use the following form.

`(S, T) = α× (CE) + β × (Match Activations) + γ × (Match gradients)

In our experiments, α, β, γ are either set to 1 or 0. In other words, all regularization
constants are 1.

Here, ‘CE’ refers to cross-entropy with ground truth labels. ‘Match Activations’ refers to
squared error term over pre-softmax activations of the form (ys−yt)2. ‘Match gradients’
refers to the same squared error term, but for gradients.

For the MIT Scene experiments, α, β, γ are either set to 10 or 0, depending on the specific
method. To compute the gradient, we use average pooling over a feature size/5 window
with a stride of 1. We match the gradient after the first residual block for resnet, and
after the second max-pool for VGG. This corresponds to feature level “1” in the ablation
experiments.

2.12.3 Optimization

For CIFAR100 experiments, we run optimization for 500 epochs. We use the Adam
optimizer, with an initial learning rate of 1e−3, and a single learning rate annealing (to
1e− 4) at 400 epochs. We used a batch size of 128.

For MIT Scenes, we used SGD with momentum of 0.9, for 75 epochs. The initial learning
rate is 1e− 3, and it is reduced 10 times after 40 and 60 epochs. We used batch size 8.
This is because the gradient computation is very memory intensive.

44

3 Full-Gradient Representation for
Neural Network Visualization

We introduce a new tool for interpreting neural net responses, namely full-gradients,
which decomposes the neural net response into input sensitivity and per-neuron sen-
sitivity components. This is the first proposed representation which satisfies two key
properties: completeness and weak dependence, which provably cannot be satisfied by
any saliency map-based interpretability method. For convolutional nets, we also propose
an approximate saliency map representation, called FullGrad, obtained by aggregating
the full-gradient components. We experimentally evaluate the usefulness of FullGrad in
explaining model behaviour with two quantitative tests: pixel perturbation and remove-
and-retrain. Our experiments reveal that our method explains model behaviour cor-
rectly, and more comprehensively, than other methods in the literature. Visual inspec-
tion also reveals that our saliency maps are sharper and more tightly confined to object
regions than other methods.

3.1 Introduction

This work studies saliency map representations for the interpretation of neural network
functions. Saliency maps assign to each input feature an importance score, which is a
measure of the usefulness of that feature for the task performed by the neural network.
However, the presence of internal structure among features sometimes makes it difficult
to assign a single importance score per feature. For example, input spaces such as that of
natural images are compositional in nature. This means that while any single individual
pixel in an image may be unimportant on its own, a collection of pixels may be critical
if they form an important image region such as an object part.

For example, a bicycle in an image can still be identified if any single pixel is missing,
but if the entire collection of pixels corresponding to a key element, such as a wheel or
the drive chain, are missing, then it becomes much more difficult. Here the importance
of a part cannot be deduced from the individual importance of its constituent pixels, as

45

Chapter 3. Full-Gradient Representation for Neural Network Visualization

each such individual pixel is unimportant on its own. An ideal interpretability method
would not just provide importance for each pixel, but also capture that of groups of
pixels which have an underlying structure.

This tension also reveals itself in the formal study of saliency maps. While there is no
single formal definition of saliency, there are several intuitive characteristics that the
community has deemed important (Sundararajan et al., 2017; Montavon et al., 2017;
Shrikumar et al., 2017; Lundberg and Lee, 2017; Kindermans et al., 2017; Adebayo et al.,
2018). One such characteristic is that an input feature must be considered important if
changes to that feature greatly affect the neural network output (Kindermans et al., 2017;
Simonyan et al., 2013). Another desirable characteristic is that the saliency map must
completely explain the neural network output, i.e., the individual feature importance
scores must add up to the neural network output (Sundararajan et al., 2017; Montavon
et al., 2017; Shrikumar et al., 2017). This is done by a redistribution of the numerical
output score to individual input features. In this view, a feature is important if it makes a
large numerical contribution to the output. Thus we have two distinct notions of feature
importance, both of which are intuitive. The first notion of importance assignment is
called local attribution and second, global attribution. It is almost always the case for
practical neural networks that these two notions yield methods that consider entirely
different sets of features to be important, which is counter-intuitive.

In this Chapter, we propose full-gradients, a representation which assigns importance
scores to both the input features and individual feature detectors (or neurons) in a
neural network. Input attribution helps capture importance of individual input pixels,
while neuron importances capture importance of groups of pixels, accounting for their
structure. In addition, full-gradients achieve this by simultaneously satisfying both
notions of local and global importance. To the best of our knowledge, no previous
method in literature has this property.

Our contributions here are:

1. We show in § 3.3 that weak dependence (see Definition 1), a notion of local im-
portance, and completeness (see Definition 2), a notion of global importance, can-
not be satisfied simultaneously by any saliency method. This suggests that the
counter-intuitive behavior of saliency methods reported in literature (Shrikumar
et al., 2017; Kindermans et al., 2017) is unavoidable.

2. We introduce in § 3.4 the full-gradients which are more expressive than saliency
maps, and satisfy both importance notions simultaneously. We also use this to
define approximate saliency maps for convolutional nets, dubbed FullGrad, by
leveraging strong geometric priors induced by convolutions.

3. We perform in § 5.5 quantitative tests on full-gradient saliency maps including
pixel perturbation and remove-and-retrain (Hooker et al., 2018), which show that

46

3.2. Related Work

FullGrad outperforms existing competitive methods.

3.2 Related Work

Within the vast literature on interpretability of neural networks, we shall restrict dis-
cussion solely to saliency maps or input attribution methods. First attempts at obtain-
ing saliency maps for modern deep networks involved using input-gradients (Simonyan
et al., 2013) and deconvolution (Zeiler and Fergus, 2014). Guided backprop (Springen-
berg et al., 2014) is another variant obtained by changing the backprop rule for input-
gradients to produce cleaner saliency maps. Recent works have also adopted axiomatic
approaches to attribution by proposing methods that explicitly satisfy certain intuitive
properties. Deep Taylor decomposition (Montavon et al., 2017), DeepLIFT (Shrikumar
et al., 2017), Integrated gradients (Sundararajan et al., 2017) and DeepSHAP (Lund-
berg and Lee, 2017) adopt this broad approach. Central to all these approaches is the
requirement of completeness which requires that the saliency map account for the func-
tion output in an exact numerical sense. In particular, Lundberg and Lee (2017) and
Ancona et al. (2018) propose unifying frameworks for several of these saliency methods.

However, some recent work also shows the fragility of some of these methods. These
include unintuitive properties such as being insensitive to model randomization (Ade-
bayo et al., 2018), partly recovering the input (Nie et al., 2018) or being insensitive
to the model’s invariances (Kindermans et al., 2017). One possible reason attributed
for the presence of such fragilities is evaluation of attribution methods, which are often
solely based on visual inspection. As a result, need for quantitative evaluation methods
is urgent. Popular quantitative evaluation methods in literature are based on image
perturbation (Samek et al., 2016; Ancona et al., 2018; Montavon et al., 2017). These
tests broadly involve removing the most salient pixels in an image, and checking whether
they affect the neural network output. However, removing pixels can cause artifacts to
appear in images. To compensate for this, RemOve And Retrain (ROAR) (Hooker et al.,
2018) propose a retraining-based procedure. However, this method too has drawbacks as
retraining can cause the model to focus on parts of the input it had previously ignored,
thus not explaining the original model. Hence we do not yet have completely rigorous
methods for saliency map evaluation.

Similar to our work, some works (Shrikumar et al., 2017; Kindermans et al., 2016)
also make the observation that including biases within attributions can enable gradient-
based attributions to satisfy the completeness property. However, they do not propose
attribution methods based on this observation like we do here.

47

Chapter 3. Full-Gradient Representation for Neural Network Visualization

3.3 Local vs. Global Attribution

In this section, we show that there cannot exist saliency maps that satisfy both notions
of local and global attribution. We do this by drawing attention to a simple fact that
D−dimensional saliency map cannot summarize even linear models in RD, as such linear
models have D+ 1 parameters. We prove our results by defining a weak notion of local
attribution which we call weak dependence, and a weak notion of global attribution,
called completeness.

Let us consider a neural network function f : RD → R with inputs x ∈ RD. A saliency
map S(x) = σ(f,x) ∈ RD is a function of the neural network f and an input x. For
linear models of the form f(x) = wTx + b , it is common to visualize the weights w. For
this case, we observe that the saliency map S(x) = w is independent of x. Similarly,
piecewise-linear models can be thought of as collections of linear models, with each linear
model being defined on a different local neighborhood. For such cases, we can define
weak dependence as follows.

Definition 1. (Weak dependence on inputs) Consider a piecewise-linear model

f(x) =


wT

0 x + b0 x ∈ U0

...

wT
nx + bn x ∈ Un

where all Ui are open connected sets. For this function, the saliency map S(x) = σ(f,x)
restricted to a set Ui is independent of x, and depends only on the parameters wi, bi.

Hence in this case S(x) depends weakly on x by being dependent only on the neighbor-
hood Ui in which x resides. This generalizes the notion of local importance to piecewise-
linear functions. A stronger form of this property, called input invariance, was deemed
desirable in previous work (Kindermans et al., 2017), which required saliency methods
to mirror model sensitivity. Methods which satisfy our weak dependence include input-
gradients (Simonyan et al., 2013), guided-backprop (Springenberg et al., 2014) and de-
conv (Zeiler and Fergus, 2014). Note that our definition of weak dependence also allows
for two disconnected sets having the same linear parameters (wi, bi) to have different
saliency maps, and hence in that sense is more general than input invariance (Kinder-
mans et al., 2017), which does not allow for this. We now define completeness for a
saliency map by generalizing equivalent notions presented in prior work (Sundararajan
et al., 2017; Montavon et al., 2017; Shrikumar et al., 2017).

Definition 2. (Completeness) A saliency map S(x) is

• complete if there exists a function φ such that φ(S(x),x) = f(x) for all f,x.

48

3.3. Local vs. Global Attribution

• complete with a baseline x0 if there exists a function φc such that φc(S(x), S0(x0),x,x0) =
f(x)− f(x0) for all f,x,x0, where S0(x0) is the saliency map of x0.

The intuition here is that if we expect S(x) to completely encode the computation
performed by f , then it must be possible to recover f(x) by using the saliency map S(x)
and input x. Note that the second definition is more general, and in principle subsumes
the first. We are now ready to state our impossibility result.

Proposition 4. For any piecewise-linear function f , it is impossible to obtain a saliency
map S that satisfies both completeness and weak dependence on inputs, in general.

The proof is provided in the supplementary material. A natural consequence of this
is that methods such as integrated gradients (Sundararajan et al., 2017), deep Tay-
lor decomposition (Montavon et al., 2017) and DeepLIFT (Shrikumar et al., 2017)
which satisfy completeness do not satisfy weak dependence. For the case of integrated
gradients, we provide a simple illustration showing how this can lead to unintuitive
attributions. Given a baseline x′, integrated gradients (IG) is given by IGi(x) =
(xi − x′i)×

∫ 1
α=0

∂f(x′+α(x−x′))
∂xi

dα, where xi is the ith input co-ordinate.

Example 1. (Integrated gradients (Sundararajan et al., 2017) can be counter-intuitive)

Consider the piecewise-linear function for inputs (x1, x2) ∈ R2.

f(x1, x2) =


x1 + 3x2 x1, x2 ≤ 1
3x1 + x2 x1, x2 > 1
0 otherwise

Assume baseline x′ = (0, 0). Consider three points (2, 2), (4, 4), (1.5, 1.5) , all of which
satisfy x1, x2 > 1 and thus are subject to the same linear function of f(x1, x2) = 3x1+x2.
However, depending on which point we consider, IG yields different relative importances
among the input features. E.g: IG(x1 = 4, x2 = 4) = (10, 6) where it seems that x1 is
more important (as 10 > 6), while for IG(1.5, 1.5) = (2.5, 3.5), it seems that x2 is more
important. Further, at IG(2, 2) = (4, 4) both co-ordinates are assigned equal importance.
However in all three cases, the output is clearly more sensitive to changes to x1 than it
is to x2 as they lie on f(x1, x2) = 3x1 + x2, and thus attributions to (2, 2) and (1.5, 1.5)
are counter-intuitive.

Thus it is clear that two intuitive properties of weak dependence and completeness can-
not be satisfied simultaneously. Both are intuitive notions for saliency maps and thus
satisfying just one makes the saliency map counter-intuitive by not satisfying the other.
Similar counter-intuitive phenomena observed in literature may be unavoidable. For
example, Shrikumar et al. (2017) show counter-intuitive behavior of local attribution

49

Chapter 3. Full-Gradient Representation for Neural Network Visualization

methods by invoking a property similar global attribution, called saturation sensitivity.
On the other hand, Kindermans et al. (2017) show fragility for global attribution meth-
ods by appealing to a property similar to local attribution, called input insensitivity.

This paradox occurs primarily because saliency maps are too restrictive, as both weights
and biases of a linear model cannot be summarized by a saliency map. While exclusion
of the bias term in linear models to visualize only the weights seems harmless, the effect
of such exclusion compounds rapidly for neural networks which have bias terms for each
neuron. Neural network biases cannot be collapsed to a constant scalar term like in
linear models, and hence cannot be excluded. In the next section we shall look at full-
gradients, which is a more expressive tool than saliency maps, accounts for bias terms
and satisfies both weak dependence and completeness.

3.4 Full-Gradient Representation

In this section, we introduce the full-gradient representation, which provides attribution
to both inputs and neurons. We proceed by observing the following result for ReLU
networks.

Proposition 5. Let f be a ReLU neural network without bias parameters, then f(x) =
∇xf(x)Tx.

The proof uses the fact that for such nets, f(kx) = kf(x) for any k > 0. This can
be extended to ReLU neural networks with bias parameters by incorporating additional
inputs for biases, which is a standard trick used for the analysis of linear models. For a
ReLU network f(·; b) with bias, let the number of such biases in f be F .

Proposition 6. Let f be a ReLU neural network with biases b ∈ RF , then

f(x; b) = ∇xf(x; b)Tx +∇bf(x; b)Tb (3.1)

The proof for these statements is provided in the supplementary material. Here biases
include both explicit bias parameters and well as implicit biases, such as running averages
of batch norm layers. For practical networks, we have observed that these implicit biases
are often much larger in magnitude than explicit bias parameters, and hence might be
more important.

We can extend this decomposition to non-ReLU networks by considering implicit biases
arising due to usage of generic non-linearities. For this, we linearize a non-linearity
y = σ(x) at a neighborhood around x to obtain y = dσ(x)

dx x+ bσ. Here bσ is the implicit
bias that is unaccounted for by the derivative. Note that for ReLU-like non-linearities,
bσ = 0. As a result, we can trivially extend the representation to arbitrary non-linearities
by appending bσ to the vector b of biases. In general, any quantity that is unaccounted

50

3.4. Full-Gradient Representation

for by the input-gradient is an implicit bias, and thus by definition, together they must
add up to the function output, like in equation 3.3.

Equation 3.3 is an alternate representation of the neural network output in terms of
various gradient terms. We shall call ∇xf(x,b) as input-gradients, and ∇bf(x,b)�b as
the bias-gradients. Together, they constitute full-gradients. To the best our knowledge,
this is the only other exact representation of neural network outputs, other than the
usual feed-forward neural net representation in terms of weights and biases.

For the rest of the Chapter, we shall henceforth use the shorthand notation f b(x) for
∇bf(x,b)� b, the bias-gradient, and drop the explicit dependence on b in f(x,b).

3.4.1 Properties of Full-Gradients

Here discuss some intuitive properties of full-gradients. We shall assume that full-
gradients comprise of the pair G = (∇xf(x), f b(x)) ∈ RD+F . We shall also assume
with no loss of generality that the network contains ReLU non-linearity without batch-
norm, and that all biases are due to bias parameters.

Weak dependence on inputs: For a piecewise linear function f , it is clear that the
input-gradient is locally constant in a linear region. It turns out that a similar property
holds for f b(x) as well, and a short proof of this can be found in the supplementary
material.

Completeness: From equation 3.3, we see that the full-gradients exactly recover the
function output f(x), satisfying completeness.

Saturation sensitivity: Broadly, saturation refers to the phenomenon of zero input
attribution to regions of zero function gradient. This notion is closely related to global
attribution, as it requires saliency methods to look beyond input sensitivity. As an
example used in prior work (Sundararajan et al., 2017), consider f(x) = a−ReLU(b−x),
with a = b = 1. At x = 2, even though f(x) = 1, the attribution to the only input is
zero, which is deemed counter-intuitive. Integrated gradients (Sundararajan et al., 2017)
and DeepLIFT (Shrikumar et al., 2017) consider handling such saturation for saliency
maps to be a central issue and introduce the concept of baseline inputs to tackle this.
However, one potential issue with this is that the attribution to the input now depends
on the choice of baseline for a given function. To avoid this, we here argue that is better
to also provide attributions to some function parameters. In the example shown, the
function f(x) has two biases (a, b) and the full-gradient method attributes (1, 0) to these
biases for input x = 2.

Full Sensitivity to Function Mapping: Adebayo et al. (2018) recently proposed
sanity check criteria that every saliency map must satisfy. The first of these criteria

51

Chapter 3. Full-Gradient Representation for Neural Network Visualization

is that a saliency map must be sensitive to randomization of the model parameters.
Random parameters produce incorrect input-output mappings, which must be reflected
in the saliency map. The second sanity test is that saliency maps must change if the
data used to train the model have their labels randomized. A stronger criterion which
generalizes both these criteria is that saliency maps must be sensitive to any change in
the function mapping, induced by changing the parameters. This change of parameters
can occur by either explicit randomization of parameters or training with different data.
It turns out that input-gradient based methods are insensitive to some bias parameters
as shown below.

Example 2. (Bias insensitivity of input-gradient methods)

Consider a one-hidden layer net of the form f(x) = w1 ∗ relu(w0 ∗x+ b0) + b1. For this,
it is easy to see that input-gradients (Simonyan et al., 2013) are insensitive to small
changes in b0 and arbitrarily large changes in b1. This applies to all input-gradient
methods such as guided backprop (Springenberg et al., 2014) and deconv (Zeiler and
Fergus, 2014). Thus none of these methods satisfy the model randomization test on f(x)
upon randomizing b1.

Note that in this example, only the sensitivity to the model biases in the first layer are
considered, and not model weights, which was the subject of study in Adebayo et al.
(2018).

On the other hand, full-gradients are sensitive to every parameter that affects the func-
tion mapping. In particular, by equation 3.3 we observe that given full-gradients G, we
have ∂G

∂θi
= 0 for a parameter θi, if and only if ∂f

∂θi
= 0.

3.4.2 FullGrad: Full-Gradient Saliency Maps for Convolutional Nets

For convolutional networks, bias-gradients have a spatial structure which is convenient
to visualize. Consider a single convolutional filter z = w ∗ x + b where w ∈ R2k+1,
b = [b, b....b] ∈ RD and (∗) for simplicity refers to a convolution with appropriate padding
applied so that w∗x ∈ RD, which is often the case with practical convolutional nets. Here
the bias parameter is a single scalar b repeated D times due to the weight sharing nature
of convolutions. For this particular filter, the bias-gradient f b(x) = ∇zf(x)�b ∈ RD is
shaped like the input x ∈ RD, and hence can be visualized like the input. Further, the
locally connected nature of convolutions imply that each co-ordinate f b(x)i is a function
of only x[i − k, i + k], thus capturing the importance of a group of input co-ordinates
centered at i. This is easily ensured for practical convolutional networks (e.g.: VGG,
ResNet, DenseNet, etc) which are often designed such that feature sizes of immediate
layers match and are aligned by appropriate padding.

For such nets we can now visualize per-neuron and per-layer maps using bias-gradients.

52

3.4. Full-Gradient Representation

Input Input-grad
× input

Layer 3
bias-

gradient

Layer 5
bias-

gradient

Layer 7
bias-

gradient

FullGrad
aggregate

Figure 3.1 – Visualization of bias-gradients at different layers of a VGG-16 pre-trained
neural network. While none of the intermediate layer bias-gradients themselves de-
marcate the object satisfactorily, the full-gradient map achieves this by aggregating
information from the input-gradient and all intermediate bias-gradients. (see Equation
3.2).

Per-neuron maps are obtained by visualizing a spatial map ∈ RD for every convolutional
filter. Per-layer maps are obtained by aggregating such neuron-wise maps. An example
is shown in Figure 3.1. For images, we visualize these maps after performing standard
post-processing steps that ensure good viewing contrast. These post-processing steps
are simple re-scaling operations, often supplemented with an absolute value operation to
visualize only the magnitude of importance while ignoring the sign. One can also visu-
alize separately the positive and negative parts of the map to avoid ignoring signs. Let
such post-processing operations be represented by ψ(·). For maps that are downscaled
versions of inputs, such post-processing also includes a resizing operation, often done by
standard algorithms such as cubic interpolation.

We can also similarly visualize approximate network-wide saliency maps by aggregating
such layer-wise maps. Let c run across channels cl of a layer l in a neural network, then
the FullGrad saliency map Sf (x) is given by

Sf (x) = ψ(∇xf(x)� x) +
∑
l∈L

∑
c∈cl

ψ
(
f b(x)c

)
(3.2)

Here, ψ(·) is the post-processing operator discussed above. For this work, we choose
ψ(·) = bilinearUpsample(rescale(abs(·))), where rescale(·) linearly rescales val-
ues to lie between 0 and 1, and bilinearUpsample(·) upsamples the gradient maps
using bilinear interpolation to have the same spatial size as the image. For a network
with both convolutional and fully-connected layers, we can obtain spatial maps for only
the convolutional layers and hence the effect of fully-connected layers’ bias parameters
are not completely accounted for. Note that omitting ψ(·) and performing an additional

53

Chapter 3. Full-Gradient Representation for Neural Network Visualization

spatial aggregation in the equation above results in the exact neural net output value
according to the full-gradient decomposition. Further discussion on post-processing is
presented in Section 3.6.

We stress here that the FullGrad saliency map described here is approximate, in the
sense that the full representation is in fact G = (∇xf(x), f b(x)) ∈ RD+F , and our
network-wide saliency map merely attempts to capture information from multiple maps
into a single visually coherent one. This saliency map has the disadvantage that all
saliency maps have, i.e. they cannot satisfy both completeness and weak dependence at
the same time, and changing the aggregation method (such as removing �x in equation
3.2, or changing ψ(·)) can help us satisfy one property or the other. Experimentally we
find that aggregating maps as per equation 3.2 produces the sharpest maps, as it enables
neuron-wise maps to vote independently on the importance of each spatial location.

3.5 Experiments

To show the effectiveness of FullGrad, we perform two quantitative experiments. First,
we use a pixel perturbation procedure to evaluate saliency maps on the Imagenet 2012
dataset. Second, we use the remove and retrain procedure (Hooker et al., 2018) to
evaluate saliency maps on the CIFAR100 dataset.

3.5.1 Pixel perturbation

Popular methods to benchmark saliency algorithms are variations of the following pro-
cedure: remove k most salient pixels and check variation in function value. The intuition
is that good saliency algorithms identify pixels that are important to classification and
hence cause higher function output variation. Benchmarks with this broad strategy are
employed in Samek et al. (2016); Ancona et al. (2018). However, this is not a perfect
benchmark because replacing image pixels with black pixels can cause high-frequency
edge artifacts to appear which may cause output variation. When we employed this
strategy for a VGG-16 network trained on Imagenet, we find that several saliency meth-
ods have similar output variation to random pixel removal. This effect is also present in
large scale experiments (Samek et al., 2016; Ancona et al., 2018). This occurs because
random pixel removal creates a large number of disparate artifacts that easily confuse
the model. As a result, it is difficult to distinguish methods which create unnecessary
artifacts from those that perform reasonable attributions. To counter this effect, we
slightly modify this procedure and propose to remove the k least salient pixels rather
than the most salient ones. In this variant, methods that cause the least change in
function output better identify unimportant regions in the image. We argue that this
benchmark is better as it partially decouples the effects of artifacts from that of removing
salient pixels.

54

3.5. Experiments

Specifically, our procedure is as follows: for a given value of k, we replace the k image
pixels corresponding to k least saliency values with black pixels. We measure the neural
network function output for the most confident class, before and after perturbation, and
plot the absolute value of the fractional difference. We use our pixel perturbation test
to evaluate full-gradient saliency maps on the Imagenet 2012 validation dataset, using a
VGG-16 model with batch normalization. We compare with gradCAM (Selvaraju et al.,
2017), input-gradients (Simonyan et al., 2013), smooth-grad (Smilkov et al., 2017) and
integrated gradients (Sundararajan et al., 2017). For this test, we also measure the
effect of random pixel removal as a baseline to estimate the effect of artifact creation.
We observe that FullGrad causes the least change in output value, and are hence able
to better estimate which pixels are unimportant.

3.5.2 Remove and Retrain

RemOve And Retrain (ROAR) (Hooker et al., 2018) is another approximate benchmark
to evaluate how well saliency methods explain model behavior. The test is as follows:
remove the top-k pixels of an image identified by the saliency map for the entire dataset,
and retrain a classifier on this modified dataset. If a saliency algorithm indeed correctly
identifies the most crucial pixels, then the retrained classifier must have a lower accuracy
than the original. Thus an ideal saliency algorithm is one that is able to reduce the
accuracy the most upon retraining. Retraining compensates for presence of deletion
artifacts caused by removing top-k pixels, which could otherwise mislead the model.
This is also not a perfect benchmark, as the retrained model now has additional cues
such as the positions of missing pixels, and other visible cues which it had previously
ignored. In contrast to the pixel perturbation test which places emphasis on identifying
unimportant regions, this test rewards methods that correctly identify important pixels
in the image.

We use ROAR to evaluate full-gradient saliency maps on the CIFAR100 dataset, using a
9-layer VGGmodel. We compare with gradCAM (Selvaraju et al., 2017), input-gradients
(Simonyan et al., 2013), integrated gradients (Sundararajan et al., 2017) and a smooth
grad variant called smooth grad squared (Smilkov et al., 2017; Hooker et al., 2018),
which was found to perform among the best on this benchmark. We see that FullGrad
is indeed able to decrease the accuracy the most when compared to the alternatives,
indicating that they correctly identify important pixels in the image.

3.5.3 Visual Inspection

We perform qualitative visual evaluation for FullGrad, along with four baselines: input-
gradients (Simonyan et al., 2013), integrated gradients (Sundararajan et al., 2017),
smooth grad (Smilkov et al., 2017) and grad-CAM (Selvaraju et al., 2017). We see

55

Chapter 3. Full-Gradient Representation for Neural Network Visualization

10 1 100 101

% pixels removed

0.0

0.1

0.2

0.3

0.4

0.5

Ab
so

lu
te

 fr
ac

tio
na

l o
ut

pu
t c

ha
ng

e FullGrad
Input-Gradient
gradCAM
Integrated gradient
SmoothGrad
Random

(a)

10 20 30 40 50 60 70 80 90
% pixels removed

20

30

40

50

60

Ac
cu

ra
cy

 (%
)

FullGrad
Input-Gradient
gradCAM
Integrated Gradient
SmoothGrad
Random

(b)

Figure 3.2 – Quantitative results on saliency map faithfulness. (a) Pixel perturbation
benchmark (see Section 3.5.1) on Imagenet 2012 validation set where we remove k% least
salient pixels and measure absolute value of fractional output change. The lower the
curve, the better. (b) Remove and retrain benchmark (see Section 3.5.2) on CIFAR100
dataset done by removing k% most salient pixels, retraining a classifier and measuring
accuracy. The lower the accuracy, the better. Results are averaged across three runs.
Note that the scales of standard deviation are different for both graphs.

56

3.5. Experiments

that the first three maps are based on input-gradients alone, and tend to highlight ob-
ject boundaries more than their interior. Grad-CAM, on the other hand, highlights
broad regions of the input without demarcating clear object boundaries. FullGrad com-
bine advantages of both – highlighted regions are confined to object boundaries while
highlighting its interior at the same time. This is not surprising as FullGrad includes
information both about input-gradients, and also about intermediate-layer gradients like
grad-CAM. For input-gradient, integrated gradients and smooth-grad, we do not super-
impose the saliency map on the image, as it reduces visual clarity. More comprehensive
results without superimposed images for gradCAM and FullGrad are present in the
supplementary material.

Image Input
gradient

(Simonyan
et al., 2013)

Integrated
gradient
(Sun-

dararajan
et al., 2017)

Smooth-
grad

(Smilkov
et al., 2017)

Grad-CAM
(Selvaraju
et al., 2017)

FullGrad
(Ours)

Figure 3.3 – Comparison of different neural network saliency methods. Integrated-
gradients (Sundararajan et al., 2017) and smooth-grad (Smilkov et al., 2017) produce
noisy object boundaries, while grad-CAM (Selvaraju et al., 2017) indicates important
regions without adhering to boundaries. FullGrad combine both desirable attributes by
highlighting salient regions while being tightly confined within objects. For more results,
please see the appendix.

57

Chapter 3. Full-Gradient Representation for Neural Network Visualization

3.6 How to Choose ψ(·)
In this section, we shall discuss the trade-offs that arise with particular choices of the
post-processing function ψ(·), which is central to the reduction from full-gradients to
FullGrad. Note that by Proposition 4, any post-processing function cannot satisfy all
properties we would like as the resulting representation would still be saliency-based.
This implies that any particular choice of post-processing would prioritize satisfying
some properties over others.

For example, the post-processing function used in this work is suited to perform well
with the commonly used evaluation metrics of pixel perturbation and ROAR for image
data. These metrics emphasize highlighting important regions, and thus the magni-
tude of saliency seems to be more important than the sign. However there are other
metrics where this form of post-processing does not perform well. One example is the
digit-flipping experiment (Shrikumar et al., 2017), where an example task is to turn
images of the MNIST digit "8" into those of the digit "3" by removing pixels which
provide positive evidence of "8" and negative evidence for "3". This task emphasizes
signed saliency maps, and hence the proposed FullGrad post-processing does not work
well here. Having said that, we found that a minimal form of post-processing, with
ψm(·) = bilinearUpsample(·) performed much better on this task. However, this post-
processing resulted in a drop in performance on the primary metrics of pixel perturbation
and ROAR. Apart from this, we also found that pixel perturbation experiments worked
much better on MNIST with ψmnist(·) = bilinearUpsample(abs(·)), which was not
the case for Imagenet / CIFAR100. Thus it seems that the post-processing method to
use may depend both on the metric and the dataset under consideration. Full details of
these experiments are presented in the supplementary material.

We thus provide the following recommendation to practitioners: choose the post-
processing function based on the evaluation metrics that are most relevant to the appli-
cation and datasets considered. For most computer vision applications, we believe that
the proposed FullGrad post-processing may be sufficient. However, this might not hold
for all domains and it might be important to define good evaluation metrics for each
case in consultation with domain experts to ascertain the faithfulness of saliency meth-
ods to the underlying neural net functions. These issues arise because saliency maps
are approximate representations of neural net functionality as shown in Proposition 4,
and the numerical quantities in the full-gradient representation (equation 3.3) could be
visualized in alternate ways.

3.7 Conclusions and Future Work

In this work, we proposed a novel technique dubbed FullGrad to visualize the function
mapping learnt by neural networks. This is done by providing attributions to both the

58

3.7. Conclusions and Future Work

inputs and the neurons of intermediate layers. Input attributions code for sensitivity
to individual input features, while neuron attributions account for interactions between
the input features. Individually, they satisfy weak dependence, a weak notion for local
attribution. Together, they satisfy completeness, a desirable property for global attri-
bution.

The inability of saliency methods to satisfy multiple intuitive properties both in theory
and practice, has important implications for interpretability. First, it shows that saliency
methods are too limiting and that we may need more expressive schemes that allow
satisfying multiple such properties simultaneously. Second, it may be the case that all
interpretability methods have such trade-offs, in which case we must specify what these
trade-offs are in advance for each such method for the benefit of domain experts. Third,
it may also be the case that multiple properties might be mathematically irreconcilable,
which implies that interpretability may be achievable only in a narrow and specific sense.

Another point of contention with saliency maps is the lack of unambiguous evaluation
metrics. This is tautological; if an unambiguous metric indeed existed, the optimal
strategy would involve directly optimizing over that metric rather than use saliency
maps. One possible avenue for future work may be to define such clear metrics and
build models that are trained to satisfy them, thus being interpretable by design.

59

Appendix

3.8 Proof of Incompatibility

Definition 3. (Weak dependence on inputs) Consider a piecewise-linear model

f(x) =


wT

1 x + b1 x ∈ U1

...

wT
nx + bn x ∈ Un

where all Ui are open connected sets. For this function, the saliency map S(x) = σ(f,x)
for some x ∈ Ui is constant for all x ∈ Ui and is a function of only the parameters wi, bi.

Definition 4. (Completeness) A saliency map S(x) is

• complete if there exists a function φ such that φ(S(x),x) = f(x).

• complete with a baseline x0 if there exists a function φc such that φc(S(x), S0(x0),x,x0) =
f(x)− f(x0), where S0(x0) is the saliency of the baseline.

Proposition 7. For any piecewise-linear function f , it is impossible to obtain a saliency
map S that satisfies both completeness and weak dependence on inputs, in general

Proof. From the definition of saliency maps, there exists a mapping from σ : (f,x)→ S.
Let us consider the family of piecewise linear functions which are defined over the same
open connected sets given by Ui for i ∈ [1, n]. Members of this family thus can be
completely specified by the set of parameters θ = {wi, bi|i ∈ [1, n]} ∈ Rn∗(D+1) for f
and similarly θ′ for f ′.

For this family, weak dependence implies that the restriction of the mapping σ to the
set Ui, is denoted by σ

∣∣∣
Ui

: (wi, bi) → S. Now, since (wi, bi) ∈ RD+1 and S ∈ RD, the

mapping σ
∣∣∣
Ui

is a many-to-one function. This implies that there exists piecewise linear
functions f and f ′ within this family, with parameters θi = (wi, bi) and θ′i = (w′i, b′i)
respectively (with θi 6= θ′i), which map to the same saliency map S.

61

Chapter 3. Full-Gradient Representation for Neural Network Visualization

Part (a): From the first definition of completeness, there exists a mapping φ : S,x→
f(x). However, for two different piecewise linear functions f and f ′ that map to the
same S for some input x ∈ Ui, we must have that φ(S,x) = f(x) = wT

i x + bi for f and
φ(S,x) = f ′(x) = w′Ti x + b′i for f ′. This can hold for a local neighbourhood around x
if and only if wi = w′i and bi = b′i, which we have already assumed to be not true.

Part (b): From the second definition of completeness, there exists a mapping φc :
S, S0,x,x0 → f(x)− f(x0).

Let the baseline input x0 ∈ Uj . Similar to the case above, let us assume existence of
functions f and f ′ with parameters θj = (wj , bj) and θ′j = (w′j , b′j) respectively (with
θj 6= θ′j), which map to the same saliency map S0. This condition is in addition to the
condition already applied on Ui.

Hence we must have that φ(S, S0,x,x0) = f(x)−f(x0) = wT
i x+bi−wT

j x−bj for f and
φ(S, S0,x,x0) = f ′(x)− f ′(x0) = w′Ti x + b′i −w′Tj x− b′j for f ′. This can hold for local
neighbourhoods around x and x0 if and only if wi = w′i, wj = w′j and bi− b′i = bj − b′j .
The final condition does not hold in general, hence completeness is not satisfied.

When does bi − b′i = bj − b′j hold?

• For piecewise linear models without bias terms (e.g.: ReLU neural networks with
no biases), the terms bi, b′i, bj , b′j are all zero, and hence this condition holds for
such networks.

• For linear models, (as opposed to piecewise linear models), or when both x and
x0 lie on the same linear piece, then bi = bj , which automatically implies that the
condition holds.

However these are corner cases and the condition on the biases does not hold in general.

3.9 Full-gradient Proofs

Proposition 8. Let f be a ReLU neural network without bias units, then f(x) =
∇xf(x)Tx.

Proof. For ReLU nets without bias, we have f(kx) = kf(x) for k ≥ 0. This is a conse-
quence of the positive homogeneity property of ReLU (i.e; max(0, kx) = kmax(0,x))

Now let ε ∈ R+ be infinitesimally small. We can now use first-order Taylor series to
write the following. f((1 + ε)x) = f(x) + εf(x) = f(x) + εxT∇xf(x).

62

3.10. Experiments to Illustrate Post-Processing Trade-offs

Proposition 9. Let f be a ReLU neural network with bias-parameters b ∈ RF , then

f(x; b) = ∇xf(x; b)Tx +
∑

i∈[1,F]
(∇bf(x; b)� b)i

= ∇xf(x; b)Tx +∇bf(x; b)Tb (3.3)

Proof. We introduce bias inputs xb = 1F , an all-ones vector, which are multiplied with
bias-parameters b. Now f(x,xb) is a linear function with inputs (x,xb). Proposition
applies here.

f(x,xb) = ∇xf(x,xb)Tx +∇xb
f(x,xb)Txb (3.4)

= ∇xf(x,xb)Tx +
∑
i

(∇xb
f(x,xb))i

Using chain rule for ReLU networks, we have ∇xb
f(x,xb; b, z) = ∇zf(x,xb; b, z) � b,

where z ∈ RF consists of all intermediate pre-activations. Again invoking chain rule, we
have ∇zf(x,xb; b, z) = ∇bf(x,xb; b, z)

Observation. For a piecewise linear neural network, f b(x) is locally constant in each
linear region.

Proof. Consider a one-hidden layer ReLU net of the form f(x) = w1∗relu(w0∗x+b0)+b1,
where f(x) ∈ R. Let ρ(z) = drelu(z)

dz be the derivative of the output of relu w.r.t. its
inputs. Then the gradients w.r.t. b0 can be written as df

db0
= w1 ∗ρ(w0 ∗x+b0). For each

linear region, the derivatives of the relu non-linearities w.r.t. their inputs are constant.
Thus for a one-hidden layer net, the bias-gradients are constant in each linear region.
The same can be recursively applied for deeper networks.

3.10 Experiments to Illustrate Post-Processing Trade-offs

In this section, we shall describe the experiments performed on the MNIST dataset.
First, we perform the digit flipping experiment Shrikumar et al. (2017) to test class
sensitivity of our method. Next, we perform pixel perturbation experiment as outlined
in Section 5.1 of the main chapter.

63

Chapter 3. Full-Gradient Representation for Neural Network Visualization

Method Random Gradient IntegratedGrad FullGrad FullGrad (no abs)
∆ log-odds 1.41± 8.21 11.92± 17.99 10.81± 20.11 8.26± 21.44 12.93± 18.20

Table 3.1 – Results on the digit flipping task (8→ 3). We see that FullGrad (minimal)
outperforms others including FullGrad. Larger numbers are better.

3.10.1 Digit Flipping

Broadly, the task here is to turn images of the MNIST digit "8" into those of the digit "3"
by removing pixels which provide positive evidence of "8" and negative evidence for "3".
We perform experiments with a setting similar to the DeepLIFT paper Shrikumar et al.
(2017), except that we use a VGG-like architecture. Here, FullGrad (no abs) refers to
using ψm(·) = bilinearUpsample(·) and the FullGrad method refers to using ψm(·) =
bilinearUpsample(abs(·)). From the results in Table 3.1, we see that FullGrad with-
out absolute value performs better in the digit flipping task when compared to FullGrad
and all other methods.

3.10.2 Pixel Perturbation

We perform the pixel perturbation task on MNIST. This involves removing the least
salient pixels as predicted by a saliency map method and measuring the fractional
change in output. The smaller the fractional output change, the better is the saliency
method. From Table 3.2, we observe that Integrated gradients perform best overall for
this dataset. We hypothesize that the binary nature of MNIST data (i.e.; pixels are
either black or white, and "removed" pixels are black) may be well-suited to Integrated
gradients, which is not the case for our Imagenet experiments. However, more inter-
estingly, we observe that regular FullGrad outperforms the variant without absolute
values.

Thus while for digit flipping it seems that FullGrad (no abs) is the best, followed by gra-
dients and Integrated gradients, for pixel perturbation it seems that Integrated Gradients
is the best followed by FullGrad and FullGrad (no abs). Thus it seems that any single
saliency or post-processing method is never consistently better than the others, which
might point to either the deficiency of the methods themselves, or the complementary
nature of the metrics.

3.11 Saliency Results

64

3.11. Saliency Results

Method Random Gradient IntegratedGrad FullGrad FullGrad (no abs)
RF = 0.5 0.82± 0.28 0.29± 0.22 0± 0 0.06± 0.13 0.19± 0.19
RF = 0.7 0.98± 0.34 0.52± 0.27 0.004± 0.06 0.08± 0.11 0.34± 0.23
RF = 0.9 1.12± 0.42 0.88± 0.34 0.44± 0.33 0.55± 0.30 0.63± 0.27

Table 3.2 – Results on the pixel perturbation task on MNIST. In this case, FullGrad
performs better than FullGrad (minimal). The overall best performer here is Integrated
gradients. Smaller numbers are better.

65

Chapter 3. Full-Gradient Representation for Neural Network Visualization

Image Input
gradient
Simonyan

et al.
(2013)

Integrated
gradient

Sundarara-
jan et al.
(2017)

Smooth-
grad

Smilkov
et al.
(2017)

Grad-CAM
Selvaraju
et al.
(2017)

FullGrad
(Ours)

66

3.11. Saliency Results

Image Input
gradient
Simonyan

et al.
(2013)

Integrated
gradient

Sundarara-
jan et al.
(2017)

Smooth-
grad

Smilkov
et al.
(2017)

Grad-CAM
Selvaraju
et al.
(2017)

FullGrad
(Ours)

Figure 3.4 – Comparison of different neural network saliency methods.

67

4 Knowledge Transfer with Full-
Gradient Matching

In this chapter, we use the full-gradient representation for the task of distillation and
model regularization. We first use these full-gradients for distillation by aligning gra-
dients of intermediate representations of a teacher and a student model. Next, we
regularize bias-gradients alone to improve generalization, connecting it with noise in-
jection methods like dropout. Experimental results show improved distillation on small
data-sets and improved generalization for neural network training.

4.1 Introduction

One important problem in machine learning is to optimally incorporate prior knowl-
edge about data into models. Such prior knowledge informs regularization methods,
which help improve generalization when dealing with small training sets. This is es-
pecially crucial for knowledge transfer, which involves emulating the function mapping
of a “teacher” in a “student” using training examples. For this task, prior knowledge
encodes information about the teacher’s map. A good representation of this map can
result in rapid learning by the student using little data.

In Chapter 2 we proposed to use input-gradients, i.e., the gradients of the outputs w.r.t.
input, for knowledge transfer. Input-gradients capture the slope of the local affine ap-
proximation of the neural network. Together with the function output, this method
completely captures the local functional behavior of neural nets. While these meth-
ods capture functional behaviour, we are often faced with distillation problems where
both student and teacher share some common structure, say, both being convolutional
models. In such cases, pure functional matching fails to leverage such structural simi-
larity for more efficient distillation. In this chapter, we propose the use of full-gradients,
which comprises of both input-gradients and layerwise feature-gradients, and thus cap-
ture both properties of the input-output map as well as layerwise maps. We provide
experimental evidence showing that full-gradients indeed help knowledge transfer, and

69

Chapter 4. Knowledge Transfer with Full-Gradient Matching

that bias-gradient-norm minimization provides regularization benefits.

4.2 Full-Gradient Matching

Given two networks f and g, we would like to perform distillation with g being the
teacher and f being the student. The problem of distillation is to improve the training
of f using information from g. In essence, we look for a function f with the same
input-output mapping as g but with a different parameterization owing to its different
architecture. If the architecture of both models are the same, and if they both have the
same full-gradient representation, they necessarily represent the same function. Note
that the converse is not true. Leveraging this fact, we propose to match the full-gradient
representation of models that have nearly identical architectures in order to enable them
to represent the same function.

Assume that both f and g are at least L-layer neural networks, which are not necessarily
of the same depth. For example, f can have L layers and g can have 2L layers. In such
cases, one can divide g into L sections such that each section contains 2 layers. Given
two such L-section models, one can match the full-gradient representation between them.
Given a model f , the full-gradient representation is given below.

f(x) = ∇xf(x)Tx +
L∑
l=1
∇bf

l
f(x)Tbfl

Here, bfl refers to layer-wise biases for model f . For two such pairs of models we propose
to match the bias-gradients of each section of the models separately. Specifically, we
would like to ensure that ∇bf

l
f(x) ≈ ∇bg

l
g(x). However, the bias feature dimensions

may not necessarily be the same between two models. To account for this, we propose
to match aggregated bias-gradients between two models by summing them channel-wise
for convolutional layers. To ensure that the spatial sizes of the bias gradients are the
same, we apply a spatial resizing operator to the smaller bias gradient map of the two.
Thus the distillation loss function is of the following form.

`(f, g) =
∑
l

‖ψ(∇bf
l
f(x))− ψ(∇bg

l
g(x))‖2

Here, ψ(·) is a post-processing operator which here is normalize(sum_channels(resize(·))).
Here the normalization refers to rescaling the vector such that the norm is unity. Thus
in effect here we align the angle of vectors on a unit ball.

70

4.3. Bias-Gradient Regularization

We here make of use of the fact that both student and teacher models are multi-layer
models. However, does this always hold? Multiple theoretical results about deep net-
works express so-called “no-flattening” theorems (Cohen et al., 2016; Raghu et al., 2017).
Broadly speaking, they state that a shallow network requires exponentially many units
to approximate a deep network. In practice for distillation this means that different
layers in a neural network are indeed useful and cannot be approximated by shallower
nets. Furthermore, visualization studies in computer vision have pointed to the fact that
different layers in deep networks have clearly delineated tasks (Zeiler and Fergus, 2014).
For instance, early layers often perform edge detection, while higher layers perform ob-
ject part detection. This implies that structure in the form of depth, and thus the usage
of such multi-layer models especially for vision tasks may be unavoidable.

4.3 Bias-Gradient Regularization

In Chapter 2 we interpret input-gradients as the sensitivity of the neural network to
noise added to its inputs. Similarly bias-gradients can be interpreted as sensitivity to
bias-parameters. This suggests a natural regularization strategy, that of minimizing
such sensitivity. Minimizing the sensitivity of a neural network to its parameters has
long been considered (Hochreiter and Schmidhuber, 1997) as an important criterion
for generalization. Recent works also connect the notion of flat minimum to implicit
regularization of SGD, thus partially explaining the success of deep learning (Keskar
et al., 2016).

Given a neural network function f with weights w and biases b ∈ RF , we apply multi-
plicative noise to the biases to obtain the following.

Proposition 10. Given the notations above, and assuming y ∈ R, with noise variable
ξ ∼ N (1, σ2I) ∈ RF , we have

Eξ
[
(y − f(x; w,b� ξ))2

]
∼ (y − f(x; w,b))2 + σ2‖b�∇bf(x; w,b)‖22

This is obtained from applying first order Taylor series expansion at a local linear neigh-
bourhood around b. This general expression holds for any variable of f . Notice that the
second term contains b � ∇bf(x; w,b), which is exactly the bias-gradient. Hence the
bias-gradient can be interpreted as the sensitivity of the neural network to multiplicative
noise applied to bias-parameters.

One other important regularizer which adds noise to intermediate layers of networks is
dropout (Srivastava et al., 2014). However the difference is that while dropout can be
viewed as adding multiplicative noise to activations directly, bias-gradient regularization
adds multiplicative noise to bias-parameters. Equivalently, this can also be thought of
as adding noise to pre-activations of layers, as opposed to post-non-linearity activations

71

Chapter 4. Knowledge Transfer with Full-Gradient Matching

as done typically in dropout.

Let us consider a form of dropout under the limit of low-dropout noise. For convenience
we shall assume dropout with multiplicative gaussian noise, but same can be easily
repeated with bernoulli noise. Invoking Proposition 10, and using it for an intermediate
activation z ∈ Rm, we have

Eξ [y − f(x; z� ξ)]2 ∼ (y − f(x; z))2 + σ2‖z�∇zf(x; z)‖22 (4.1)

Here, ξ ∈ Rm is the multiplicative gaussian noise variable. Thus under the low-noise
limit, we can analytically perform dropout by taking expectation over all noise terms.
This results in a deterministic regularizer which minimizes norm of z �∇zf(x; z). We
observe that this term is similar to bias-gradients as the gradient w.r.t. biases of a layer
b is the same as the gradient w.r.t. the corresponding intermediate pre-activation z, by
chain rule. Note that both regularizers are identical when the previous layer’s activations
are zero, thus making z = b. To summarize, dropout and bias-gradient regularization
share a tight connection, that of reducing the sensitivity of the output to multiplicative
noise added at the intermediate layers.

4.4 Experiments

To show the effectiveness of full-gradients, we run experiments on distillation, regulariza-
tion and visualization. First, we perform distillation on CIFAR-100 datasets (Krizhevsky
and Hinton, 2009) in a limited-data setting. Second, we regularize training of individual
neural networks on the CIFAR100 dataset. Finally, we show visualizations of neural
network saliency maps using full-gradient visualization. For all experiments, we approx-
imate gradient computation by computing gradient of the output unit with the correct
class, as done by Srinivas and Fleuret (2018). Details about experiments are present in
the supplementary material.

4.4.1 Distillation

For distillation experiments, we use VGG-like (Simonyan and Zisserman, 2014) archi-
tectures with batch normalization. The main difference is we discard all fully-connected
layers except the final. We use the following procedure in our experiments. First, a
9-layer “teacher” network is trained on the full CIFAR-100 dataset. Then, a larger
13-layer “student” network is trained, but this time on small subsets rather than the
full dataset. As the teacher is trained on much more data than the student, we expect
distillation to improve the student’s performance. Note that in this case our objective is

72

4.4. Experiments

not to compress the teacher model, but to effectively transfer the knowledge of the full
CIFAR-100 dataset when only limited samples are available.

We compare our methods against the following baselines.

1. Cross-Entropy (CE) training – Here we train the student using only the ground
truth (hard labels) available with the dataset without invoking the teacher network.

2. CE + match output-activations (Activation Matching) – This is the clas-
sical form of distillation (Ba and Caruana, 2014; Hinton et al., 2015), where the
output-activations of the teacher network are matched with that of the student.
This is weighted with the cross-entropy term which uses ground truth targets.
Here we use the squared-error loss function for matching activations.

3. CE + match {output-activations + input-gradients } (i-gradients) –
This is the regularizer used by (Czarnecki et al., 2017; Srinivas and Fleuret, 2018),
where the input-gradients of teacher and student networks are matched. Here we
minimize the `2 distance between input-gradients.

4. CE + match { output-activations + hidden-layer-attention} (Attention)
– This approach is taken by Zagoruyko and Komodakis (2017), who match the
channel-wise absolute sum of hidden layers for teacher and student with layers of
same spatial dimensions. This can also be thought of as matching intermediate
activations rather than intermediate gradients like our method does.

5. i-gradients + Attention – Considering that attention mapping also incorporates
sub-structure information like bias-gradients, we combine two previous baselines
to directly compare against our method.

We find that our new augmented baseline of input-gradients with attention matching is
surprisingly strong and beats all previous baselines, including full-gradients. To improve
upon this strong baseline, we add to it the bias-gradient matching term and find that
it improves performance over that. This seems to contradict our assertions in section
4.1 that one can match either bias-gradients or intermediate activations to account for
sub-structure, as they contain information about the same affine plane.

However individually, these quantities carry complementary information. While atten-
tion maps at a layer capture computation performed by the neural network upto that
layer, the gradients from outputs w.r.t. a layer capture the computation done by the rest
of the network after that layer. We match bias-gradients or attention maps of only three
convolutional layers out of eleven. This is done because computing these for all layers
during training is computationally expensive. This explains the increase in performance
for this augmented objective. Similar experiments are presented for CIFAR-10.

73

Chapter 4. Knowledge Transfer with Full-Gradient Matching

Table 4.1 – Distillation performance on CIFAR100 (see Section 4.4.1). Table shows
average test accuracy (%) across two runs, along with standard deviation. We find that
matching Full-gradients along with attention works best for limited-data settings. The
student network is VGG-11 while the teacher is a VGG-9 network which achieves 66.82%
accuracy. As the student is larger than the teacher, distillation does not help when using
the entire dataset.

data / class → 5 10 50 100 500 (full)
Cross-Entropy training 7.45 ± 0.3 11.83 ± 0.4 40.88 ± 0.8 51.19 ± 0.01 69.95 ± 0.2

Match Activations 23.72 ± 1.3 37.22 ± 0.2 59.43 ± 0.02 63.91 ± 0.2 66.99 ± 0.2

Match i-gradients (iG) 27.27 ± 1.2 41.47 ± 1 61.83 ± 0.01 65.43 ± 0.6 66.92 ± 0.7

Match Attention 38.18 ± 1.9 46.39 ± 0.1 60.27 ± 0.3 64.28 ± 0.2 66.53 ± 0.3

Match { iG + Att. } 42.75 ± 1.7 51.16 ± 0.6 62.62 ± 0.6 65.38 ± 0.2 67.25 ± 0.8

Match Fullgrad (FG) 35.15 ± 0.5 48.00 ± 0.4 62.88 ± 0.1 65.84 ± 0.1 66.83 ± 0.1

Match { FG + Att. } 47.11 ± 0.9 54.59 ± 0.2 63.20 ± 0.4 65.49 ± 0.1 66.65 ± 0.4

Effect on Input-gradient Matching

In our experiments we found that the gradient-based matching terms are difficult to
optimize. This was also observed by (Srinivas and Fleuret, 2018), who attributed this
to a second-order vanishing-gradient effect. We did not observe any such effect in our
experiments, and we are unsure of the exact cause of this difficulty. Figure 4.1a illustrates
this phenomenon for CIFAR100 distillation with 5 data points per class. For the case
of input-gradient matching, we see that the cosine angle hardly drops below 85◦ on the
training set. Surprisingly, augmenting this loss with bias-gradient or attention losses
helps the optimization of input-gradients. In all three cases, the regularization constant
for input-gradient matching loss term is unchanged. This indicates that the gains we
observe could be because of this virtuous cycle of regularizers reinforcing and improving
each others’ objectives.

Effect of Student size

Common folk wisdom among machine learning researchers is that small models must
be preferred to large ones when training with limited data. We find that this advice
does not hold for the case of distillation. We train three models (VGG-{4,6,11}) on
CIFAR100 with 50 data points per class with full-gradient matching. We find that
surprisingly, the larger models perform better. For VGG-11, we get an accuracy of
62.95%, while for VGG-6 and VGG-4 we get 58.08% and 50.87% respectively. We also
plot the angle between input-gradients for all three cases in figure 4.1b, and find that
the input-gradient norms are better aligned for VGG-11. These observations are not
surprising, as additional capacity is required to fit all the objectives we introduce.

74

4.4. Experiments

0 50 100 150 200 250 300
Epochs

70

75

80

85

90

An
gl

e
b/

w
In

pu
t-G

ra
di

en
ts

 (i
n

de
gr

ee
s)

Random orientation
Input-Gradient Matching
Full-Gradient + Attention Matching
Full-Gradient Matching

(a)

0 50 100 150 200 250 300
Epochs

65

70

75

80

85

90

An
gl

e
b/

w
In

pu
t-G

ra
di

en
ts

 (i
n

de
gr

ee
s)

Random orientation
VGG-4
VGG-6
VGG-11

(b)

Figure 4.1 – Plot (a) shows the evolution of input-gradient angle between teacher and
student during training. The input-gradient matching objective is identical in all three
cases, and we find that augmenting this with full-gradient and attention matching helps
increase alignment. Plot (b) shows the evolution of input-gradient angle between teacher
and student for three different student networks. We find that larger models fit the
teacher better, which is also reflected in the improved input-gradient alignment.

75

Chapter 4. Knowledge Transfer with Full-Gradient Matching

Table 4.2 – Distillation performance on CIFAR10 (see Section 4.4.1). Table shows av-
erage test accuracy (%) across two runs, along with standard deviation. We find that
matching Full-gradients along with attention works best for limited-data settings. The
student network is VGG-11 while the teacher is a VGG-9 network which achieves 90.49%
accuracy. As the student is larger than the teacher, distillation does not help when using
the entire dataset

Data / class → 50 100 500 1000 5000
Cross-Entropy training 49.29 ± 1.6 59.93± 0.1 79.36 ± 0.04 83.87 ± 0.1 91.95 ± 0.1

Match Activations 55.43 ± 2.1 65.33 ± 2.2 85.44 ± 0.1 88.77 ± 0.3 92.47 ± 0.1

Match i-gradients (iG) 55.73 ± 2 67.22 ± 3.0 85.84 ± 0.1 89.30 ± 0.3 92.04 ± 0.01

Match Attention 68.11 ± 0.8 74.44 ± 0.2 85.88 ± 0.1 88.61 ± 0.1 91.20 ± 0.01

Match {iG + Att.} 70.83 ± 1.0 77.06 ± 0.2 86.51 ± 0.3 89.63 ± 0.1 90.68 ± 0.04

Match Fullgrad (FG) 58.88 ± 0.2 69.42 ± 1.4 86.55 ± 0.1 89.76 ± 0.1 91.49 ± 0.05

Match {FG + Att.} 72.75 ± 0.4 78.71 ± 0.1 87.31 ± 0.3 89.87 ± 0.3 90.68 ± 0.1

We make two additional observations here. First, when using VGG-9 as student, we
found that it performed as good as VGG-11. This is expected as the teacher itself is
a VGG-9 network. Second, VGG-4 and 6 do slightly outperform VGG-11 on smaller
datasets such as using 5 points per class, and show better input-gradient alignment.
However we did not observe this for other cases.

Table 4.3 – Regularization of VGG-11 models on CIFAR100 (see Section 4.4.2). We
report average test accuracy (%) across two runs, along with standard deviation. λs
denote regularization strengths, while p is dropout probability. We apply these to the
same single layer of VGG-11, and find that bias-gradient regularization outperforms
dropout and bias weight decay in all cases.

Data points / class → 50 100 500
No regularization 33.25 ± 0.6 46.24 ± 0.1 68.48 ± 0.1

Dropout (Srivastava et al., 2014) 35.04 ± 0.6 47.62 ± 0.7 70.14 ± 0.06

Bias weight decay 34.17 ± 0.2 47.29 ± 0.7 68.75 ± 0.04

Bias-gradient (Ours) 36.02 ± 0.08 48.76 ± 0.1 71.49 ± 0.02

4.4.2 Regularization

We perform experiments where we penalize the bias-gradient norm to check whether it
improves generalization. We train 9-layer VGG networks on CIFAR100 with varying
number of data points per class, and measure test accuracy. We compare our method
with dropout and bias parameter weight-decay applied to the same layer whose bias-
gradient norm we compute. We also found that regularization benefits arise when ap-
plying these regularizers to final convolutional layers. For all methods, we choose reg-

76

4.5. Conclusion

ularization constants by performing grid search, leading to using p = 0.5 for dropout,
λ = 1e− 1 for bias-weight decay, and λ = 1e2 for bias-gradient regularization.

Our experiments confirm our hypothesis that bias-gradients have regularization benefits,
and we find that they are also superior to dropout and weight decay on biases.

4.5 Conclusion

We have introduced the full-gradient representation, which completely captures the local
affine behaviour of a neural network. In particular, it provides a formal way to reason
about the intermediate layers of multi-layered architectures. In this chapter, we used
this representation to perform distillation and regularization which drew parallels with
dropout.

Despite these advances, this representation is incomplete without a formal understanding
of structural similarities between neural nets. This was briefly discussed in Section 4.1.
Future work can focus on formalizing this notion for convolutional networks, as well as
on methods to automatically discover such similarity between two architectures and find
the optimal matching losses for knowledge transfer.

77

Appendix

4.6 Proofs

Proposition 11. Given the notations above, and assuming y ∈ R, with noise variable
ξ ∼ N (1, σ2I) ∈ Rf , we have

Eξ
[
(y − f(x; w,b� ξ))2

]
∼ (y − f(x; w,b))2

+ σ2‖b�∇bf(x; w,b)‖22

Proof. There exists σ and ξ ∼ N (1, σ2) small enough that first-order Taylor series
expansion holds true. We first split b� ξ = b + b� (ξ − 1). Notice ξ − 1 ∼ N (0, σ2).
Let b� ξ − 1 = φ ∼ N (0,bIσ2)

Eφ [y − f(x,b + φ)]2

∼ [y − f(x,b)]2 + Eφ
[
φT∇bf(x,b)

]2
(4.2)

= [y − f(x,b)]2 + Eφ[φ2T∇bf(x,b)2]
= [y − f(x,b)]2 + σ2‖b�∇bf(x,b)‖2

Equation 4.2 follows from applying zero mean assumption on φ. Then we apply the
diagonal covariance assumption, after which we simply evaluate the expectation.

4.7 Experimental details

4.7.1 Network Architectures

The architecture for our networks follow the VGG design philosophy. Specifically, we
have blocks with the following elements:

79

Chapter 4. Knowledge Transfer with Full-Gradient Matching

• 3× 3 conv kernels with c channels of stride 1

• Batch Normalization

• ReLU

Whenever we use Max-pooling (M), we use stride 2 and window size 2.

The architecture for VGG-9 is - [64−M − 128−M − 256− 256−M − 512− 512−M −
512− 512−M]. Here, the number stands for the number of convolution channels, and
M represents max-pooling. At the end of all the convolutional and max-pooling layers,
we have a Global Average Pooling (GAP) layer, after which we have a fully connected
layer leading up to the final classes. Similar architecture is used for both CIFAR-10 and
CIFAR-100 experiments.

4.7.2 Loss function

The loss function for distillation experiments use the following form.

`(f(x), g(|X)) = α× (CE) + β × (Match Activations)
+ γ × (Match inputgradients)
+ δ × (Match biasgradients)

In our experiments, α, β, γ, δ are either set to 10 or 0. In other words, all regularization
constants are 10.

Here, ‘CE’ refers to cross-entropy with ground truth labels. ‘Match Activations’ refers
to squared error term over pre-softmax activations of the form (ys − yt)2. ‘Match in-
putgradients’ refers to the same squared error term, but for gradients. For matching
bias-gradients, we choose three layers at three different spatial resolutions for student
and teacher. These layers had 64, 128, 256 channels each. We found matching early lay-
ers to be more beneficial in general. The loss function used for matching bias-gradients
is -

Match gradients =
∣∣∣∣∣
∣∣∣∣∣ f b(x)
‖f b(x)‖2

− gb(x)
‖gb(x)‖2

∣∣∣∣∣
∣∣∣∣∣
2

2
(4.3)

For notational convenience, f b(x) here refers to the channel-summed bias-gradient of a
layer rather than the full bias-gradient.

80

4.7. Experimental details

Optimization

For CIFAR-100 distillation experiments, we run optimization for 300 epochs. We use
the Adam optimizer, with an initial learning rate of 1e − 3, and a single learning rate
annealing (to 1e − 4) at 250 epochs. We used a batch size of 128. We use similar
parameters for CIFAR-10. For regularization experiments, we ran optimization for 100
epochs, with annealing at 80 epochs.

81

5 Rethinking the Role of Gradient-
based Saliency Methods

Current methods for the interpretability of discriminative deep neural networks com-
monly rely on the model’s input-gradients, i.e., the gradients of the output logits w.r.t.
the inputs. The common assumption is that these input-gradients contain informa-
tion regarding pθ(y | x), the model’s discriminative capabilities, thus justifying their
use for interpretability. However, in this work we show that these input-gradients can
be arbitrarily manipulated as a consequence of the shift-invariance of softmax without
changing the discriminative function. This leaves an open question: if input-gradients
can be arbitrary, why are they highly structured and explanatory in standard models?

We investigate this by re-interpreting the logits of standard softmax-based classifiers as
unnormalized log-densities of the data distribution and show that input-gradients can
be viewed as gradients of a class-conditional density model pθ(x | y) implicit within the
discriminative model. This leads us to hypothesize that the highly structured and ex-
planatory nature of input-gradients may be due to the alignment of this class-conditional
model pθ(x | y) with that of the ground truth data distribution pdata(x | y). We test
this hypothesis by studying the effect of density alignment on gradient explanations. To
achieve this density alignment, we use an algorithm called score-matching, and propose
novel approximations to this algorithm to enable training large-scale models.

Our experiments show that improving the alignment of the implicit density model with
the data distribution enhances gradient structure and explanatory power while reducing
this alignment has the opposite effect. This also leads us to conjecture that unintended
density alignment in standard neural network training may explain the highly structured
nature of input-gradients observed in practice. Overall, our finding that input-gradients
capture information regarding an implicit generative model implies that we need to
re-think their use for interpreting discriminative models.

83

Chapter 5. Rethinking the Role of Gradient-based Saliency Methods

5.1 Introduction

Input-gradients, or gradients of outputs w.r.t. inputs, are commonly used for the in-
terpretation of deep neural networks (Simonyan et al., 2013). For image classification
tasks, an input pixel with a larger input-gradient magnitude is attributed a higher ‘im-
portance’ value, and the resulting maps are observed to agree with human intuition
regarding which input pixels are important for the task at hand (Adebayo et al., 2018).
Quantitative studies (Samek et al., 2016; Shrikumar et al., 2017) also show that these
importance estimates are meaningful in predicting model response to larger structured
perturbations. These results suggest that input-gradients do indeed capture relevant
information regarding the underlying model. However in this work, we show that input-
gradients can be arbitrarily manipulated using the shift-invariance of softmax without
changing the underlying discriminative model, which calls into question the reliability of
input-gradient based attribution methods for interpreting arbitrary black-box models.

Given that input-gradients can be arbitrarily structured, the reason for their highly
structured and explanatory nature in standard pre-trained models is puzzling. Why
are input-gradients relatively well-behaved when they can just as easily be arbitrarily
structured, without affecting discriminative model performance? What factors influence
input-gradient structure in standard deep neural networks?

To answer these, we consider the connections made between softmax-based discrimina-
tive classifiers and generative models (Bridle, 1990; Grathwohl et al., 2020), made by
viewing the logits of standard classifiers as un-normalized log-densities. This connection
reveals an alternate interpretation of input-gradients, as representing the log-gradients
of a class-conditional density model which is implicit within standard softmax-based
deep models, which we shall call the implicit density model. This connection compels
us to consider the following hypothesis: perhaps input-gradients are highly structured
because this implicit density model is aligned with the ‘ground truth’ class-conditional
data distribution? The core of this chapter is dedicated to testing the validity of this
hypothesis, whether or not input-gradients do become more structured and explanatory
if this alignment increases and vice versa.

For the purpose of validating this hypothesis, we require mechanisms to increase or
decrease the alignment between the implicit density model and the data distribution.
To this end, we consider a generative modelling approach called score-matching, which
reduces the density modelling problem to that of local geometric regularization. Hence
by using score-matching, we are able to view commonly used geometric regularizers in
deep learning as density modelling methods. In practice, the score-matching objective
is known for being computationally expensive and unstable to train (Song and Ermon,
2019; Kingma and LeCun, 2010). To this end, we also introduce approximations and
regularizers which allow us to use score-matching on practical large-scale discriminative
models.

84

5.2. Input-Gradients are not Unique

This work is broadly connected to the literature around unreliability of saliency methods.
While most such works consider how the explanations for nearly identical images can
be arbitrarily different (Dombrowski et al., 2019; Subramanya et al., 2019; Zhang et al.,
2020; Ghorbani et al., 2019), our work considers how one may change the model itself to
yield arbitrary explanations without affecting discriminative performance. This is similar
to Heo et al. (2019) who show this experimentally, whereas we provide an analytical
reason for why this happens relating to the shift-invariance of softmax.

The rest of the chapter is organized as follows. We show in § 5.2 that it is trivial
to manipulate input-gradients of standard classifiers using the shift-invariance of soft-
max without affecting the discriminative model. In § 5.3 we state our main hypothesis
and describe the details of score-matching, present a tractable approximation for the
same that eliminates the need for expensive Hessian computations. § 5.4 revisits other
interpretability tools from a density modelling perspective. Finally, § 5.5 presents ex-
perimental evidence for the validity of the hypothesis that improved alignment between
the implicit density model and the data distribution can improve the structure and
explanatory nature of input-gradients.

5.2 Input-Gradients are not Unique

In this section, we show that it is trivial to manipulate input-gradients of discriminative
deep networks, using the well-known shift-invariance property of softmax. Here we
shall make a distinction between two types of input-gradients: logit-gradients and loss-
gradients. While logit-gradients are gradients of the pre-softmax output of a given class
w.r.t. the input, loss-gradients are the gradients of the loss w.r.t. the input. In both
cases, we only consider outputs of a single class, usually the target class.

Let x ∈ RD be a data point, which is the input for a neural network model f : RD → RC

intended for classification, which produces pre-softmax logits for C classes. The cross-
entropy loss function for some class 1 ≤ i ≤ C, i ∈ N corresponding to an input x
is given by `(f(x), i) ∈ R+, which is shortened to `i(x) for convenience. Note that
here the loss function subsumes the softmax function as well. The logit-gradients are
given by ∇xfi(x) ∈ RD for class i, while loss-gradients are ∇x`i(x) ∈ RD. Let the
softmax function be p(y = i|x) = exp(fi(x))/∑C

j=1 exp(fj(x)), which we denote as pi for
simplicity. Here, we make the observation that upon adding the same scalar function g
to all logits, the logit-gradients can arbitrarily change but the loss values do not.

Observation. Assume an arbitrary function g : RD → R. Consider another neural
network function given by f̃i(·) = fi(·) + g(·), for 0 ≤ i ≤ C, for which we obtain
∇xf̃i(·) = ∇xfi(·) + ∇xg(·). For this, the corresponding loss values and loss-gradients
are unchanged, i.e.; ˜̀

i(·) = `i(·) and ∇x ˜̀
i(·) = ∇x`i(·) as a consequence of the shift-

invariance of softmax.

85

Chapter 5. Rethinking the Role of Gradient-based Saliency Methods

This explains how the structure of logit-gradients can be arbitrarily changed: one simply
needs to add an arbitrary function g to all logits. This implies that individual logit-
gradients ∇xfi(x) and logits fi(x) are meaningless on their own, and their structure
may be uninformative regarding the underlying discriminative model. Despite this, a
large fraction of work in interpretable deep learning (Simonyan et al., 2013; Selvaraju
et al., 2017; Smilkov et al., 2017; Fong et al., 2019; Srinivas and Fleuret, 2019) uses
individual logits and logit-gradients for saliency map computation. We also provide a
similar illustration in the supplementary material for the case of loss-gradients, where
we show that it is possible for loss-gradients to diverge significantly even when the loss
values themselves do not.

These simple observations leave an open question: why are input-gradients highly struc-
tured and explanatory when they can just as easily be arbitrarily structured, without
affecting discriminative model performance? Further, if input-gradients do not depend
strongly on the underlying discriminative function, what aspect of the model do they
depend on instead? In the section that follows, we shall consider a generative modelling
view of discriminative neural networks that offers insight into the information encoded
by logit-gradients.

5.3 Implicit Density Models Within Discriminative Clas-
sifiers

Let us consider the following link between generative models and the softmax func-
tion. We first define the following joint density on the logits fi of classifiers: pθ(x, y =
i) = exp(fi(x;θ))

Z(θ) , where Z(θ) is the partition function. We shall henceforth suppress the
dependence of f on θ for brevity. Upon using Bayes’ rule to obtain pθ(y = i | x), we
observe that we recover the standard softmax function. Thus the logits of discriminative
classifiers can alternately be viewed as un-normalized log-densities of the joint distribu-
tion. Assuming equiprobable classes, we have pθ(x | y = i) = exp(fi(x))

Z(θ)/C , which is the
quantity of interest for us. Thus while the logits represent un-normalized log-densities,
logit-gradients represent the score function, i.e.; ∇x log pθ(x | y = i) = ∇xfi(x), which
avoids dependence on the partition function Z(θ) as it is independent of x.

This viewpoint naturally leads to the following hypothesis, that perhaps the reason for
the highly structured and explanatory nature of input-gradients is that the implicit
density model pθ(x | y) is close to that of the ground truth class-conditional data distri-
bution pdata(x | y)? We propose to test this hypothesis explicitly using score-matching
as a density modelling tool.

Hypothesis. (Informal) Improved alignment of the implicit density model to the ground
truth class-conditional density model improves input-gradient interpretability via both
qualitative and quantitative measures, whereas deteriorating this alignment has the op-

86

5.3. Implicit Density Models Within Discriminative Classifiers

posite effect.

5.3.1 Score-Matching

Score-matching (Hyvärinen, 2005) is a generative modelling objective that focusses solely
on the derivatives of the log density instead of the density itself, and thus does not require
access to the partition function Z(θ). Specifically, for our case we have ∇x log pθ(x | y =
i) = ∇xfi(x), which are the logit-gradients.

Given i.i.d. samples X = {xi ∈ RD} from a latent data distribution pdata(x), the
objective of generative modelling is to recover this latent distribution using only samples
X . This is often done by training a parameterized distribution pθ(x) to align with
the latent data distribution pdata(x). The score-matching objective instead aligns the
gradients of log densities, as given below.

J(θ) = Epdata(x)
1
2‖∇x log pθ(x)−∇x log pdata(x)‖22 (5.1)

= Epdata(x)

(
trace(∇2

x log pθ(x)) + 1
2‖∇x log pθ(x)‖22

)
+ const (5.2)

The above relationship is proved (Hyvärinen, 2005) using integration by parts. This is
a consistent objective, i.e, J(θ) = 0 ⇐⇒ pdata = pθ. This approch is appealing also
because this reduces the problem of generative modelling to that of regularization of
the local geometry of functions, i.e.; the resulting terms only depend on the point-wise
gradients and Hessian-trace.

5.3.2 Efficient estimation of Hessian-trace

In general, equation 5.2 is intractable for high-dimensional data due to the Hessian trace
term. To address this, we can use the Hutchinson’s trace estimator (Hutchinson, 1990)
to efficiently compute an estimate of the trace by using random projections, which is
given by: trace(∇2

x log pθ(x)) = Ev∼N (0,I) vT ∇2
x log pθ(x) v. This estimator has been

previously applied to score-matching (Song et al., 2019), and can be computed efficiently
using Pearlmutter’s trick (Pearlmutter, 1994). However, this trick still requires two
backward passes for a single monte-carlo sample, which is computationally expensive.
To further improve computational efficiency, we introduce the following approximation
to Hutchinson’s estimator using a Taylor series expansion, which applies to small values
of σ ∈ R.

87

Chapter 5. Rethinking the Role of Gradient-based Saliency Methods

Ev∼N (0,I) vT∇2
x log pθ(x)v ≈ 2

σ2 Ev∼N (0,σ2I)
(
log pθ(x + v)− log pθ(x)−∇x log pθ(x)Tv

)
= 2

σ2 Ev∼N (0,σ2I) (log pθ(x + v)− log pθ(x)) (5.3)

Note that equation 5.3 involves a difference of log probabilities, which is independent
of the partition function. For our case, log pθ(x + v|y = i) − log pθ(x|y = i) = fi(x +
v)−fi(x). We have thus considerably simplified and speeded-up the computation of the
Hessian trace term, which now can be approximated with no backward passes, but
using only a single additional forward pass. We present details regarding the variance of
this estimator in the supplementary material. A concurrent approach (Pang et al., 2020)
also presents a similar algorithm, however it is applied primarily to Noise Contrastive
Score Networks (Song and Ermon, 2019) and Denoising Score Matching (Vincent, 2011),
whereas we apply it to vanilla score-matching on discriminative models.

5.3.3 Stabilized Score-matching

In practice, a naive application of score-matching objective is unstable, causing the
Hessian-trace to collapse to negative infinity. This occurs because the finite-sample
variant of equation 5.1 causes the model to ‘overfit’ to a mixture-of-diracs density, which
places a dirac-delta distribution at every data point. Gradients of such a distribution are
undefined, causing training to collapse. To overcome this, regularized score-matching
(Kingma and LeCun, 2010) and noise conditional score networks (Song and Ermon,
2019) propose to add noise to inputs for score-matching to make the problem well-
defined. However, this did not help for our case. Instead, we use a heuristic where
we add a small penalty term proportional to the square of the Hessian-trace. This
discourages the Hessian-trace becoming too large, and thus stabilizes training.

5.4 Implications of the Density Modelling Viewpoint

In the previous section we related input-gradients to the implicit density model, thus
linking gradient interpretability to density modelling through our hypothesis. In this
section, we consider two other interpretability tools: activity maximization and the
pixel perturbation test, and show how these can interpreted from a density modelling
perspective. These perspectives also enable us to draw parallels between score-matching
and adversarial training.

88

5.4. Implications of the Density Modelling Viewpoint

5.4.1 Activity Maximization as Sampling from the Implicit Density
Model

The canonical method to obtain samples from score-based generative models is via
Langevin sampling (Welling and Teh, 2011; Song and Ermon, 2019), which involves
performing gradient ascent on the density model with noise added to the gradients.
Without this added noise, the algorithm recovers the modes of the density model.

We observe that activity maximization algorithms used for neural network visualizations
are remarkably similar to this scheme. For instance, Simonyan et al. (2013) recover in-
puts which maximize the logits of neural networks, thus exactly recovering the modes
of the implicit density model. Similarly, deep-dream-like methods (Mahendran and
Vedaldi, 2016; Nguyen et al., 2016; ?) extend this by using “image priors” to ensure
that the resulting samples are closer to the distribution of natural images, and by adding
structured noise to the gradients in the form of jitter, to obtain more visually pleasing
samples. From the density modelling perspective, we can alternately view these visu-
alization techniques as biased sampling methods for score-based density models trained
on natural images. However, given the fact that they draw samples from the implicit
density model, their utility in interpreting discriminative models may be limited.

5.4.2 Pixel Perturbation as a Density Ratio Test

A popular test for saliency map evaluation is based on pixel perturbation (Samek et al.,
2016). This involves first selecting the least-relevant (or most-relevant) pixels according
to a saliency map representation, ‘deleting’ those pixels and measuring the resulting
change in output value. Here, deleting a pixel usually involves replacing the pixel with
a non-informative value such as a random or a fixed constant value. A good saliency
method identifies those pixels as less relevant whose deletion does not cause a large
change in output value.

We observe that this change in outputs criterion is identical to the density ratio, i.e.,
log (pθ(x + v|y = i)/pθ(x|y = i)) = fi(x + v) − fi(x). Thus when logits are used for
evaluating the change in outputs (Samek et al., 2016; Ancona et al., 2018), the pixel
perturbation test exactly measures the density ratio between the perturbed image and
the original image. Thus if a perturbed image has a similar density to that of the original
image under the implicit density model, then the saliency method that generated these
perturbations is considered to be explanatory. Similarly, Fong et al. (2019) optimize over
this criterion to identify pixels whose removal causes minimal change in logit activity,
thus obtaining perturbed images with a high implicit density value similar to that of
activity maximization. Overall, this test captures sensitivity of the implicit density
model, and not the underlying discriminative model which we wish to interpret. We
thus recommend that the pixel perturbation test always be used in conjunction with

89

Chapter 5. Rethinking the Role of Gradient-based Saliency Methods

either the change in output probabilities, or the change in the accuracy of classification,
rather than the change in logits.

5.4.3 Connecting Score-Matching to Adversarial Training

Recent works in adversarial machine learning (Etmann et al., 2019; Engstrom et al., 2019;
Santurkar et al., 2019; Kaur et al., 2019; Ross and Doshi-Velez, 2017) have observed that
saliency map structure and samples from activation maximization are more perceptually
aligned for adversarially trained models than for standard models. However it is unclear
from these works why this occurs. Separate from this line of work, Chalasani et al.
(2018) also connect regularization of a variant of integrated gradients with adversarial
training, suggesting a close interplay between the two.

We notice that these properties are shared with score-matched models, or models trained
such that the implicit density model is aligned with the ground truth. Further, we note
that both score-matching and adversarial training are often based on local geometric
regularization, usually involving regularization of the gradient-norm (Ross and Doshi-
Velez, 2017; Jakubovitz and Giryes, 2018), and training both the discriminative model
and the implicit density model (Grathwohl et al., 2020) has been shown to improve
adversarial robustness. From these results, we can conjecture that training the implicit
density model via score-matching may have similar outcomes as adversarial training.
We leave the verification and proof of this conjecture to future work.

5.5 Experiments

In this section, we present experimental results to show the efficacy of score-matching
and the validation of the hypothesis that density alignment influences the gradient ex-
planation quality. For experiments, we shall consider the CIFAR100 dataset. We present
experiments with CIFAR10 in the supplementary section. Unless stated otherwise, the
network structure we use shall be a 18-layer ResNet that achieves 78.01% accuracy on
CIFAR100, and the optimizer used shall be SGD with momentum. All models use the
softplus non-linearity with β = 10, which is necessary to ensure that the Hessian is
non-zero for score-matching. Before proceeding with our experiments, we shall briefly
introduce the score-matching variants we shall be using for comparisons.

Score-MatchingWe propose to use the score-matching objective as a regularizer in
neural network training to increase the alignment of the implicit density model to
the ground truth, as shown in equation 5.4, with the stability regularizer discussed in
§5.3.3. For this, we use a regularization constant λ = 1e − 3. This model achieves
72.20% accuracy on the test set, which is a drop of about 5.8% compared to the original
model. In the supplementary material, we perform a thorough hyper-parameter sweep

90

5.5. Experiments

and show that it is possible to obtain better performing models.

h(x) := 2
σ2Ev∼N (0,σ2I) (fi(x + v)− fi(x))

`reg(f(x), i)︸ ︷︷ ︸
regularized loss

= `(f(x), i)︸ ︷︷ ︸
cross-entropy

+λ


Hessian-trace︷ ︸︸ ︷
h(x) +1

2

gradient-norm︷ ︸︸ ︷
‖∇xfi(x)‖22︸ ︷︷ ︸

score-matching

+
10−4︷︸︸︷
µ h2(x)︸ ︷︷ ︸

stability regularizer

 (5.4)

Anti-score-matchingWe would like to have a tool that can decrease the alignment
between the implicit density model and the ground truth. To enable this, we propose
to maximize the hessian-trace, in an objective we call anti-score-matching. For this, we
shall use a the clamping function on hessian-trace, which ensures that its maximization
stops after a threshold is reached. We use a threshold of τ = 1000, and regularization
constant λ = 1e− 4. This model achieves an accuracy of 74.87%.

Gradient-Norm regularizationWe propose to use gradient-norm regularized models
as another baseline for comparison, using a regularization constant of λ = 1e− 3. This
model achieves an accuracy of 76.60%.

5.5.1 Evaluating the Efficacy of Score-Matching and Anti-Score-Matching

Here we demonstrate that training with score-matching / anti-score-matching is possible,
and that such training improves / deteriorates the quality of the implicit density models
respectively as expected.

Density Ratios

One way to characterize the generative behaviour of models is to compute likelihoods
on data points. However this is intractable for high-dimensional problems, especially for
un-normalized models. We observe although that the densities p(x | y = i) themselves
are intractable, we can easily compute density ratios p(x + η | y = i)/p(x | y = i) =
exp(fi(x + η) − fi(x)) for a random noise variable η. Thus, we propose to plot the
graph of density ratios locally along random directions. These can be thought of as
local cross-sections of the density sliced at random directions. We plot these values for
gaussian noise η for different standard deviations, which are averaged across points in
the entire dataset.

In Figure 5.1, we plot the density ratios upon training on the CIFAR100 dataset. We
observe that the baseline model assigns higher density values to noisy inputs than

91

Chapter 5. Rethinking the Role of Gradient-based Saliency Methods

10 4 10 3 10 2 10 1

Standard deviation of

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

p(
x

+
)

p(
x)

Baseline ResNet
with Grad-Norm regularization
with Score-Matching
with Anti-Score-Matching

Figure 5.1 – Plots of density ratios representing local density profiles across varying levels
of noise added to the input (lower is better). We observe that score-matched model is
robust to a larger range of noise values, while anti-score-matching is very sensitive even
to small amounts of noise.

real inputs. With anti-score-matching, we observe that the density profile grows still
steeper, assigning higher densities to inputs with smaller noise. Gradient-norm regu-
larized models and score-matched models improve on this behaviour, and are robust to
larger amounts of noise added. Thus we are able to obtain penalty terms that can both
improve and deteriorate the density modelling behaviour within discriminative models.

Sample Quality

We are interested in recovering modes of our density models while having access to only
the gradients of the log density. For this purpose, we apply gradient ascent on the log
probability log p(x | y = i) = fi(x), similar to activity maximization. Our results are
shown in Figure 5.2. We observe that samples from the score-matched and gradient-norm
regularized models are significantly less noisy than other models.

We also propose to qualitatively measure the sample quality using the GAN-test ap-
proach (Shmelkov et al., 2018). This test proposes to measure the discriminative ac-
curacy of generated samples via an independently trained discriminative model. In
contrast with more popular metrics such as the inception-score, this captures sample
quality rather than diversity, which is what we are interested in. We show the results in
table 5.1, which confirms the qualitative trend seen in samples above. Surprisingly, we
find that gradient-norm regularized models perform better than score-matched models.

92

5.5. Experiments

Model GAN-test (%)
Baseline ResNet 59.47

+ Anti-Score-Matching 16.40
+ Gradient Norm-regularization 80.07

+ Score-Matching 72.75

Table 5.1 – GAN-test scores (higher is better) of class-conditional samples generated
from various ResNet-18 models (see § 5.5.1). We observe that samples from gradient-
norm regularized models and score-matched models achieve much better accuracies than
the baselines and anti-score-matched models.

(a) Baseline ResNet (b) With anti
score-matching

(c) With
Gradient-norm
regularization

(d) With
score-matching

Figure 5.2 – Samples generated from various models by performing gradient ascent on
random inputs (see § -5.5.1). While none of the generated samples are realistic, samples
obtained from score-matched and gradient-norm regularized models are smoother and
less noisy.

This implies that such models are able to implicitly perform density modelling without
being explicitly trained to do so. We leave further investigation of this phenomenon to
future work.

5.5.2 Evaluating the Effect of Density Alignment on Gradient Expla-
nations

Here we shall evaluate the gradient explanations of various models. First, we shall look
at quantitative results on a discriminative variant of the pixel perturbation test. Second,
we visualize the gradient maps to assess qualitative differences between them.

Quantitative Results on Discriminative Pixel Perturbation

As noted in 5.4.2, it is recommended to use the pixel perturbation test using accuracy
changes, and we call this variant as discriminative pixel perturbation. We select the least
relevant pixels and replace them with the mean pixel value of the image, note down the

93

Chapter 5. Rethinking the Role of Gradient-based Saliency Methods

accuracy of the model on the resulting samples. We note that this test is only used
so far to compare different saliency methods for the same underlying model. However,
we here seek to compare saliency methods across models. For this we consider two
experiments. First, we perform the pixel perturbation experiment with each of the four
trained models on their own input-gradients and plot the results in Figure 5.3a. These
results indicate that the input-gradients of score-matched and gradient-norm regularized
models are better equipped to identify least relevant pixels in this model. However, it is
difficult to completely disentangle the robustness benefits of such score-matched models
against improved identification of less relevant pixels through such a plot.

To this end, we conduct a second experiment in Figure 5.3b, where we use input-gradients
obtained from these four trained models to explain the same standard baseline ResNet
model. This disentangles the robustness of different models as inputs to the same model
is perturbed in all cases. Here also we find that gradients from score-matched and
gradient-norm regularized models explain behavior of standard baseline models better
than the gradients of the baseline model itself. Together, these tests show that training
with score-matching indeed produces input-gradients that quantitatively more explana-
tory than baseline models.

Qualitative Gradient Visualizations

We visualize the structure of logit-gradients of different models in Figure 5.4. We observe
that gradient-norm regularized model and score-matched model have highly perceptually
aligned gradients, when compared to the baseline and anti-score-matched gradients,
corroborating the quantitative results.

5.6 Conclusion

In this chapter, we investigated the cause for the highly structured and explanatory
nature of input-gradients in standard pre-trained models, and showed that alignment
of the implicit density model with the ground truth data density is a possible cause.
This density modelling interpretation enabled us to view canonical approaches in inter-
pretability such as gradient-based saliency methods, activity maximization and the pixel
perturbation test through a density modelling perspective, showing that these capture
information relating to the implicit density model, not the underlying discriminative
model which we wish to interpret. This calls for a need to re-think the role of these
tools in the interpretation of discriminative models. For practitioners, we believe it is
best to avoid usage of logit gradient-based tools, for interpretability. If unavoidable,
it is recommended to use only gradient-norm regularized or score-matched models, as
input-gradients of these models produce more reliable estimates of the gradient of the
underlying distribution. As our experiments show, these may be a useful tool even

94

5.6. Conclusion

10 2 10 1 100

Masking Fraction

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 Im

ag
es

 C
or

re
ct

ly
 C

la
ss

ifi
ed

Baseline ResNet
with Grad-Norm regularization
with Score-Matching
with Anti-Score-Matching

(a) Models evaluated with their own gradients

10 2 10 1 100

Masking Fraction

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 Im

ag
es

 C
or

re
ct

ly
 C

la
ss

ifi
ed

Baseline ResNet
with Grad-Norm regularization
with Score-Matching
with Anti-Score-Matching

(b) Baseline ResNet evaluated with gradients of different
models

Figure 5.3 – Discriminative pixel perturbation results (higher is better) on the CIFAR100
dataset (see § 5.5.2). We see that score-matched and gradient-norm regularized models
best explain model behaviour in both cases, while the anti-score-matched model performs
the worst. This agrees with the hypothesis (stated in § 5.3) that alignment of implicit
density models improves gradient explanations and vice versa.

though they are not directly related to the discriminative model.

However, our work still does not answer the question of why pre-trained models may
have their implicit density models aligned with ground truth in the first place. One
possible reason could be the the presence of an implicit gradient norm regularizer in
standard SGD, similar to that shown independently by Barrett and Dherin (2020).
Another open question is to understand why gradient-norm regularized models are able
to perform implicit density modelling as observed in our experiments in § 5.5.1, which

95

Chapter 5. Rethinking the Role of Gradient-based Saliency Methods

(a) Input Image (b) Baseline
ResNet

(c) With Anti
score-matching

(d) With
Gradient-norm
regularization

(e) With
Score-matching

Figure 5.4 – Visualization of input-gradients of different models. We observe that gra-
dients of score-matched and gradient-norm regularized models are more perceptually
aligned than the others, with the gradients of the anti-score-matched model being the
noisiest. This qualitatively verifies the hypothesis stated in § 5.3.

lead to improved gradient explanations.

96

Appendix

5.7 Fooling Gradients is simple

Observation. Assume an arbitrary function g : RD → R. Consider another neural
network function given by f̃i(·) = fi(·) + g(·), for 0 ≤ i ≤ C, for which we obtain
∇xf̃i(·) = ∇xfi(·) + ∇xg(·). For this, the corresponding loss values and loss-gradients
are unchanged, i.e.; ˜̀

i(·) = `i(·) and ∇x ˜̀
i(·) = ∇x`i(·).

Proof. The following expressions relate the loss and neural network function outputs,
for the case of cross-entropy loss and usage of the softmax function.

`i(x) = −fi(x) + log

 C∑
j=1

exp(fj(x))

 (5.5)

∇x`i(x) = −∇xfi(x) +
C∑
j=1

pj∇xfj(x) (5.6)

Upon replacing fi with f̃i = fi + g, the proof follows.

5.7.1 Manipulating Loss-Gradients

Here, we show how we can also change loss-gradients arbitrarily without significantly
changing the loss values themselves. In this case, the trick is to add a high frequency
low amplitude sine function to the loss.

Observation. Consider g(x) = ε sin(mx), and ˜̀
i(x) = `i(x) + g(x), for ε,m ≥ R+ and

x ∈ RD. Then, it is easy to see that |˜̀i(x) − `i(x)| ≤ ε, and ‖∇x ˜̀
i(x) − ∇x`i(x)‖1 ≤

m× ε×D.

Thus two models with losses differing by some small ε can have gradients differing by
m × ε × D. For m → ∞ and a fixed ε, the gradients can diverge significantly. Thus,

97

Chapter 5. Rethinking the Role of Gradient-based Saliency Methods

(a) Fooling Mask (b) Fooled
logit-gradients

(c) Loss-gradients (d) Temperature
scaled loss-gradients

Figure 5.5 – Results of fooling neural network logit-gradients. Given a mask (a), we
are able to fool logit-gradients (b). We observe that loss-gradients (c) are not affected,
however they can change to adhere to the mask upon using a high-temperature softmax
(d), as indicated by the areas in red.

loss-gradients are also unreliable, as two models with very similar loss landscapes and
hence discriminative abilities, can have drastically different loss-gradients.

This simple illustration highlights the fact that gradients of high-dimensional black-box
models are not well-behaved in general, and this depends on both the model smoothness
and the high-dimensionality of the inputs. Further, loss values and loss-gradients for
highly confident samples are close to zero. Thus any external noise added (due to
stochastic training, for instance) can easily dominate the loss-gradient terms even when
smoothness conditions (small m) are enforced.

5.7.2 Experiments on Fooling Gradient Explanations

Here we present experimental evidence to support the claim that fooling input-gradients
is simple. First, we show how loss-gradients are unchanged when logit-gradients are
fooled. Second, we show that how loss-gradients can also be fooled by simply increasing
the temperature parameter within softmax. Our experiments are performed on the
CIFAR100 dataset, using a 11-layer VGG network.

Given a normalized unsigned saliency map s = |∇xfi|/(1T|∇xfi|) and a desired normal-
ized binary mask structure m, the saliency fooling algorithm (Heo et al., 2019) consists
of the following objective function.

Lfool(s,m) = Ex‖s−m‖2 (5.7)

We add this as a regularizer along with the standard cross-entropy loss and fine-tune a
pre-trained VGG classifier. We assume the mask structure given in Figure 5.5a, which
comprises of a 15× 15 white region. Assuming a uniform distribution of logit-gradients
over pixels, one would expect 22% of the total energy of unsigned gradients to occur

98

5.8. Score-Matching Approximation

in the top left region. Upon optimizing the fooling objective, we observe that we are
indeed able to fool logit-gradients, with these having 83.85% of the total energy in only
the top left areas, as shown in Figure 5.5b. However, we note that loss-gradients are not
fooled, with an average energy of only 48.14% in the unmasked areas. Our attempts at
fooling loss-gradients in a similar manner were unsuccessful: either the training collapsed
completely or fooling failed to occur.

Our second experiment involves testing whether the loss-gradients can be fooled for
low probability classes. To test this, use a high temperature constant (T = 1e3) with
softmax, for the fooled model above. Upon doing so, we see that the loss-gradients are
also altered, with an average energy of 60.17% in the top left region, up from 48.14% as
shown in Figure 5.5d. This provides experimental validation for our theory.

5.7.3 Implications for Saliency Regularization Methods

We mention a few important points of discussion here. First, the example shown above
is simpler than the theory permits, i.e.; in general the masks can vary with the in-
put, whereas here we use the same mask for all inputs for simplicity. Second, we note
that similar schemes have been presented (Ross et al., 2017; Erion et al., 2019) to align
loss-gradients with hand-crafted masks in order to inject domain knowledge into mod-
els. While these schemes may achieve their goals in certain cases, our analysis shows
that these cannot be applied universally, as loss-gradients may change by changing the
underlying loss values by only a small amount.

5.8 Score-Matching Approximation

We consider the approximation derived for the estimator of the Hessian trace, which is
first derived from Hutchinson’s trace estimator Hutchinson (1990). We replace log pθ(x)
terms used in the main text with f(x) terms here for clarity. The Taylor series trick for
approximating the Hessian-trace is given below.

Ev∼N (0,I) vT∇2
xf(x)v = 1

σ2 Ev∼N (0,σ2I)vT∇2
xf(x)v

= 2
σ2 Ev∼N (0,σ2I)

(
f(x + v)− f(x)−∇xf(x)Tv +O(σ3)

)
(5.8)

As expected, the approximation error vanishes in the limit of small σ. Let us now
consider the finite sample variants of this estimator, with N samples. We shall call this

99

Chapter 5. Rethinking the Role of Gradient-based Saliency Methods

the Taylor Trace Estimator.

Taylor Trace Estimator (TTE) = 2
Nσ2

N∑
i=1

(
f(x + vi)− f(x)

)
s.t. vi ∼ N (0, σ2I)

(5.9)

We shall henceforth suppress the dependence on i for brevity. For this estimator, we
can compute its variance for quadratic functions f , where higher-order Taylor expansion
terms are zero. We make the following observation.

Observation. For quadratic functions f , the variance of the Taylor Trace Estimator
is greater than the variance of the Hutchinson estimator by an amount at most equal to
4σ−2‖∇xf(x)‖2.

Proof.

Var(T.T.E.) = 1
σ4 Ev

(
2
N

N∑
i=1

(
f(x + v)− f(x)

)
−EvvT∇2

xf(x)v
)2

= 1
σ4 Ev

(
2
N

N∑
i=1

(
f(x + v)− f(x)

)
− 1
N

N∑
i=1

vT∇2
xf(x)v

+ 1
N

N∑
i=1

vT∇2
xf(x)v− EvvT∇2

xf(x)v
)2

= 1
σ4 Ev

(
2
N

N∑
i=1

(
f(x + v)− f(x)

)
− 1
N

N∑
i=1

vT∇2
xf(x)v

)2

+ 1
σ4Ev

(
1
N

N∑
i=1

vT∇2
xf(x)v− EvvT∇2

xf(x)v
)2

Thus we have decomposed the variance of the overall estimator into two terms: the first
captures the variance of the Taylor approximation, and the second captures the variance
of the Hutchinson estimator.

Considering only the first term, i.e.; the variance of the Taylor approximation, we have:

1
Nσ4 Ev

(
2
N∑
i=1

(
f(x + v)− f(x)

)
−

N∑
i=1

vT∇2
xf(x)v

)2

= 4
Nσ4 Ev

(
N∑
i=1
∇xf(x)Tv

)2

≤ 4
σ4 ‖∇xf(x)‖2Ev‖v‖2

= 4σ−2‖∇xf(x)‖2

100

5.9. Evaluating Effect of Score-Matching on Gradient Explanations on
CIFAR10

The intermediate steps involve expanding the summation, noticing that pairwise terms
cancel, and applying the Cauchy-Schwartz inequality.

Thus we have a trade-off: a large σ results in lower estimator variance but a large Taylor
approximation error, whereas the opposite is true for small σ. However for functions
with small gradient norm, both the estimator variance and Taylor approximation error
is small for small σ. We note that when applied to score-matching Hyvärinen (2005),
the gradient norm of the function is also minimized. This implies that in practice, the
gradient norm of the function is likely to be low, thus resulting in a small estimator
variance even for small σ. The variance of the Hutchinson estimator is given below for
reference Hutchinson (1990); Avron and Toledo (2011):

Var(Hutchinson) = 2
N
‖∇2

xf(x)‖2F

5.9 Evaluating Effect of Score-Matching on Gradient Ex-
planations on CIFAR10

We repeat the pixel perturbation experiments on the CIFAR10 dataset and we observe
similar qualitative trends. In both cases, we observe that score-matched and gradient
norm regularized models have more explanatory gradients, while anti-score-matched
model contains the least explanatory gradients. We also present visualization results of
input-gradients of various models for reference.

10 2 10 1 100

Masking Fraction

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 Im

ag
es

 C
or

re
ct

ly
 C

la
ss

ifi
ed

Baseline ResNet
with Grad-Norm regularization
with Score-Matching
with Anti-Score-Matching

(a) Models evaluated with their own gradients

10 2 10 1 100

Masking Fraction

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 Im

ag
es

 C
or

re
ct

ly
 C

la
ss

ifi
ed

Baseline ResNet
with Grad-Norm regularization
with Score-Matching
with Anti-Score-Matching

(b) Baseline ResNet evaluated with gradients
of different models

Figure 5.6 – Discriminative pixel perturbation results (higher is better) on the CIFAR10
dataset (see § 5.5.2). We see that score-matched and gradient-norm regularized models
best explain model behaviour in both cases, while the anti-score-matched model performs
the worst. This agrees with the hypothesis (stated in § 5.3) that alignment of implicit
density models improves gradient explanations and vice versa.

101

Chapter 5. Rethinking the Role of Gradient-based Saliency Methods

(a) Input Image (b) Baseline
ResNet

(c) With Anti
score-matching

(d) With
Gradient-norm
regularization

(e) With
Score-matching

Figure 5.7 – Visualization of input-gradients of different models. We observe that gra-
dients of score-matched and gradient-norm regularized models are more perceptually
aligned than the others, with the gradients of the anti-score-matched model being the
noisiest. This qualitatively verifies the hypothesis stated in § 5.3.

(a) Noisy Image (b) Baseline
ResNet

(c) With Anti
score-matching
ResNet

(d) With Gradient-
norm regulariza-
tion

(e) With score-
matching

Figure 5.8 – ‘Denoised’ samples generated from models by performing gradient ascent
on inputs perturbed with noise (σ = 0.1). Sample quality drastically improves with
score-matching.

5.10 Denoising via Implicit Density Models on CIFAR100

To test the quality of implicit density models, we also run a ‘denoising’ experiment, where
we perform Langevin sampling with data points perturbed with small noise, instead of
random points as is done usually. The modes of an ideal generative model lie near
clean, un-noised data, thus motivating this experiment. Figure 5.8 shows that denoised
samples of score-matched models are significantly more realistic than the rest.

5.11 Hyper-parameter Sweep on Score-Matched Training

We present results on a hyper-parameter sweep on the λ and µ parameters of score-
matching, where we provide both test-set accuracy on CIFAR100 and the corresponding
GAN-test scores. We find upon performing a hyper-parameter sweep that λ = 1e − 5
and µ = 1e − 3 seems to perform the best, whereas in the main chapter we present
results for λ = 1e− 3 and µ = 1e− 4. It is possible that changing the training schedule
by increasing the number of epochs or learning rate may further improve these results,

102

5.11. Hyper-parameter Sweep on Score-Matched Training

but we did not explore that here.

λ ↓ /µ→ 1e− 2 1e− 3 1e− 4 1e− 5
1e− 2 48.68%/51.60% 64.57%/58.90% 64.75%/76.46% 9.08%/0.97%
1e− 3 64.64%/56.78% 71.37%/40.72% 72.34%/73.39% 34.46%/3.3%
1e− 4 69.85%/41.30% 73.97%/72.07% 75.65%/79.39% 72.97%/61.52%
1e− 5 73.29%/68.94% 75.37%/85.64% 76.40%/63.96% 74.80%/78.41%
1e− 6 75.43%/82.81% 75.90%/66.11% 76.77%/65.91% 75.91%/65.52%

Table 5.2 – Results of a hyper-parameter sweep on λ and µ. The numbers presented are
in the format (accuracy % / GAN-test %)

103

6 Conclusions, Limitations & Open
Problems

In this thesis, we have studied the functional behaviour of neural network models using
gradient-based methods for two related tasks. The first task was knowledge transfer,
which involved teaching a student model to mimic the functional behaviour of a teacher
model, where we used input-gradients for efficient transfer. The second task was post-hoc
interpretation, which involved capturing the functional behaviour in pre-trained neural
network models and communicating these to humans, for which we used the full-gradient
representation, which captures complete information regarding the computation for an
individual sample. We also found this to be useful for knowledge transfer as well as
regularization. Finally, we took a step back asked why gradient based interpretation
methods yield highly structured maps in the first place, and we found that implicit
generative modelling capability may be a contributing factor.

One limitation of using gradient-based losses in general is that they are difficult to
optimize, possibly due to complex nature of the loss landscape. We discussed this issue
both in Chapters 2 and 4, where we found that using larger student models resulted
in easier optimization in terms of being able to achieve a lower loss value at the end of
optimization. One direction for future work in this area is to investigate the fundamental
root of this issue, and to propose optimization methods that are better able to better
optimize such losses, or equivalent losses that work well with conventional optimization
methods.

An important drawback of the current state of post-hoc interpretability literature partic-
ularly with saliency maps is that methods are often evaluated only for faithfulness, i.e.,
whether they capture the underlying function behaviour well. However, the main goal
of interpretability is to help human domain experts understand the machine learning
models they intend to work with, and evaluations which measure this are typically not
performed in saliency map literature (Doshi-Velez and Kim, 2017). Future work must
thus identify suitable protocols to measure the efficacy of interpretability methods with
human test subjects, in a way that is decoupled with model behaviour itself. We sus-

105

Chapter 6. Conclusions, Limitations & Open Problems

pect that work in this area must interface with fields such as psychology and education
research in order to make formal statements about the level of model understanding
of humans and judge whether this has improved as a result of using interpretability
methods.

Another limitation of gradient-based interpretability methods is that they capture pixel-
wise importances in images, and thus are always approximate representations of model
behaviour, as typical models do not process images pixel-wise (like Generalized Additive
Models), but process the entire image at once. One direction for future research is to
investigate for which model classes are gradient-based interpretability methods faithful
representations of model behaviour. If such model classes are successfully identified,
then the reliability of gradient-based explanations can be estimated by computing a
"distance" from this interpretable model class to the particular model we have at hand.

The core of any study on implicit density models relies on an efficient method to train
such models. In this thesis, we proposed simplified score-matching strategy using a finite-
difference approach. The drawbacks of this strategy are the usage of noise sampling for
finite differences, and for high dimensional inputs, one needs to draw a large number
of samples for accurate Hessian trace estimation. Future work would involve proposing
more efficient variants of score-matching that avoid drawing a large number of noise
samples for computing the Hessian trace.

Finally, the score-matching strategy bears a striking resemblance to adversarial training
methods. Having a low gradient norm in particular, has been identified as a important
criterion to alleviate such adversarial examples, a property which it shares with score-
matching. In addition, both methods result in improved gradient maps. However,
one important distinction is that while adversarial training requires the Hessian norm
to be small, score-matching naively requires minimization of the Hessian trace, which
increases Hessian norm. Whether or not more stable variants of score-matching are in
fact formally connected to adversarial training, is yet another topic for future research.

106

Bibliography

Adebayo, J., Gilmer, J., Muelly, M., Goodfellow, I., Hardt, M., and Kim, B. (2018). San-
ity checks for saliency maps. In Advances in Neural Information Processing Systems,
pages 9505–9515.

Agarwal, R., Frosst, N., Zhang, X., Caruana, R., and Hinton, G. E. (2020). Neural
additive models: Interpretable machine learning with neural nets.

Ancona, M., Ceolini, E., Oztireli, C., and Gross, M. (2018). Towards better under-
standing of gradient-based attribution methods for deep neural networks. In 6th
International Conference on Learning Representations (ICLR 2018).

Avron, H. and Toledo, S. (2011). Randomized algorithms for estimating the trace of
an implicit symmetric positive semi-definite matrix. Journal of the ACM (JACM),
58(2):1–34.

Ba, L. and Caruana, R. (2014). Do deep networks really need to be deep. Advances in
neural information processing systems, 27:1–9.

Barocas, S., Hardt, M., and Narayanan, A. (2019). Fairness and Machine Learning.
fairmlbook.org. http://www.fairmlbook.org.

Barrett, D. G. and Dherin, B. (2020). Implicit gradient regularization. International
Conference on Learning Representations.

Ben-David, S., Blitzer, J., Crammer, K., Kulesza, A., Pereira, F., and Vaughan, J. W.
(2010). A theory of learning from different domains. Machine learning, 79(1-2):151–
175.

Bishop, C. M. (1995). Training with noise is equivalent to tikhonov regularization.
Neural Computation.

Brendel, W. and Bethge, M. (2019). Approximating cnns with bag-of-local-features
models works surprisingly well on imagenet.

Bridle, J. S. (1990). Probabilistic interpretation of feedforward classification network
outputs, with relationships to statistical pattern recognition. In Neurocomputing,
pages 227–236. Springer.

107

http://www.fairmlbook.org

Bibliography

Buciluǎ, C., Caruana, R., and Niculescu-Mizil, A. (2006). Model compression. In Pro-
ceedings of the 12th ACM SIGKDD international conference on Knowledge discovery
and data mining, pages 535–541.

Chalasani, P., Chen, J., Chowdhury, A. R., Jha, S., and Wu, X. (2018). Concise expla-
nations of neural networks using adversarial training. arXiv, pages arXiv–1810.

Chang, C.-H., Creager, E., Goldenberg, A., and Duvenaud, D. (2019). Explaining image
classifiers by adaptive dropout and generative in-filling.

Chen, C., Li, O., Tao, C., Barnett, A. J., Su, J., and Rudin, C. (2019). This looks like
that: deep learning for interpretable image recognition.

Cho, J. H. and Hariharan, B. (2019). On the efficacy of knowledge distillation. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, pages
4794–4802.

Cisse, M., Bojanowski, P., Grave, E., Dauphin, Y., and Usunier, N. (2017). Parseval
networks: Improving robustness to adversarial examples. In International Conference
on Machine Learning, pages 854–863.

Cohen, N., Sharir, O., and Shashua, A. (2016). On the expressive power of deep learning:
A tensor analysis. In Feldman, V., Rakhlin, A., and Shamir, O., editors, 29th An-
nual Conference on Learning Theory, volume 49 of Proceedings of Machine Learning
Research, pages 698–728, Columbia University, New York, New York, USA. PMLR.

Czarnecki, W. M., Osindero, S., Jaderberg, M., Świrszcz, G., and Pascanu, R. (2017).
Sobolev training for neural networks. NIPS.

Dombrowski, A.-K., Alber, M., Anders, C., Ackermann, M., Müller, K.-R., and Kessel,
P. (2019). Explanations can be manipulated and geometry is to blame. In Wallach,
H., Larochelle, H., Beygelzimer, A., d’Alché Buc, F., Fox, E., and Garnett, R., editors,
Advances in Neural Information Processing Systems 32, pages 13589–13600. Curran
Associates, Inc.

Doshi-Velez, F. and Kim, B. (2017). Towards a rigorous science of interpretable machine
learning. arXiv.

Drucker, H. and Le Cun, Y. (1992). Improving generalization performance using double
backpropagation. IEEE Transactions on Neural Networks.

Engstrom, L., Ilyas, A., Santurkar, S., Tsipras, D., Tran, B., and Madry, A.
(2019). Adversarial robustness as a prior for learned representations. arXiv preprint
arXiv:1906.00945.

Erion, G., Janizek, J. D., Sturmfels, P., Lundberg, S., and Lee, S.-I. (2019). Learning
explainable models using attribution priors.

108

Bibliography

Etmann, C., Lunz, S., Maass, P., and Schönlieb, C.-B. (2019). On the connection
between adversarial robustness and saliency map interpretability. arXiv preprint
arXiv:1905.04172.

Fong, R., Patrick, M., and Vedaldi, A. (2019). Understanding deep networks via extremal
perturbations and smooth masks. In Proceedings of the IEEE International Conference
on Computer Vision, pages 2950–2958.

Furlanello, T., Lipton, Z., Tschannen, M., Itti, L., and Anandkumar, A. (2018). Born
again neural networks. In International Conference on Machine Learning, pages 1607–
1616. PMLR.

Furlanello, T., Zhao, J., Saxe, A. M., Itti, L., and Tjan, B. S. (2016). Active long term
memory networks. arXiv preprint arXiv:1606.02355.

Ghorbani, A., Abid, A., and Zou, J. (2019). Interpretation of neural networks is fragile.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pages
3681–3688.

Gou, J., Yu, B., Maybank, S. J., and Tao, D. (2021). Knowledge distillation: A survey.
International Journal of Computer Vision, 129(6):1789–1819.

Grathwohl, W., Wang, K.-C., Jacobsen, J.-H., Duvenaud, D., Norouzi, M., and Swersky,
K. (2020). Your classifier is secretly an energy based model and you should treat it
like one. In International Conference on Learning Representations.

Haroush, M., Hubara, I., Hoffer, E., and Soudry, D. (2020). The knowledge within:
Methods for data-free model compression. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pages 8494–8502.

Hastie, T. and Tibshirani, R. (1986). Generalized Additive Models. Statistical Science,
1(3):297 – 310.

Hastings, W. K. (1970). Monte carlo sampling methods using markov chains and their
applications. Biometrika, 57(1):97–109.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 770–778.

Heo, J., Joo, S., and Moon, T. (2019). Fooling neural network interpretations via adver-
sarial model manipulation. In Advances in Neural Information Processing Systems,
pages 2921–2932.

Hinton, G., Vinyals, O., and Dean, J. (2015). Distilling the knowledge in a neural
network. NIPS Deep Learning Workshop.

Hochreiter, S. and Schmidhuber, J. (1997). Flat minima. Neural Computation, 9(1):1–42.

109

Bibliography

Hooker, S., Erhan, D., Kindermans, P.-J., and Kim, B. (2018). Evaluating feature
importance estimates. arXiv preprint arXiv:1806.10758.

Hutchinson, M. F. (1990). A stochastic estimator of the trace of the influence matrix
for laplacian smoothing splines. Communications in Statistics-Simulation and Com-
putation, 19(2):433–450.

Hyvärinen, A. (2005). Estimation of non-normalized statistical models by score match-
ing. Journal of Machine Learning Research, 6(Apr):695–709.

Jakubovitz, D. and Giryes, R. (2018). Improving dnn robustness to adversarial attacks
using jacobian regularization. In Proceedings of the European Conference on Computer
Vision (ECCV), pages 514–529.

Jung, H., Ju, J., Jung, M., and Kim, J. (2016). Less-forgetting learning in deep neural
networks. arXiv preprint arXiv:1607.00122.

Kaur, S., Cohen, J., and Lipton, Z. C. (2019). Are perceptually-aligned gradients a
general property of robust classifiers? arXiv preprint arXiv:1910.08640.

Keskar, N. S., Mudigere, D., Nocedal, J., Smelyanskiy, M., and Tang, P. T. P. (2016). On
large-batch training for deep learning: Generalization gap and sharp minima. arXiv
preprint arXiv:1609.04836.

Kindermans, P.-J., Hooker, S., Adebayo, J., Alber, M., Schütt, K. T., Dähne, S., Erhan,
D., and Kim, B. (2017). The (un) reliability of saliency methods. arXiv preprint
arXiv:1711.00867.

Kindermans, P.-J., Schütt, K., Müller, K.-R., and Dähne, S. (2016). Investigating the
influence of noise and distractors on the interpretation of neural networks. arXiv
preprint arXiv:1611.07270.

Kingma, D. P. and LeCun, Y. (2010). Regularized estimation of image statistics by score
matching. In Advances in neural information processing systems, pages 1126–1134.

Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Desjardins, G., Rusu, A. A.,
Milan, K., Quan, J., Ramalho, T., Grabska-Barwinska, A., et al. (2017). Overcoming
catastrophic forgetting in neural networks. Proceedings of the national academy of
sciences, 114(13):3521–3526.

Koh, P. W. and Liang, P. (2017). Understanding black-box predictions via influence func-
tions. In International Conference on Machine Learning, pages 1885–1894. PMLR.

Krizhevsky, A. and Hinton, G. (2009). Learning multiple layers of features from tiny
images.

Leavitt, M. L. and Morcos, A. (2021). Selectivity considered harmful: evaluating the
causal impact of class selectivity in dnns.

110

Bibliography

Li, O., Liu, H., Chen, C., and Rudin, C. (2018). Deep learning for case-based reasoning
through prototypes: A neural network that explains its predictions. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 32.

Li, Z. and Hoiem, D. (2016). Learning without forgetting. In European Conference on
Computer Vision, pages 614–629. Springer.

Lipton, Z. C. (2018). The mythos of model interpretability: In machine learning, the
concept of interpretability is both important and slippery. Queue, 16(3):31–57.

Lundberg, S. M. and Lee, S.-I. (2017). A unified approach to interpreting model predic-
tions. In Advances in Neural Information Processing Systems, pages 4765–4774.

Mahendran, A. and Vedaldi, A. (2016). Visualizing deep convolutional neural networks
using natural pre-images. International Journal of Computer Vision, 120(3):233–255.

Micaelli, P. and Storkey, A. (2019). Zero-shot knowledge transfer via adversarial belief
matching. Advances in neural information processing systems.

Mobahi, H., Farajtabar, M., and Bartlett, P. (2020). Self-distillation amplifies regular-
ization in hilbert space. In Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. F.,
and Lin, H., editors, Advances in Neural Information Processing Systems, volume 33,
pages 3351–3361. Curran Associates, Inc.

Montavon, G., Lapuschkin, S., Binder, A., Samek, W., and Müller, K.-R. (2017). Ex-
plaining nonlinear classification decisions with deep taylor decomposition. Pattern
Recognition, 65:211–222.

Montufar, G. F., Pascanu, R., Cho, K., and Bengio, Y. (2014). On the number of
linear regions of deep neural networks. In Advances in neural information processing
systems, pages 2924–2932.

Mozer, M. C. and Smolensky, P. (1989). Skeletonization: A technique for trimming
the fat from a network via relevance assessment. In Advances in neural information
processing systems, pages 107–115.

Nayak, G. K., Mopuri, K. R., Shaj, V., Radhakrishnan, V. B., and Chakraborty, A.
(2019). Zero-shot knowledge distillation in deep networks. In Chaudhuri, K. and
Salakhutdinov, R., editors, Proceedings of the 36th International Conference on Ma-
chine Learning, volume 97 of Proceedings of Machine Learning Research, pages 4743–
4751. PMLR.

Neal, R. M. et al. (2011). Mcmc using hamiltonian dynamics. Handbook of markov chain
monte carlo, 2(11):2.

Nguyen, A., Dosovitskiy, A., Yosinski, J., Brox, T., and Clune, J. (2016). Synthesizing
the preferred inputs for neurons in neural networks via deep generator networks. In
Advances in neural information processing systems, pages 3387–3395.

111

Bibliography

Nie, W., Zhang, Y., and Patel, A. (2018). A theoretical explanation for perplexing
behaviors of backpropagation-based visualizations. arXiv preprint arXiv:1805.07039.

Oord, A., Li, Y., Babuschkin, I., Simonyan, K., Vinyals, O., Kavukcuoglu, K., Driessche,
G., Lockhart, E., Cobo, L., Stimberg, F., et al. (2018). Parallel wavenet: Fast high-
fidelity speech synthesis. In International conference on machine learning, pages 3918–
3926. PMLR.

Pan, S. J. and Yang, Q. (2010). A survey on transfer learning. IEEE Transactions on
knowledge and data engineering, 22(10):1345–1359.

Pang, T., Xu, T., Li, C., Song, Y., Ermon, S., and Zhu, J. (2020). Efficient learning of
generative models via finite-difference score matching. Advances in Neural Information
Processing Systems, 33.

Pearlmutter, B. A. (1994). Fast exact multiplication by the hessian. Neural computation,
6(1):147–160.

Phuong, M. and Lampert, C. (2019a). Towards understanding knowledge distillation. In
Chaudhuri, K. and Salakhutdinov, R., editors, Proceedings of the 36th International
Conference on Machine Learning, volume 97 of Proceedings of Machine Learning Re-
search, pages 5142–5151. PMLR.

Phuong, M. and Lampert, C. H. (2019b). Distillation-based training for multi-exit
architectures. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pages 1355–1364.

Quattoni, A. and Torralba, A. (2009). Recognizing indoor scenes. In 2009 IEEE Con-
ference on Computer Vision and Pattern Recognition.

Raghu, M., Poole, B., Kleinberg, J., Ganguli, S., and Sohl-Dickstein, J. (2017). On the
expressive power of deep neural networks. NIPS.

Rebuffi, S.-A., Kolesnikov, A., Sperl, G., and Lampert, C. H. (2017). icarl: Incremen-
tal classifier and representation learning. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR).

Ribeiro, M. T., Singh, S., and Guestrin, C. (2016). "why should I trust you?": Ex-
plaining the predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, San Francisco,
CA, USA, August 13-17, 2016, pages 1135–1144.

Romero, A., Ballas, N., Kahou, S. E., Chassang, A., Gatta, C., and Bengio, Y. (2014).
Fitnets: Hints for thin deep nets. arXiv preprint arXiv:1412.6550.

Ross, A. S. and Doshi-Velez, F. (2017). Improving the adversarial robustness and in-
terpretability of deep neural networks by regularizing their input gradients. arXiv
preprint arXiv:1711.09404.

112

Bibliography

Ross, A. S., Hughes, M. C., and Doshi-Velez, F. (2017). Right for the right reasons:
Training differentiable models by constraining their explanations. arXiv preprint
arXiv:1703.03717.

Rozantsev, A., Salzmann, M., and Fua, P. (2018). Beyond sharing weights for deep
domain adaptation. IEEE transactions on pattern analysis and machine intelligence,
41(4):801–814.

Rudin, C. (2019). Stop explaining black box machine learning models for high stakes
decisions and use interpretable models instead. Nature Machine Intelligence, 1(5):206–
215.

Rudin, C., Chen, C., Chen, Z., Huang, H., Semenova, L., and Zhong, C. (2021). Inter-
pretable machine learning: Fundamental principles and 10 grand challenges. arXiv
preprint arXiv:2103.11251.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy,
A., Khosla, A., Bernstein, M., et al. (2015). Imagenet large scale visual recognition
challenge. International Journal of Computer Vision, 115(3):211–252.

Samek, W., Binder, A., Montavon, G., Lapuschkin, S., and Müller, K.-R. (2016). Evalu-
ating the visualization of what a deep neural network has learned. IEEE transactions
on neural networks and learning systems, 28(11):2660–2673.

Santurkar, S., Ilyas, A., Tsipras, D., Engstrom, L., Tran, B., and Madry, A. (2019).
Image synthesis with a single (robust) classifier. In Advances in Neural Information
Processing Systems, pages 1260–1271.

Sau, B. B. and Balasubramanian, V. N. (2016). Deep model compression: Distilling
knowledge from noisy teachers. arXiv preprint arXiv:1610.09650.

Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., and Batra, D. (2017).
Grad-cam: Visual explanations from deep networks via gradient-based localization.
In 2017 IEEE International Conference on Computer Vision (ICCV), pages 618–626.
IEEE.

Shmelkov, K., Schmid, C., and Alahari, K. (2018). How good is my gan? In Proceedings
of the European Conference on Computer Vision (ECCV), pages 213–229.

Shrikumar, A., Greenside, P., and Kundaje, A. (2017). Learning important features
through propagating activation differences. In Proceedings of the 34th International
Conference on Machine Learning-Volume 70, pages 3145–3153. JMLR. org.

Simonyan, K., Vedaldi, A., and Zisserman, A. (2013). Deep inside convolutional net-
works: Visualising image classification models and saliency maps. arXiv preprint
arXiv:1312.6034.

113

Bibliography

Simonyan, K. and Zisserman, A. (2014). Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556.

Smilkov, D., Thorat, N., Kim, B., Viégas, F., and Wattenberg, M. (2017). Smoothgrad:
removing noise by adding noise. arXiv preprint arXiv:1706.03825.

Song, Y. and Ermon, S. (2019). Generative modeling by estimating gradients of the data
distribution. In Advances in Neural Information Processing Systems, pages 11895–
11907.

Song, Y., Garg, S., Shi, J., and Ermon, S. (2019). Sliced score matching: A scalable
approach to density and score estimation. arXiv preprint arXiv:1905.07088.

Springenberg, J. T., Dosovitskiy, A., Brox, T., and Riedmiller, M. (2014). Striving for
simplicity: The all convolutional net. arXiv preprint arXiv:1412.6806.

Srinivas, S. and Fleuret, F. (2018). Knowledge transfer with Jacobian matching. In
International Conference on Machine Learning.

Srinivas, S. and Fleuret, F. (2019). Full-gradient representation for neural network
visualization. In Advances in Neural Information Processing Systems, pages 4126–
4135.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. (2014).
Dropout: A simple way to prevent neural networks from overfitting. The Journal of
Machine Learning Research, 15(1):1929–1958.

Subramanya, A., Pillai, V., and Pirsiavash, H. (2019). Fooling network interpretation
in image classification. In The IEEE International Conference on Computer Vision
(ICCV).

Sundararajan, M., Taly, A., and Yan, Q. (2017). Axiomatic attribution for deep net-
works. arXiv preprint arXiv:1703.01365.

Vincent, P. (2011). A connection between score matching and denoising autoencoders.
Neural computation, 23(7):1661–1674.

Wang, S., Mohamed, A.-r., Caruana, R., Bilmes, J., Plilipose, M., Richardson, M.,
Geras, K., Urban, G., and Aslan, O. (2016). Analysis of deep neural networks with
extended data jacobian matrix. In International Conference on Machine Learning,
pages 718–726.

Weller, A. (2019). Transparency: motivations and challenges. In Explainable AI: Inter-
preting, Explaining and Visualizing Deep Learning, pages 23–40. Springer.

Welling, M. and Teh, Y. W. (2011). Bayesian learning via stochastic gradient langevin
dynamics. In Proceedings of the 28th international conference on machine learning
(ICML-11), pages 681–688.

114

Bibliography

Xie, Q., Luong, M.-T., Hovy, E., and Le, Q. V. (2020). Self-training with noisy student
improves imagenet classification. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 10687–10698.

Xu, H. and Mannor, S. (2012). Robustness and generalization. Machine learning,
86(3):391–423.

Yang, C., Xie, L., Su, C., and Yuille, A. L. (2019). Snapshot distillation: Teacher-
student optimization in one generation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 2859–2868.

Yim, J., Joo, D., Bae, J., and Kim, J. (2017). A gift from knowledge distillation: Fast
optimization, network minimization and transfer learning. In 2017 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages 7130–7138. IEEE.

Yin, H., Molchanov, P., Alvarez, J. M., Li, Z., Mallya, A., Hoiem, D., Jha, N. K., and
Kautz, J. (2020). Dreaming to distill: Data-free knowledge transfer via deepinver-
sion. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 8715–8724.

Yoo, J., Cho, M., Kim, T., and Kang, U. (2019). Knowledge extraction with no observ-
able data. Advances in neural information processing systems.

Yosinski, J., Clune, J., Bengio, Y., and Lipson, H. (2014). How transferable are features
in deep neural networks? In Advances in neural information processing systems, pages
3320–3328.

Zagoruyko, S. and Komodakis, N. (2017). Paying more attention to attention: Improving
the performance of convolutional neural networks via attention transfer. ICLR.

Zeiler, M. D. and Fergus, R. (2014). Visualizing and understanding convolutional net-
works. In European conference on computer vision, pages 818–833. Springer.

Zenke, F., Poole, B., and Ganguli, S. (2017). Continual learning through synaptic
intelligence. In International Conference on Machine Learning, pages 3987–3995.
PMLR.

Zhang, L., Song, J., Gao, A., Chen, J., Bao, C., and Ma, K. (2019). Be your own teacher:
Improve the performance of convolutional neural networks via self distillation. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, pages
3713–3722.

Zhang, X., Wang, N., Shen, H., Ji, S., Luo, X., and Wang, T. (2020). Interpretable deep
learning under fire. In 29th {USENIX} Security Symposium ({USENIX} Security 20).

Zintgraf, L. M., Cohen, T. S., Adel, T., and Welling, M. (2017). Visualizing deep
neural network decisions: Prediction difference analysis. International Conference on
Learning Representations.

115

Suraj Srinivas
surajsrinivas.wordpress.com | suraj.srinivas@idiap.ch | suraj.srinivas@epfl.ch

Summary
I am a machine learning researcher, with active research interests in interpretability and
robustness of machine learning models, and compression of deep neural networks.

Education
2017 - 2021 Doctor of Philosophy,

École Polytechnique Fédérale de Lausanne &
Idiap Research Institute, Switzerland,
Advisor: Prof. François Fleuret
Thesis: Gradient-based Methods for Deep Model Interpretability.

2014 - 2017 Master of Science (Engineering),
Indian Institute of Science, Bangalore, India,
Advisor: Prof. R. Venkatesh Babu
Thesis: Learning Compact Architectures for Deep Neural Networks.

Work Experience
Aug 2020 -
Jan 2021

Research Intern, Qualcomm AI Research, Netherlands,
Research on algorithms for improving neural network sparsity.

Jun-Aug 2016 Research Intern, DataGrokr, India / Verisk Analytics, USA, Speeding up inference on
deep neural networks using tensor factorization.

Jan-Jun 2014 Engineering Intern, Tonbo Imaging, Bangalore,
Implemented image processing algorithms on FPGA for a thermal imaging camera.

Jun-Aug 2013 Research Intern, Indian Institute of Science, Bangalore,
Research on computational photography to perform camera jitter compensation.

Selected Publications
Google Scholar Profile

2021 Suraj Srinivas and François Fleuret. “Rethinking the Role of Gradient-based Attribution
Methods in Model Interpretability", International Conference on Learning Representations
(ICLR) [Oral]

2019 Suraj Srinivas and François Fleuret. “Full-Gradient Representation for Neural Network
Visualization.", Neural Information Processing Systems (NeurIPS)
(PyTorch Implementation)

2018 Suraj Srinivas and François Fleuret. “Knowledge Transfer with Jacobian Matching.",
International Conference on Machine Learning (ICML)

2017 Suraj Srinivas and François Fleuret. “Local Affine Approximations for Improving Knowl-
edge Transfer.", NeurIPS Workshop on Learning with Limited Data [Best Paper Award]

2017 Suraj Srinivas, Akshayvarun Subramanya, R. Venkatesh Babu. “Training Sparse Neural
Networks.", Computer Vision and Pattern Recognition Workshops (CVPRW)

117

2016 Suraj Srinivas and R. Venkatesh Babu. “Learning Neural Network Architectures using
Backpropagation." British Machine Vision Conference (BMVC)

2015 Suraj Srinivas and R. Venkatesh Babu. “Data-free Parameter Pruning for Deep Neural
Networks." British Machine Vision Conference (BMVC)

Talks
Apr 2021 Title: “Rethinking the Role of Gradient-based Attribution Methods for Model

Interpretability"
Venue: ICLR (Virtual)

Jan 2020 Title: “Neural Network Interpretability using Full-Gradient Representation"
Venue: Indian Institute of Science, Bangalore

Jan 2020 Title: “Full-Gradient Representation for Neural Network Visualization"
Venue: ML for Astrophysicists Club (virtual)

Nov 2019 Title: “Full-Gradient Representation for Neural Network Visualization"
Event: Swiss Machine Learning Day, Lausanne

May 2019 Title: “Complete Saliency Maps using Full-Jacobians"
Event: Valais / Wallis AI workshop, Martigny

Jul 2018 Title: “Knowledge Transfer with Jacobian Matching"
Event: ICML, Stockholm

Jul 2016 Title: “Making Deep Neural Networks Smaller and Faster"
Event: Deep Learning Conf, Bangalore

Reviewing
Conferences AAAI, CVPR, ECCV, NeurIPS (2020) ; WACV, ICML, ICCV, NeurIPS (2021)

Journals IEEE SP-Letters, Elsevier Neural Networks, IEEE T-PAMI

Teaching
2018-2021 Teaching Assistant for Deep Learning Course (EE-559) at EFPL, Lausanne
Apr 2021 Guest Lecture on Interpretability for Deep Learning for Computer Vision Course (DS-265)

at IISc, Bangalore

Miscellaneous
2014 Obtain rank 399 (out of ∼ 200k candidates) nation-wide in the Graduate Aptitude

Test in Engineering for entrance to IITs / IISc for graduate studies in electronics and
communications engineering

2012 Won first place in the E-Yantra nation-wide robotics contest held at IIT-Bombay, and
was featured in The Times of India, New Indian Express and DH Education

2010 Obtain rank 191 (out of ∼ 100k candidates) state-wide in the Karnataka Common
Entrance Test for entrance to state engineering colleges for undergraduate studies.

118

	Abstract (English / French)
	Acknowledgements
	Publications based on the Thesis
	Contents
	List of Figures
	List of Tables
	Introduction & Background
	Deep Neural Networks as Black Boxes
	Geometry of ReLU Neural Networks
	Knowledge Transfer Between Deep Models
	Related Work on Knowledge Transfer

	Post-hoc Interpretability of Machine Learning Models
	Input-Gradients: Feature Importance via Sensitivity
	Integrated Gradients: Feature Importance via Completeness
	Related Work on Interpretability

	Density Modelling via Discriminative Models
	Sampling from EBMs
	Training EBMs

	Research Questions & Contributions
	Notations

	Knowledge Transfer with Jacobian Matching
	Introduction
	Related Work
	Jacobians of Neural Networks
	Special case: ReLU and MaxPool
	What information does the gradient capture?
	Invariance to weight and architecture specification

	Distillation
	Approximating the Full Jacobian

	Transfer Learning
	LwF as Distillation
	Matching attention maps

	Experiments
	Distillation
	Noise robustness
	Transfer Learning

	Conclusion

	Appendix
	Proof of Proposition 1
	Proof of Proposition 2
	Proof of Proposition 3
	Proof for Corollary

	Justification for gradient loss
	Experimental details
	VGG Network Architectures
	Loss function
	Optimization

	Full-Gradient Representation for Neural Network Visualization
	Introduction
	Related Work
	Local vs. Global Attribution
	Full-Gradient Representation
	Properties of Full-Gradients
	FullGrad: Full-Gradient Saliency Maps for Convolutional Nets

	Experiments
	Pixel perturbation
	Remove and Retrain
	Visual Inspection

	How to Choose ()
	Conclusions and Future Work

	Appendix
	Proof of Incompatibility
	Full-gradient Proofs
	Experiments to Illustrate Post-Processing Trade-offs
	Digit Flipping
	Pixel Perturbation

	Saliency Results

	Knowledge Transfer with Full-Gradient Matching
	Introduction
	Full-Gradient Matching
	Bias-Gradient Regularization
	Experiments
	Distillation
	Regularization

	Conclusion

	Appendix
	Proofs
	Experimental details
	Network Architectures
	Loss function

	Rethinking the Role of Gradient-based Saliency Methods
	Introduction
	Input-Gradients are not Unique
	Implicit Density Models Within Discriminative Classifiers
	Score-Matching
	Efficient estimation of Hessian-trace
	Stabilized Score-matching

	Implications of the Density Modelling Viewpoint
	Activity Maximization as Sampling from the Implicit Density Model
	Pixel Perturbation as a Density Ratio Test
	Connecting Score-Matching to Adversarial Training

	Experiments
	Evaluating the Efficacy of Score-Matching and Anti-Score-Matching
	Evaluating the Effect of Density Alignment on Gradient Explanations

	Conclusion

	Appendix
	Fooling Gradients is simple
	Manipulating Loss-Gradients
	Experiments on Fooling Gradient Explanations
	Implications for Saliency Regularization Methods

	Score-Matching Approximation
	Evaluating Effect of Score-Matching on Gradient Explanations on CIFAR10
	Denoising via Implicit Density Models on CIFAR100
	Hyper-parameter Sweep on Score-Matched Training

	Conclusions, Limitations & Open Problems
	Bibliography
	Curriculum Vitae

