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Recently, a phonology-based sign language assessment approach has been proposed using sign language production acquired in 3D
space using Kinect sensor. In order to scale the sign language assessment system to realistic application, there is need to reduce the
dependency on Kinect, which is not accessible to wider community, and develop solutions that can potentially work with web-cameras.
This paper takes a step in that direction by investigating sign language recognition and sign language assessment in 2D space either by
dropping the depth coordinate in Kinect or using methods for skeleton estimation from videos. Experimental studies on Swiss German
Sign Language corpus SMILE show that, while loss of depth information leads to considerable drop in sign language recognition
performance, high level of sign language assessment performance can still be obtained.
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1 INTRODUCTION

Sign language (SL) is the primary mode of communication for the deaf/hard-of-hearing (DHH) community. It is a visual
mode of communication that conveys information through various channels such as handshape, hand movement, facial
expression, body posture etc. It is used by the DHH community to communicate with both Hearing and DHH community.
The research in SL processing has mainly focused on recognition [11], translation [8, 9] and generation. Most of the
recognition approaches are based on data acquisition either from sensors such as gloves and accelerometers [15, 35]
or camera based systems [17–19]. Considering the sequential nature of the problem and the similarity to speech
recognition, in the early research, Hidden Markov Models (HMM) played a major role in modelling the signs. Taking
inspiration from speech, HMMs have been widely applied to isolated sign recognition [11, 22, 28, 33, 34]. With the
advances of Deep Learning methods in the vision community with respect to body pose estimation and spatio-temporal
representations, convolutional networks and recurrent neural networks have been swiftly adapted for Sign Language
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Recognition (SLR) [7, 19, 21, 31] and SL generation [25, 27]. As each SL has its own grammar, more recently there has
been thrust towards development of approaches that integrate translation between spoken language representation and
"gloss" representation in an end-to-end manner [8, 25].

One of the ways to bridge the communication gap between the DHH community and the Hearing community is
to develop assistive technology that can help people, irrespective of whether they are hearing impaired to learn sign
language, assess and improve themselves with the help of automatic systems that provide meaningful feedback. In
that direction, there has been effort for more than a decade in developing interactive sign language learning platforms
for both children and adults [4–6, 26, 38]. Most of the existing platforms for sign language learning/assessment test
vocabulary via pre-recorded videos for later analysis. E-learning platforms such as SignAssess [10] allows to compare a
user’s recorded video to a reference one. In terms of real-time SL verfication, SignAll [32] and ISARA [1] applications
assess if the produced sign is correct or incorrect. Validation in terms of whether the produced sign is correct or
incorrect is not enough information to aid a SL learner. On the linguistics side, Willoughby et al. envisioned a system,
My Interactive Auslan Coach [36], that provides automatic feedback on correctness of handshape and hand movement
of Australian Sign Language signs. In [14], Huenerfauth et al. proposed a system that analyses the production of signs
and gives feedback with respect to both manual and non-manual components. These two systems just depict the
prototype of the feedback system and analyse the system in terms of usability through wizard-of-oz setup.

Our work is taking place in the context of development of SL production assessment system for SL learning. In
that regard, automatically assessing whether a produced sign is correct or incorrect by itself would not be sufficient,
as sign language conveys information in parallel through multiple channels, i.e., handshape, hand movement, facial
expression etc. Therefore, providing channel-wise feedback would be beneficial. In that direction, in a recent work [29],
a "phonology" based SL production assessment approach was proposed, where both lexeme-level assessment (assessing
whether a sign production is acceptable or not) and form-level assessment (assessing channel-wise errors) can be carried
out in a seamless manner. In [29], the framework was validated with skeleton data acquired through Kinect 3D camera.
Dependency on the Kinect sensor makes the framework inaccessible to a wider community, so, it is desirable to have a
system that can operate on RGB images, such as captured through a web-camera. This paper investigates that with the
following research questions: (i) RQ1 - what is the impact of loss of depth information on SL production assessment? (b)
RQ2 - can the impact of loss of depth information on SL production assessment be handled through 3D joint estimation
techniques from RGB videos? and (c) RQ3 - SL assessment framework inherently involves sign language recognition
components. So, a question that arises is: with loss of depth information, what is the trade-off between SL production
assessment performance and SLR performance? We investigate these research questions through a study on Swiss
German Sign Language database SMILE DSGS [12].

The paper is organized as follows. Section 2 provides a background on the SL assessment approach. Section 3 presents
the experimental setup and Section 4 presents the results and analysis.

2 BACKGROUND

In this section, we provide a brief overview on the phonology-based sign language assessment framework that was
developed in [29]. The framework consists of two phases: training phase and assessment phase.

In the training phase, "subunits" corresponding to the different channels 𝑓 such as, hand movement (denoted as
hmvt), handshape (denoted as hshp) are jointly modeled through HMMs [31]. More precisely, as illustrated in Figure 1 ,
this is done by estimating the posterior probability of the subunits for each channel 𝑓 ∈ {ℎ𝑠ℎ𝑝, ℎ𝑚𝑣𝑡, . . . } given the
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visual signal (v1, . . . v𝑡 , . . . v𝑇 ). Mathematically, this is represented as

z𝑡,𝑓 = [𝑃 (𝑣𝑠1
𝑓
|v𝑡 ) · · · 𝑃 (𝑣𝑠𝑑𝑓 |v𝑡 ) · · · 𝑃 (𝑣𝑠

𝐷𝑓

𝑓
|v𝑡 )]T 𝑓 ∈ {ℎ𝑠ℎ𝑝, ℎ𝑚𝑣𝑡, . . . },

where 𝑣𝑠𝑑
𝑓
denotes visual sub-unit 𝑑 corresponding to channel 𝑓 . The posterior probability of the subunits corresponding

to the different channels are stacked and used as feature observation z𝑡 = [z𝑡,ℎ𝑠ℎ𝑝 z𝑡,ℎ𝑚𝑣𝑡 , . . . ]T for an HMM, whose
states are parameterized by categorical distributions y𝑖 = [y𝑖,ℎ𝑠ℎ𝑝 y𝑖,ℎ𝑚𝑣𝑡 , . . . ]T, for 𝑖 ∈ {1, . . . , 𝐼 } where 𝐼 is the
number of HMM states. The parameters of the HMM are estimated by optimizing a cost based on Kullback-Leibler (KL)
divergence. This HMM is referred to as Kullback Leibler divergence based HMM (KL-HMM) [2, 3].
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Fig. 1. Illustration of modeling production and perception phenomena in KL-HMM framework for sign language processing [31]. The
visual signal is denoted by (𝑣1, 𝑣2 . . . 𝑣𝑇 ) , [𝑧1,1 . . . 𝑧𝑡,𝑓 . . . 𝑧𝑇 ,𝐹 ] is the stack of posterior estimates of 𝐹 channels obtained from the
visual signal, and the emission distribution for HMM state 𝑖 is parameterized by the categorical distribution [𝑦𝑖,1 . . . 𝑦𝑖,𝑓 . . . 𝑦𝑖,𝐹 ].

In the assessment phase, a test sign production is matched against an expected reference sign production. As
illustrated in Figure 2, this is done by first matching the KL-HMM corresponding to the reference sign, i.e. the sign that
was expected to be produced, with the stacked posterior feature sequence estimated from the visual signal of test sign
production using dynamic time warping with local score based on symmetric KL-divergence. Lexeme-level assessment
is carried out by applying a threshold on the path length normalized global score 𝑆 (𝑁,𝑇 ). Form-level assessment,
i.e. assessment of the different channels, is carried by factoring out the score of each channel from the global score
and applying a threshold on the resulting channel-wise score. For further details, the reader is referred to [29]. This
assessment framework as such can integrate all the channels in sign language. In this work, we limit ourselves to
handshape and hand movement channels, as reliably estimating other channels such as, facial expression, mouthing
information is still an open research.

3 EXPERIMENTAL SETUP

To address the research questions posed in Section 1, we used SMILE DSGS database, as it is the only linguistically
annotated SL dataset available for sign language assessment system development. In the remainder of the section,
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Fig. 2. Illustration of the assessment framework [29]. [𝑧1,1 . . . 𝑧𝑡,𝑓 . . . 𝑧𝑇 ,𝐹 ] is the stack of posterior estimates of F visual sub-units
obtained from the test signer production. Each state 𝑙𝑛 of the reference KL-HMMmodel is parameterized by the categorical distribution
[𝑦1,1 . . . 𝑦𝑛,𝑓 . . . 𝑦𝑁,𝐹 ]. The DTW score is given by 𝑆 (𝑁,𝑇 )

we first present the SMILE DSGS database. We then present the human skeleton estimation methods that are used to
answer the research questions. We then present the SL assessment and SL recognition systems developed for evaluation.

3.1 SMILE DSGS Database

The SMILE DSGS 1 dataset[12] was created for the development of an assessment system for lexical signs of Swiss
German Sign Language. It is the only dataset that is available in the context of linguistically annotated sign language
dataset that aids the development of production level SL assessment. The database has 100 lexical signs of DSGS
vocabulary performed three times by 11 adult L1 signers and 19 adult L2 signers. The videos were collected with
the Microsoft Kinect v2 sensor, the dataset includes both RGB and depth data obtained by the Kinect v2 sensor and
the gloss(meaning label associated to the sign in related spoken language) annotations. Figure 3 shows a snippet of
Swiss-German signs from the SMILE dataset.

Fig. 3. Video snippets from SMILE dataset. The first row corresponds to the sign VON, second row corresponds to the sign BLAU and
the third row corresponds to the sign EINVERSTANDEN

In addition to the gloss, a category annotation developed by linguistic experts is also provided for each sign. The
category of sign production marked 1 through 6, evaluates the acceptance of the sign produced according to whether it
1DSGS stands for DeutschSchweizerische GebärdenSprache
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is the same lexeme(word or words) as target sign, has the same meaning as target sign and whether it has same form
(shape, movement) as target sign. (1) Category 1 - Same lexeme as target sign: same meaning, same form, (2) Category
2 - Same lexeme as target sign: same meaning, slightly different form, (3) Category 3 - Same lexeme as target sign:
same meaning, different form, (4) Category 4 - Same lexeme as target sign: slightly different meaning, slightly different
form, (5) Category 5 - Different lexeme than target sign: same meaning, different form and (6) Category 6 - Different
lexeme than target sign: different meaning, different form. Category 1 and 2 are the linguistically-valid acceptable sign
productions and are used to build the components of the assessment framework. The acceptable sign productions of
category 1 and 2 were partitioned into 1125 training samples from 15 signers, 581 test samples from 8 signers and
509 development samples from 7 signers. There are 412 samples corresponding to category 3 and 4, and 183 samples
corresponding to category 5 and 6. We used exactly the same dataset protocol as in [29] for sign language assessment and

sign language recognition studies. For the details, the reader is referred to [29].

3.2 Human skeleton estimation

To investigate the research questions, we used only the RGB videos from the SMILE dataset. To investigate RQ1, we
used 2D joint pose estimation. More precisely, we used OpenPose [39] and MaskRCNN [13] based key-point estimation,
referred to as "OpenPose2D" and "MaskRCNN" in our experiments. MaskRCNN extends faster-RCNN [24] to first
obtain bounding boxes of the detected objects/persons and then adding a branch of instance segmentation over it. It
treats the problem of key-point estimation as instance segmentation by viewing each key-point as a one-hot encoded
binary mask, which helps to identify instance based poses. To investigate RQ2, we applied methods to estimate 3D
skeleton from RGB videos without any depth information, namely, VideoPose3D [23] and Vibe3D [16], referred to as
"VideoPose3D" and "Vibe3D" in our experiments. VideoPose3D operates by first predicting 2D key-points from images
using MaskRCNN [13] and then the 3D key-points of the video are estimated through temporal convolutions over
the 2D key-points. Owing to lack of 3D annotated motion data, Vibe leverages adversarial learning to discriminate
real human motions from the ones generated by temporal shape and pose regressors to predict reliable 3D SMPL [20]
human models from in-the-wild videos. We use the pretrained models available for all the methods.

3.3 Posterior feature vector estimation

To extract handshape posterior feature z𝑡,ℎ𝑠ℎ𝑝 , as done in [29], we used the pre-trained handshape classifier neural
network SubUNets [7]. It uses a ResNeXt-101 [37] based model for handshape classification. The first classifier was
trained on the One-Million-Hands dataset [18] that uses only the top 30 commonly occurring handshapes out of 60. In
addition to this, a second classifier was trained to classify the 30 handshapes and a transition shape. The input to neural
network is hand patches obtained by applying Openpose [39] 2D pose estimation method to localize the wrist and
cropping hand patches from the image using the wrist coordinates. The output is handshape class-conditional posterior
probability vector z𝑡,ℎ𝑠ℎ𝑝 .

To estimate hand movement posterior features z𝑡,ℎ𝑚𝑣𝑡 , we used the same procedure as in [30] and [29]. More
precisely, this involves two steps, (i) hand movement subunit inference: a sequence of hand movement feature
vectors based on skeletal information are extracted for each sign. The feature vector consists of data corresponding
to the coordinates of left and right hands relative to head, hip and shoulder and their velocities. To normalize the
variation in between signers, the neck joints of all the signers are aligned with respect to a randomly chosen signer and
scaled by the shoulder width. Given the sequence of features, the hand movement subunits are inferred by training
left-to-right HMMs with different number of states for each of the signs and selecting the number of states that yields
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best performance on a development set. (ii) hand movement subunit posterior probability (z𝑡,ℎ𝑚𝑣𝑡 ) estimator
training: this is done by obtaining an alignment of the features with the HMM states and training of a multilayer
perceptron (MLP) to classify the HMM states with a cost function based on cross entropy. The architecture of the MLP
is determined in a cross validation manner.
It is worth mentioning that loss of depth information affects hand movement subunits posterior estimation not handshape.

3.4 KL-HMM systems

As done in [29], we trained different whole sign KL-HMM models for each sign, namely, (i)M: only the hand movement
sub-units obtained from both right and left hands(combined) are modelled. (ii) rlM: the hand movement sub-units are
obtained separately for left and right hands, and the two set of hand movement posteriors obtained from two MLPs
are stacked and modelled using KL-HMM and, (iii) M+rlS and (iv) rlM+rlS are systems that use the concatenation of
hand movement and hand-shape probability posteriors in accordance with the systems described above. The number of
states is determined by training KL-HMMs with 3 to 30 states on acceptable sign production data, and selecting the
model that yielded best recognition accuracy on the development set. For SL assessment studies, similar to [29], the
thresholds for lexeme assessment , hand movement form assessment and handshape form assessment are determined
from the development set consisting of data from Category 1 and 2. This is done by creating a set of correct sign scores
by matching the same sign instances and by creating a set of incorrect sign scores by matching instances from different
signs. The thresholds are then set as the ones that yielded the best 𝐹1 score for lexeme and form assessment on the
development data. Besides SL assessment studies, to address RQ3, we carried out SL recognition studies.

4 RESULTS AND ANALYSIS

In this section, we present and analyse the experiment results that were performed to address the research questions
presented earlier. We show the assessment results that address RQ1 and RQ2 with respect to various 2D and 3D skeleton
estimation methods used in Figure 4. Since the handshape modelling is the same across the different methods, we only
focus on the lexeme and hand movement form assessment in our results. We compare the F1 scores of lexeme and
hand movement form assessment of the skeleton estimation methods used against the results obtained by training the
framework using data from Kinect sensor (referred to as Kinect3D) as in [29]. We obtain similar results for Kinect3D
as given in [29]. We can see that Kinect3D performs the best in all cases, as it has additional true depth information.
Nevertheless, the drop in F1 scores from moving from Kinect skeleton to other skeleton estimation methods is not very
high. The best assessment performance in 2D space is obtained by MaskRCNN in 3D space by VideoPose3D.

To analyse the statistical significance of the two best performing methods, we perform a McNemar’s test on the
lexeme and movement assessment results. We observed that the lexeme assessment is not significantly different, but the
hand movement assessment is significantly different at 95%, owing to the differences in 2D and 3D movement features.
To further analyse the movement form assessment results of MaskRCNN and VideoPose3D, we split the signs in the
test-set based on the direction of hand movement in the signs. We identified 5 scenarios: (i) x,y and z, (ii) x, y (iii) z (iv)
in place wrist rotation (v) static sign. For example, in Figure 3, the first sign has movement focused only in z direction,
the second sign in xyz direction and the third sign in xy direction. For each of the scenarios, we calculate the percentage
of correctly identified assessments. In Table 1 we present the results only for the best reference system(rlM+rlS), similar
trends are observed across all the reference systems, we only present results on rlM+rlS in this paper, due to lack of
space. From the table, we can observe that 3D estimation for videos is beneficial compared to 2D estimation in terms of
movement assessment.
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(a) Lexeme Assessment (b) Movement Form Assessment

Fig. 4. SL assessment F1 scores

Table 1. Percentage of correctly identified movement assessment in signs across different directions of movement

Movement Direction
xy xyz z rotation static

MaskRCNN 66.99 51.94 61.32 64.13 50
VideoPose3D 78.47 74.42 73.58 81.52 59.09

Table 2. SL recognition accuracy

MaskRCNN OpenPose VideoPose3D Vibe3D Kinect3D
Recognition Acc 69.46 65.38 65.92 62.59 75.6

To address RQ3, we used the developed KL-HMM reference models to perform isolated sign language recognition
studies. Table 2 presents the SL recognition accuracy of the rlM+rlS reference system. As in assessment, Kinect3D
outperforms all the other methods because of true depth information. It is worthwhile to note that MaskRCNN results
in the better recognition accuracy as opposed to VideoPose3D which gave better assessment performance, this is true
across different reference systems, even though we report the accuracy only on rlM+rlS. This observation is inline with
the one in [5], where the trend in performance on acceptability ratings of SL is not correlated with the SL recognition
performance. Overall, the drop in recognition accuracy is more than the drop in assessment when moving away from
Kinect sensor based data.

5 CONCLUSION

In this paper, we investigated the impact of carrying out automatic sign language assessment in 2D space as opposed to
3D space, to make the assessment system accessible for all. Our investigations on SMILE corpus show that moving
from 3D space to 2D space leads to an acceptable drop in sign language assessment performance. We also observe that
the model that gives the best assessment performance does not automatically translate to best recognition performance.
This indicates that, although the trained KL-HMMmodels loose discrimination across signs, they still are able to capture
information related to acceptable sign production. Overall, the experimental studies provide promising direction to move
on from Kinect capturing systems to more readily available capturing systems like web-cameras. Our ongoing work is
focusing in that direction. More precisely, remote sign language assessment system development using web-cameras.
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