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ABSTRACT
In this paper, we evaluate different alternatives to process richer
forms of Automatic Speech Recognition (ASR) output based on
lattice expansion algorithms for Spoken Document Retrieval (SDR).
Typically, SDR systems employ ASR transcripts to index and re-
trieve relevant documents. However, ASR errors negatively affect
the retrieval performance. Multiple alternative hypotheses can also
be used to augment the input to document retrieval to compensate
for the erroneous one-best hypothesis. In Weighted Finite State
Transducer-based ASR systems, using the n-best output (i.e. the
top “n” scoring hypotheses) for the retrieval task is common, since
they can easily be fed to a traditional Information Retrieval (IR)
pipeline. However, the n-best hypotheses are terribly redundant,
and do not sufficiently encapsulate the richness of the ASR output,
which is represented as an acyclic directed graph called the lattice.
In particular, we utilize the lattice’s constrained minimum path
cover to generate a minimum set of hypotheses that serve as input
to the reranking phase of IR. The novelty of our proposed approach
is the incorporation of the lattice as an input for neural reranking
by considering a set of hypotheses that represents every arc in the
lattice. The obtained hypotheses are encoded through sentence em-
beddings using BERT-based models, namely SBERT and RoBERTa,
and the final ranking of the retrieved segments is obtained with a
max-pooling operation over the computed scores among the input
query and the hypotheses set. We present our evaluation on the
publicly available AMI meeting corpus. Our results indicate that
the proposed use of hypotheses from the expanded lattice improves
the SDR performance significantly over the 𝑛-best ASR output.
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1 INTRODUCTION
Increasing amounts of multimedia content, particularly spoken
material, are being captured and archived from a wide variety of
sources. However, the lack of robust retrieval systems to deal with
the challenges present in spoken content limits the full potential
of this material in any real-world application. Spoken Document
Retrieval (SDR) systems usually employ a cascaded approach: the
spoken document is processed by an Automatic Speech Recogni-
tion (ASR) followed by an Information Retrieval (IR) system that
indexes the output of the ASR and processes all given queries [3, 35].
ASR performance is affected by speaking styles (e.g. conversational
speech, broadcast data, meetings, etc.). The errors in ASR output
in turn negatively affect the performance of IR systems that are
usually trained with only clean textual data. Thus, the input to IR
may be enriched by either using 𝑛-best hypotheses of the ASR sys-
tem, consensus network, or even the pruned version of the decoded
lattice for indexing. Alternatively, end-to-end approaches also exist
that take both the speech document and query as input, and output
relevance scores [6]. Such methods, however, require large amounts
of training data in order to develop robust systems.

In this paper, we present an extensive analysis on different alter-
natives to process richer forms of ASR output for SDR on the AMI
corpus. Our work has three salient features: (1) a neural reranking
approach based on expanded lattice embeddings space; we eval-
uate and report IR results using two different alternatives to use
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information in the lattice, (2) new baseline on the AMI corpus; we
present our results on the AMI corpus prepared for SDR by [5] and
establish a baseline for this dataset with ASR model trained on out-
of-domain data, (3) we also do not use any part of the target dataset
to train the IR reranker, allowing the possibility of our method to
be domain-agnostic.

The remainder of the paper is organized as follows: §2 describes
the fundamentals of ASR lattice-based outputs, §3 describes the
proposed SDR method, §4 explains the employed dataset, baseline
methods, how the sentence embeddings were obtained, and exper-
iments definition. We discuss both the ASR performance and the
SDR results in §5. Finally, §6 depicts our main conclusions and
future work directions.

2 ASR LATTICE-BASED OUTPUTS
InWeighted Finite State Transducer (WFST)-based ASR systems, de-
coding converts the input speech to an intermediate representation
known as the lattice [25]. The lattice is a directed graph with each
edge, also known as an arc, containing information about acoustic
model (AM) and language model (LM) scores. The path with the
best score, also referred to as the one-best output, is considered
as the ASR output. Since the lattice is generated with a statistical
n-gram LM, it is generally better to apply LM rescoring (i.e. replace
the language model scores in the lattice) with a significantly better
LM (typically neural LMs) [33].

ASR outputs have been applied to many downstream tasks in
NLP: Natural language understanding (e.g. intent detection, domain
detection, etc.), information retrieval, keyword spotting, etc. The
top-scoring ASR hypothesis (also referred to as the one-best) may
contain errors and omissions whereas the downstream systems are
often trained with ground truth data that are error-free. Such sys-
tems are not trained to be robust to error-prone inputs. For instance,
machine translation (MT) applied to ASR’s one-best outputs reduce
BLEU scores significantly [29].

It is often necessary to enrich the input to these downstream
tasks. The enrichment focuses on using alternate hypotheses avail-
able after decoding the speech document, which is well captured
in the lattice. A simple approach is to use 𝑛-best outputs, i.e. top
n-scoring paths in the lattice. However, the 𝑛-best hypotheses suffer
from redundancy where consecutive outputs have a significantly
large overlap. To ignore the redundancy it is possible to compress
the information in a confusion network (also referred to as consen-
sus network) [18]. A confusion network is obtained from a word
lattice and provides multiple word hypotheses at different time
instances with confidence value for each word. In [35], the con-
fusion networks are indexed for IR. A similar approach is applied
for Cross-lingual IR in [3, 35]. As an extension to indexing confu-
sion networks, ASR lattices are also indexed with applications to
keyword spotting [30].

In all-neural ASR systems it is now possible to plug neural IR and
rerankers by jointly optimizing the two tasks [6]. However, it is not
straightforward to use such models in hybrid ASR systems. While
it is possible to simplify the process by using only the one-best
output from the ASR, we miss out on the richness of the n-best and
the lattice.

Contrary to previous work, in this paper, we propose to apply
neural reranking for SDR on ASR lattices by using well-known
methods for neural LM rescoring in hybrid ASR systems. Rescor-
ing lattices with neural LMs are employed in two ways: (1) the
n-best output is generated and the LM score is evaluated for each
hypothesis with the neural model, and the hypothesis with the best
combined–AM and LM–score is now chosen as the ASR output; (2)
RNN LMs are applied on lattice paths by limiting the context [11, 12].
The LM scores generated with n-gram models are replaced by those
provided by the RNN LMs. The best path is now re-computed to
obtain the new ASR output.

We utilize the algorithm proposed in [10] that generates a min-
imal set of hypotheses that can be scored with neural LMs. The
lattice is pruned and expanded, followed by the application of the
constrained minimum path cover algorithm on the lattice. The
constraints ensure every path is the best path for at least one arc.
The minimum path cover produces a lattice containing the fewest
possible paths. We will refer to the representations of each path
from a neural LM as the expanded lattice embedding. The paths
generated by this lattice expansion algorithm act as a proxy to score
a target query against the lattice. Scoring all outputs (i.e. processing
through the IR system) of the constrained minimum path algorithm
ensures that all arcs in the lattice are entirely covered, even though
we are not evaluating every path in the original lattice. We compare
the expanded lattice embeddings against the embeddings from the
n-best outputs with 𝑛 = 100. Whereas in [10] the authors imple-
mented LM rescoring for models trained with Pytorch on lattices
output by Kaldi, we target the task of SDR for WFST-based ASRs.
In addition to using the embeddings, we also integrate the ASR
confidences in the reranking process as explained in the next sec-
tion. We consider two types of scores to compute these confidences:
(1) the Viterbi-Forward-Backward scores generated during lattice
expansion, and (2) the final AM and LM scores in the lattice for
each path considered by the lattice expansion algorithm. We note
that, confidence scores generated with the second method will be
equivalent to those generated by the n-best algorithm when both
algorithms generate the same number of hypotheses. If the lattice
expansion algorithm generated𝑚 paths for a given lattice, and if
we consider the top-𝑚 scoring paths in the lattice, we did not notice
any difference in the set of hypotheses generated. The order of the
hypotheses was, however, different.

3 RERANKINGWITH EXPANDED LATTICE
EMBEDDINGS

Figure 1 summarizes our proposed multi-stage retrieval methodol-
ogy. Given a query 𝑞𝑖 ∈ 𝑄 and a spoken document collection D,
the goal of the first stage retrieval is to find a set of documents
relevant to the query 𝐷+ = {𝑑1, ..., 𝑑 𝑗 , ..., 𝑑𝑛} from D such that
( |𝐷+ | ≪ |D|), which then serve as input to our neural lattice-
based reranker. We can categorize the retrieval algorithms into two:
token-based and neural-based. The latter represent algorithms that
jointly learn embeddings of queries and documents in the same
embedding space and use an inner product or cosine distance to
measure the similarity between queries and documents. Very re-
cent examples of these type of methods are ColBERT [9] and ANCE
[32]. However, although these techniques have proven to be very



Figure 1: General overview of the proposed multi-stage retrieval architecture based on expanded lattice embeddings.

efficient in many text document retrieval tasks, they require large
amounts of data, i.e., pairs (topics,relevant documents) to accurately
learn the joint representation. On the other hand, the classic infor-
mation retrieval algorithms (token-based) have the advantage of
not requiring any exhaustive training, and have proven to be very
competitive in many IR tasks. For example, the BM25 algorithm [28]
is frequently used as a strong baseline in many TREC competitions.
During our experiments we use the BM25 method as our first stage
retrieval combined with the KL query expansion technique [2],
a divergence from randomness query expansion model based on
Kullback Leibler divergence that serves to rewrite the query based
on the occurrences of terms in the feedback documents provided
for each query.

The second stage of the proposed retrieval methodology in-
volves an ad-hoc reranking step, i.e., documents 𝐷+ are ranked
for a given query 𝑞𝑖 according to a relevance estimate [31]. In par-
ticular, the proposed ranking methodology calculates the retrieval
score 𝑓 (𝑞𝑖 , 𝑑 𝑗 ) using similarities within an expanded lattice em-
bedding space. Although there is plenty of research exploring the
advantages of contextualized embeddings (e.g., BERT) in text re-
trieval and ranking [14, 19, 26, 34], our work explores the impact of
these representation models in combination with lattice expansion
techniques to improve the performance of an SDR system.

Thus, once an initial set of documents is retrieved by the first
stage retrieval, the input to the neural reranker is the corresponding
audio file of 𝑑 𝑗 ∈ 𝐷+. The lattice representation of 𝑑 𝑗 is generated
and fed to the lattice expansion module (see Section 2), resulting
in the minimum set of hypotheses ℎ 𝑗𝑘 ∈ 𝐻 𝑗 for document 𝑑 𝑗 with
its corresponding confidence scores 𝛼ℎ 𝑗𝑘

. Next, query 𝑞𝑖 and hy-
potheses 𝐻 𝑗 are encoded through functions 𝜙 : 𝑄 → R𝑚 and
𝜓 : 𝐻 → R𝑚 which map a sequence of tokens to their associated
sentence embeddings 𝜙 (𝑞) and𝜓 (ℎ), respectively. A max-pool op-
erator is applied to the output of the inner product between 𝜙 (𝑞𝑖 )
and the expanded lattice embeddings𝜓 (𝐻 𝑗 ). Then, the final scoring
function (𝑓 : R𝑚 × R𝑚 → R) is defined as follows:

𝑓 (𝑞𝑖 , 𝑑 𝑗 ) = (1 − 𝛼ℎ 𝑗𝑘
)𝑟𝑑 𝑗

+ 𝛼ℎ 𝑗𝑘
⟨𝜙 (𝑞𝑖 ),𝜓 (ℎ 𝑗𝑘 )⟩ (1)

where 𝑟𝑑 𝑗
is the score assigned to document 𝑑 𝑗 by the base retrieval

model, ⟨𝜙 (𝑞𝑖 ),𝜓 (ℎ 𝑗𝑘 )⟩ is the maximum similarity score found in
the expanded lattice embedding space, and 𝛼ℎ 𝑗𝑘

corresponds to
the confidence score assigned by the lattice expansion module to

hypothesis ℎ 𝑗𝑘 . Thus, our model rewards documents with good
scores form the base retrieval model and high ASR confidence, and
penalizes documents with low ASR confidence. By following this
approach, we are searching among the expanded lattice embedding
space for alternative hypotheses with the highest semantic similar-
ity to the input query. We will refer to this method as EL-Viterbi in
our experiments.

4 EXPERIMENTAL SETUP
4.1 AMI search collection
We evaluate our proposed approach on a generic meeting corpus,
the AMI meetings corpus. The AMI corpus [4] is a collection of
171 meting records where groups of people are engaged in a ‘role
play’ as a team and each speaker assumes a certain role in a team
(e.g., project manager). The entire corpus represents around 100h of
annotated data. Every meeting lasts about 30 minutes each, involves
up to 4 speakers, covering a number of topical areas with variation
of speech delivery styles. Recordings were made using 6 cameras
and 12 microphones: one headset microphone for each speaker.

For performing our experiments we applied the same setup as [5]
in the construction of the search collection. We merged the per
speaker transcripts using the time marking data provided in the
corpus to form a single transcript file for each meeting. Then, we ap-
plied a time-based segmentation, with segment boundaries placed
at regular intervals of 180s with no overlap.1 Time-based segmen-
tation is a common procedure when facing a spoken document
retrieval task, especially since its assumed that a user wants to
find relevant segments from the audios without listen to them in
their entirety or even to read through a transcript file [8]. After the
segmentation process, our final AMI search collection is composed
by 2048 segments, i.e., spoken documents.

Similarly, topics were constructed and split as described in [5],
i.e., using 35 of the PowerPoint slides provided with the AMI corpus.
We only report results on the test partition of the search topics (25
topics).2 On average, each topic has 49 relevant audio segments,
the topic with the minimum number of relevant documents has

1The decision of creating segments of 180s was made based on the observations
reported in the work by [5]
2Search topics with their corresponding relevance assessments are available here:
https://github.com/villatoroe/AMI_SDR_Queries
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only 1 relevant segment, while the topic with the highest number
of relevant documents has 118.

4.2 Base retrieval
For the implementation of our base IR system we used the PyTerrier
platform [15]. We indexed the spoken document collection using
the generated transcriptions from our one-best ASR model (see
Section 5). Topics are expanded with the 40 most relevant terms
from the top 3 retrieved documents using the KLQE technique.

Results are reported in terms of mean average precision (MAP)
and normalized discounted cumulative gain (NDCG) at a cut-off
rank (rc) of 50 and 1000.

4.3 Sentence Embeddings
We evaluated two different approaches to obtain the sentence
embeddings, namely: sentence transformers (SBERT) [27], and
RoBERTa [13]. For experiments using SBERT, we employed the
pretrained MSMARCO passage model [7].3 For experiments using
the RoBERTamodel, we re-trained the language model to better cap-
ture the language characteristics of conversational data. For this,
we trained the roberta-based4 model for 25 epochs using the
Fisher [1] dataset (henceforth, ‘R-Fisher’), a conversational speech
dataset. We consider the [CLS] token as the sentence embedding.

4.4 Experiments definition
Gold - corresponds to IR performance when the retrieval is done
using ground truth (i.e., error-free) transcripts. Oracle - maximum
achievable results from the base IR model. One-best - the top-
scoring ASR hypothesis is fed to the rescoring phase (Fig.1). For
this setup, ℎ 𝑗1 gets an 𝛼ℎ 𝑗1 = 0.5, as its the most salient (confident)
output of the ASR. 𝑛-best - the top 𝑛-scoring paths in the lattice
(𝑛 = 100) are fed to the rescoring stage. Confidence scores 𝛼ℎ 𝑗𝑘

are
obtained by combining the AM and LM scores in the log domain.
The AM score scaled by an acoustic scale factor of 0.1 (to match
scale of the two scores) is added to the LM score. EL-Viterbi - we
apply the constrained minimum path cover algorithm. Confidence
scores 𝛼ℎ 𝑗𝑘

are extracted from the Viterbi Forward-Backward costs
that are used to compute the minimum path cover output described
in [10]. EL-AM-LM - this configuration is a variant of EL-Viterbi
where we use the AM and LM scores as in the case of 𝑛-best instead
of the Viterbi Forward-Backward scores. In other words, for each
path returned by the lattice expansion algorithm, we compute the
AM and LM scores, and combine them similar to the 𝑛-best setup.

In the latter three experiments, a softmax operation is applied
over the combined scores of all hypotheses in an utterance (i.e.,
𝑑 𝑗 ) to normalize their values between 0 and 1. Resulting values are
considered as the confidence scores 𝛼ℎ 𝑗𝑘

.
Followingmethods serve as comparative evaluations:COLBERT [9,
16] - we use the checkpoint trained by the University of Glasgow
on the MSMARCO passage ranking dataset.5 ESearch - an imple-
mentation of a SBERT-based dense retrieval machine using the
low-level Python client for Elasticsearch.6 ANCE [32] - we used

3https://huggingface.co/sentence-transformers/msmarco-distilbert-base-v2
4https://huggingface.co/roberta-base
5http://www.dcs.gla.ac.uk/~craigm/ecir2021-tutorial/colbert_model_checkpoint.zip
6https://www.elastic.co/guide/en/elasticsearch/client/python-api/current/

Table 1: WERs on the AMI dataset. AMI (full): the entire col-
lection of audio documents in AMI, AMI (eval): the standard
evaluation set, and AMI (train): the training set.

System Training data AMI (full) AMI (eval)

TDNN-F Librispeech (960h) 45.5 44.6
TDNN-F [24] AMI (train) - 23.9

the model checkpoint listed on the ANCE github repository.7 And,
Eskevich [5] - reported performance by M. Eskevich and G. F.
Jones in a similar SDR setup, using the provided transcripts within
the AMI dataset.

5 RESULTS AND ANALYSIS
5.1 ASR results
We trained the acoustic model with 960h of the Librispeech dataset
[20]. We implemented the factorized Time-delay Neural Network
(TDNN) [23] in Pytorch [21] (available with Pkwrap [17]) and fol-
lowed the standard pipeline for training a Lattice Free-Maximum
Mutual Information (LF-MMI) [22] based ASR typically found in
Kaldi [24]. To evaluate the ASR on the AMI dataset, we used a LM
trained with the transcripts from the Fisher corpus [1]. This is done
for the following two reasons: (1) the Fisher corpus is used as a
base LM for interpolation in the Kaldi recipe for AMI, and (2) the
speech style of the Fisher dataset suits AMI dataset better than that
of Librispeech.

WERs on the entire AMI dataset and the standard AMI evaluation
set are presented in Table 1. The latter is presented to demonstrate
the effect of not using any domain-specific data to train the AM
and the LM. Specifically, we observe an absolute degradation of
20.7% in WER when not using AMI train data.

5.2 IR results
Retrieval results are shown in Table 2. On the one hand, results
indicate that if we apply our neural reranker to the first 50 retrieved
documents (cut-off=50), the performance of the IR machine remains
more or less the same among the different alternatives to expand the
lattice, i.e., 𝑛-best, EL-Viterb, and EL-AM-LM. Nevertheless, these
results are significantly better than those obtained by the one-best
configuration. On the other hand, when we set the cut-off=1000,
the best performance is obtained when we use the minimum set
of hypotheses extracted by the EL-AM-LM approach. Although
EL-AM-LM and EL-Viterbi use the same approach to extract the
minimum set of hypotheses from the lattice, the way the confidence
score (𝛼ℎ 𝑗𝑘

) is computed varies (see section 4.4). Thus, the way the
AM and the LM scores are combined plays an important role in the
definition of the hypotheses’ confidence values.

Figure 2 shows the precision-recall curves of the Gold, 𝑛-best and
the EL-AM-LM configurations. As can be observed, the EL-AM-LM
model performs consistently well across several recall values.

7https://github.com/microsoft/ANCE/#results
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Table 2: Retrieval results with cut-off at rank 50 and 1000.
Symbol ‡ indicates statistical significant results (𝑃 = 0.05)
against the 𝑛-best configuration.

IR system Encoding (cut-off=50) (cut-off=1000)
configuration MAP NDCG MAP NDCG

Gold n/a 0.334 0.519 0.445 0.753
Oracle n/a 0.460 0.583 0.914 0.940

One-best SBERT 0.211 0.412 0.066 0.439

𝑛-best SBERT 0.300 0.480 0.357 0.672
R-Fisher 0.305 0.484 0.374 0.691

EL-Viterbi SBERT 0.301 0.483 0.350 0.675
R-Fisher 0.302 0.483 0.356 0.679

EL-AM-LM SBERT 0.301 0.482 0.381‡ 0.695‡

R-Fisher 0.303 0.484 0.399‡ 0.714‡

COLBERT n/a - - 0.212 0.603
E-SEARCH SBERT - - 0.229 0.574
ANCE n/a - - 0.088 0.248
Eskevich n/a 0.360 - - -

5.3 Ablation study
For the following experiments (Table 3), we assume that the most
similar hypothesis ℎ 𝑗,𝑘 will always have a high confidence score
by manually fixing the value of 𝛼ℎ 𝑗𝑘

. This study shows that such a
hypothesis not necessarily is the correct one, negatively affecting
the reranking process.

Table 3: Retrieval results with cut-off at 1000, and 𝛼ℎ 𝑗𝑘
= 0.9

IR conf Encoding MAP NDCG

𝑛-best R-Fisher 0.261 0.643
EL-Viterbi R-Fisher 0.258 0.640
EL-AM-LM R-Fisher 0.255 0.637

6 CONCLUSIONS
This paper proposed a neural reranking method based on the ASR
expanded lattice embedding space. Our approach uses the base re-
trieval model, to obtain the first set of candidate documents. Then,
in the reranking stage, a lattice expansion approach in combination
with sentence embedding techniques allows searching for alterna-
tive (semantically relevant) hypotheses in the lattice embedding
space. The obtained results validate the existence of richer ASR
hypotheses in the lattice, which help improve the performance of
the SDR system. We showed the impact of how the ASR confidence
score can affect the rescoring function. The reported results define
a new baseline for AMI SDR systems using ASR models trained
with out-of domain data, allowing us the possibility to apply this
technique in other domains (domain-agnostic).

Figure 2: Precision-Recall curves at rank cut-off = 1000.
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