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Abstract
Correct pronunciation is known to be the most difficult part to
acquire for (native or non-native) language learners. The ac-
cented speech is thus more variable, and standard Automatic
Speech Recognition (ASR) training approaches that rely on in-
termediate phone alignment might introduce errors during the
ASR training. With end-to-end training we could alleviate this
problem. In this work, we explore the use of multi-task training
and accent embedding in the context of end-to-end ASR trained
with the connectionist temporal classification loss. Comparing
to the baseline developed using conventional ASR framework
exploiting time-delay neural networks trained on accented En-
glish, we show significant relative improvement of about 25%
in word error rate. Additional evaluation on unseen accent
data yields relative improvements of of 31% and 2% for New
Zealand English and Indian English, respectively.
Index Terms: Speech recognition, accented speech, accent em-
bedding, multi-task, end-to-end.

1. Introduction
Automatic speech recognition (ASR) is an established research
area of speech processing. Current techniques focus mainly on
neural networks and are therefore sensitive to the generalization
potential of the data. There are many ways to speak, even within
the same language. The absence of given accents in the training
set often means that a system may operate well for seen accents,
and become unusable for unseen accents.

With the advent of voice assistants and other voice user
interfaces, ASR systems are still more ubiquitous in our lives
and good performance is necessary to get satisfied user expe-
rience. ASR systems in some benchmarks surpassed human
speech recognition abilities, and their performances are contin-
uously getting better [1]. These good results encourage compa-
nies and public services to use ASR systems in their products.

The issue arises when the technology does not help to
bridge the gap anymore, but rather digs it deeper. When con-
sidering the performance of ASR systems, we often neglect an
important fact, which is that the way people talk vary widely
across the world. It is even more the case for international
languages such as English, which is not only spoken by about
380 million native, but also by close to 740 million non-native
speakers [2]. All those speakers, many using English as a linuga
franca, have a very wide variety of accents usually influenced by
their native language. Pronunciation is considered by some lin-
guists to be the most difficult part to acquire for learners [3].
Consequently, it seems rather hopeful to think that a system
well tuned for a certain group of people would work well for
everyone.

The accent problem we are facing can be thought of a do-
main adaptation. That is, how to take the incomplete knowledge
we have of a task and expand it without starting from scratch.
There have been many works already done in this topic. Multi-
lingual training approach was tackled in [4], applying the idea

that the acoustics of languages of different origins are not totally
alien to each other and that one could leverage the resources of
one to help for the other. The same issue was explored for low-
resource ASR through transfer learning [5]. A wise choice of
the source language for language adaptation can significantly
impact the results as well [6]. The report investigates the idea
of first transforming back an accent to a standard form as a pro-
cessing step using a pair-based accent conversion system [7].
Closer to our work, a recent work on data augmentation for for-
eign accent ASR [8] states that “Overall, we find speed mod-
ification to be a remarkably reliable data augmentation tech-
nique for improving recognition of foreign accented speech.”.
Siamese networks also give a promising avenue of research [9].
These methods use the fact that similar tasks may lead to better
generalization by sharing different parts of their network. Other
works propose multi-task learning for ASR, applied on both the
target language and the source language at the same time [10].

Recently, additional improvements have been reported by
investigating two techniques that address the issue of robust-
ness to accented voice: (i) multi-task learning with a model
sharing layers for accent and phone classification tasks, respec-
tively, and (ii) accent embeddings, where a standalone model
is used to create accent embeddings, further employed as addi-
tional input feature for the phone classifier [11].

In our work, aiming to develop a robust accent ASR sys-
tem, we hypothesize that end-to-end training used on the top
of current best-performing models can yield further improve-
ments. As stated above that the pronunciation is heavily im-
pacted by accents, standard ASR training approaches relying
on intermediate phone alignment can introduce training errors.
With end-to-end training, we aim to alleviate this problem. The
proposed solution is implemented as an open-source project1

and the repository includes all the experiments performed in
this paper. The experiments can be reproduced by modifying
the config.py file and running the run experiment.py
script.

The rest of the paper is composed as follows: section 2 pro-
poses the end-to-end multi-task accent training and section 3
describes an experimental setup and evaluation of the proposed
system. Finally, section 4 concludes the paper and outlines fu-
ture work.

2. Multi-task accent network
2.1. Conventional end-to-end with the CTC loss

In our work, the conventional end-to-end ASR system is based
on the Deepspeech 2 architecture [12] that uses the Connec-
tionist Temporal Classification (CTC) loss [13]. The network is
visually represented in figure 1.

The number and size of the layers is obtained experimen-
tally using cross-validation. Batch normalization, applied on all

1https://github.com/SilvrDuck/
AccentedSpeechRecognition



layers is a good way to reduce overfitting and to speed up the
training. In essence, ”[It] allows each layer of a network to learn
by itself a little bit more independently of other layers.” [14].

The input features, in our work we used 40 dimensional
high resolution Mel-Frequency Cepstral Coefficients (MFCCs)
computed by the Kaldi framework [15], are first processed by
the 2 convolutional layers with 32 channels, a stride of 2 and a
big kernel of first 41 × 11 and then 21 × 11. The task of the
convolutional layers is to extract the features of the short-time
frame in a way that is “meaningful” to the rest of the network.

After these convolutions, the data flows through 5 recurrent
layers. A recurrent network allows us to operate with variable
input length and to learn the temporal relationship between the
frames. We use bidirectional Gated Recurrent Units (GRU) [16]
in this step. GRU layers were found to outperform Long Short-
Term Memory (LSTM) layers on smaller dataset, while having
less parameters (and are thus quicker to train) [17].

After the recurrent layers, 2 simple fully connected layers
with the Rectified Linear Units (ReLU) follow. The ReLU ac-
tivation function is known to perform well in the context of
speech recognition [18]. They have the advantage of sparse acti-
vation and efficient computation over other activations like tanh
or sigmoid for example.

The final layer uses a softmax activation function. The func-
tion produces a probability distribution over the set of charac-
ters, and implements the CTC loss. The CTC loss is a powerful
tool in the realm of sequence to sequence prediction where the
relative lengths might differ. The CTC allows to work without
any label alignment of the input and the output data.

Figure 1: The conventional end-to-end network we used to
benchmark the other variants of our models. We also used the
same architecture when exploring the use of i-vectors and ac-
cent embeddings.

The Adam optimization algorithm [19] was used during
the backpropagation. It is an efficient algorithm based on the
Stochastic Gradient Descent (SGD). It has the advantage to use
an evolving learning rate, and is known to be robust and fast,
while in certain cases also getting better results than SGD [20].

2.2. Multi-task

Multi-task learning is an active area of machine learning in
which it is assumed that, by analogy to the human brain, a
model performing multiple tasks will generalize better in any
given task. In practice, the network has multiple outputs, and
therefore multi-component loss computed in order to do the
backpropagation. It was shown, for example, that this method

can help a model perform better on low resources task, while
not necessarily getting better or worse on the main task [21]. As
we deal with accented data, we hypothesized that by modeling
jointly the class of the accent as well as the sequence of symbols
in the utterance, the model will get more robust to unseen ac-
cents. In our case, we would not expect any major improvement
on ASR task on the test set, but rather to see an improvement
over the unseen accents (e.g. on Test-NZ test subset described
later in section 3.2.1).

The multi-task model was built upon the base architecture
described in section 2.1, by adding a secondary accent classifi-
cation network after the first recurrent layers. This can be seen
in figure 2. The network was then trained based on a combined
loss with the following formula:

Loss(y) = λ · CTC(y) + (1− λ) · CrossEntropy(y),

where λ is a hyper-parameter called the mixing factor.

Figure 2: The multitask architecture. Accent classification and
end-to-end speech recognition are performed at the same time.

The λ parameter significantly impacts the performance of
the transcription task. We thus studied the effect of varying
the λ on both the accent classification and the text transcription
tasks to find an optimal parameter to use. We selected the value
of λ = 0.9, where the accent classification was less sensible
to the variation of the parameter on the dev set. This can be
observed in figure 3.

2.3. Accent embedding

We postulate that using a good representation of the accents
at the input of the end-to-end network will increase the gen-
eralization of accented speech ASR training. First, we used
the i-vectors approach, similarly to [11], though it is just an
approximation to accent modelling, hypothesizing that differ-
ent dialects are associated with different speakers, and thus the
i-vectors might not model the fundamental accent characteris-
tics. Employing i-vectors jointly with the short-term spectral
features has been used in literature to enhance the performance
of ASR systems with respect to speaker variation [22, 23]. Sec-
ond, we trained accent embeddings directly with a standalone
network trained to identify accents.

To compute the embeddings, we use the model shown in
figure 4, with 5 GRU recurrent layers of 800 units and 3 fully



Figure 3: Effects of the variation of the multi-task mixing factor on the two tasks of the network. The x axis represent the training
epochs. We can see that as λ varies, the accent classification accuracy remains stable. Of course for λ = 1, the Cross Entropy loss is
ignored and hence no progress is shown. The Word Error Rate (WER) on its side seems to get better with higher λ. The curves have
been smoothed for clarity, lighter curves are the originals.

connected layers. The model was trained using the cross-
entropy loss. After training, the output of the penultimate layer,
called the bottleneck layer, was used as an accent embedding for
the input sample. To have a visual intuition of what the accent
embedding network learns, we plotted the first two principal
components of the embeddings using the Principal Component
Analysis (PCA) algorithm, shown in figure 5.

Figure 4: The standalone network used to create accent em-
beddings in order to feed them to the main model.

We then reused the model described above, but concate-
nated the accent embeddings to the inputs. We experimented
with two size of embeddings, 100 and 256. As we will see, an
embedding size of 100 performed slightly better.

2.4. Decoding

ASR task is performed with a Language Model (LM) trained
on the transcripts of the training set. The trigram LM was
trained in the ARPA format using the SRILM language mod-
eling toolkit [24]. The LM contained a total of 6,854 unigrams,
29,350 bigrams and 34,741 trigrams.

The decoding is performed by a beam search decoder [25].
In contrast with a greedy decoder, which would find the most
likely path in the output matrix by maximizing the product of
the character probabilities at each time step, the beam search de-
coder considers a “beam” of nmost likely decoding hypotheses,

Figure 5: PCA projection of the embeddings. The accents tend
to cluster reasonably well upon visual inspection, but there is
still a lot of overlap between the different classes.

with n being the beam width parameters set to 100 in our case.
When the whole probability matrix is traversed, the path with
the highest score is selected as the final decoding and suppres-
sion of repeated characters and blank symbols are performed.

3. Experiments
3.1. Baseline

The baseline in our work is represented by the Kaldi-based ASR
framework exploiting time-delay neural networks trained on ac-
cented English [11]. A joint training of an accent classifier and
multi-accent acoustic model with optional input accent ebmed-
dings was used. The implementation of the baseline is also
open-sourced2.

3.2. Data

We followed the baseline work and used the same training and
evaluation speech database, including the same subsets as pro-

2https://github.com/abhinavjain03/
kaldi-accentsmultitask



Table 1: Composition of the different data splits. The numbers in parentheses denote the percentage of an accent in the set. US: United
States, EN: England, AU: Australia, CA: Canada, SC: Scotland, IR: Ireland, WE: Wales, NZ: New Zealand, IN: India. This table was
taken directly from [11].

Dataset Accents Hrs of speech No. of sentences No. of words
Train US(32), EN(32), AU(14), CA(13), SC(5), IR(3), WE(1) 34.3 30,896 283,862
Dev US(55), EN(30), AU(8), CA(7) 1.26 1,142 10,386
Test US(56), EN(27), AU(9), CA(8) 1.25 1,127 10,467
Test-NZ NZ(100) 0.59 536 5,089
Test-IN IN(100) 1.33 1,200 10,780

vided by the authors3. In this section, we briefly introduce the
dataset and outline its relevance to the task.

Common Voice [26] is Mozilla Research project to create
an open-access dataset of human voices. The goal is to provide
useful open data for ASR researchers. At the time of writing,
the site reports 1.9 thousand hours recorded (with 1.5 validated)
spreading across twenty-two distinct languages. The project is
crowdsourced and anyone can contribute by recording them-
selves. Samples are then randomly shown to other users that
can vote for the correctness of the sample. A majority voting
scheme then labels them as valid, invalid or pending. People
can self-report additional demographics such as age range, gen-
der and accent. This last option is of utmost interest to us, since
an accent label will allow us to try out our different strategies.
Random sample examination gave us the impression that the la-
bels were accurate, but we need to remain aware of the crowd-
sourced nature of the dataset when drawing conclusions.

3.2.1. Data splits

We used a data subset that contains only the English language
recordings with reported accents, in total about 35 hours of
speech. Table 1 defines specific splits of the data in detail.

In order to see how the methods performed with unseen
accents, two sets contain accents that were left-out from the
training, dev and test sets. Those are labeled Test-NZ and
Test-IN, containing New Zealandic and Indian accents re-
spectively. We also note that the train set contains seven differ-
ent varieties of English, whereas the dev and test sets contain
only a subset of four of them. This is due to the fact that the
data for Scottish, Irish and Welsh accents were very scarce.

3.3. Results

A summary of the best performances of all the models is pre-
sented in Table 2. First, we have observed a significant improve-
ment of the conventional end-to-end CTC training comparing to
the baseline regular time-delay neural networks training. This
difference still holds for the baseline multi-task with/without
accent embeddings training. It was surprising to us as we ex-
pect CTC to need bigger amount of data to perform well. We
postulate that the good results are due to the nature of the Com-
mon Voice dataset, which is very redundant, that is that several
speakers say the same sentences. Second, we evaluated differ-
ent variants of the CTC training, with different configurations
of the multi-task network, and we have not observed an im-
provement. Third, by using multi-task and accent embeddings
training we observed further improvements on the Test, Dev
and Test-NZ sets. Similarly as in the baseline experiments
(i.e., regular vs. multi-task and accent embeddings), we have

3https://sites.google.com/view/
accentsunearthed-dhvani/

Table 2: Summary of the results of every methods. Multi 3-2 is
our multitask model with 3 shared GRU layers and 2 not shared,
while 4-1 has 4 shared layers and 1 not shared.

Model WER in %
Common Voice
Test Dev Test-NZ Test-IN

Baseline Regular 23.3 23.1 24.9 55.2
Baseline Multi 20.6 21.2 23.2 52.1
Baseline Embed 19.7 20.0 22.7 51.2
Conventional CTC 15.3 17.1 15.6 50.9
Multi 3-2 16.0 17.8 16.2 51.5
Multi 4-1 15.8 17.3 15.6 51.1
I-Vect 15.1 16.6 15.7 50.2*
Embed 100 15.1 16.8 15.5* 50.5
Embed 256 15.3 16.6 16.7 52.8
Embed 100 + I-Vect 14.7* 16.3* 15.8 52.0

obtained similar relative improvements. This implies that New
Zealandic must be close to the accents used for training. We
assume that this is due to the presence of Australian in the train-
ing set. Over the three dataset, it seems that the embedding and
i-vector approaches are the most promising for an end-to-end
approach. We speculate that this is due to the fact that those
methods actually help the model to “look for the right features”
in an accent. We note the very similar performance of the i-
vectors and the accent embeddings of size 100. As this is also
the size of the i-vectors, it seems that similar information was
encoded in them. Combining them seems to improve the over-
all performance, although just the embedding seems to perform
better sometimes, especially in the case of the unseen accent.

However, the performance of the proposed end-to-end sys-
tems on second unseen Test-IN data has not been so signifi-
cant as in the Test-NZ case. We improved it over the baseline,
but overall performance is still unsatisfactory. Indian data are
probably too distinct and further work is needed.

4. Conclusion
This paper presented the accent robust ASR training with multi-
task models and accent embeddings integrated in the end-to-
end framework. The accuracy of the ASR system has been
improved significantly comparing to the baseline trained with
conventional time-delay neural networks. In addition, we have
shown how much the end-to-end model can benefit from the
multitask training. As future work, using another architecture,
such as the attention networks with Transformers [27], can still
leverage the potential of the side network. There are also av-
enues to explore the focal loss [28] that has proven to be effi-
cient in context of under-resourced languages.
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