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Abstract

Training deep neural network based Automatic Speech Recognition (ASR) models often re-

quires thousands of hours of transcribed data, limiting their use to only a few languages.

Moreover, current state-of-the-art acoustic models are based on the Transformer architec-

ture that scales quadratically with sequence lengths, hindering its use for long sequences.

This thesis aims to reduce (a) the data and (b) the compute requirements for developing

state-of-the-art ASR systems with only a few hundred hours of transcribed data or less.

The first part of this thesis focuses on reducing the amount of transcribed data required to

train these models. We propose an approach that uses dropout for uncertainty-aware semi-

supervised learning. We show that our approach generates better hypotheses for training

with unlabelled data. We then investigate the out-of-domain and cross-lingual generalization

for two popular self-supervised pre-training approaches: Masked Acoustic Modeling and

wav2vec 2.0. We conclude that both pre-training approaches generalize to unseen domains

and significantly outperform the models trained only with supervised data.

In the second part, we focus on reducing the computational requirements for the Transformer

model, (a) by devising efficient forms of attention computation and (b) by reducing the

input context length for attention computation. We first present ‘linear’ attention that uses a

kernelized formulation for attention to express an autoregressive transformer as a recurrent

neural network and reduce the computational complexity from quadratic to linear in sequence

length. We then present ‘clustered’ attention which approximates self-attention by clustering

input sequence and using centroids for computation. We show that the clustered attention

outperforms the vanilla attention for a given computational budget.

For ASR, we find that linear attention results in word error rate degradation, and clustering

introduces overheads when working with shorter sequences. To address this limitation, we

develop a method that stochastically downsamples input using mean-pooling for efficient

wav2vec 2.0 training. This enables using the same model at different compression factors

during inference. We conclude that stochastic compression for wav2vec 2.0 pre-training

enables building compute-efficient ASR models for languages with limited transcribed data.

Keywords: speech recognition, semi-supervised learning, self-supervision, efficient attention,

wav2vec 2.0, transformers, end-to-end
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Résumé

L’entraînement de modèles de reconnaissance vocale basés sur des réseaux de neurones

profonds nécessite souvent des milliers d’heures de données retranscrites, ce qui limite leur

utilisation à quelques langues seulement. De plus, les modèles acoustiques de l’état de l’art

actuel sont basés sur l’architecture Transformer qui croît de manière quadratique avec la

longueur des séquences, limitant leur utilisation pour de longues séquences. Cette thèse

vise à réduire les besoins en (a) données et (b) calculs pour développer des systèmes de

reconnaissance vocale de pointe avec seulement quelques centaines d’heures ou moins de

données retranscrites.

La première partie de cette thèse se concentre sur la réduction de la quantité de données

retranscrites nécessaires à l’entraînement de ces modèles. Nous proposons une approche qui

utilise le dropout pour un apprentissage semi-supervisé qui tient compte de l’incertitude du

modèle. Nous montrons que notre approche génère de meilleures hypothèses pour l’entraîne-

ment sur des données non étiquetées. Nous étudions ensuite la généralisation extra-domaine

et interlinguistique de deux approches populaires de pré-entraînement auto-supervisé : Mas-

ked Acoustic Modeling et wav2vec 2.0. Nous concluons que ces deux approches généralisent à

des domaines inconnus et surpassent significativement les modèles entraînés uniquement

sur des données supervisées.

Dans la seconde partie, nous nous intéressons à la réduction des besoins en calcul du modèle

Transformer, à travers (a) la conception de formes efficaces de calcul de l’attention et (b) la

réduction de la longueur du contexte d’entrée pour le calcul de l’attention. Nous présentons

d’abord la linear attention qui utilise une formulation à noyau de l’attention afin d’exprimer

un transformer auto-régressif sous la forme d’un réseau de neurones récurrent, permettant de

réduire la complexité algorithmique de quadratique à linéaire par rapport à la longueur de

séquence. Nous présentons ensuite la clustered attention qui approxime l’auto-attention en

regroupant les séquences d’entrée et en utilisant les centroïdes pour le calcul. Nous montrons

que la clustered attention surpasse l’attention classique pour un budget de calcul donné.

Pour la reconnaissance de la parole, nous constatons que la linear attention entraîne une

dégradation du taux d’erreur de mots, et que la clustered attention introduit un surcoût compu-

tationnel sur les séquences plus courtes. Pour remédier à cette limitation, nous développons

une méthode qui sous-échantillonne les entrées aléatoirement par moyennage pour entraîner
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Résumé

efficacement wav2vec 2.0. Cela permet d’utiliser le même modèle avec différents facteurs

de compression pendant l’inférence. Nous concluons que la compression stochastique pour

le pré-entraînement de wav2vec 2.0 permet d’implémenter des modèles de reconnaissance

vocale efficaces en termes de calcul pour des langues dont les données retranscrites sont

limitées.

Mots-clés : reconnaissance vocale, apprentissage semi-supervisé, auto-supervision, attention

efficiente, wav2vec 2.0, transformers, end-to-end
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1 Introduction

Speech is the most natural form of communication that humans use for effective interactions.

Automatic speech recognition (ASR) is defined as the task of converting a spoken speech

signal into text using a computing device such as a computer, phone, or even a watch.

The availability of large amounts of transcribed speech data, the advancements in deep learn-

ing (LeCun et al., 2015; Schmidhuber, 2015) coupled with the tremendous increase in computa-

tional resources have significantly improved large vocabulary continuous speech recognition

(LVCSR). The immense advancements in modern ASR systems have been accompanied by

commercialization in the form of smart assistants such as Siri, Alexa, and Google Assistant.

Speech-to-Text as a service has also become crucial to support devices and applications such

as smart home devices, video platforms like YouTube and Netflix, automatic subtitle genera-

tion, etc., that billions of users use daily. From the recent trends (Fortune Business Insights,

2019; Asavari and Chhabra, 2019), the number of applications based on ASR will only continue

to grow over the next coming years.

While the ASR systems reach human performance levels on a handful of languages that

have transcribed data in abundance, the performance on the majority of other languages is

relatively poor. Moreover, the state-of-the-art ASR systems often are compute-intensive and

require specialized hardware such as Graphical Processing Units (GPUs) (Nickolls et al., 2008)

for both training and inference, thereby making them infeasible on devices such as watches.

Thus, for speech recognition technology to become widely accessible, it is vitally important to

develop techniques that require fewer data as well as computing resources.

1.1 Motivations

Much of the performance improvements in the modern-day state-of-the-art ASR systems can

be attributed to these two main factors: (i) massive increase in the transcribed data and (ii)

improvements in the network architecture.
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Chapter 1. Introduction

Massive Datasets: Depending on the application, the problem of ASR could be simplified

based on controlling factors such as isolated words, single speaker, vocabulary size, and

environmental conditions. In this thesis, we consider the most difficult setting of speaker-

independent LVCSR systems. The difficulty in building such a system arises from the large

variations in speech due to accents, gender, speaker speed, and environmental conditions.

Building an ASR system that is robust to such factors often involves using transcribed datasets

of the order of tens of thousands of hours (Xiong et al., 2017; Zhang et al., 2021; Hussein et al.,

2022). Moreover, acquiring transcribed data is both a time-consuming and expensive process.

Currently, only a few out of ∼ 7000 languages support datasets of this magnitude.

While obtaining a large amount of transcribed data is costly and time-consuming, untran-

scribed audios are often available in abundance. Semi-supervised ASR (Zavaliagkos et al.,

1998; Wessel and Ney, 2005; Veselý et al., 2013) is a technique that exploits untranscribed

data by first building a seed model using a small amount of transcribed data and then using

the model to decode untranscribed data using a beam search decoder. However, using only

the best path for supervision can make the model reinforce its errors. In Chapter 3, we first

introduce a method that uses dropout to quantify the uncertainty in the output of an ASR

model. We then extend this for an uncertainty-aware semi-supervised learning method.

Semi-supervised learning requires first building a seed model using the transcribed data.

Moreover, it assumes that the untranscribed data belongs to the same language as transcribed

data. In contrast, recently proposed self-supervised learning methods such as the masked

acoustic model (MAM) (Liu et al., 2021) and wav2vec 2.0 (W2V2) (Baevski et al., 2020) first

pre-train the model using a large amount of untranscribed data. The pre-trained model is

then fine-tuned using the available transcribed data. Both MAM and W2V2 models are pre-

trained and fine-tuned on the Librispeech dataset (Panayotov et al., 2015), which contains

read English speech. In Chapter 4, we investigate the efficacy of these models under strong

domain mismatch conditions and cross-lingual settings, such as when the untranscribed and

transcribed data come from two different languages. We also examine the sensitivity of self-

supervised pre-trained models to the commonly used Connectionist Temporal Classification

(CTC) (Graves et al., 2006a) and Lattice-Free Maximum Mutual Information (LFMMI) (Povey

et al., 2016; Hadian et al., 2018) training criteria in ASR.

Network Architecture Improvements: The current state-of-the-art ASR models use the Trans-

former architecture for acoustic modeling (Baevski et al., 2020; Synnaeve et al., 2019; Gulati

et al., 2020). The key component of the Transformer architecture (Vaswani et al., 2017) is the

attention function, which maps an input sequence with N tokens to another sequence with

the same number of tokens. Like convolution, the i -th output token is a weighted combination

of input activations. However, attention models full input context using weights that are deter-

mined dynamically based on the input activations. Attention explicitly models contributions

from each time step which helps with gradient vanishing/explosion issues encountered in

other full-context models such as Recurrent Neural Networks (RNN).
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1.2 Summary of contributions

Currently, transformers demonstrate impressive performance on a variety of tasks involving

natural language (Devlin et al., 2019), images (Parmar et al., 2019), and audios (Baevski et al.,

2020). While the transformer-based ASR systems (Sperber et al., 2018a; Gulati et al., 2020;

Synnaeve et al., 2019; Dong et al., 2018) achieve state-of-the-art performance, they have a

computation complexity that is quadratic with respect to the sequence length. This, coupled

with the long sequences encountered in speech makes them prohibitively expensive for long

sequences.

In Chapter 5, we present two efficient transformer variants with linear complexity of attention

computation with respect to the sequence length. In Chapter 6, we further present a practi-

cally efficient transformer for self-supervised pre-training to achieve both data and compute

efficient ASR models.

1.2 Summary of contributions

This thesis aims to reduce the data, and the compute requirements for developing state-of-

the-art ASR systems for challenging datasets with only a few hundred hours of data or less (see

datasets described in Section 2.7). Below, we summarize the main contributions of this thesis.

• Uncertainty aware semi-supervised learning with Dropout

We propose a novel framework that uses “Dropout” at the test time to sample from

the posterior predictive distribution of word sequences. We show that we can use the

sampled hypotheses to capture the model uncertainty. We then systematically exploit

this uncertainty to accurately localize the errors made by the ASR system (Vyas et al.,

2019). In addition, we combine the hypotheses to produce unbiased supervision lattices

for uncertainty-aware semi-supervised training (Tong et al., 2019). Our results on the

Fisher English (Cieri et al., 2004) dataset show that semi-supervised training using

supervision lattice generated with the proposed dropout sampling results in significant

improvements over regular semi-supervised LFMMI training (Manohar et al., 2018).

• Analyzing the impact of domain mismatch for self-supervised learning

We investigate the performance of the recently proposed self-supervised learning tech-

niques MAM and W2V2 when the pre-trained models are fine-tuned on the out-of-

domain datasets and under language mismatch conditions (Vyas et al., 2021b,a). To-

wards this objective, we pre-train models on 960h of Librispeech (Panayotov et al., 2015)

dataset and fine-tune it on three different datasets, including out-of-domain (Switch-

board) and cross-lingual (Babel) scenarios. Our findings indicate that while W2V2

pre-training outperforms MAM, both methods significantly improve performance com-

pared to models trained from scratch only using the supervised data. We further show

that the W2V2 pre-training helps mitigate the overfitting issues with CTC training to

reduce its performance gap with flat-start LFMMI for ASR with limited training data.
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• Computationally efficient Transformer models

Transformers have been proven a successful model for a variety of tasks in sequence

modeling. However, computing the attention matrix, which is their key component,

has quadratic complexity with respect to the sequence length, thus making them pro-

hibitively expensive for large sequences. To overcome this limitation, we propose

alternatives to vanilla self-attention that scale linearly with sequence length. The first

variant called “Linear attention” (Katharopoulos et al., 2020), expresses self-attention as

a linear dot-product of kernel feature maps and makes use of the associativity property

of matrix products to reduce the computational complexity. We show that this formula-

tion permits an iterative implementation that dramatically accelerates autoregressive

transformers and reveals their relationship to recurrent neural networks.

The next variant “Clustered attention” (Vyas et al., 2020), approximates vanilla self-

attention by clustering queries into groups and computes attention only for the cen-

troids. To showcase their effectiveness, we examine the proposed techniques on tasks

involving speech recognition, image generation, and natural language understanding.

• Investigating compute efficient transformers for low resource ASR

In the context of LVCSR, we present a novel method for W2V2 pre-training to achieve

both data and compute efficient ASR models. The proposed method uses stochastic

input context compression to reduce inference time and memory requirements dra-

matically. Stochastic compression enables the training of a single model that provides

a smooth trade-off between WER and inference latency. Our results for models pre-

trained on 960h Librispeech dataset and fine-tuned on 10h of transcribed data show

that using the same stochastic model; we get a smooth trade-off between word error

rate (WER) and inference time with only marginal WER degradation compared to the

W2V2 model trained for a specific setting. We further show that we can fine-tune the

same stochastically pre-trained model to a specific configuration to recover the WER

difference resulting in significant computational savings on pre- training models from

scratch.

1.3 Thesis outline

In Figure 1.1, we present a schematic overview of this thesis. Below, we present the main

organization of this thesis, briefly describing the main goal of each of the chapters.

Chapter 2 presents background on ASR. We discuss the key components of the ASR pipeline

with a focus on deep neural networks (DNN) based acoustic models trained using CTC and

LFMMI criteria. We also present an overview of the Transformers (Vaswani et al., 2017)

model architecture. We briefly discuss the basics of self-attention and its computational

complexity. We end this chapter with a discussion on the datasets and metrics that we consider

for evaluating different approaches.
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1.3 Thesis outline

Chapter 7: Conclusion
and future directions

Chapter 6: Compute
and data efficient ASR

Chapter 4: Robust self-
supervised pre-training

Chapter 3: Uncertainty aware semi-
supervised learning with Dropout

Chapter 5: Efficient
attention methods

Part I: Reducing data Part II: Reducing compute

Chapter 2:
Introduction to ASR

Towards Low Resource ASR

Figure 1.1: Schematic overview of the thesis

In Chapter 3, we propose a novel approach for semi-supervised learning with dropout. We be-

gin with a discussion of our approach that uses dropout at test time to quantify the uncertainty

in the output of the ASR system. We then discuss how we exploit the dropout uncertainty for

semi-supervised learning for ASR.

Recently, self-supervised pre-training approaches to exploit a large amount of unlabelled

data have received much attention. In Chapter 4, we first present two popular pre-training

approaches that are based on the Transformer architecture, namely, MAM (Liu et al., 2021)

and W2V2 (Baevski et al., 2020). We then investigate the domain generalization of these

methods for the ASR task, i.e., when the pre-trained models are fine-tuned on out-of-domain

and cross-lingual supervised datasets.

Chapter 5 focuses on tackling the computational and memory requirements of the self-

attention mechanism. To this end, we propose two variants of fast Transformers that address

the quadratic complexity of self-attention computation. We first present Linear attention

which is based on Katharopoulos et al. (2020). Linear attention uses the kernelization trick

and the associativity property of matrix products to reduce the complexity from O (
N 2

)
to

O (N ), where N is the sequence length.
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We next present Clustered attention which instead of computing the attention for every query,

groups them into clusters and uses the centroids for attention computation. To further

improve this approximation, we use the cluster centroids to identify the keys with the highest

attention per query and compute the exact key/query dot products. This results in a model

with linear complexity with respect to the sequence length for a fixed number of clusters.

In Chapter 6, we present a practical method for compute and data efficient ASR with W2V2

models. We introduce a stochastic pooling mechanism that can be independently applied to

queries and keys-values to reduce the context length for the attention computation without

introducing significant overheads and any additional learnable parameters. We show that our

method enables training a single model that can support a number of operating points with a

smooth trade-off between WER and inference latency.

Finally, in Chapter 7, we summarize our findings and propose new directions for future

research.
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2 Background on Automatic Speech
Recognition

This chapter provides a brief background on the Lattice-Free Maximum Mutual Information

(LFMMI), and Connectionist Temporal Classification (CTC) based ASR models that we use as

baselines in this thesis. We start by providing an overview of the key components of a typical

ASR system. We then introduce Hidden Markov Models (HMM), which forms the backbone

for LFMMI ASR models. We then introduce the LFMMI proposed by Povey et al. (2016)

which uses multiple stages of training. We also briefly discuss the end-to-end (E2E) flat-start

LFMMI (E2E-LFMMI) extension proposed by Hadian et al. (2018). Finally, we present the

CTC (Graves et al., 2006a) model. We end this chapter with a discussion on the databases and

metrics used to evaluate the methods proposed in this thesis.

2.1 Key Components in ASR

A typical ASR system consists of five major components as highlighted in Figure 2.1. The

feature extraction module takes as input an audio signal and extracts relevant features that

are input to the Acoustic Model (AM). The AM computes the likelihood of an acoustic feature

belonging to a phonetic state. The Language Model ( LM) estimates the probability of a word

sequence by modeling the correlations between words from the training text. The decoder

starts by constructing a search graph by replacing the word tokens of the n-gram LM with

the corresponding phone sequences provided by the lexicon (pronunciation dictionary). The

decoder then outputs the most probable word hypothesis by combining the acoustic model

and language model scores.

This thesis focuses on reducing the data and computation requirements for the Acoustic

Model (AM). In the following sections, we discuss the key components of acoustic model

training.
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Feature
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Language
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result

Figure 2.1: ASR System Architecture

2.2 Hidden Markov Models

Hidden Markov Model (HMM) is a statistical model that provides an elegant means to model

sequential data. HMM has served as the core component of almost all large vocabulary ASR

systems over the last several decades (Jelinek, 1976; Bourlard and Morgan, 1993; Povey et al.,

2016). Below, we provide a short introduction to the HMMs. For more detailed reading, we

refer the readers to the HMM tutorial with a focus on speech recognition by Rabiner (1989).

2.2.1 Discrete Markov Chain

A discrete Markov chain is a stochastic model that describes the evolution of a discrete-time

system. At any time, the system is in one of R distinct states: {q1, q2, . . . , qR } and the system

dynamics satisfy the Markov property. Markov property states that the current state of the

system Qt depends only on a limited number of past states. HMMs are based on the first-order

Markov chain, where the current state only depends on the predecessor state. In terms of

random variables, the state random variable Qt at time t satisfies

P (Qt = qi |Qt−1 = q j ,Qt2 = qk , . . . ,Q1 = qm) = P (Qt = qi |Qt−1 = q j ). (2.1)

The joint probability of a sequence of T random variables Q=<Q1,Q2, . . . ,QT > following the

first-order Markovian property is given by

P (Q) = P (Q1)
T∏

t=2
P (Qt |Qt−1), (2.2)

where Qt can take value from the set {q1, q2, . . . , qR }.
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2.2 Hidden Markov Models

The first-order Markov chain can be defined using the two sets of probabilities, namely

• Prior probabilities refer to the probability of the Markov chain starting from a particular

state. This is denoted asΠk and is given by

Πk = P (Q1 = qk ) ∀ k ∈ {1,2, . . . ,R}. (2.3)

Note that the prior probabilities need to sum to one, i.e.
∑R

k=1Πk = 1.

• Transition probabilities refer to the probability of transitioning from a given state qi at

time t to another state q j at time t +1. This is denoted as Ai k and is given by

Ai j = P (Qt+1 = q j |Qt = qi ) ∀ i , j ∈ {1,2, . . . ,R}. (2.4)

Note that ∀i ∈ {1,2, . . . ,R}, Ai j satisfies the stochastic constraint
∑R

j=1 Ai j = 1.

The first-order Markov chain described above is also referred to as an observable Markov pro-

cess (Rabiner, 1989) since the state Qt at any time t also corresponds to an actual observable

event. As described by Rabiner (1989), this process can be too restrictive for many practical

problems of interest. In the following section, we describe how HMM extends this idea for

practical applications such as ASR.

2.2.2 Hidden Markov Model

In the following, we restate the HMM description from (Dighe, 2019) with only minor changes

to the notations. A Hidden Markov Model extends the observable Markov process by making

the observation random variable X t a probabilistic function of the state random variable Qt .

The observation themselves could be a discrete symbol or a continuous-valued vector. Below,

we only consider first-order HMM which is an extension of the first-order Markovian chain.

Moreover, we only consider continuous densities HMM which means that the observation is

a continuous-valued vector.

Similar to the first-order Markov chain, at any time t , the HMM state Qt can take values

from the set: {q1, . . . , qR }. Given the state Qt = qi , the model can generate the observation X t

governed by the probability density function p(X t |Qt = qi ). This is referred to as Emission

probability. Only the emitted observation is visible to an observer, the actual state remains

hidden. Given the observation sequence, the state sequence is non-deterministic and can

only be probabilistically estimated from the observation sequence.

Let us define the random variable denoting the observed sequence with T time steps as X =<
X1, X2, . . . , X t >. The HMM can now be completely defined by the following components:

• State set: Q= {q1, q2, . . . , qR }. The state random variable Qt at time t takes values from

this set.

11



Chapter 2. Background on Automatic Speech Recognition

• Observation set: Rm . The observation random variable X t at time t takes the value

xt ∈Rm .

• Prior probabilities: Πk . The probability of starting from the state qk as defined in (2.3).

• Transition probabilities: Ai j . The probability of transitioning from a given state qi at

time t to another state q j at time t +1 as defined in (2.4).

• Emission probabilities: bk (x): The probability of emitting an observation x ∈Rm from

the state qk .

Besides the first-order Markovian assumption, the second assumption for HMM is referred to

as HMM conditional-independence assumption which states that the observation emitted at

time t is dependent only on the hidden state at time t , and is conditionally independent of all

other past states and observations, i.e.

p(X t |X1, . . . , X t−1,Q1, . . . ,Qt ) = p(X t |Qt ). (2.5)

2.3 HMM based ASR System

In a typical HMM based ASR framework, we find the word sequence W∗ that maximizes the

probability of a word sequence W = [w1, w2, . . . , wN ] given the sequence of acoustic features

X = [x1,x2, . . . ,xt ]. Here xt ∈Rm denotes the acoustic feature at time t . Formally, this can be

written as follows:

W∗ = argmaxP (W|X) (2.6)

= p(X|W)PLM(W)

p(X)
, (2.7)

where PLM(W) refers to the probability of the word sequence W estimated from a Language

Model (LM) and p(X|W) is the likelihood of the acoustic features given the word sequence,

estimated from an acoustic model. We can ignore the denominator p(X) as it does not change

the optimal word sequence W∗.

To estimate p(X|W), we assume the acoustic features to be generated by a HMM model for

the word sequence W. We can then estimate p(X|W) by marginalizing over all possible hidden

state sequences Q. This is done using the Forward-Backward algorithm (Chang and Hancock,

1966; Baum et al., 1970). Thus, the likelihood p(X|W) can be computed as

p(X|W) =∑
Q

p(X,Q|W) (2.8)

=∑
Q
ΠQ1 p(xt |Q1)

T∏
t=2

AQt−1Qt p(xt |Qt ). (2.9)
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2.4 Sequence Discriminative Training

During decoding, we use the Viterbi algorithm (Rabiner, 1989) which uses the most probable

state sequence to approximate marginalization over all possible state sequences Q. When

combined with beam search, this significantly reduces the search complexity for decoding.

Viterbi decoding can approximate the likelihood as follows:

p(X|W) =∑
Q

p(X,Q|W) (2.10)

=∑
Q
ΠQ1 p(xt |Q1)

T∏
t=2

AQt−1Qt p(xt |Qt ) (2.11)

≈ max
Q

ΠQ1 p(xt |Q1)
T∏

t=2
AQt−1Qt p(xt |Qt ). (2.12)

Composing Word HMMs: We previously stated that the acoustic features are generated by a

HMM model for the word sequence W. Choosing the right speech unit is essential towards

building a robust ASR model that balances model complexity and available training data. A

typically ASR system uses a HMM model for each character, phone, bi-phone or tri-phone

unit. The HMM for a word sequence can then be composed by concatenating the individual

HMMs as shown in Figure 2.2. In the example shown in Figure 2.2, we use a two-state hmm

topology for each of the phone /h/ and /e/. The shaded states do not have an emission

probability bk (x) associated and correspond to the non-emitting states (Povey et al., 2011).

They make it easy to connect individual phone HMMs to make acoustic model training easy.

(a) HMM for the phone /h/ (b) HMM for the phone /e/

(c) HMM for the word he

Figure 2.2: The HMM corresponding to the word he can be obtained by concatenating the
HMMs for the corresponding phones: /h/ and /e/.

2.4 Sequence Discriminative Training

In this section, we briefly go over two of the most popular sequence discriminative training

criteria used in modern ASR, namely, Lattice-Free Maximum Mutual Information (LFMMI)

and Connectionist Temporal Classification (CTC). For more details on Maximum Mutual
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Information (MMI) and LFMMI, we refer the readers to (Yu and Deng, 2014; Povey et al., 2016;

Povey, 2003). For a detailed reading on CTC, we refer the readers to (Graves et al., 2006a).

We first introduce the following notations that we use in subsequent discussions. Training

dataset with R utterances is referred to as D. The u-th utterance is denoted by {Xu ,Wu} with

Xu being the feature sequence of length T and Wu being the reference transcription.

2.4.1 Maximum Mutual Information

The MMI criterion (Bahl et al., 1986) is a sequence discriminative training criteria that takes

into account the entire utterance instead of frame-level objectives like cross-entropy loss.

Formally, the MMI objective is given by

FMMI =
R∑

u=1
logP

(
Wu |Xu , θ, LM

)
(2.13)

=
R∑

u=1
log

p (Xu , Wu |θ, LM)∑
Ŵ p

(
Xu , Ŵ |θ, LM

) (2.14)

=
R∑

u=1
log

p (Xu |Wu , θ)PLM (Wu)∑
Ŵ p

(
Xu |Ŵ, θ

)
PLM

(
Ŵ

) (2.15)

=
R∑

u=1
log

p (Xu |MWu , θ)PLM (Wu)∑
Ŵ p

(
Xu |MŴ, θ

)
PLM

(
Ŵ

) , (2.16)

where R refers to the total number of utterances, MWu corresponds to the numerator HMM

corresponding to a word sequence Wu , PLM(W) denotes the language model probability for

any word sequence W, and θ is the model parameter.

Given any word sequence W, we can compute the p(Xu |MW, θ) as follows:

p(Xu |MW, θ) = ∑
Q∈MW

p(Q, Xu | θ), (2.17)

where Q corresponds to all possible state sequences corresponding to the HMM model for

the word sequence W denoted as MW. This can be computed effectively using the Forward-

Backward algorithm for the HMM (Chang and Hancock, 1966; Baum et al., 1970).

Thus, in (2.16), the numerator computes the log-likelihood of the observation sequence Xu

given the transcription Wu and the denominator computes the log-likelihood over all possible

word sequences. This can also be seen as a contrastive loss where we are trying to maximize

the observation likelihood given the true word sequence and minimize the likelihood for all

other word sequence weighted by the LM probabilities.

Computing the denominator in (2.16) requires summation over all possible word sequences

which is not practically feasible. This is because the HMM graph representing the denominator

is too large for computation. The typical approach to remedy this is to use a lattice representing
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2.4 Sequence Discriminative Training

the most competing word sequences. A path through the lattice represents a possible word

sequence. The denominator lattice with competing word sequences is obtained by using a

another model that is usually trained with cross-entropy objective.

2.4.2 Lattice-Free Maximum Mutual Information

LFMMI model was proposed by Povey et al. (2016) as an alternate to the Lattice-based MMI

systems. This is achieved by switching from a word LM to a phone LM. The number of phones

are much smaller than the number of words resulting in significant reduction in the number of

states for the phone LM. We can now represent denominator as a graph with no approximation.

The denominator can be computed using the GPU hardware for fast training.

Formally, denoting the denominator graph as Mden, the LFMMI cost function is given as

follows:

FLFMMI =
R∑

u=1
log

p (Xu |MWu , θ)PLM (Wu)

p (Xu |Mden, θ)
. (2.18)

The standard implementation of LFMMI computes the numerator in (2.18) using alignments

from another acoustic model; typically a monophone HMM/GMM model. The resulting ASR

system requires multiple stages for acoustic model training. Alternatively, Hadian et al. (2018)

proposed the numerator estimation in a single stage end-to-end (E2E) manner. We refer to

this as the flat-start LFMMI (E2E-LFMMI) model.

2.4.3 Connectionist Temporal Classification

Connectionist Temporal Classification (CTC) (Graves et al., 2006a) is another sequence dis-

criminative training criterion that does not require any frame-level alignments between the

input feature sequence Xu of length T and the target label sequence yu of length U . For ASR,

the target label sequence yu can be obtained from the word sequence Wu by using a lexicon

mapping that maps each word to a unique label sequence. The labels are typically characters,

phonemes, or sub-word unit.

Analogous to the state sequence defined in HMM, CTC starts by defining the concept of a path

between Xu and yu . A valid path is generated by extending the label sequence yu such that it

matches the input length T . The target label sequence can be extended by either repeating

any label and/or inserting the blank symbol. This extended representation is referred to as

the CTC path. The blank symbol represents the probability of not emitting any label at the

particular time step. CTC objective computes the probability of the target labels given the

input features by summing over the probability of all valid paths between the two.
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The CTC objective is given by

Fctc =
R∑

u=1
logP

(
Wu |Xu , θ

)
, (2.19)

where θ is the model parameter.

Given the input features Xu and the word sequence Wu , we first use the lexical mapping to

obtain the label sequence yu . We then compute P (Wu |Xu , θ) as follows:

P
(
Wu |Xu , θ

)= ∑
π∈yu

P
(
π |Xu , θ

)
(2.20)

= ∑
π∈yu

Tu∏
t=1

P
(
πt |xu , θ

)
, (2.21)

where π corresponds to a valid CTC path.

The conditional probability of the label at each timestep, p(πt |xu ,θ) is estimated using a

neural network conditioned on the whole input sequence. The model can be trained to

maximize (2.21) using gradient descent. The required gradients are computed using the

Forward-Backward algorithm as described by Graves et al. (2006a).

Relation between CTC and HMM

As discussed by Zeyer et al. (2017), the CTC objective function can be thought of as maximum

likelihood training over a composite HMM, where each label (e.g. character) has a special

2-state HMM topology (Figure 2.3). The composite HMM can be obtained by concatenating

a blank state (with a self-loop and a forward null transition) with the label HMMs. A single

blank state is inserted between each repetitive label. This composite HMM ensures that all

possible state sequences are identical to all possible paths π ∈ yu . For more details connecting

the CTC and the LFMMI criteria, we refer the readers to (Zeyer et al., 2017).

-

Figure 2.3: HMM corresponding to the CTC label
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2.5 Deep Neural Networks

2.5 Deep Neural Networks

The interest in deep learning has exploded in the last decade after its pivotal success in the

Imagenet competition in 2012 (Krizhevsky et al., 2017).

The hardware advancements in computing with Graphical Processing Units (GPUs) (Nickolls

et al., 2008) coupled with the open source deep learning toolkits (Collobert et al., 2002; Bergstra

et al., 2011; Povey et al., 2011; Jia et al., 2014; Abadi et al., 2016; Paszke et al., 2019) have played

a key role in the democratization and success of deep learning.

A deep neural network is a composition of differentiable layers that can be structured to

form any Directed Acyclic Graph (DAG). Modern deep learning frameworks support any

differentiable function f :RP →RQ to be expressed as a neural network layer. The modularity

and composability of the deep learning stack has resulted in a wide variety of deep learning

architectures such as VGG (Simonyan and Zisserman, 2015), ResNet (He et al., 2016), Long

short-term memory (LSTM) (Hochreiter and Schmidhuber, 1997), and Transformers (Vaswani

et al., 2017).

In the following, we first provide a brief introduction to the convolutional neural networks

(CNNs) and recurrent neural networks (RNNs). We then discuss in detail the Transformer

architecture which is a key topic of focus in this thesis.

2.5.1 Convolutional Neural Networks

Modern Convolutional Neural Networks (CNNs) (LeCun et al., 1989) uses one or more convo-

lution layers to successively build higher-level abstraction from an input signal. Convolutional

Neural Network (CNN) models were inspired from time-delay neural network (TDNN)

(Waibel, 1989) to efficiently process the input signal using sliding filters.

r1 r2 r3 r4 r5

Σ Σ Σ Σ ΣΣ

x1 x2 x3 x4 x5

Figure 2.4: Illustration of a convolution operation over a 1D input signal. The output at any
time-step is a weighted combination of the input signal with the kernel weights over the
receptive field of size three.

As shown in the Figure 2.4, a CNN or TDNN model uses the convolution operation to generate

the output at each time step. A convolution operation consists of an element-wise multiplica-

tion of the kernel weights with corresponding inputs followed by a summation of the multiples.

Multiple layers of convolutions and non-linear activation functions are stacked to build more

complex representations using a larger receptive field.
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2.5.2 Recurrent Neural Networks

Previously discussed CNN models can only model fixed size context and are often used for

applications with fixed input lengths. In contrast to this, Recurrent Neural Network (RNN)s

(Hopfield, 1982; Rumelhart et al., 1986) allow dealing with sequences of arbitrary length.

r1 r2 r3 r4 r5

LSTM LSTM LSTM LSTM LSTMLSTM

x1 x2 x3 x4 x5

h1 h2 h3 h4h0 h5

Figure 2.5: Example of a LSTM based RNN model. The hidden state, ht stores the information
of the past inputs till the time t . The output representation rt at any time t is computed using
the hidden state ht−1 and the input xt . The hidden state is also updated to compute output at
the next time step

As shown in Figure 2.5, RNN models consists of a time-dependent hidden state that stores

information about the past inputs. At any time t , a RNN model uses the hidden state, ht−1

and the current input, xt to produce the output as well as to update the hidden state. While

the vanilla RNN models are able to make use of the entire context, vanishing or exploding

gradients is a key issue that hinders effective their training (Hochreiter, 1991; Bengio et al.,

1993). Gated variants such as LSTM (Hochreiter and Schmidhuber, 1997) and Gated recurrent

units (GRU) (Cho et al., 2014) allow for better gradient propagation and are often used together

with convolutional layers for automatic speech recognition (Amodei et al., 2016a).

2.5.3 Transformers

Transformer models were introduced by Vaswani et al. (2017) in the context of neural machine

translation (Sutskever et al., 2014; Bahdanau et al., 2015a). Since their introduction they have

demonstrated impressive results on a variety of supervised and self-supervised training tasks

dealing with natural language (Devlin et al., 2019; Radford et al., 2019), audio (Sperber et al.,

2018b; Baevski et al., 2020), and images (Parmar et al., 2019; Dosovitskiy et al., 2021).

We show the Transformer model architecture in Figure 2.6. The transformer model maps an

input sequence, x ∈RN×F with N token vectors of dimensions F to an output sequence with

same number of tokens. The transformer is defined as the composition of L transformer layers

T1(·), . . . ,TL(·). Given an input sequence x, the output Tl (x) for the l -th transformer layer can

be obtained as follows:

y = LN(SAl (x)+x ), (2.22)

Tl (x) = LN(FFN(y)+ y ), (2.23)
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SA(X) LN(SA(X) +X) FFN(Y)
Y

LN(FFN(Y) +Y)

Transformer Layer

×L

X XL

Figure 2.6: The Transformer model architecture. The Transformer model maps an input
sequence X with N tokens to another sequence with the same number of tokens. The core
component of the Transformer model is the self-attention function indicated by SA(·). Self-
attention is the only function acts accross sequences. FFN(·) refers to the feed-forward module,
and LN(·) refers to the layer normalization.

where LN(·) refers to the layer normalization function (Ba et al., 2016), FFN(·) refers to the

feedforward network that transforms each feature independently of the others and is usually

implemented with a small two-layer multilayer perceptron. SAl (·) is the self attention function

and is the only part of the transformer that acts across sequences.

The self attention function SAl (·) computes, for every position, a weighted average of the

feature representations of all other positions with a weight proportional to a similarity score

between the representations. Formally, given the input sequence x, we first obtain the “queries”

Q ∈RN×D , “keys” K ∈RN×D , and “values” V ∈RN×M by linearly projecting x as follows:

Q = xWQ , (2.24)

K = xWK , (2.25)

V = xWV , (2.26)

where the matrices WQ ∈RF×D , WK ∈RF×D and WV ∈RF×M .

The queries, keys, and values are then used to compute the attention weights A ∈RN×N and

the self-attention output SAl (x) = V̂ as follows,

A = softmax

(
QK T

p
D

)
, (2.27)

V̂ = AV. (2.28)

Note that in the previous equation, the softmax function is applied rowwise to QK T .

Comparison with convolutional and recurrent networks

Figure 2.7 illustrates the output computation for the third time-step using self-attention

mechanism. Comparing this to Figure 2.4, we can see that both convolution and self-attention
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express the output as the weighted combination of input features. However, self-attention

uses the entire context as opposed to a fixed-length input context used by the convolutions.

Furthermore, the attention weights are not fixed and are determined by the input sequence.

Comparing with the RNN in Figure 2.5, we can also see that self-attention weights explicitly

model the contributions from each time step. This alleviates gradient vanishing issues by

making direct connections between each pair of time-step.

x1 x2 x3 x4 x5

k1v1 k2v2 k3v3 k4v4 k5v5q3

sim(q3, k1) sim(q3, k2) sim(q3, k3) sim(q3, k4) sim(q3, k5)

× × × × ×

Σ

r3

Figure 2.7: Showing the self-attention output computation for the third time-step. The input
xt is first projected to obtain the queries, keys, and values. We then obtain the attention
weights by computing the similarity scores between the third query, q3 and all the keys. The
attention weights are normalized to sum to 1. The output representation r3 is simply the
weighted combination of values with the previously computed attention scores. Note that
we skip the normalization step for clarity. Furthermore, the dot-product attention can be
obtained by substituting sim(q,k) by exp(qT k).

Self Attention: Computation Complexity

Figure 2.8 shows the self attention computation described previously. From Figure 2.8 and

the (2.27) it is evident the computing attention weights requires O (
N 2D

)
operations and the

weighted average of (2.28) requires O (
N 2M

)
. This results in an asymptotic complexity of

O (
N 2D +N 2M

)
.

Transformers for Speech Recognition

Following their success on natural language processing tasks, transformers currently also

achieve state-of-the-art performance on a number of ASR benchmarks. Karita et al. (2019)

compared the performance of the transformer model to the LSTM based conventional re-

current neural networks. Their findings reveal that the transformer model achieves superior
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Q ∈ RN×D

softmax(QKT )

KT ∈ RD×N

A ∈ RN×N

V̂ = softmax(QKT )V

V ∈ RN×M

V̂ ∈ RN×M

Figure 2.8: Flow-chart demonstrating the computation for vanilla attention. Given matrices
Q,K ,V , we first compute the attention weights A ∈RN×N . The output value V̂i is simply sum
of values V j weighted by the attention weights Ai j .

performance on 13/15 benchmarks. Furthermore, Conformer (Gulati et al., 2020), which is a

recently proposed variant of the Transformer model, further improves the ASR performance

over the vanilla transformers (Guo et al., 2021).

Besides supervised training, transformers have also become the de-facto choice of architec-

ture for recent self-supervised pre-training methods that are trained on a large amount of

unlabelled utterances. The most popular of these are (1) wav2vec 2.0 (W2V2) model and

its variants (Baevski et al., 2020; Chung et al., 2021; Sadhu et al., 2021) that are trained using

the contrastive loss and (2) masked acoustic model (MAM) variants (Liu et al., 2021; Wang

et al., 2020) that are based on the reconstruction of masked segments. The transformer-based

pre-trained models are subsequently fine-tuned on the supervised data to improve the ASR

acoustic model. Baevski et al. (2020) report a relative WER improvement of 41% and 56% on

the clean and other portions of the Librispeech dataset when the pre-trained W2V2 model is

fine-tuned on the 100 hours of supervised data.

Given their wide success, this thesis focuses on analyzing and improving different aspects of
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transformer-based ASR models. First, in Chapter 4, we analyze the out-of-domain generaliza-

tion for MAM and W2V2 based self-supervised pre-trained models. Next, in Chapter 5, we

present two novel variants of fast transformers that improve the computational complexity

of self-attention to efficiently process long sequences. Finally, in Chapter 6, we present a

practical method for compute and data efficient ASR with W2V2 models.

2.6 ASR Evaluation Metric

The performance of an ASR system is most commonly evaluated using the word error rate

( WER) metric. Given the reference transcripts for the test dataset and the outputs of an ASR

system, the word error rate is defined as:

WER (in %) = 100× Substitutions+Deletions+ Insertions

Number of words in reference
, (2.29)

where the number of substitutions, insertions, and deletions are obtained by aligning ASR

output and reference with minimum edit distance. WER is measured in percentage and

signifies the number of errors ASR system makes relative to the reference length. Thus a lower

ASR is desired.

For semi-supervised learning experiments, we assume some supervised training data DS and

some untranscribed data DU . In this setup, we also report WER Recovery Rate (WRR) that

measures the WER improvements from the semi-supervised learning. WRR is given by

WRR = BaselineWER−SemisupWER

BaselineWER−OracleWER
. (2.30)

Here, BaselineWER refers to the WER for the baseline system trained only on DS , SemisupWER

refers to ASR system that exploits DU using semi-supervised training. Finally OracleWER

refers to the system that uses DS and true transcriptions for DU to build the oracle model.

We leave the discussion of any other experiment specific metric to the corresponding chapter.

2.7 Databases

In the following, we discuss the databases considered for this thesis. Given that the objective

of the thesis is to improve the ASR performance for languages with limited resources, we

experiment with databases between a few tens of hours to a couple of hundreds of hours of

supervised training data. Below, we present the details of all the databases used in the thesis.
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2.7.1 Fisher Corpus

Fisher English Corpus (Cieri et al., 2004) was collected with Fisher telephone conversation

protocol where a large number of participants were asked to make three telephone calls lasting

10 minutes. For each call, a participant discussed an assigned topic with another participant,

whom they typically do not know. This resulted in a dataset with large inter-speaker variation

and vocabulary usage. Unlike previous data collection protocols such as Switchboard-II

(Godfrey et al., 1992) that were originally developed for language and speaker identification

but were later adapted for ASR, the Fisher Corpus was developed to address a critical need of

speech researchers working on robust ASR systems.

The corpus is released in two parts. Part 1 Transcripts contains 5850 telephone conversations

(984 hours) in English. Part 2 contains 5849 audio records, each containing an entire conversa-

tion of up to ten minutes. The two parts contain roughly 1960 hours of transcribed speech

for training with 6813 female speakers, and 5104 male speakers. The corpus also contains 3.3

hours of data for development and 3.2 hours of data for testing.

Similar to (Manohar et al., 2018), we evaluate the proposed dropout based self-supervised

approach on the Fisher English corpus. We randomly chose a subset of speakers (250 hours)

from the corpus to be used as unsupervised data. We use a 50 hours subset from the corpus as

the supervised data. The results are reported on separately held-out development and test

sets, which are part of the standard Kaldi (Povey et al., 2011) recipe.

2.7.2 Librispeech Corpus

Librispeech corpus introduced by Panayotov et al. (2015) consists of 1000 hours of read English

speech recorded at 16 KHz sampling rate. The corpus is derived from audiobooks that are

part of the LibriVox project. The training portion of the corpus is split into three subsets, with

about 100, 360 and 500 hours of data, respectively. The clean and other portions of the dataset

correspond to the higher and noisy quality of the recordings, respectively. In Table 2.1, we

provide the statistics on the LibriSpeech corpus from Panayotov et al. (2015).

In this thesis, we always use only the 100h subset of the dataset for training ASR models. Our

models are evaluated on both the clean and other portions of the dev and test sets.

2.7.3 Switchboard Corpus

The Switchboard Corpus is a collection of about 2400 two-sided telephone conversations

consisting of about 260 hours of telephonic conversations recorded at 8 KHz. This is also

referred to as Switchboard (300h) setup in literature. There are 543 speakers in total, with 302

male and 241 female speakers from all areas of the United States. Switchboard corpus does

not contain a development set so we split the dataset into a train (255 hours) and a dev set (5

hours). We use the 2000 HUB5 evaluation set, which comprises about 11 hours of data.
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Table 2.1: Statistics of the LibriSpeech database.

Subset Total data (in hours) Female speakers Male speakers

dev-clean 5.4 20 20
test-clean 5.4 20 20
dev-other 5.3 16 17
test-other 5.1 17 16
train-clean-100 100.6 125 126
train-clean-360 363.6 439 482
train-other-500 496.7 564 602

The data is collected by a computer-driven robot operator that selects a participant and

dials another person to participate in a conversation. The participants are given a topic for

discussion, and the speech is recorded from the two subjects into separate channels. There

are about 70 topics, of which about 50 were most frequently used. The topics and callees

were selected such that no two speakers would converse together more than once and no

participant spoke more than once on a given topic.

2.7.4 Babel Corpus

The BABEL speech corpus (Gales et al., 2014) is undertaken as a part of IARPA Babel pro-

gram, which aims to advance speech recognition for a diverse set of languages with limited

resources. Each language in the Babel language pack contains conversational speech data

with transcriptions for upto 80 hours.

In this thesis, we use the Swahili and Tagalog languages from the Babel dataset to study the

cross-lingual generalization performance for different self-supervised pre-training approaches.

Swahili and Tagalog comprise 38.5 and 84 hours of supervised training data, respectively. For

both languages, we report the results on the dev10h development part due to the lack of a

separate evaluation set. We use a 2 hour development set for model selection.

2.7.5 Wall Street Journal Corpus

The Wall Street Journal (WSJ) corpus introduced by Paul and Baker (1992) contains read

English data from a large number of speakers. The speakers are asked to read out newspaper

text paragraphs. The training set consists of 80 hours of transcribed data from 284 speakers

which is usually referred to as SI-284. The development data labeled as dev92 consists of

503 sentences of development data from ten different speakers. The evaluation data, eval93,

consists of 333 sentences of test data from another eight different speakers. Detailed statistics

is shown in Table 2.2
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Table 2.2: Statistics of the WSJ dataset.

Subset #Speakers #Utterance Total data (in hours)

Train 284 37416 81
Dev 10 503 1.1
Eval 8 333 1.1
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3 Uncertainty Aware Semi-supervised
Learning with Dropout

3.1 Introduction

Semi-supervised learning is an approach that improves the performance of the ASR models

trained with limited transcribed data but with abundant untranscribed audios. This is achieved

by first training a seed model using the transcribed data for supervision. The seed model is

then used for automatically transcribing the unlabelled audios. However, the improvements

greatly depend on the quality of the seed model and can cause the model to reinforce its errors.

To this end, we present a novel framework that uses “Dropout” for uncertainty aware semi-

supervised learning. Given the seed model, we use dropout during inference to generate

a decoding hypothesis for the test utterance. For any utterance, we generate N decoded

hypotheses selecting different random active neurons each time. As shown in (Gal and

Ghahramani, 2016), this can lead to an approximate Bayesian inference over the acoustic

model weights and approximates sampling from the posterior predictive distribution over

word sequences. We then combine all the N hypotheses to form an unbiased supervision

lattice for the corresponding unlabeled utterance. As discussed in Section 3.3, the variations

in different decoded hypotheses are often highly localized and depict locations where the

ASR decoding might be inaccurate. This allows the model to learn and take advantage of the

correct decoding segments while the gradients corresponding to the erroneous words are

obfuscated.

In the rest of the chapter, we first present our dropout based framework for ASR uncertainty

estimation and quantification in Section 3.2. Then, in Section 3.3, we conduct experiments to

show that the proposed frameworks can identify ASR errors without the need for ground truth

transcripts. In Section 3.5, we extend this framework for semi-supervised learning and discuss

related works. Finally, in Section 3.7, we evaluate our proposed method on the Fisher-English

corpus (Cieri et al., 2004).

We show that the variations in different dropout hypotheses are often highly localized and

indicate the locations of erroneous words. We also demonstrate that the localized uncertain-
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ties can be used to accurately estimate the WER without the need for oracle transcriptions.

Furthermore, our experiments on the Fisher English dataset show that we can combine the

dropout hypotheses to improve the quality of supervision lattice for semi-supervised learning.

3.2 ASR Uncertainty estimation with Dropout

In this section, we present the details of our approach to estimating uncertainty in the output

of an ASR system. Our approach is based on the seminal work by Gal (2016). In this work, we

model uncertainty at the word level and explore its effectiveness for localizing ASR errors and

estimating WER without the need for transcripts.

Dropout-based training (Srivastava et al., 2014) is a standard regularization technique often

used to improve the generalization properties of state-of-the-art deep learning models used

in computer vision, speech processing, and natural language applications. While dropout

is typically used during training to prevent overfitting of DNNs, Gal and Ghahramani (2016)

show that dropout can also be used during inference to compute the model’s uncertainty on

its predictions.

Given a DNN model trained with dropout, the predictive uncertainty for a test sample can be

estimated using Monte Carlo dropout. During inference, a test sample is forward propagated

N times with a randomly generated random mask. Formally, let Yx be the random variable

denoting the output of the DNN given the input x. Also, let ŷi (x) denote the output for the

i -th forward pass with a randomly generated dropout mask. The estimates for the mean and

the variance for Yx are given by

E[Yx ] ≈
N∑

i=1

ŷi (x)

N
(3.1)

V[Yx ] ≈ τ−1ID + 1

N

N∑
i=1

ŷi (x)⊤ŷi (x)−E[y]⊤E[y], (3.2)

where, τ is constant to be determined by the model structure.

In this work, we use Monte Carlo dropout during inference to model word level uncertainties.

As shown in Figure 3.1, for each utterance, we forward-pass it N times through the DNN

acoustic model with random dropout masks. The frame-level state posteriors corresponding

to the N acoustic model outputs are then processed through the decoding pipeline to generate

N dropout-hypotheses. As shown by Gal and Ghahramani (2016), this process leads to a

Bayesian inference over the acoustic model weights.

We also obtain a hypothesis by keeping the dropout off during test time, as is done traditionally.

The resulting N + 1 hypotheses can then be used to estimate the word-level confidences,

localize ASR errors, and estimate WER for a given utterance.
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WFST Decoder

oh I see uh-huh

WFST Decoder

oh I see uh

WFST Decoder

oh I see uh-huh

Test utterance

Figure 3.1: Decoding with dropout on at test time. Each network represents a different random
selection of the active nodes. The white nodes denote dropped out units. As shown in the
figure, dropout usage during inference can change the best hypothesis.

Doff : i i agree with the a hundred percent there or
GT : i say agree with you a hundred percent there __

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
D1

on : i i agree with you a hundred percent there __

D2
on : yes i agree with the a hundred percent there __

D3
on : i i agree with you a hundred percent there or

D4
on : yes i agree with the a hundred percent there __

Cw : 0.5 1 1 1 0.5 1 1 1 1 0.25

True Positive False Positive Missed Detection

Figure 3.2: Example demonstrating the use of dropout for word-level confidence estimation
and subsequent error localization given a confidence threshold. We first align the N = 4
dropout turned-on hypotheses {D i

on}N
i=1 against the hypotheses with the dropout turned-off

Doff. Then, for each word, we use the mean agreement between all the hypotheses to estimate
its confidence. Each word with confidence below the set threshold is considered to be an error.
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Figure 3.2 shows an example of an utterance decoded N = 4 times with dropout turned on.

Here, Doff refers to the decoded output with dropout turned off and D1
on-D4

on refers to the

decoded output with dropout on. GT refers to the ground truth transcript and Cw is the

word level estimated confidence. The blue boxes refer to the errors between the Doff case

and GT which are used in the traditional WER computation. The red and green boxes show

the word positions where D1
on-D4

on hypotheses disagree with each other. The differences in

decoded hypotheses are due to the acoustic model’s uncertainty in predicting the posterior

probabilities for acoustic features in some segments of the utterance. For the utterance shown

below, we observe that two uncertain word positions overlap with the mismatches between

Doff and GT (true positive detections), one uncertainty is a false positive, and one mismatch

is not detected.

3.2.1 Word Error Rate Estimation

The word error rate (WER) metric is used as a straightforward way to evaluate and compare the

performance of ASR systems. Word errors are typically caused by the inputs which are noisy

or exhibit a mismatch with the training conditions. Such inputs also lead to a higher predictive

uncertainty of the ASR model, which indicates potential speech recognition errors. We exploit

dropout-based uncertainty to estimate the WER for an utterance i in an unsupervised manner.

We start by calculating the edit distances between all
(N

2

)
pairs corresponding to the N dropout

hypotheses. The mean edit distance, i Eµ, is obtained as the mean of the top-K edit distances,

where K is the hyper-parameter tuned on the development data. Similarly, we then obtain the

mean length, i Lµ, of the decoding corresponding to the top-K edit distances. The WER for the

utterance is then estimated as the ratio of i Eµ and i Lµ. Let D denote the whole dataset with

|D| utterances. The WER of this dataset is calculated as the ratio of total mean edit distance

and total mean length summed over all the utterances.

Let i
k E and i

k L denote the top-K edit distances and corresponding lengths for the utterance i .

The WER for the utterance i is given by:

i Eµ =
∑K

j=1
i
k E j

K
(3.3)

i Lµ =
∑K

j=1
i
k L j

K
(3.4)

i W ER =
i Eµ
i Lµ

(3.5)

W ERd at a =
∑|D|

i=1
i Eµ∑|D|

i=1
i Lµ

(3.6)
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3.2.2 Error Localization Using Word-Level Confidence

In addition to estimating WER, we also exploit dropout uncertainty to localize the errors

in ASR. To achieve this, we propose a method that relies on computing the word-level con-

fidences of the ASR hypotheses, i.e., the Doff case. Word confidences represent the word-

by-word reliability of the Doff decoding. If the confidence Cw of a word w in the decoding

Doff is less than a pre-defined threshold τ, our system predicts a potential location of error.

If the predicted error locations are the same as the mismatch positions between Doff and

ground truth transcription GT , we can claim that the error localization is accurate. Our error

localization method then works as follows.

To estimate the word level confidences, similar to ROVER (Fiscus, 1997), we first align the N

dropout turned-on hypotheses {D i
on}N

i=1 against the hypotheses with the dropout turned-off

Doff. Then, for each word, we use the mean agreement between all the hypotheses to estimate

its confidence. Formally, for an utterance, the confidence for its w th word in ASR decoding

Doff is given by

Cw =
∑N

k=1 I (Dk
on[w] = Doff[w])

N
, (3.7)

where, Dk
on[w] and Doff[w] denote w th words in decoding Dk

on and Doff respectively and

function I ()̇ is the indicator function. The confidences Cw lie in the range [0,1] and we

predict an error location wherever Cw is lower than a threshold τ. Note that while ROVER

(Fiscus, 1997) iteratively updates the reference word transition network (WTN) starting from a

seed hypothesis, we always use the dropout turned-off Doff as the reference hypothesis for

alignment. This is because we are interested in the word level confidences for the output

(Doff) of a single ASR system while ROVER tries to combine outputs of multiple ASR systems to

improve the WER.

3.3 Error localization and WER Estimation Experiments

We evaluate our dropout uncertainty-based WER estimation approach on the Switchboard

database (Godfrey et al., 1992). A 110h subset train_100k of the actual 300h training data is

used for training the acoustic models. We tune the hyperparameters K and τ for better WER

estimation on an 11.5h subset dev taken from the rest of the training data. Finally, we evaluate

our approach on a test subset that has 8.4h of speech. We ensure that there are no common

speakers in our data partitions.

To evaluate the efficacy of our error localization method, we use an “Intersection over Union”

(IoU) metric where “Intersection” refers to the intersection between the true errors and the

predicted errors and “Union” refers to the set union of the true errors and predicted errors.

Note that true errors refer to mismatches between Doff and GT as shown in Figure 3.2. IoU

lies between 0 and 1, and is highest when the predicted errors exactly match the true errors. It
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penalizes for both false negatives (when a true error is not detected) and false positives (when

a correct word is predicted as an error). In the example presented in Figure 3.2, if τ= 0.6, there

are 3 error locations, their intersection with true error locations is 2, and the union is 4. Hence,

the IoU will be 0.5. Similarly, if τ= 0.4, the IoU will be 0.33 (intersection=1, union=3). In this

work, we use the mean IoU over all the sentences as the indicator of localization performance.

We investigate two different acoustic models, namely DNN-HMM and CTC-based model.

We use the Kaldi (Povey et al., 2011) nnet1 recipe for training a feedforward DNN-HMM ASR

system. Kaldi tri4 setup based on LDA+MLLT+SAT system is used for generating senone

alignments (8564 units) and fMLLR transformed MFCC features (1320 dimensional, after

appending delta features and context of 11). DNN acoustic model has 6 hidden layers having

2048 neurons each. We set a dropout rate of 0.2 for all hidden layers during training and the

same is used during testing.

The phoneme-based CTC model is trained in Pytorch using Baidu’s CTC implementation for

Deepspeech 2 (Amodei et al., 2016b). It has 4 layers of Bidirectional Long Short-Term Memory

(BLSTM), with 320 cells in each layer and direction. We use 40-dimensional log-mel filterbank

coefficients as acoustic features together with their first and second-order derivatives. Dropout

was applied for all BLSTM layers. The dropout rate was set to 0.2. A trigram LM is used for

decoding for both DNN-HMM and CTC models, and no further LM-based rescoring of lattices

is done.

To compute the oracle WERs, we use the basic scoring script compute-wer provided with

Kaldi instead of NIST sclite tool, which involves text normalization. Although the oracle WERs

computed this way are usually high, they pose as a more suitable ground truth to compare

with the estimated WERs using our approach.

Table 3.1: Hyperparameter values tuned on the dev set of the Switchboard dataset.

Dropout N-best list MBR

ASR Model N K τ N K τ τ

DNN-HMM 100 5 1.0 60 542 0.8 0.9
CTC 24 119 0.9 60 530 0.8 0.9

3.4 Error localization and WER Estimation Results

As a baseline for WER estimation, we replace the N dropout-on hypotheses by the N-best

hypotheses of the decoding lattice and use (3.3) to (3.6) to estimate WER.

Similarly, for word error localization baseline, we use the N-best list hypotheses in (3.7)

to estimate word-level confidences. Another baseline based on (Xu et al., 2011) evaluates
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3.4 Error localization and WER Estimation Results

the word-level confidence from the word posterior probabilities computed using forward-

backward likelihood computation on a lattice.

3.4.1 Word Error Rate Estimation

Table 3.2 compares the dropout and N-best list based WER estimation on the Switchboard

database. The results are split according to the length of the ground truth transcription for

better analysis. We observe that dropout WER estimate is better across all ground truth

sentence lengths and on both DNN-HMM and CTC ASR systems. Although the WER estimate

using the N-best list over all the sentence lengths (last column) is reasonable, it severely

overestimates on shorter sentence and underestimates the WER on longer sentences. One

remedy to this could be use a smaller N for shorter sequences and a larger N for longer

sequences. However, that would require tuning N for a range of possible sequence lengths.

Furthermore, each hypothesis in the N-best list is different, and thus, it cannot give a WER of

0. For small length sentences, this results in overestimation of the WER. For example, if we

consider sentences with only one word in the ground truth, the n-best list would still contain

all different hypotheses resulting in a WER >= 100. In contrast to this, dropout outputs change

only at word locations where the acoustic model is uncertain. Therefore, if the acoustic model’s

uncertainty is very low along the whole utterance being decoded, then it is possible that each

of N hypotheses is identical. As a result, it does not suffer from the problem of overestimating

WER.

Table 3.2: Results on estimating WER on the Switchboard test set using dropout uncertainty.
Dr refers to dropout based estimation, Nb refers to N-best list based estimation, and Gt
refers to the Ground truth WER. While the N-best list reasonably estimated the WER over all
the sentences (last column), it significantly overestimates the WER on shorter sentence and
underestimates on longer sentences. In contrast, dropout-based WER estimation consistently
performs well over all sentence lengths.

Sentence Lengths

ASR System [1-3] [5-6] [7-10] >= 11 >= 1

DNN-test-Gt 35.5 28.8 25.1 22.3 23.3
DNN-test-Dr 33.2 31.0 25.2 21.5 22.7
DNN-test-Nb 73.6 42.1 30.2 13.7 19.7

CTC-test-Gt 30.6 31.2 25.3 23.3 24.0
CTC-test-Dr 34.4 35.5 29.7 23.9 25.2
CTC-test-Nb 93.1 49.0 34.3 15.9 22.7

Figure 3.3(a) shows a histogram of the utterance-wise absolute difference between true WER

and estimated WER based on dropout and N-best list. For a perfect estimator, the absolute

difference for every sentence will be 0. We notice that for the dropout-based estimation, the

number of utterances with a very small absolute difference (∼0) is much higher than those
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Figure 3.3: Comparison between dropout and N-best list based WER estimation on the Switch-
board test set for the CTC system. (a) Histogram of absolute difference between estimated
WER and true WER. (b) Correlation between estimated WER and true WER.

for the N-best list based estimation. For a randomly picked utterance, the dropout-based

WER estimate is much more likely to be close to the true WER than the N-best list estimation.

Figure 3.3(b) shows the correlation between the ground truth-based true WER and estimated

WER. Each point on the scatter plot is an utterance. We observe a high correlation for dropout-

based estimation (0.75) as compared to the N-best list based estimation (0.43). This is also

evident from the dropout scatter plot being more dense in the diagonal region of the plot. As

expected from the discussion above, the estimated WER for N-best list is always greater than 0.

3.4.2 Error Localization Using Word Confidences

Table 3.3 shows the performance of word confidence-based ASR error localization in terms of

the IoU metric. We compare the proposed dropout approach against N-best list and lattice-

based word posterior probability based approaches. We observe that the IoU metric is higher

using our dropout method as compared to both of the lattice-based approaches. For DNN-

HMM as well as CTC-based ASR systems, dropout achieves an IoU of ∼0.6 which depicts

that a significant number of error locations are accurately identified. Note that the results in

Table 3.3 are averaged over all the utterance lengths. In our experiments, we noticed that IoU

metric could be as high as ∼0.7-0.8 for very short utterances (≤ 6 words long).
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Table 3.3: Error localization performance on the dev and test parts of the Switchboard dataset.
We use the IoU metric as it penalizes both false errors and missed detections. Dropout achieves
an IoU of ∼ 0.6 indicating that a significant number of errors are correctly identified.

Approach

ASR System Dropout N-best Lattice Confidence

DNN-dev 0.55 0.45 0.54

DNN-test 0.59 0.50 0.58

CTC-dev 0.56 0.41 0.51

CTC-test 0.61 0.41 0.58

3.5 Uncertainty Aware Semi-supervised Learning

In the previous section, we demonstrated how dropout could effectively capture the ASR

model’s uncertainties at inference time. In this section, we propose a novel way to exploit

the dropout uncertainty to improve the performance of the ASR models in the context of

semi-supervised learning with LFMMI criterion.

Semi-supervised learning uses a seed model trained on the transcribed data to decode the

unlabelled transcripts. The unlabelled utterances and the decoded transcripts are then used

to train the model with LFMMI loss or, with any other sequence discriminative criterion.

In this thesis, instead of using the decoding transcripts directly, we propose to maximize the

expected LFMMI objective for unlabelled data by sampling target word sequences from the

posterior-predictive distribution over word sequences given an utterance and the seed model.

Our proposed loss for semi-supervised training is given as follows:

Fmmi = max
θ

∑
u∈DU

log

(
E

Wt∼P (W |Ou ,θS )
P (Wt |O(u),θ)

)
, (3.8)

where O(u) is the sequence of acoustic observations for utterance u, θS refer to the seed model

parameters estimated using the supervised training data DS . DU is the unlabelled data. Wt is

the target word sequence sampled from the posterior-predictive distribution over words.

In contrast, the regular semi-supervised LFMMI objective (Manohar et al., 2018) is

Fmmi = max
θ

∑
u∈DU

log

 ∑
Wt∈G(u)

num

P (Wt |O(u),θ)

 (3.9)

≈ max
θ

∑
u∈DU

log

(
E

Wt∼G(u)
num

P (Wt |O(u),θ)

)
(3.10)
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where G(u)
num is the decoding lattice for the utterance u generated using the seed model trained

using the supervised dataset DS .

This can be seen an approximation to the proposed loss in (3.8) where the expectation is

taken over the word sequences in the decoding lattice and each output word sequence in the

lattice is assumed to be equally likely. Using the decoded lattice for supervision improves

the performance in comparison to using only the best path. However, the supervision lattice

contains the hypotheses corresponding to the Maximum Likelihood estimate of weights and

not those sampled from the posterior predictive distribution over word. As a result, the semi-

supervised training might be affected / biased by the incorrect hypotheses in the lattice even

when the best path has no mistakes.

Given that a fixed beam search is typically used for decoding, we observe that the shorter

utterances (with one or two words) are affected more as they contain a large number of

potentially incorrect hypotheses even after pruning the lattices. In Figure 3.4a, we show one

such example of a decoding lattice containing a number of hypotheses even when the example

utterance is quite clean. Although the model is quite confident on the sentence, the decoding

lattice still contains many incorrect paths which will deteriorate the supervision quality. Note

that the effect can be contained if the correct hypothesis appears more times in the decoding

lattice than its competitors. However, as shown later in Table 3.4 we find that combining

dropout decodings results in a smaller sentence error rate compared to using lattices.

In the following, we discuss how dropout provides a simple way to approximate the loss in

(3.8) by sampling from the posterior-predictive distribution.

Sampling from posterior-predictive distribution

As discussed previously, we use dropout at test time to decode the same utterance multiple

times. As shown in (Gal and Ghahramani, 2016), this approximates Bayesian inference over

the seed model parameters. This allows to sample from the approximate posterior-predictive

distribution P (W |O(u),θS).

We propose to employ dropout during testing to generate N hypotheses that are combined to

obtain the supervision lattice. This is motivated by our previous observations that the same

hypothesis gets sampled when the acoustic model is confident. Moreover, we also observe

local variations in the dropout hypothesis that correlate with errors made by the acoustic

model. Decoding with dropout corresponds to sampling from the approximate posterior-

predictive distribution over words and leads to an unbiased estimate to (3.8). We investigate

dropout sampling for both acoustic and language model.

Dropout Sampling from Acoustic Model: Figure 3.5 presents the different steps of uncertainty

aware semi-supervised training with dropout. Given some labelled data DS and unlabelled

data DU , we start by training a seed model using only the labelled data. The seed model is then
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Figure 3.4: Example of lattices for a clearly spoken utterance. (a) represents the conventional
decoding lattice generated with dropout-off acoustic model used in (Manohar et al., 2018). (b)
denotes the proposed unbiased lattice generated by combining multiple decoding hypothesis
with dropout activated at test time.

used to decode each unlabelled utterance N times with dropout activated during inference.

We also generate the hypothesis with dropout off as is done traditionally. The N +1 hypotheses

are combined to obtain the supervision lattice for an unlabelled utterance. Finally, the seed

model is trained using both the supervised and supervision lattices for the untranscribed data.

More specifically, we generate an unbiased supervision lattice for each unlabeled utterance by

pruning the dropout lattices with a very small beam and composing them together. We keep

the rest of the training steps the same as proposed in (Manohar et al., 2018).

Figure 3.4b shows the lattice for the same example utterance, generated using the proposed

approach. We see that most paths in this lattice correspond to the correct transcription since

the model is confident (high P (W |O(u),θs)) on this clearly spoken utterance. When the model

is uncertain about an utterance, more variations appear in the combined lattice that allows

model to take advantage of the alternative paths. We hypothesize that the lattice combined

from different dropout-based decoding samples reflects the uncertainty of the acoustic model

and is able to foster the more likely word sequences, while keeping variations for uncertain

utterances, thus improving the semi-supervised training performance.
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Train seed model
with dropout

Decode unlabelled data multiple 
times while keeping dropout on

Unlabelled Data

Labelled Data

Generate Label

Combined as 
Supervision Lattice 

Model

Data Mixing and
Train the Model

Figure 3.5: Flow-chart showing the steps for uncertainty aware semi-supervised learning
with dropout. We start by training a seed model on the transcribed data. We then decode
untranscribed utterances using the seed model with dropout activated. The decoded outputs
are combined to obtain the supervision lattices. Each network represents a random selection
of the nodes with the white nodes denoting the dropped out units. Finally, the seed model is
trained using both the supervised and untranscribed data.

Dropout Sampling from Language Model: The unlabelled utterances are decoded using a

WFST based decoder (Mohri et al., 2002) which uses a N-gram language model. As a result of

this, incorporating language model uncertainty is non-trivial in comparison to the acoustic

model uncertainty.

To incorporate the language model uncertainty, we use the same framework by re-scoring

the N-gram based decoded lattice with a DNN-based language model. For each unlabeled

utterance, we first obtain the decoding lattice using the acoustic model with dropout off as

is done conventionally. We then re-score this lattice N times by using a dropout enabled

language model. Similar to the acoustic model case, the re-scored lattices are pruned and

combined to generate the supervision lattice reflecting the language model uncertainty. We

also investigate the combination of the dropout sampling from both the acoustic and the

language model to further improve the performance of the semi-supervised learning models.
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3.6 Related Work Discussion

Semi-supervised learning (Zavaliagkos et al., 1998; Wessel and Ney, 2005) uses the seed model

trained on transcribed data to automatically generate the transcripts for the unlabelled data.

However, the generated transcripts are likely to contain errors as the seed model is trained

with limited amount of supervised data. Directly training on erroneous transcriptions can

cause the model to further reinforce its own biases and be stuck in local minima as the model

parameters are already tuned to have a high likelihood for generated transcripts.

Xu et al. (2020) overcome this limitation by incorporating LM into decoding and using data

augmentation to avoid local minima. Furthermore, it was shown in (Wessel and Ney, 2005;

Khonglah et al., 2020; Xu et al., 2020) that iterative decoding and training results in better per-

formance than using the entire unsupervised data in one-shot. A complementary technique

to iterative training is incorporating the ASR uncertainty or confidence measures to selectively

use the unsupervised training data. In prior research, a prominent method for quantifying

ASR uncertainty has been computing lattice-based confidence measures. The posterior prob-

ability of a recognized word can be estimated from a word lattice (Kemp and Schaaf, 1997;

Wessel et al., 1998; Evermann and Woodland, 2000) or a word confusion network (Mangu et al.,

1999; Evermann and Woodland, 2000) without any additional training. For semi-supervised

learning, confidence measures can be applied at a frame level (Veselý et al., 2013), word level

(Wessel and Ney, 2005; Wessel et al., 2001; Thomas et al., 2013; Veselý et al., 2017) or utterance

level (Novotney et al., 2009; Grézl and Karafiát, 2013; Zhang et al., 2014).

More recently, Manohar et al. (2018) combine lattice-based supervision with LFMMI objec-

tive for semi-supervised training. As opposed to using only the best decoding path for any

untranscribed utterance, they use the entire decoding lattice generated by the Kaldi (Povey

et al., 2011) decoder based on WFST (Mohri et al., 2002). This allows the model to learn from

alternative hypotheses when the best path is not accurate. Although lattice-based supervision

significantly improves over the best path training, it can also degrade the performance when

the best path hypothesis has much lower WER than the alternate hypotheses. The decoding

lattice contains the most competitive hypothesis for the Maximum Likelihood weights and

can bias the training towards incorrect hypotheses. In contrast, we propose to use dropout

to sample alternate hypothesis from the approximate posterior-predictive distribution over

words. The lattice generated with dropout hypotheses implicitly takes into account the word

level confidences. More generally, we can also explicitly model word-level confidences by

aligning the dropout hypothesis against the reference hypothesis with dropout turned off

and counting word agreements similar to ROVER (Fiscus, 1997) but using the same acoustic

model.

The proposed approach has similarities to Negative Conditional Entropy (NCE) (Manohar

et al., 2015) for semi-supervised training where the authors minimize the expected risk over

the uncertain decoding of the unsupervised data. However, in contrast to (Manohar et al.,

2015), where the decoding lattice with forward-backward likelihood computation estimates
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the likelihood of word-sequence, in this work, we directly sample from the approximate

posterior-predictive distribution using dropout to generate the supervision lattice. The ap-

proach proposed in (Li et al., 2017) also shares some similarities in the sense that the labels

of unlabeled data are the decoding output from multiple seed models to incorporate the

diversity. An ensemble of models is trained in parallel using these diverse labels, and then

averaged as the final model. In the context of our framework, these multiple seed models can

be considered as the dropout-based neural network samples and all the diverse labels are

combined into one supervision lattice used for LF-MMI training. Thus, the proposed method

is simpler and more rigorous.

In this thesis, we present experiments using the LFMMI training criterion. The extension to

other end-to-end training is straightforward, for example, please refer to our colleagues work

(Dey et al., 2019) on using dropout based semi-supervised learning for attention-based E2E

models.

3.7 Semi-supervised Learning Experiments

Like (Manohar et al., 2018), we report our results on the Fisher English corpus (Cieri et al., 2004).

A randomly chosen subset of speakers (250 hours) from the corpus is used as unsupervised

data. The transcripts from the remaining 1250 hours are used to train the language models for

decoding and re-scoring the unsupervised data. We use a 50 hours subset from the corpus as

the supervised data to train the seed model. The results are reported on separately held-out

development and test sets (about 5 hours each), which are part of the standard Kaldi (Povey

et al., 2011) recipe for Fisher English. In addition to the WER, we also report WER Recovery

Rate (WRR) (Ma and Schwartz, 2008). WRR measures the WER improvements relative to the

oracle model trained using true transcripts for unlabelled data. It is given by

WRR = BaselineWER−SemisupWER

BaselineWER−OracleWER
,

where the BaselineWER refers to the WER obtained using the seed model trained only using

the transcribed data.

Following the standard Kaldi recipe, we first train a TDNN (Waibel et al., 1989) seed model

using only the supervised data and the LFMMI criterion. The TDNN model consists of 8

hidden layers, with 450 hidden units in each layer. We apply dropout to each of the layer.

We use i-vector (Dehak et al., 2011) for speaker adaptation of the neural network. The i-

vector extractor is trained using the combined supervised and unsupervised datasets. The

phone LM used for creating the denominator graph is estimated using phone sequences from

both supervised and unsupervised data. Following (Manohar et al., 2018), a higher weight is

assigned to the phone sequences from supervised data (1.5 for the 50 hours supervised dataset

and 1 for the unsupervised data).

We also train a DNN-based language model train on the same data to incorporate the language
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Figure 3.6: WER (%) obtained on the Fisher-English dev set for semi-supervised setups trained
using a different number of dropout samples, N . The dropout-based sampling is only applied
to the acoustic model. The red line denotes the regular semi-supervised training approach
(Manohar et al., 2018) which only uses the dropout-off decoded lattice for semi-supervised
training.

model uncertainty. This network consists of 3 temporal convolutional layers (Bai et al., 2018),

with 600 units in each layer. The size of the word embeddings is fixed to 600 and the kernel

size is taken to be 3. Dropout is applied to each of the layer.

3.8 Semi-supervised Learning Results

3.8.1 Effect of Dropout Sample Numbers from Acoustic Model

In this section, we investigate the number of acoustic model dropout hypothesis N needed to

represent the posterior-predictive distribution over word sequences. Although increasing N

allows for a better representation of the distribution, it is time consuming to decode multiple

times. Therefore, it is important to investigate appropriate value of N for a good trade-off.

We vary N from 5 to 40 and generate supervision lattices for the unsupervised data. As a

baseline, we use the decoding lattice generated from the same acoustic model in a standard

way (with dropout off), following (Manohar et al., 2018). We evaluate the performance on the

development set without language model re-scoring.

As shown in Figure 3.6, the performance of the proposed method improves as N increases

due to the better representation of the posterior-predictive distribution. We do not observe

any improvements for N greater than 20. Therefore, we keep using N = 20 for the following

experiments except when explicitly stated.
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Quality Analysis of the Supervision Lattices

From Figure 3.6, we see that the proposed unbiased lattices yield better WER than the regular

semi-supervised training that uses the decoding lattices generated with dropout off. We

compare the averaged WER and the sentence error rate (SER) of the proposed unbiased lattices

(N = 20) and the regular decoding lattice to verify our previous hypothesis that unbiased lattice

are less affected when the model produces correct outputs. We evaluate the WER of each

lattice by averaging the WER of the N-best hypotheses for each untranscribed utterance. The

regular decoding lattice was generated from the dropout-off model and was pruned before

this evaluation.

Table 3.4: We compare the averaged WER(%) and SER (%) for the combined lattice and regular
decoding lattice on the Fisher-English dev set. We note that the dropout-based lattice com-
bination achieves much lower sentence error rate (SER). This reduces the effect of incorrect
hypotheses when the model is confident and improves the performance of semi-supervised
training.

avg. WER SER

Regular Lattice 23.6 87.8
Lattice combination 23.1 75.7

Table 3.4 shows that the unbiased lattice has a better WER and a much better SER than the

regular lattice. The better WER and SER confirms our hypothesis that the lattice combination

from different dropout samples reduces the effect of incorrect hypotheses when the acoustic

model is confident on the unlabeled sentence, while keeping alternative paths to be exploited

when the acoustic model is uncertain. The much better SER also indicates that dropout

hypotheses are particularly useful when the model decodes perfectly thereby providing better

supervision quality and improved performance on the development set.

3.8.2 Effect of Number of Dropout Samples from Language Model

Similarly to Section 3.8.1, we analyze here the effect of N with respect to language model.

To generate unbiased supervision with respect to the language model, we first decode an

utterance in the standard way (keeping dropout off) and obtain the corresponding lattice. The

lattice is then re-scored N times using the DNN-based language model while keeping dropout

on. We vary N from 5 to 40. As shown in Figure 3.7, the performance on the development

set does not change much with different values of N and the proposed approach yields very

slight improvement. One of our previous hypotheses was that the Dropout-based Monte

Carlo sampling can help reduce the confusion in the supervision lattice especially for shorter

sentences. However, language model re-scoring for sentences with one or two words wouldn’t

make much difference by its nature. We found there are around one-third of the unsupervised
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Figure 3.7: WER (%) obtained on the Fisher-English dev set for semi-supervised setups trained
using a different number of dropout samples, N . The dropout-based sampling is only applied
to the language model. The red line denotes the regular semi-supervised training approach
(Manohar et al., 2018) where the supervision lattices were also re-scored using DNN LM.

utterances containing only 3 words or less. Furthermore, in terms of total hours this constitutes

an even smaller percentage of the total training data. Therefore, applying dropout sampling

on the language model only slightly improves the performance.

3.8.3 Complete Comparison

Table 3.5: Comparison between combined lattice and regular decoding lattice in WER(%)
obtained on the dev and test sets of the Fisher-English dataset. The 50h supervised system is
used as baseline to calculate WRR.

System Dev Test WRR

(a) 50h supervised 21.0 20.9 -

(b) Regular Approach 19.1 19.2 53.7%
(c) Lattice combination w.r.t. AM 18.5 18.3 76.1%
(d) Lattice combination w.r.t. LM 18.8 18.7 65.7%
(e) Lattice combination w.r.t. AM+LM 18.5 18.2 77.6%

(f) Oracle 17.7 17.5

Table 3.5 presents the results of uncertainty aware training on the test set. Row (a) shows the

performance of supervised training only using 50 hours of transcribed data. Row (f) shows the

results for supervised training using the oracle transcripts for all utterances combining super-
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vised and unsupervised data. Rows (b)-(e) present the results for different semi-supervised

training configurations. For each configuration, we re-score the supervision lattices for unla-

beled data using the DNN language model. For re-scoring the unbiased acoustic lattice in

the proposed framework, we first generate the decoding lattice samples by keeping dropout

activated for the acoustic model. Then, each decoding lattice is re-scored before pruning

and combination. Row (c) presents the results when dropout is applied only for the acoustic

model. Similarly, row (d) presents results when dropout is applied only with the language

model. In row (e), we explore their combination to verify whether the dropout sampling from

both acoustic model and language model can further improve the performance.

As we can see in the Table 3.5, the semi-supervised training approach as proposed in (Manohar

et al., 2018) (b) yields around 8.6% relative WER reduction. Incorporated with uncertainty

information from only the acoustic model, the unbiased supervision lattice improves over

the supervised system by around 12.2%. Dropout sampling from language model also brings

improvement, although the improvement is not as much as the one from acoustic model.

The combination cannot further improve the performance significantly. Most of the gains

come from the acoustic part. In total, the proposed semi-supervised training approach yields

approximately 12.4% relative improvement over the supervised setup. Compared with the

regular LFMMI semi-supervised training, the proposed approach gives 4.2% relative WER

reduction and 51.6% WER recovery rate.

3.9 Conclusions

We have proposed a novel way to exploit dropout uncertainty in the context of semi-supervised

training for DNN-based ASR systems. We show that the variations in different decoded

hypotheses with dropout are often highly localized at certain word positions and depict

locations where the ASR decoding might be inaccurate. Experiments on the Switchboard

dataset with 2 different acoustic models show that the dropout uncertainty enables accurate

word error rate estimation without the need of ground truth transcripts. We further show that

word level confidences estimated from the dropout hypotheses are more robust to the length

of the sentences when compared to lattice-based approaches.

We then extend the use of dropout-based uncertainty estimation to semi-supervised learning

with LFMMI. We show that the unbiased lattice combined from different dropout decoding

samples reduces the incorrect hypotheses for correct decodings, while keeping variations

for uncertain unlabeled utterances. Experiments on the Fisher English dataset show that

using dropout to generate supervision lattices further improves the WER over the regular semi-

supervised training framework. While this thesis primarily focused on LFMMI training, the

idea has also been investigated in the context of end-to-end frameworks for semi-supervised

learning (Dey et al., 2019).

In this chapter, we conducted experiments using the TDNN and LSTM neural network archi-

tectures. We think that dropout-based semi-supervised learning can also help improve the
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performance of the modern Transformer-based architectures. We leave this experimentation

for future work.
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4 Robust Self-Supervised Pre-training

4.1 Introduction

In the previous chapter, we looked at semi-supervised training, where a seed model trained

on labelled data is used to transcribe unlabelled utterances. These transcribed utterances

are then used together with supervised data to improve the ASR system performance. More

recently, self-supervised learning methods to learn powerful representations directly from

unlabelled data have received much attention (Baevski et al., 2020; Chung et al., 2019; Liu

et al., 2021; van den Oord et al., 2018; Wang et al., 2020; Baevski et al., 2022).

In contrast to semi-supervised learning (Chapter 3), self-supervised learning aims to im-

prove the seed model by exploiting unlabelled data before adaptation on supervised data.

Semi-supervised learning and self-supervised learning are complimentary as using the self-

supervised pre-trained network as the starting point for supervised adaptation improves the

seed model, enhancing the quality of transcriptions generated for the unlabelled data (Xu

et al., 2021).

Self-supervised training approaches can be broadly grouped into two classes: (1) auto-

regressive models that try to predict the future representations conditional on the past inputs

(van den Oord et al., 2018; Chung et al., 2019) and (2) bidirectional models that learn to predict

masked parts of the input (Baevski et al., 2020; Wang et al., 2020; Liu et al., 2021).

Currently, bidirectional models outperform autoregressive self-supervised models for ASR

(Baevski et al., 2020; Liu et al., 2021). In (Baevski et al., 2020; Liu et al., 2021), the authors

pre-train acoustic models with transformer architecture on 1000 hours of unsupervised Lib-

rispeech (Panayotov et al., 2015) data. The pre-trained models are later adapted on a 100

hour supervised subset of Librispeech data to achieve state-of-the-art performance for ASR.

However, in both cases, the authors only consider cross-entropy based HMM-DNN systems or

Connectionist Temporal Classification (Graves et al., 2006b) for supervised training. Moreover,

they evaluate the supervised adaptation when unlabelled and transcribed data belong to the

same domains.
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In this chapter, we examine the choice of sequence discriminative training criterion and

the robustness to domain mismatch for supervised adaptation for models pre-trained using

masked acoustic model (MAM) (Liu et al., 2021) and wav2vec 2.0 (W2V2) (Baevski et al.,

2020) approaches. In sections 4.1.1 and 4.1.2, we first provide a brief overview of MAM and

W2V2 pre-training. Next in sections 4.2 and 4.3, we present the details of the datasets, data

preparation, and supervised training for automatic speech recognition. Finally, in Section 4.4,

we present the results of supervised adaptation on the Librispeech, Switchboard, and Babel

datasets.

We show that for acoustic models pre-trained with MAM, the E2E-LFMMI criterion outper-

forms the cross-entropy based hybrid HMM-DNN model adaptation used in (Liu et al., 2021).

In contrast, fine-tuning the W2V2 model with E2E-LFMMI or CTC criterion yields similar

performances with neither consistently better than the other. Our results on the adapting the

MAM and W2V2 pre-trained models on out-of-domain conversational speech (Switchboard)

and cross-lingual data (Babel) show that both self-supervised pre-training methods provide

significant gains over the models trained only with supervised data.

4.1.1 Masked Acoustic Modeling

The masked acoustic model (MAM) is introduced by Liu et al. (2021) for self-supervised

pre-training with a bidirectional transformer model. Figure 4.1 provides an overview of MAM

pre-training. The input to the network is a sequence of acoustic features with a percentage of

the input frames masked or noise corrupted. The model attempts to reconstruct the original

input given the corrupted input and is trained with L1 loss.

Liu et al. (2021) use fMLLR features to pre-train the transformer acoustic model. In contrast,

we use 80-dimensional filterbank (FBank) energy features for pre-training. We do not use

fMLLR features as they require alignments from a previously trained ASR model for feature

extraction. This makes them unsuitable in general unsupervised settings. We pre-train the

model on the publicly available Librispeech (Panayotov et al., 2015) dataset that comprises

960 hours of read speech data.

In the following, we briefly describe the input perturbations used for the MAM task, the model

architecture, and the training details.

Input Perturbations

As described in (Liu et al., 2021), we apply the following three perturbations to the input

acoustic features.

First, we apply time alterations, where we randomly select starting time indexes and then

mask 7 consecutive frames. Time alteration blocks can overlap each other resulting in altered

blocks with more than 7 frames. The selected frames are set to zero with a probability of 0.8,
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Figure 4.1: Illustrating masked acoustic modeling based self-supervised pre-training approach.

replaced with random segments of frames with a probability of 0.1, or left unaltered with a

probability of 0.1. The total number of masked frames is roughly 15% for any input sequence.

We then apply frequency alteration where we randomly mask a block of consecutive channels

to zero for all time steps across the input sequence. The number of channels to be masked is

selected in the range of 0 to Wc with equal probability. We set Wc to 16 in our experiments.

Finally, we apply magnitude alteration where we add noise to each element of the acoustic

features. We sample each element in the noise matrix from a Gaussian distribution with mean

zero and variance 0.2. The magnitude alteration is applied with a probability of 0.15.

Model Architecture

We train two transformer architectures that we refer to as MAM-B and MAM-S. The base

model (MAM-B) comprises 12 encoder layers, each with 6 attention heads. The embedding

dimension is set to 64 for each head and the feed-forward dimension is set to 1536. We use all

960 hours of data to pre-train this model.

The small model (MAM-S) has 3 encoder layers, each with 12 attention heads. We set embed-

ding dimension to 64 for each head and the feed-forward dimension to 3072. We only use the

train-clean-100 subset to pre-train MAM-S.
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Training

Both transformer models are trained with the Adam optimizer (Kingma and Ba, 2015) with a

mini-batch size of 36 utterances with maximum input feature sequence length of 1500. The

learning rate is warmed up over the first 7% of total training steps to a peak value of 0.0002 and

then linearly decayed. We train for a total of 200000 steps. This results in a total of ∼ 35 and

∼ 353 epochs for the MAM-B and MAM-S models pre-trained on 960 and 100 hour subsets of

the Librispeech dataset, respectively.

4.1.2 wav2vec 2.0

wav2vec 2.0 (W2V2) is a self-supervised learning framework introduced by Baevski et al. (2020)

to learn powerful representations from raw audio data using contrastive learning (van den

Oord et al., 2018; Kawakami et al., 2020).

Figure 4.2 shows different steps for W2V2 self-supervised pre-training. The raw audio speech

is first encoded using a multi-layer convolutional neural network. The encoded latent repre-

sentations are forwarded to a masking module that masks about 49% of the total time steps.

Each span of masked features has 10 or more consecutive time steps. The unmasked latent

representations are also quantized to be later used for the contrastive task.

The masked latent representations are then input to a transformer model to learn contextual-

ized representations ct by minimizing the contrastive loss Lm . Given a contextualized output

ct for a masked time step, the model needs to identify the true quantized latent representation

qt in a set of K + 1 candidates q̃ that comprises qt and the K = 100 distractors. The contrastive

loss is given below:

Lm =− log
exp

(
sim(ct , qt )

)∑
q̃∼Qt

exp
(
sim(ct , q̃)

) . (4.1)

In (4.1), cosine similarity, sim(a,b) = aT b
∥a∥∥b∥ is used. As shown in Figure 4.2, the distractors are

uniformly sampled from other masked time steps of the same utterance.

In this work, we use the BASE W2V2 model pre-trained on 1000 hours of Librispeech data.

The pre-trained model is provided by Baevski et al. (2020). In the following, we restate the

details of model architecture and training for completeness.

Model Architecture

The BASE wav2vec 2.0 model (W2V2-B) consists of a convolutional front end with seven blocks,

each with 512 channels. The strides are set to (5,2,2,2,2,2,2) and the kernel widths are set to

(10,3,3,3,3,2,2). The convolutional encoder downsamples the raw audio from 16 KHz to an

output frequency of 50 Hz. The resulting output has a stride of about 20ms between each

sample, and a receptive field of 400 input samples or 25ms of audio.
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Figure 4.2: Illustrating different steps of wav2vec 2.0 self-supervised pre-training approach. A
convolutional front end first transforms raw speech into a sequence of latent features which
are then forwarded to a quantization and masking module. The masked representations
are fed to a transformer model that learns contextualized representations ct by solving a
contrastive task. Given ct for a masked time step, the model has to identify the true quantized
representation qt among a set of candidates that includes qt and some distractors.

The transformer encoder consists of 12 layers, each with 8 attention heads. The embedding

dimension is set to 96 for each head and the feed-forward dimension is set to 3072. Another

convolutional layer with a kernel size of 128 and 16 groups is used for modeling the relative

positional embeddings.

Training

The model is trained for 400K updates with Adam optimizer (Kingma and Ba, 2015) using a

learning rate schedule with peak learning rate set to 5×10−4. The learning rate is linearly
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increased for the first 8% of updates followed by a linear decay. Each input batch consists of

about 1.6h of raw audio inputs, with each audio cropped to a maximum of 15.6 sec.

4.2 Acoustic Model Adaptation

This section provides details for fine-tuning the MAM and W2V2 models pre-trained on the

960h of Librispeech dataset.

4.2.1 Model Training

Given an input utterance, we input the filter bank (FBank) features to the MAM model or

raw audio to the W2V2 model. The output of the transformer encoder of the pre-trained

models is passed as input to a seven-layered factorized time-delay neural network (TDNNF)

which is fine-tuned model together with pre-trained model weights using E2E-LFMMI and/or

CTC criteria. For TDNNF models, we set hidden layer dimension to 1024 and bottleneck

dimension to 128.

For supervised training with E2E-LFMMI, we use full biphones to enable flat-start training

without the need of prior alignments. Our CTC model is trained using character units. We

apply speed and volume perturbations to increase the dataset to three times.

All our models are trained with PyTorch (Paszke et al., 2019). For fine-tuning with CTC, we use

the Fairseq toolkit (Ott et al., 2019), and for E2E-LFMMI, we use the Espresso toolkit (Wang

et al., 2019b) which uses PyChain (Shao et al., 2020) for the implementation of LFMMI loss.

We use the PyTorch implementation for natural gradient update from (Madikeri et al., 2020).

We describe MAM and W2V2 specific training details below:

Masked acoustic model: We fine-tune the pre-trained models 15 epochs with a batch size

of 32 utterances. We use Adam (Kingma and Ba, 2015) optimizer with a learning rate that is

decayed from 0.001 to 0.00003 using a polynomial decay. When fine-tuning the pre-trained

model, we set the learning rate for the pre-trained network to be 0.00003 and use the same

learning rate policy for the TDNNF network. We fine-tune the MAM models only using the

E2E-LFMMI criterion. We also compare against the cross-entropy based adaptation to as

hybrid in later experiments.

wav2vec 2.0: Following the setup from (Baevski et al., 2020), we train for a maximum of 30000

and 75000 updates for E2E-LFMMI and CTC criterion, respectively, where each update is over

∼ 1500 seconds of speech input. In terms of total epochs, E2E-LFMMI and CTC models are

trained for 38 and 88 epochs on Librispeech, 10 and 27 epochs on Switchboard, 100 and 205

epochs on Swahili, 57 and 112 epochs on Tagalog, respectively.

Table 4.1 presents the total number of trainable parameters for different acoustic models.

For both E2E-LFMMI and CTC, we update the BASE model parameters with a learning rate
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that is linearly increased to 3e-5 over 10% of the updates, then held constant for 40% of the

updates, and linearly decreased for 50% of the updates. For TDNNF model parameters, we

use a learning rate that is 20 times the current learning rate for BASE model updates. We

also use the natural gradient update (Povey et al., 2015) for training with the E2E-LFMMI

objective.

Table 4.1: Comparing the number of parameters for different choices of acoustic models.

Architecture Parameters

(a) TDNNF-L 12M
(b) TDNNF-S 9M
(c) MAM-S 22M
(d) MAM-B 36M
(e) W2V2-B 95M

4.2.2 Decoding

For all models trained with E2E-LFMMI, we use the WFST decoder from (Povey et al., 2011)

with a beam width of 15. For the models trained with CTC, we use the decoder from (Pratap

et al., 2019) with a beam width of 500. We always use the language model from Kaldi recipes

(Povey et al., 2011) which are trained with SRILM (Stolcke, 2002). We found this to give better

results than KenLM (Heafield, 2011).

4.3 Experimental Setup

We evaluate the W2V2 and MAM pre-trained models by fine-tuning them on three different

datasets, each with a few hundred hours of transcribed audios. We fine-tune the pre-trained

model weights together with a seven layered factorized time-delay neural network (TDNNF)

architecture which we refer to as TDNNF-S. We also consider the setting where the pre-trained

model weights are frozen for MAM models, and the model is used as a feature extractor. In

this setting, the extracted features are input to a twelve layered TDNNF model (TDNNF-L)

whose weights are fine-tuned on the supervised dataset. The results for this are provided in

the Appendix A.1.

4.3.1 Datasets

We evaluate the performance of the pre-trained models on three different datasets with in-

creasing order of difficulties. The first dataset we consider is the 100 hour subset of Librispeech

(Panayotov et al., 2015) called train-clean-100. This is the easiest setting as there is no do-

main shift with respect to the pre-training data. We next consider the Switchboard (Godfrey

et al., 1992) dataset with 300 hours of supervision data. Both Switchboard and Librispeech

(pre-training data) consist of utterances spoken in English. However, Switchboard has con-
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versational speech recorded at 8KHz while Librispeech is read speech recorded at 16KHz. We

finally fine-tune on two of the Babel (Gales et al., 2014) languages: Tagalog (84h) and Swahili

(38.5h). This is the most challenging setting due to the language and acoustic conditions

mismatch.

4.3.2 Baselines

We compare the performance of pre-trained MAM and W2V2 models against the baseline

that is trained only using the supervised data. Our baseline is a twelve-layered TDNNF model

with the hidden layer dimension of 1024 and the bottleneck dimension of 128. It is trained

with E2E-LFMMI objective using 80-dimensional filterbank (FBank) features.

4.4 Results

In the following, we compare the Word Error Rate (WER) achieved by supervised adaptation

of pre-trained models to the models trained from scratch. The number of hours denotes the

transcribed data for adaptation. Unless specified, we use the pre-trained model trained on

960 hours of Librispeech data.

4.4.1 Librispeech (100h)

In this experiment, we discuss the setting when the pre-trained data and labelled data for

ASR come from the same domain. For all experiments, we report results using the model that

achieves lowest WER on the dev-clean set. We first decode using a trigram language model

and then rescore using a 4-gram language model.

Comparing E2E-LFMMI and Cross-Entropy Criteria

Table 4.2 compares the effect of training criterion used for adaptation of the model pre-

trained with MAM. From rows (a) and (b), it can be seen that using LFMMI for adaptation

outperforms hybrid models when FBANK features are used for self-supervised pre-training.

Moreover, compared to training from scratch using only the labelled data (a), using MAM-S (b)

performs slightly worse on the clean data. This is because MAM-S was pre-trained using the

same 100 hour subset which is used for training (a). Thus both models are exposed to exactly

the same amount of data during training. Interestingly (b) performs better than (a) on the

other portion of the test data. We think that these gains are a result of noise robustness due to

the perturbations added during pre-training.

Rows (d) and (e) compare the LFMMI and cross-entropy based adaptation for the case of base

models (MAM-B) pre-trained with 960h data. Note that the MAM-B model used by Liu et al.

1pre-trained with fMLLR features
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Table 4.2: Comparing the performance of MAM pre-trained model fine-tuning with E2E-
LFMMI against cross entropy based hybrid model. All models are fine-tuned on the 100
hour subset of the Librispeech dataset. We report the results on the clean and other portions
of the test set. Fine-tuning the pre-trained model with LFMMI (E2E-LFMMI) significantly
outperforms the cross-entropy based hybrid model training. Note that the base (MAM-B)
model in (Liu et al., 2021) are pre-trained with fMLLR features. For a fair comparison, we
also report the result for adaptation on MAM-S models pre-trained with FBANK features. For
MAM-S, the pre-trained models are used as feature extractors to compare against the results
reported for hybrid model. TDNNF-L and TDNNF-S refer to the 12 and 7 layered TDNNF
architectures. liGRU refers to light Gated Recurrent Unit. E2E-LFMMI refers to flat-start
training with LFMMI and hybrid refers to cross-entropy based HMM-DNN models.

Word Error Rate

3-gram 4-gram

Architecture Supervision clean other clean other

Supervised Only

(a) TDNNF-L e2e-lfmmi 8.6 26.3 5.9 20.0

Pre-training + Supervised

(b) MAM-S + TDNNF-L e2e-lfmmi 8.9 25.3 6.1 18.8
(c) MAM-S + liGRU (Liu et al., 2021) hybrid 11.8 - 9.4 -
(d) MAM-B + TDNNF-S e2e-lfmmi 7.8 - 5.3 -
(e) MAM-B + liGRU 1(Liu et al., 2021) hybrid 8.2 - 5.8 -

(2021) is pre-trained using fMLLR features. We find that even in this case, the LFMMI criterion

outperforms the cross-entropy adaptation. Furthermore, comparing (c) and (e), we observe

that the cross-entropy based fine-tuning is sensitive to the pre-training features. In contrast,

fine-tuning with LFMMI leads to much less performance difference.

Main Results

We present our main results in Table 4.3. We observe that fine-tuning either of the W2V2 and

MAM models pre-trained with 960 hours of untranscribed data results in better performance

than the baseline trained with only supervised data (a). Furthermore, we can see that W2V2

pre-training gives significantly better WER compared to the MAM pre-trained model. How-

ever, please note that the W2V2 model is pre-trained for twice as many steps with larger batch

sizes.

In rows (d) and (e), we compare the performance of fine-tuning the wav2vec 2.0 BASE model

with E2E-LFMMI and CTC loss. It can be seen that both models reach a similar level of

performance, providing ∼ 12.7% and ∼ 11.5% absolute WER improvements over the super-

vised TDNNF baseline on the noisy portion of the test set. Note that we did not apply any

additional regularization or changes to train with the CTC loss. In contrast, comparing rows
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(a) and (b) on the dev set, it can be seen that CTC training requires additional regularization

and modifications to the deep neural network training to reach a similar level of performance.

From tables 4.2 and 4.3, we find that LFMMI training improves performance for fine-tuning

models pre-trained with MAM. However, fine-tuning W2V2 models with either CTC or

LFMMI give a similar level of performance. We also find that while fine-tuning the pre-trained

models gives the most improvements, using the pre-trained model as a feature extractor also

outperforms the baseline trained only on supervised data (please see Appendix A.1.1).

Table 4.3: Comparison of word error rates (WER) (in %) on the clean and other parts of the
Librispeech test set with and without 4-gram language model rescoring. Fine-tuning the
pre-trained models significantly outperforms the baseline trained using only supervised data.
MAM-S, MAM-B refers to small, and base transformer models used for pre-training. TDNNF-
S and TDNNF-L refer to the 7 and 12 layered TDNNF architectures used for fine-tuning.
e2e-lfmmi refers to flat-start training with LFMMI and ctc refers to Connectionist Temporal
Classification criterion.

Word Error Rate

dev test

3-gram 3-gram 4-gram

Architecture Supervision clean clean other clean other

Supervised Only

(a) TDNNF-L e2e-lfmmi 8.3 8.6 26.3 5.9 20.0
(b) Bi-LSTM (Billa, 2017) ctc 11.1 - - - -

+ max perturbation ctc 9.8 - - - -
+ cascade dropout ctc 7.9 8.7 26.1 - -

Pre-training + Supervised

(c) MAM-B + TDNNF-S e2e-lfmmi - 7.8 20.2 5.3 14.7
(d) W2V2-B + TDNNF-S e2e-lfmmi - 4.4 8.9 3.5 7.3
(e) W2V2-B + TDNNF-S ctc - - - 3.3 8.5

4.4.2 Switchboard (300h)

In this experiment, we explore the case when the pre-training data and labelled data for ASR

belong to the same language but are different with respect to content, speakers, and acoustic

conditions. Switchboard has conversational speech recorded at 8 KHz while Librispeech

has read speech at 16 KHz. To be compatible with the pre-trained models, we resample the

Switchboard recordings at 16 KHz before extracting the features. For the TDNNF-L baseline

trained only with labelled data, we use the 8 KHz recordings.

Table 4.4 compares the WER for the models trained from scratch to those pre-trained on

Librispeech data. In both cases, the pre-trained models outperform the model trained from
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scratch. Once again, the fine-tuning W2V2 model with CTC or LFMMI loss gives a similar

performance. Similar to the case of Librispeech, we again find that while using the pre-trained

model as the feature extractor improves upon the baseline model, fine-tuning provides the

most gains (please see Appendix A.1.2).

Table 4.4: Comparison of word error rates (WER) (in %) on eval2000 test set portion of the
Switchboard dataset. The 3-gram language model is based on Switchboard, whereas the
4-gram employs Switchboard+Fisher training set transcripts. Fine-tuning either of the pre-
trained W2V2 or MAM model outperforms the baseline. Fine-tuning W2V2 model with E2E-
LFMMI or CTC significantly outperforms MAM model.

Word Error Rate

3-gram 4-gram

Architecture Criterion swbd ch swbd ch

Supervised Only

(a) TDNNF-L e2e-lfmmi 11.6 22.5 10.3 20.5
(b) TDNN-LSTM (Hadian et al., 2018) e2e-lfmmi 11.3 21.5 9.8 19.3
(c) Bi-LSTM (Audhkhasi et al., 2019) ctc - - 12.2 21.8

Pre-training + Supervised

(d) MAM-B + TDNNF-S e2e-lfmmi 10.9 20.4 9.4 18.2
(e) W2V2-B + TDNNF-S e2e-lfmmi 7.3 14.5 6.7 13.7
(f) W2V2-B + TDNNF-S ctc - - 6.6 13.2

4.4.3 Babel: Swahili (38h) and Tagalog (84h)

In our final experiment, we consider the scenario when the pre-training data and labelled

data for ASR do not share the same language or the acoustic conditions. We consider Swahili

and Tagalog which are two low-resource languages from the Babel database. Similar to the

Switchboard setup, we resample the recordings at 16 KHz to be compatible with the pre-trained

model. Once again, for the TDNNF-L model trained from scratch only on the supervised data,

we use the 8 KHz recordings.

Due to the lack of a separate evaluation set, we report results on the dev10h development

part of both languages. We remove 1000 utterances from the training set to be used as the

development set for model selection. We use trigram language model for decoding.

Section 4.4.3 compares the WER for the models trained from scratch to those that make use of

Librispeech pre-training data. Consistent with the previous results, we find that fine-tuning

pre-trained models outperform the supervised only baseline. We also find that for both

Swahili and Tagalog, W2V2 model fine-tuned with E2E-LFMMI and CTC obtained similar

performance. Both models also outperform the model pre-trained with MAM.
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Table 4.5: Comparison of word error rates (WER) (in %) on dev10h set for the Swahili and
Tagalog languages of the Babel dataset. Fine-tuning the pre-trained wav2vec 2.0 BASE model
significantly outperforms the monolingual and MAM baselines. Note that while we use SRILM,
XLSR-10 model uses KenLM for decoding and does not use speed or volume perturbation.

Word Error Rate

Model Criterion Swahili Tagalog

Supervised Only

(a) TDNNF e2e-lfmmi 39.5 44.9
(b) BLSTM-HMM (Inaguma et al., 2019) hybrid 38.3 46.3

Pre-training + Supervised

(c) XLSR-10 (Large) (Conneau et al., 2021) ctc 35.5 37.3
(d) MAM-B + TDNNF-S e2e-lfmmi 36.7 43.4
(e) W2V2-B + TDNNF-S e2e-lfmmi 29.4 36.9
(f) W2V2-B + TDNNF-S ctc 30.4 37.3

We additionally report the WER for the XLSR-10 model from Conneau et al. (2021). This is

a large wav2vec 2.0 multilingual model pre-trained on 10 languages. As can be seen, we get

a much better word error rate on Swahili and a comparable performance on Tagalog. We

think that the results might not be directly comparable because we use speed and volume

perturbation for data augmentation and do not score on non-language symbols. Additionally,

XLSR-10 uses KenLM for decoding while we use SRILM. In our experiments, we noticed a

significant degradation in WER using KenLM. Despite these differences, it is clear from our

results that wav2vec 2.0 BASE model pre-trained on Librispeech still offers a very competitive

baseline to the large multilingual model.

In contrast to the results on Switchboard and Librispeech datasets, we find that using pre-

trained model as a feature extractor performs worse than the models trained from scratch.

This indicates the representations learned by the pre-trained model on Librispeech data

removes some vital information specific to these languages resulting in worse performance

than the baseline. However, on fine-tuning, the model adjusts its parameters to recapture this

information and outperforms the baseline. The full results can be found in Appendix A.1.3.

4.5 Conclusions

This chapter investigates the effects of the sequence discriminative training criteria and out-

of-domain robustness for the supervised adaptation of pre-trained wav2vec 2.0 (W2V2) and

MAM models. We show that the LFMMI criterion performs better for fine-tuning the MAM

model. In contrast, fine-tuning the W2V2 model with either E2E-LFMMI or CTC gives a similar

performance with no additional regularization needed for CTC training. We further show that
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fine-tuning MAM or W2V2 model outperforms models trained with only supervised data

even under strong distributional shifts.

In the future, we intend to combine self-supervision based approaches with multi-lingual

training and iterative decoding based semi-supervised training approaches to further improve

the performance in low resource settings.
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5 Efficient Attention Models

5.1 Introduction

Sequence modelling is a fundamental task of machine learning, integral in a variety of ap-

plications such as neural machine translation (Bahdanau et al., 2015b), image captioning

(Xu et al., 2015), summarization (Maybury, 1999), automatic speech recognition (Dong et al.,

2018) and synthesis (van den Oord et al., 2016), etc. The Transformer architecture (Vaswani

et al., 2017) has been proven a powerful tool, significantly advancing the state-of-the-art for

most aforementioned tasks. In particular, transformers employ self-attention to handle long

sequences without the vanishing-gradient problem inherent in RNNs (Hochreiter et al., 2001;

Arjovsky et al., 2016).

Nonetheless, despite their impressive performance, self-attention comes with computational

and memory requirements that scale quadratic to the sequence length, limiting their appli-

cability to long sequences. The quadratic complexity becomes apparent if we consider the

core mechanism of self-attention, namely splitting the input sequence into queries and keys

and then each query attending to all keys. To this end, recently, there has been an increasing

interest in developing methods that address this limitation (Dai et al., 2019; Sukhbaatar et al.,

2019; Child et al., 2019; Kitaev et al., 2020).

These methods can be broadly categorized into two distinct lines of work. Those that focus on

improving the asymptotic complexity of the self-attention computation (Child et al., 2019; Lee

et al., 2019; Kitaev et al., 2020; Roy et al., 2021) and those that aim at developing techniques

that make transformers applicable to longer sequences without addressing the quadratic

complexity of self-attention (Dai et al., 2019; Sukhbaatar et al., 2019). The former reduces

the asymptotic complexity by limiting the number of keys that each query attends. The latter

increases the length of the sequence that a transformer can attend to without altering the

underlying complexity of the self-attention mechanism.

This thesis proposes two efficient attention alternatives to vanilla self-attention that scale

linearly with sequence length. Section 5.4 introduces the linear transformer model that uses a
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kernel-based formulation of self-attention and the associative property of matrix products

to calculate the self-attention weights (Section 5.4.1). Using our linear formulation, we also

express causal masking with linear complexity and constant memory (Section 5.4.2). This

formulation reveals the relation between transformers and RNNs, which enables us to perform

autoregressive inference orders of magnitude faster (Section 5.4.3).

Next, Section 5.5 presents clustered attention, a fast approximation of self-attention. Clustered

attention makes use of similarities between queries and groups them in order to reduce

the computational cost. In particular, we perform fast clustering using locality-sensitive

hashing and K-Means and only compute the attention once per cluster. This results in linear

complexity for a fixed number of clusters (Section 5.5.1). In addition, we showcase that we

can further improve the quality of our approximation by separately considering the keys with

the highest attention per cluster (Section 5.5.2). Finally, we provide theoretical bounds of our

approximation quality with respect to the full attention (Section 5.5.1 and Appendix B.2.2) and

show that our model can be applied for inference of pre-trained transformers with minimal

loss in performance.

We evaluate our models on automatic speech recognition and image generation tasks to

showcase that the proposed efficient attention can reach the performance levels of vanilla

transformer while being significantly faster during training and inference. Moreover, we

demonstrate that our proposed clustered attention can approximate pre-trained wav2vec 2.0

(W2V2), BERT, and BigGAN models on the popular speech recognition, natural language, and

image generation tasks with only a few clusters and without loss in performance.

5.2 Related Work

In this section, we discuss the most relevant works on scaling transformers to long sequences.

We start by presenting approaches that looked at speeding up the attention computation

before the Transformer architecture was introduced. Subsequently, we discuss approaches

that speed up transformers without changing self-attention computation complexity. Finally,

we summarize the related works on improving the asymptotic complexity of the attention

layer in transformer models.

5.2.1 Attention Improvements Before Transformers

Attention has been an integral component of neural networks for sequence modelling for

several years (Bahdanau et al., 2015b; Xu et al., 2015; Chan et al., 2016). However, its quadratic

complexity with respect to the sequence length hinders its applicability on large sequences.

Among the first attempts to address this was the work of Britz et al. (2017) that proposes

aggregating the information of the input sequence into fewer vectors and performing attention

with these fewer vectors, thus speeding up the attention computation and reducing the
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memory requirements. However, the input aggregation is performed using a learned but fixed

matrix that remains constant for all sequences, significantly limiting the model’s expressivity.

Similarly, Chiu and Raffel (2018) limit the number of accessible elements to the attention by

attending monotonically from the past to the future. Namely, if timestep i attends to position j

then timestep i +1 cannot attend to any of the earlier positions. Note that in order to speed up

the attention computation, the above methods are limiting the number of elements that each

layer attends to. Recently, some of these approaches have also been applied in the context of

transformers (Ma et al., 2020).

5.2.2 Non-asymptotic Improvements

Below, we summarize techniques that seek to apply transformers to long sequences without

focusing on improving the quadratic complexity of self-attention. The most important are

Adaptive Attention Span Transformers (Sukhbaatar et al., 2019) and Transformer-XL (Dai et al.,

2019).

In (Sukhbaatar et al., 2019), it was proposed to limit the self-attention context to the closest

samples (attention span), in terms of relative distance with respect to the time step, thus

reducing both the time and memory requirements of self-attention computation. This is

achieved using a masking function with learnable parameters that allows the network to

increase the attention span if necessary. Transformer-XL (Dai et al., 2019), on the other hand,

seeks to increase the effective sequence length by introducing segment-level recurrent training,

namely splitting the input into segments and attending jointly to the previous and the current

segment. The above, combined with a new relative positional encoding results in models that

attend to more distant positions than the length of the segment used during training.

Although both approaches have been proven effective, the underlying limitations of self-

attention still remain. Attending to an element that is N timesteps away requires O (
N 2

)
memory and computation. In contrast, our model trades off a small error in the computation

of the full attention for an improved linear asymptotic complexity. This makes processing

long sequences possible.

5.2.3 Improvements in Asymptotic Complexity

Sparse Transformer (Child et al., 2019) factorizes the self-attention mechanism into local

and strided attention. The local attention is computed between the C nearest positions and

the strided attention is computed between positions that are C steps away from each other.

When C is set to
p

N the total asymptotic complexity becomes O (
N
p

N
)

both in terms of

memory and computation time. The above factorization requires two self-attention layers for

any position to attend to any other position. In addition, the factorization is fixed and data

independent. This makes it intuitive for certain signals (e.g. images), however in most cases it

is arbitrary.
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More recently, Kitaev et al. (2020) proposed Reformer. This method further reduces complexity

to O (
N log N

)
by using locality-sensitive hashing (LSH) to perform fewer dot products. Note

that to be able to use LSH, Reformer constrains the keys to be identical to the queries. As

a result, this method cannot be used for tasks where the keys need to be different from the

queries.

In contrast to Sparse Transformer and Reformer, the proposed linear and clustered attention

variants impose no constraints on the queries and keys and scale linearly with respect to the

sequence length. Furthermore, clustered attention automatically groups the input queries that

are similar without the need for a manually designed factorization or constraints. Finally, for

our proposed models information flows always from every position to every other position.

Most related to the clustered transformers is Set Transformers (Lee et al., 2019) which reduce

the computational complexity of attention by introducing a set of trainable parameters I with

M vectors, called inducing points. Set Transformers compute attention between the input

sequence X , of length N and the M inducing points I to get a new sequence H , of length

M << N . The new sequence H is then used to compute the attention with X to get the output

representation. For a fixed M , the asymptotic complexity becomes linear with respect to

the sequence length. Inducing points are expected to encode some global structure that is

task-specific. However, this introduces additional model parameters for each attention layer.

In contrast to this, we use clustering to project the input to a fixed sequence of smaller length

without any increase in the number of parameters. Moreover, we show that not only our

method has the same asymptotic complexity, it can also be used with pre-trained models

without additional training.

Most related to the linear transformers are the works that try to linearize softmax. Softmax

has been the bottleneck for training classification models with a large number of categories

(Goodman, 2001; Morin and Bengio, 2005; Mnih and Hinton, 2008). Recent works (Blanc and

Rendle, 2018; Rawat et al., 2019), have approximated softmax with a linear dot product of

feature maps to speed up the training through sampling. Inspired by these works, we linearize

the softmax attention in transformers. Concurrently with this work, Shen et al. (2021) explored

the use of linearized attention for the task of object detection in images. In comparison, we

not only linearize the attention computation, but also develop an autoregressive transformer

model with linear complexity and constant memory for both inference and training. Moreover,

we show that every transformer can be seen as a recurrent neural network through the lens of

kernels.

In the following, we first recap the Transformer model introduced in Section 2.5.3. We then

present the proposed efficient attention variants with linear complexity of attention computa-

tion with respect to the sequence length.
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5.3 Transformers

The transformer function (Vaswani et al., 2017) maps an input sequence x ∈ RN×F with N

feature vectors of dimensions F to another sequence with the same number of features.

More formally, a transformer is a function T :RN×F →RN×F defined by the composition of L

transformer layers T1(·), . . . ,TL(·) as follows,

y = LN(SAl (x)+x ),

Tl (x) = LN(FFN(y)+ y ).
(5.1)

In (5.1), LN(·) refers to the layer normalization function , FFN(·) refers to the feedforward

network that transforms each feature independently of the others and is usually implemented

with a small two-layer multilayer perceptron. SAl (·) is the self attention function and is the

only part of the transformer that acts across sequences.

The self attention function SAl (·) computes, for every position, a weighted average of the

feature representations of all other positions with a weight proportional to a similarity score

between the representations. Formally, the input sequence x is projected by three matrices

WQ ∈RF×D , WK ∈RF×D and WV ∈RF×M to corresponding representations Q, K and V . Given

these, we define the attention matrix A ∈RN×N as,

Q = xWQ , (5.2)

K = xWK , (5.3)

V = xWV , (5.4)

A = softmax

(
QK T

p
D

)
, (5.5)

where Q ∈RN×D denotes the queries and K ∈RN×D denotes the keys. Note that softmax(·) is

applied row-wise. Using the attention weights A and the values V ∈RN×M , we compute the

new values SAl (x) = V̂ as follows,

SAl (x) = V̂ = AV. (5.6)

Computation Complexity of Self Attention: From (5.5) it is evident the computing attention

weights requires O (
N 2D

)
operations and the weighted average of (5.6) requires O (

N 2M
)
.

This results in an asymptotic complexity of O (
N 2D +N 2M

)
.

5.4 Linear Transformers

In this section, we formalize our proposed linear transformer. We present that changing the

attention from the traditional softmax attention to a feature map based dot product attention

results in better time and memory complexity as well as a causal model that can perform

sequence generation in linear time, similar to a recurrent neural network.
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Initially, in Section 5.4.1 we present our proposed linear transformers in the setting of non-

autoregressive models. Subsequently, in Section 5.4.2 we extend linear attention to the case

of auto-regressive/causal models. Finally, in Section 5.4.3 we rewrite the transformer as a

recurrent neural network.

5.4.1 Linearized Attention

The self attention in (5.6) implements a specific form of self-attention called softmax atten-

tion where the similarity score is the exponential of the dot product between a query and a

key. Given that subscripting a matrix with i returns the i -th row as a vector, we can write a

generalized attention equation for any similarity function as follows,

V̂i =
∑N

j=1 sim
(
Qi ,K j

)
V j∑N

j=1 sim
(
Qi ,K j

) . (5.7)

The self-attention in (5.7) is equivalent to (5.6) if we substitute the similarity function with

sim
(
q,k

)= exp
(

qT kp
D

)
.

The definition of attention in (5.7) is generic and can be used to define several other attention

implementations such as polynomial attention or RBF kernel attention (Tsai et al., 2019). Note

that the only constraint we need to impose to sim(·), in order for (5.7) to define an attention

function, is to be non-negative. This includes all kernels k(x, y) :R2×F →R+.

Given such a kernel with a feature representation φ (x) we can rewrite the output value com-

putation in (5.6) as follows,

V̂i =
∑N

j=1φ (Qi )T φ
(
K j

)
V j∑N

j=1φ (Qi )T φ
(
K j

) , (5.8)

and then further simplify it by making use of the associative property of matrix multiplication

to

V̂i =
φ (Qi )T ∑N

j=1φ
(
K j

)
V T

j

φ (Qi )T ∑N
j=1φ

(
K j

) . (5.9)

The above equation is simpler to follow when the numerator is written in vectorized form as

follows, (
φ (Q)φ (K )T )

V =φ (Q)
(
φ (K )T V

)
. (5.10)

Note that the feature map φ (·) is applied rowwise to the matrices Q and K .

From (5.5), it is evident that the computational and memory requirements of softmax attention

scales with O (
N 2

)
, where N represents the sequence length. In contrast, it can be seen from

Figure 5.1 and (5.9) that our proposed linear transformer has time and memory complexity
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ϕ (K)
T ∈ RD×N

ϕ (K)
T
V

V ∈ RN×M

RD×M

V̂i =
ϕ (Qi)

T
(
ϕ (K)

T
V
)

ϕ (Qi)
T ∑N

j=1 ϕ (Kj)

ϕ (Q) ∈ RN×D

V̂ ∈ RN×M

Figure 5.1: Flow-chart demonstrating the computation for linear attention. Given the queries
Q and key K , we first apply the kernel feature function φ () to obtain φ (Q) and φ (K ). We then
exploit the matrix product associativity property to change the order of computation with
linear complexity and memory requirements.

O (N ) because we can compute
∑N

j=1φ
(
K j

)
V T

j and
∑N

j=1φ
(
K j

)
once and reuse them for every

query.

Feature Maps and Computational Cost

For softmax attention, the total cost in terms of multiplications and additions scales as

O (
N 2 max(D, M)

)
, where D is the dimensionality of the queries and keys and M is the dimen-

sionality of the values. On the contrary, for linear attention, we first compute the feature maps

of dimensionality C . Subsequently, computing the new values requires O (NC M) additions

and multiplications.

The previous analysis does not take into account the choice of kernel and feature function.

Note that the feature function that corresponds to the exponential kernel is infinite dimen-

sional, which makes the linearization of exact softmax attention infeasible. On the other hand,

the polynomial kernel, for example, has an exact finite dimensional feature map and has

been shown to work equally well with the exponential or RBF kernel (Tsai et al., 2019). The

computational cost for a linearized polynomial transformer of degree 2 is O (
N D2M

)
. This

makes the computational complexity favorable when N > D2. Note that this is true in practice

since we want to be able to process sequences with tens of thousands of elements.

For our experiments, that deal with smaller sequences, we employ a feature map that results
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in a positive similarity function as defined below,

φ (x) = elu(x)+1, (5.11)

where elu(·) denotes the exponential linear unit (Clevert et al., 2016) activation function. We

prefer elu(·) over relu(·) to avoid setting the gradients to 0 when x is negative. This feature

map results in an attention function that requires O (N DM) multiplications and additions. In

our experimental section, we show that the feature map of (5.11) performs on par to the full

transformer, while significantly reducing the computational and memory requirements.

5.4.2 Causal Masking

The transformer architecture can be used to efficiently train autoregressive models by masking

the attention computation such that the i -th position can only be influenced by a position

j if and only if j ≤ i , namely a position cannot be influenced by the subsequent positions.

Formally, this causal masking changes (5.7) as follows,

V̂i =
∑i

j=1 sim
(
Qi ,K j

)
V j∑i

j=1 sim
(
Qi ,K j

) . (5.12)

Following the reasoning of Section 5.4.1, we linearize the masked attention as described below,

V̂i =
φ (Qi )T ∑i

j=1φ
(
K j

)
V T

j

φ (Qi )T ∑i
j=1φ

(
K j

) . (5.13)

By introducing Si and Zi as follows,

Si =
i∑

j=1
φ

(
K j

)
V T

j , (5.14)

Zi =
i∑

j=1
φ

(
K j

)
, (5.15)

we can simplify (5.13) to

V̂i = φ (Qi )T Si

φ (Qi )T Zi
. (5.16)

Note that, Si and Zi can be computed from Si−1 and Zi−1 in constant time hence making the

computational complexity of linear transformers with causal masking linear with respect to

the sequence length.

In the following, we discuss the gradient computation and the difference in behaviour during

training and inference for autoregressive transformers.
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Gradient Computation

A naive implementation of (5.16), in any deep learning framework, requires storing all inter-

mediate values Si in order to compute the gradients. This increases the memory consumption

by max(D, M) times; thus hindering the applicability of causal linear attention to longer se-

quences or deeper models. To address this, we derive the gradients of the numerator in (5.13)

as cumulative sums. This allows us to compute both the forward and backward pass of causal

linear attention in linear time and constant memory. A detailed derivation is provided in the

supplementary material.

Given the numerator V̄i and the gradient of a scalar loss function with respect to the numerator

∇V̄i
L, we derive ∇φ(Qi )L, ∇φ(Ki )L and ∇ViL as follows,

∇φ(Qi )L=∇V̄i
L

(
i∑

j=1
φ

(
K j

)
V T

j

)T

, (5.17)

∇φ(Ki )L=
(

N∑
j=i

φ
(
Q j

)(∇V̄ j
L

)T
)

Vi , (5.18)

∇ViL=
(

N∑
j=i

φ
(
Q j

)(∇V̄ j
L

)T
)T

φ (Ki ) . (5.19)

The cumulative sum terms in (5.13), (5.17) to (5.19) are computed in linear time and require

constant memory with respect to the sequence length. This results in an algorithm with

computational complexity O (NC M) and memory O (N max(C , M)) for a given feature map

of C dimensions. A pseudocode implementation of the forward and backward pass of the

numerator is given in algorithms 1 and 2 respectively in the Appendix B.1.1.

Training and Inference

When training an autoregressive transformer model the full ground truth sequence is available.

This makes layerwise parallelism possible for the attention, layer normalization, and the

feed-forward computation of (5.1). As a result, transformers are more efficient to train than

recurrent neural networks. On the other hand, during inference the output for timestep i is the

input for timestep i +1. This makes autoregressive models impossible to parallelize. Moreover,

the cost per timestep for transformers is not constant; instead, it scales with the square of the

current sequence length because attention must be computed for all previous timesteps.

Our proposed linear transformer model combines the best of both worlds. When it comes

to training, the computations can be parallelized and take full advantage of GPUs or other

accelerators. When it comes to inference, the cost per time and memory for one prediction is

constant for our model. This means we can simply store the φ
(
K j

)
V T

j matrix as an internal

state and update it at every time step like a recurrent neural network. This results in inference

thousands of times faster than other transformer models.
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5.4.3 Transformers are RNNs

In literature, transformer models are considered to be a fundamentally different approach to

recurrent neural networks. However, from the causal masking formulation in Section 5.4.2

and the discussion in the previous section, it becomes evident that any transformer layer with

causal masking can be written as a model that, given an input, modifies an internal state and

then predicts an output, namely a Recurrent Neural Network (RNN). Note that, in contrast to

Universal Transformers (Dehghani et al., 2019), we consider the recurrence with respect to

time and not depth.

In the following equations, we formalize the transformer layer of (5.1) as a recurrent neural

network. The resulting RNN has two hidden states, namely the attention memory s and the

normalizer memory z. We use subscripts to denote the timestep in the recurrence.

s0 = 0, (5.20)

z0 = 0, (5.21)

si = si−1 +φ (xi WK ) (xi WV )T , (5.22)

zi = zi−1 +φ (xi WK ) , (5.23)

yi = fl

(
φ

(
xi WQ

)T si

φ
(
xi WQ

)T zi

+xi

)
. (5.24)

In the above equations, xi denotes the i -th input and yi the i -th output for a specific trans-

former layer. Note that our formulation does not impose any constraint on the feature function

and it can be used for representing any transformer model, in theory even the ones using soft-

max attention. This formulation is a first step towards better understanding the relationship

between transformers and popular recurrent networks (Hochreiter and Schmidhuber, 1997)

and the processes used for storing and retrieving information.

5.5 Clustered Transformers

This section introduces the clustered attention variants for approximating the vanilla softmax

attention. In Section 5.5.1, we first show that for queries close in the Euclidean space, the

attention difference can be bounded by the distance between the queries. Clustered attention

exploits this property to reduce the computational complexity by clustering the queries and

computing the attention using only the query centroids. We then introduce improved-clustered

attention (Section 5.5.2) that improves the approximation by first extracting the top-k keys with

the highest attention per cluster and then computing the attention on these keys separately

for each query that belongs to the cluster.
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5.5.1 Clustered Attention

The core idea of clustered attention is to group queries into C clusters and use only the cluster

centroids for attention computation

More formally, let us define S ∈ {0,1}N×C , a partitioning of the queries Q into C non-overlapping

clusters, such that, Si j = 1, if the i -th query Qi belongs to the j -th cluster and 0 otherwise.

Using this partitioning, we can now compute the clustered attention. First, we compute the

cluster centroids as follows,

Qc
j =

∑N
i=1 Si j Qi∑N

i=1 Si j
, (5.25)

where Qc
j is the centroid of the j -th cluster. Let us denote Qc ∈RC×D as the centroid matrix.

Now, we can compute the clustered attention as if Qc were the queries. Namely, we compute

the clustered attention matrix Ac ∈RC×N

Ac = softmax

(
Qc K T

p
D

)
(5.26)

and the new values V̂ c ∈RC×M

V̂ c = AcV. (5.27)

Finally, the value of the i -th query becomes the value of its closest centroid, namely,

V̂i =
C∑

j=1
Si j V̂ c

j . (5.28)

In Figure 5.2 we show the clustered attention computation for an example sequence with

8 queries and using 3 clusters. Figure 5.2 and (5.26) shows that we use the same attention

weights for queries that belong to the same cluster. As a result, the attention computation

now becomes O (NC D), where C ≪ N . Furthermore, we only need to compute the attention

weights and the weighted average of the values once per cluster. Then, we can broadcast the

same value to all queries belonging to the same cluster. This allows us to reduce the number

of dot products from N for each query to C for each cluster, which results in an asymptotic

complexity of O (NC D)+O (C N M).

Note that in practice, we use multi-head attention, this means that two queries belonging to

the same cluster can be clustered differently in another attention head. Moreover, residual

connection in the output of the attention layer can cause two queries belonging to the same

cluster to have different output representations. The combined effect of residual connections

and multi-head attention allows new clustering patterns in subsequent layers. Further note

that the clustered attention groups queries from different time steps to compute the centroids

for attention computation. This makes it unsuitable for auto-regressive modeling where the

i -th output value can only be influenced by a position j if and only if j ≤ i .
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K-Means
Clustering

Qc
j =

∑N
i=1 SijQi∑N
i=1 Sij

1 0 0

0 1 0

1 0 0

0 0 1

0 1 0

0 0 1

0 0 1

softmax(QcK
T ) V̂ c = AcV V̂i =

C∑

j=1

Sij V̂
c
j

AcS

Q

Q

Qc

KT

V̂ c

V̂

Figure 5.2: Flow-chart demonstrating the computation for clustered attention. We use different
colors to represent the query groups and the computed centroids. The same colors are then
used to show the attention weights Ac , new values for the centroids V̂ c , and the resulting
values V̂ after broadcasting.

Quality of the approximation

From the above, we show that grouping queries into clusters can speed up the self-attention

computation. However, in the previous analysis, we do not consider the effects of clustering

on the attention weights A. To address this, we derive a bound for the approximation error.

In particular, we show that the difference in attention can be bounded as a function of the

Euclidean distance between the queries.

Proposition 1. Given two queries Qi and Q j such that
∥∥Qi −Q j

∥∥
2 ≤ ϵ,∥∥softmax

(
Qi K T )− softmax

(
Q j K T )∥∥

2 ≤ ϵ∥K ∥2 , (5.29)

where ∥K ∥2 denotes the spectral norm of K .

Proof. Given that softmax(·) has Lipschitz constant less than 1 (Gao and Pavel, 2017),∥∥softmax
(
Qi K T )− softmax

(
Q j K T )∥∥

2

≤ ∥∥Qi K T −Q j K T
∥∥

2

≤ ϵ∥K ∥2

(5.30)

Theorem 1 shows that queries that are close in Euclidean space have similar attention distri-

butions. As a result, the error in the attention approximation for the i -th query assigned to the

j -th cluster can be bounded by its distance from the cluster centroid Qc
j .
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Grouping the Queries

We have shown that given a representative set of queries, we can approximate the attention

with fewer computations. K-Means clustering minimizes the sum of squared distances be-

tween the cluster members and would be an ideal choice to find the representative set of

queries given our analysis from theorem 1. However, for a sequence of length N one iteration

of Lloyd’s algorithm for the K-Means has an asymptotic complexity O (NC D). To speed up the

distance computations, we propose to use Locality-Sensitive Hashing (LSH) on the queries

and then K-Means in Hamming space. We use the sign of random projections (Shrivastava

and Li, 2014) to hash the queries followed by K-Means clustering with hamming distance as

the metric. This results in an asymptotic complexity of O (NC L+C BL+N DB), where L is the

number of Lloyd iterations and B is the number of bits used for hashing.

5.5.2 Improving clustered attention

In the previous section, we show that clustered attention provides a fast approximation for

softmax attention. In this section, we discuss how this approximation can be further improved

by considering separately the keys with the highest attention. To intuitively understand the

importance of the above, it suffices to consider a scenario where a key with low attention for

some query gets a high attention as approximated with the cluster centroid. This can happen

when the number of clusters is too low or due to the convergence failure of K-Means. For

the clustered attention, described in Section 5.5.1, this introduces a significant error in the

computed value. The variation discussed below addresses such limitations.

After having computed the clustered attention Ac from (5.26), we find the k keys with the high-

est attention for each cluster. The main idea then is to improve the attention approximation

on these top-k keys for each query that belongs to the cluster. To do so, we first compute the

dot product attention as defined in (5.5) on these top-k keys for all queries belonging to this

cluster. For any query, the computed attention on these top-k keys will sum up to one. This

means that it cannot be directly used to substitute the clustered attention on these keys. To

address this, before substitution, we scale the computed attention by the total probability

mass assigned by the clustered attention to these top-k keys.

More formally, we start by introducing T ∈ {0,1}C×N , where T j i = 1 if the i -th key is among the

top-k keys for the j -th cluster and 0 otherwise. We can then compute the probability mass, let

it be m̂ j , of the top-k keys for the j -th cluster, as follows

m̂ j =
N∑

i=1
T j i Ac

j i . (5.31)
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Now we formulate an improved attention matrix approximation At ∈RN×N as follows

At
i l =


m̂ j exp

(
Qi K T

l

)∑N
r=1 T j r exp(Qi K T

r )
if T j l = 1

Ac
j l otherwise

. (5.32)

Note that in the above, i denotes the i -th query belonging to the j -th cluster and
p

D is omitted

for clarity. In particular, (5.32) selects the clustered attention of (5.26) for keys that are not

among the top-k keys for a given cluster. For the rest, it redistributes the mass m̂ j according

to the dot product attention of the queries with the top-k keys. The corresponding new values,

V̂ ∈RN×Dv , are a simple matrix product of At with the values,

V̂ = At V. (5.33)

We can decompose (5.33) into clustered attention computation and two sparse dot products,

one for every query with the top-k keys and one for the top-k attention weights with the

corresponding values. This adds O (N k max(D, M)) to the asymptotic complexity of the atten-

tion approximation of (5.26). A graphical illustration of the improved clustered attention is

provided in the Appendix B.2.1.

Quality of the approximation

In the following, we provide proof that improved clustered attention in (5.32) is a direct

improvement over the clustered attention in (5.26), in terms of the L1 distance from the

attention matrix A.

Proposition 2. For the i -th query belonging to the j -th cluster, the improved clustered attention

At
i and clustered attention Ac

j relate to the full attention Ai as follows,

∥∥At
i − Ai

∥∥
1 ≤

∥∥∥Ac
j − Ai

∥∥∥
1

(5.34)

The proof of the above proposition is presented in Appendix B.2.2 in the appendix. From

(5.34) it becomes evident that improved clustered attention will always approximate the full

attention better compared to clustered attention.

5.6 Automatic Speech Recognition Experiments

In this section, we analyze experimentally the performance of the proposed linear and clus-

tered transformers on non-autoregressive Automatic speech recognition (ASR) task in Sec-

tion 5.6. We evaluate different transformer models on two datasets, the Wall Street Journal

dataset (Section 5.6.1) and the Switchboard dataset (Section 5.6.2).

We compare our model with the vanilla transformers (Vaswani et al., 2017), which we refer to
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as softmax and the Reformer (Kitaev et al., 2020), which we refer to as lsh-X, where X denotes

the rounds of hashing. The linear attention introduced in Section 5.4.1 is referred to as linear.

For training the linear transformers, we use the feature map of (5.11). We refer to clustered

attention, introduced in Section 5.5.1, as clustered-X and to improved clustered attention,

introduced in Section 5.5.2, as i-clustered-X, where X denotes the number of clusters. Unless

mentioned otherwise we use k = 32 for the top-k keys with improved clustered attention.

For Reformer we use a PyTorch port of the published code. We do not use reversible layers

since it is a technique that could be applied to all methods. All experiments are conducted

using NVidia GTX 1080 Ti with 11GB of memory and all models are implemented in PyTorch

(Paszke et al., 2019). Our PyTorch code for linear and clustered attention can be found at

https://linear-transformers.com/ and https://clustered-transformers.github.io, respectively.

5.6.1 Evaluation on Wall Street Journal (WSJ)

In this experiment, we use the 80 hour WSJ dataset (Paul and Baker, 1992) with 40-dimensional

mel-scale filterbanks without temporal differences as features to the transformer models.

We train using Connectionist Temporal Classification (CTC) (Graves et al., 2006b) loss with

phonemes as ground-truth labels. The approximate average and maximum sequence lengths

for the training inputs are 780 and 2500, respectively.

For this task, we additionally compare with a bidirectional LSTM (Hochreiter and Schmidhu-

ber, 1997) with 3 layers of hidden size 320. We use the Adam optimizer (Kingma and Ba, 2015)

with a learning rate of 10−3 which is reduced when the validation error stops decreasing. For

the transformer models, we use 9 layers with 6 heads and embedding dimension of 32 for each

head. As an optimizer, we use RAdam with an initial learning rate of 10−4 that is divided by 2

when the validation error stops decreasing.

Table 5.1: Performance comparison in automatic speech recognition on the WSJ dataset. The
results are given in the form of phoneme error rate (PER) and training time per epoch. Our
models outperform the LSTM and Reformer while being faster to train and evaluate. Details of
the experiment can be found in Section 5.6.1.

Method Test PER Time/epoch (s) Training time (h) Epochs

Bi-LSTM 10.94 1047 15.0 50

Softmax 5.12 2514 88.0 127
LSH-1 9.43 1004 189.7 680
LSH-4 8.59 2350 210.1 321

Linear (ours) 8.01 754 145.1 692
clustered-100 (ours) 7.50 803 102.2 458
i-clustered-100 (ours) 5.61 1325 72.1 195
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Convergence Behaviour: In Table 5.1, we report the required phoneme error rate (PER), time

per epoch, and total training time for all transformer variants with 9 layers. We observe that

linear and clustered attention are about 3× faster than softmax (per epoch) and achieve lower

PER than both Reformer variants (lsh-1 and lsh-4) and the recurrent network baseline. We

also notice that improved clustered is the only method that is not only faster per epoch but

also in total wall-clock time required to converge. We provide training evolution plots in the

supplementary.

Speed Accuracy Trade-off: We start by comparing the performance of our proposed model

with various transformer variants under an equalized computational budget. To this end,

we train softmax with 4, 6 and 9 layers to get a range of the required computation time and

achieved phone error rate (PER). Similarly, we train i-clustered with 6 and 9 layers. Both models

are trained with 100 and 200 clusters. We also train clustered with 9 layers, and 100, 200 and

300 clusters. Finally, we train Reformer with 9 layers, and 1 and 4 hashing rounds. We refer

the reader to Appendix B.3.5 for the specifics of all transformer architectures as well as their

training details.

In Figure 5.3a, we plot the achieved PER on the validation set with respect to the required time

to perform a full forward pass. Our i-clustered achieves lower PER than all other baselines for

a given computational budget.

softmax lsh clustered (ours) i-clustered (ours)
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Figure 5.3: We compare the achieved performance of various transformer models under an
equalized computational budget. The numbers near the datapoints denote the number of
layers and number of clusters or hashing rounds where applicable. i-clustered is consistently
better than all baselines for a given computational budget both in WSJ and Switchboard
datasets. The details can be found in Section 5.6.1 and Section 5.6.2 respectively.

Approximation Quality: To assess the approximation capabilities of our proposed clustered

attention, we train different transformer variants on the aforementioned task and evaluate

them using other self-attention implementations during inference. As the Reformer requires

the queries to be identical to the keys to evaluate its approximation ability we also train a
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softmax attention model with shared queries and keys, which we refer to as shared-softmax.

Note that both clustered attention and improved clustered attention can be used for approxi-

mating shared-softmax, simply by setting keys to be equal to queries. Table 5.2 summarizes

the results. Improved clustered attention (7-8 rows) achieves the lowest phone error rate

in every comparison. This implies that it is the best choice for approximating pre-trained

models. In addition, we also note that the approximation improves as we increase the number

of clusters.

Table 5.2: We report the validation phone error rate (PER) on the WSJ dataset (Section 5.6.1).
We train with one model and evaluate with another to assess the approximation abilities of
different models. Underline denotes training and testing with the same model. Improved
cluster (rows 7-8) approximates the softmax and the shared-softmax significantly better than
all the other fast attention methods.

Train with

softmax shared-softmax lsh-1 lsh-4 clustered-100 i-clustered-100

E
va

lu
at

e
w

it
h

softmax 5.14 - - - 7.10 5.56

shared-softmax - 6.57 25.16 41.61 - -

lsh-1 - 71.40 10.43 13.76 - -

lsh-4 - 64.29 9.35 9.33 - -

clustered-100 44.88 40.86 68.06 66.43 7.06 18.83

clustered-200 21.76 25.86 57.75 57.24 6.34 8.95

i-clustered-100 9.29 13.22 41.65 48.20 8.80 5.95

i-clustered-200 6.38 8.43 30.09 42.43 7.71 5.60

oracle-top 17.16 77.18 43.35 59.38 24.32 6.96

Furthermore, to show that the top keys alone are not sufficient for approximating softmax, we

also compare with an attention variant, that for each query only keeps the 32 keys with the

highest attention. We refer to the latter as oracle-top. We observe that oracle-top achieves

significantly larger phone error rate than improved clustered in all cases. This implies that im-

proved clustered attention also captures the significant long tail of the attention distribution.

5.6.2 Evaluation on Switchboard

From the previous ASR evaluation experiment, we observe that only improved clustered atten-

tion converges faster than vanilla softmax attention with minimal degradation in performance.

In this experiment, we evaluate the clustered attention variants on more difficult Switch-

board dataset (Godfrey et al., 1992), which is a collection of 2,400 telephone conversations on

common topics among 543 strangers. We additionally report results for the twelve-layered

factorized time-delay neural network (TDNNF) model from Section 4.4.2. All transformers

are trained with lattice-free MMI loss (Povey et al., 2016) and as inputs we use 80-dimensional

filter-bank features with fixed positional embeddings. The average input sequence length is
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roughly 534 and the maximum sequence length is approximately 3850. Details regarding the

transformer architectures as well as their training details are provided in Appendix B.3.5.

Convergence Behaviour: Table 5.3 summarizes the computational cost of training the trans-

former models with 12 layers on the Switchboard dataset as well as the WER on the test set. We

observe that the vanilla softmax attention gives the smallest average WER. However, it is the

slowest to train. In contrast, improved clustered attention is only ∼ 3.3% relative worse while

being about ∼ 1.8× faster to train. Due to the larger sequences in this dataset both clustered

and i-clustered are faster to train per epoch and with respect to the total required wall-clock

time.

Table 5.3: Performance comparison in automatic speech recognition on the eval2000 test
set portion of the Switchboard dataset. The results are given in the form of word error rate
(wer) (WER) and training time per epoch. We use a 4-gram language model that is trained
on the Switchboard+Fisher training set transcripts. improved clustered attention model
converges 2× faster than the vanilla softmax attention while being only 0.5% worse in WER.
We additionally report results for the 12 layered TDNNF model from Section 4.4.2. More details
of the experiment can be found in Section 5.6.2.

Word Error Rate

swbd ch average Time/epoch (h) Training time (h)

TDNNF-L Section 4.4.2 10.3 20.5 15.4 - -

Softmax 10.3 19.6 15.0 3.84 228.1

clustered-100 (ours) 13.7 23.3 18.5 1.91 132.1

i-clustered-100 (ours) 10.7 20.3 15.5 2.57 127.4

Speed Accuracy Trade-off: Similar to Section 5.6.1, we compare the performance of various

transformer models given a specific computational budget. To this end, we train softmax with

6,8 and 12 layers. Similarly, we train i-clustered with 8 and 12 layers; both with 100 and 200 clus-

ters. Finally, we also train clustered with 12 layers, and 100,200 and 300 clusters. In Figure 5.3b,

we plot the achieved word error rate (WER) in the validation set of Switchboard with respect

to the required time to perform a full forward pass. Our i-clustered is consistently better than

softmax for a given computational budget. In particular, for a budget of approximately 50

seconds, improved clustered achieves more than 2 percentage points lower WER. Furthermore,

we note that it is consistently better than clustered attention for all computational budgets.

5.7 Experiments on Other Modalities

In this section, we analyze experimentally the performance of the proposed linear and clus-

tered transformers. First, in Section 5.7.1, we benchmark different self-attention models in

terms of computational cost and memory consumption on synthetic data. We then evaluate
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Figure 5.4: Per element GPU time and memory consumption for a forward/backward pass.
All models, except softmax, scale linearly with respect to the sequence length since they have
constant time and memory per element.

linear transformer on the autoregressive task of image generation in Section 5.7.2. Finally in

Section 5.7.3, we demonstrate that clustered attention can approximate transformer models

pre-trained on speech, image, and natural language tasks with minimal loss in performance.

We show that our models achieves competitive performance with respect to the state-of-the-art

transformer architectures, while requiring significantly less GPU memory and computation.

5.7.1 Synthetic Tasks

In the following, we compare the memory consumption and computation time for different

attention types on synthetically generated sequences. We also examine the convergence

properties on controlled tasks whose details can be found in Appendix B.3.1.

Time and Memory Benchmark

In this experiment, we measure the required memory and GPU time per single sequence

element to perform a forward/backward pass for the various self-attention models. We com-

pare the memory consumption and computation time on artificially generated sequences

of various lengths. For clustered attention we use 100 clusters, 63 bits for the LSH, and 10

Lloyd iterations for the K-Means. For the improved clustered attention, we use the same

configuration with k = 32. For Reformer, we evaluate on two variants using 1 and 4 rounds of

hashing. All models consist of 1 layer with 6 attention heads, embedding dimension of 64 for

each head, and a feed-forward dimension of 1536.

Figure 5.4 illustrates how these metrics evolve as the sequence length increases from N = 29 to

N = 215. For a fair comparison, we use the maximum possible batch size for each method and

we divide the computational cost and memory with the number of samples in each batch and

the sequence length.
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We note that, in contrast to all other methods, vanilla transformer scales quadratically with

respect to the sequence length and does not fit in GPU memory for sequences longer than 213

elements. All other methods scale linearly. Linear attention is both the fastest and consumes

the least amount memory. Clustered attention becomes faster than the vanilla transformer for

sequences with 1000 elements or more, while improved clustered attention surpasses it for

sequences with 2000 elements. Note that with respect to per sample memory, our proposed

linear and clustered attention variants perform better than all other methods. This can be

explained by the fact that our method does not require storing intermediate results to compute

the gradients from multiple hashing rounds as Reformer does. It can be seen, that lsh-1 is

faster than the improved clustered attention, however, as also mentioned by (Kitaev et al.,

2020) Reformer requires multiple hashing rounds to generalize.

5.7.2 Image Generation

Transformers have shown great results on the task of conditional or unconditional autoregres-

sive generation (Radford et al., 2019; Child et al., 2019), however, sampling from transformers

is slow due to the task being inherently sequential and the memory scaling with the square of

the sequence length. In this section, we train causally masked transformers to predict images

pixel by pixel.

We evaluate our models on two different datasets. We first consider the MNIST dataset (LeCun

and Cortes, 2010) consisting of 60000 images of handwritten digits between 0 and 9. We

then evaluate on the more difficult CIFAR-10 dataset (Krizhevsky, 2009) which consists of

60000 colour images from 10 different classes including animals and vehicles. Our achieved

performance in terms of bits per dimension is on par with softmax attention while being able

to generate images more than 1,000 times faster and with constant memory per image from

the first to the last pixel. We refer the reader to appendices B.3.2 to B.3.4 for comparisons in

terms of training evolution, quality of generated images and time to generate a single image.

In addition, we also compare with a faster softmax transformer that caches the keys and values

during inference, in contrast to the PyTorch implementation.

MNIST

First, we evaluate our model on image generation with autoregressive transformers on the

widely used MNIST dataset (LeCun and Cortes, 2010). The architecture for this experiment

comprises 8 attention layers with 8 attention heads each. We set the embedding size to 256

which is 32 dimensions per head. Our feed forward dimensions are 4 times larger than our

embedding size. We model the output with a mixture of 10 logistics as introduced by Salimans

et al. (2017). We use the RAdam optimizer with a learning rate of 10−4 and train all models

for 250 epochs. For the reformer baseline, we use 1 and 4 hashing rounds. Furthermore, as

suggested in Kitaev et al. (2020), we use 64 buckets and chunks with approximately 32 elements.

In particular, we divide the 783 long input sequence to 27 chunks of 29 elements each. Since
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the sequence length is relatively small, namely only 784 pixels, to remove differences due to

different batch sizes we use a batch size of 10 for all methods.

Table 5.4: Comparison of autoregressive image generation of MNIST images. Our linear
transformers achieve almost the same bits/dim as the full softmax attention but more than
300 times higher throughput in image generation. Full details in Section 5.7.2.

Method Bits/dim Images/sec

Softmax 0.621 0.45 (1×)
LSH-1 0.745 0.68 (1.5×)
LSH-4 0.676 0.27 (0.6×)

Linear (ours) 0.644 142.8 (317×)

Table 5.4 summarizes the results. We observe that linear transformers achieve almost the same

performance, in terms of final perplexity, as softmax transformers while being able to generate

images more than 300 times faster. This is achieved due to the low memory requirements of

our model, which is able to simultaneously generate 10,000 MNIST images with a single GPU.

In particular, the memory is constant with respect to the sequence length because the only

thing that needs to be stored between pixels are the si and zi values as described in (5.22) to

(5.23). On the other hand, both softmax and Reformer require memory that increases with the

length of the sequence.

Unconditional samples

Image completion

(a) (b) (c)

Figure 5.5: Unconditional samples and image completions generated by our method for
MNIST. (a) depicts the occluded original images, (b) the completions and (c) the original. Our
model achieves comparable bits/dimension to softmax, while having more than 300 times
higher throughput, generating 142 images/second. For details see Section 5.7.2.
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Image completions and unconditional samples from our MNIST model can be seen in Fig-

ure 5.5. We observe that our linear transformer generates very convincing samples with sharp

boundaries and no noise. In the case of image completion, we also observe that the trans-

former learns to use the same stroke style and width as the original image effectively attending

over long temporal distances. Note that as the achieved perplexity is more or less the same for

all models, we do not observe qualitative differences between the generated samples from

different models.

CIFAR-10

Unconditional samples

Image completion

(a) (b) (c)

Figure 5.6: Unconditional samples and image completions generated by our method for
CIFAR-10. (a) depicts the occluded original images, (b) the completions and (c) the original.
As the sequence length grows linear transformers become more efficient compared to softmax
attention. Our model achieves more than 4,000 times higher throughput and generates 17.85
images/second. For details see Section 5.7.2.

The benefits of our linear formulation increase as the sequence length increases. To showcase

that, we train 16 layer transformers to generate CIFAR-10 images (Krizhevsky, 2009). For each

layer we use the same configuration as in the previous experiment. For Reformer, we use

again 64 buckets and 83 chunks of 37 elements, which is approximately 32, as suggested in the

paper. Since the sequence length is almost 4 times larger than for the previous experiment,

the softmax transformer can only be used with a batch size of 1 in the largest GPU that is

available to us, namely an NVidia P40 with 24GB of memory. For both the linear transformer

and reformer, we use a batch size of 4. All models are trained for 7 days. We report results in
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terms of bits per dimension and image generation throughput in Table 5.5. Note that although

the main point of this experiment is not the final perplexity, it is evident that as the sequence

length grows, the fast transformer models become increasingly more efficient per GPU hour,

achieving better scores than their slower counterparts.

Table 5.5: We train autoregressive transformers for 1 week on a single GPU to generate CIFAR-
10 images. Our linear transformer completes 3 times more epochs than softmax, which results
in better perplexity. Our model generates images 4,000× faster than the baselines. The full
details of the experiment are in Section 5.7.2.

Method Bits/dim Images/sec

Softmax 3.47 0.004 (1×)
LSH-1 3.39 0.015 (3.75×)
LSH-4 3.51 0.005 (1.25×)

Linear (ours) 3.40 17.85 (4,462×)

As the memory and time to generate a single pixel scales quadratically with the number

of pixels for both Reformer and softmax attention, the increase in throughput for our linear

transformer is even more pronounced. In particular, for every image generated by the softmax

transformer, our method can generate 4,460 images. Image completions and unconditional

samples from our model can be seen in Figure 5.6. We observe that our model generates

images with spatial consistency and can complete images convincingly without significantly

hindering the recognition of the image category. For instance, in Figure 5.6b, all images have

successfully completed the dog’s nose (first row) or the windshield of the truck (last row).

5.7.3 Pre-Trained Model Approximation

To highlight the ability of our clustered attention model to approximate arbitrarily complicated

attention distributions, we evaluate it for approximating the models pre-trained on speech, im-

age, and natural language processing tasks. For speech, we consider the previously discussed

wav2vec 2.0 (W2V2) model (Baevski et al., 2020). For vision, we consider the pre-trained

BigGAN model (Brock et al., 2019). For text, we approximate the RoBERTa model (Liu et al.,

2019a).

wav2vec 2.0 Approximation for Speech Recognition

For this task, we evaluate the pre-trained W2V2 Base model that has been fine-tuned on the

100h Librispeech dataset. We use the model provided by (Baevski et al., 2020). In Table 5.6,

we present the word error rate on the clean and other parts of the test set decoded using a

greedy decoder and no language model. We also report the inference for the greedy decoder.
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Table 5.6: We measure the word error rate and inference times for wav2vec 2.0 model approxi-
mation. We report the WER on the clean and other portion of the Librispeech test sets. We
use a greedy decoder without any language model to measure the WER and the inference
times. We additionally report the WER obtained using 4-gram LM (in parenthesis). We find
that improved clustered attention with only 100 clusters can approximate the base model with
minimal loss in performance. The slower inference time is due to the short sequence lengths.
In contrast to the FBank features extracted at 100Hz, the wav2vec 2.0 convolutional front end
downsamples the input to the transformer encoder to 50Hz.

Word Error Rate

Model test-clean test-other Inference Time (s)

(a) softmax 6.1 (3.4) 13.3 (8.2) 52.2
(b) clustered-100 70.4 (42.5) 72.2 (48.0) 60.0
(c) i-clustered-100 7.5 (3.6) 14.7 (8.6) 74.1
(d) i-clustered-200 (topk=16) 6.7 (3.5) 13.9 (8.3) 77.2
(e) i-clustered-200 6.2 (3.4) 13.5 (8.3) 80.5

Additionally, we report the WER obtained with a beam search decoder from (Pratap et al., 2019)

using a beam width of 500. For this, we use the 4-gram language model from Kaldi recipes

(Povey et al., 2011). We find that improved clustered attention can approximate the pre-trained

model with a small loss in performance. We also see that the approximation improves as we

increase the number of clusters. Note that the softmax attention is faster for the inference as

the W2V2 model has a convolutional front-end that downsamples the audio to 50Hz before

they are input to the transformer encoder.

We also note that the wav2vec 2.0 model with vanilla attention in row (a) gives results similar

to our CTC model from row (e) of Table 4.3. The minor difference is because we use a seven-

layered TDNNF model on top of the transformer encoder for the model (e) in Section 4.4.1. In

contrast, W2V2 model from (Baevski et al., 2020) uses a linear layer.

RoBERTa Approximation for Natural Language Processing

We evaluate on 10 different tasks on the GLUE (Wang et al., 2019a) and SQuAD (Rajpurkar

et al., 2018) benchmarks. These involve tasks such as question answering (SQuAD) and textual

entailment (RTE), which exhibit arbitrary and sparse attention patterns. We refer the reader to

Wang et al. (2019a); Rajpurkar et al. (2018) for a detailed analysis of all tasks.

For the GLUE tasks, the maximum sequence length is 128 while for SQuAD, it is 384. For

each task, we use 25 clusters for approximation which is less than 20% and 10% of the input

sequence length for GLUE and SQuAD tasks respectively. In Table 5.7, we summarize the

performance per task. We observe that improved clustered performs as well as the softmax

transformer in all tasks but SQuAD, in which it is only marginally worse. Moreover, we note

that clustered performs significantly worse in tasks that require more complicated attention
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Table 5.7: We report the performance of model approximation on GLUE and SQuAD bench-
marks involving natural language processing tasks such as textual entailment (RTE) and
question answering (SQuAD). More details about the tasks can be found in (Wang et al., 2019a;
Rajpurkar et al., 2018). Following common practice, we report accuracy for all tasks except
STS-B and SQuAD, where we report Pearson correlation and F1-score respectively. For all
metrics higher is better.

CoLA MNLI MRPC QNLI QQP RTE SST-2 STS-B WNLI SQuAD

softmax 0.601 0.880 0.868 0.929 0.915 0.682 0.947 0.900 0.437 0.904
clustered-25 0.598 0.794 0.436 0.746 0.894 0.498 0.944 0.789 0.437 0.006

i-clustered-25 0.601 0.880 0.873 0.930 0.915 0.704 0.947 0.900 0.437 0.876

patterns such as SQuAD and RTE. For inference time, softmax was faster than the clustered

attention variants due to short sequence lengths.

BigGAN Approximation for Image Generation

Softmax Attention Improved Clustered Attention

(a) (b)

Figure 5.7: Samples generated by BigGAN model using softmax attention and improved
clustered attention with 128 clusters. We observe that using only a few clusters and no fine-
tuning, improved clustered attention can synthesize images that are almost indistinguishable
from those generated by the softmax attention.

For this task, we take the pre-trained BigGAN model (Brock et al., 2019) that is trained on

the Imagenet dataset to generate images of size 64×64. In Figure 5.7, we present images

synthesized using the softmax attention and improved-clustered attention with only 128

clusters. We can see that the improved clustered attention can generate high fidelity images

that are almost indistinguishable from the softmax attention with no fine-tuning. Though the
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images look very similar, there are minor artifacts that remain due to approximation error. For

example, if we compare the images in first column of second row in (a) and (b), we can see

that eyes seem to be missing for image generated with the improved clustered attention. We

believe some of this performance can be recovered with few steps of fine-tuning.

5.8 Conclusions

In this work, we presented two efficient alternatives to vanilla transformer to reduce the com-

putational and memory requirements for self-attention. We first presented linear transformer,

a model that exploits the associativity property of matrix products together with softmax ker-

nelization to compute self-attention in time and memory that scales linearly with respect to

the sequence length. We show that our model can be used with causal masking and still retain

its linear asymptotic complexities. Finally, we express the transformer model as a recurrent

neural network, which allows us to perform inference on autoregressive tasks thousands of

time faster.

This property opens a multitude of directions for future research regarding the storage and

retrieval of information in both RNNs and transformers. Another line of research to be explored

is related to the choice of feature map for linear attention. For instance, using the Taylor series

expansion for the softmax function could allow us to use feature maps that can approximate

the models pre-trained with softmax attention.

We then presented clustered attention a method that approximates vanilla transformers with

significantly lower computational requirements. In particular, we have shown that on the

ASR task on Switchboard dataset, our model can be up to 2× faster during training and

inference while being only ∼ 3% relatively worse in WER. In contrast to recent fast variations

of transformers, we have also shown that our method can efficiently approximate pre-trained

models with full attention while retaining the linear asymptotic complexity.

The proposed linear and clustered attention variants open several research directions towards

applying transformers on long sequence tasks such as music generation, scene flow estimation

etc. We consider masked language modeling for long texts to be of particular importance, as it

will allow fine-tuning for downstream tasks that need a context longer than the commonly

used 512 tokens.
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6 Towards Data and Compute Efficient
ASR

6.1 Introduction

In the previous chapters, we discussed two popular self-supervised pre-training approaches,

W2V2 and MAM, that employ the self-attention based Transformer architecture to learn useful

representations from untranscribed audio and improve the data efficiency for ASR models.

However, the quadratic complexity of self-attention computation makes the Transformers

hard to scale for long sequence modeling.

In Chapter 5, we presented linear and clustered attention as two efficient variants of the

Transformer that improve the compute efficiency for long sequence modeling. We find that

the linear attention significantly improves inference time and consumes much less memory.

However, it results in WER degradation for the ASR task. In contrast, improved clustered

attention results in minimal WER degradation and has lower memory requirements. However,

it has a slower inference when dealing with small input sequences. Slower inference is further

exacerbated in the case of W2V2 model which extracts acoustic features at 50Hz instead of

the traditional features extracted at 100Hz.

In this chapter, we present a practical method for compute and data efficient ASR1. We

build on the recent Squeeze and Efficient Wav2vec (SEW) architecture (Wu et al., 2022) for

efficient training and inference with the W2V2 model. The SEW architecture modifies the

convolutional feature extractor to improve inference latency. Moreover, they introduce a

squeezing mechanism that downsamples the convolutional front-end output from 50Hz

to 25Hz. This reduces the computation for the transformer encoder. The output of the

encoder is upsampled with a linear layer to produce output at 50Hz. Note that while the

asymptotic complexity for self-attention computation remains quadratic in the sequence

length, in practice, we observe upto 2× faster inference. However, one downside to SEW is the

WER degradation for sensitive applications.

We propose to overcome this limitation with stochastic pre-training and fine-tuning for W2V2

1work done during the internship at Meta AI
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models. Deep neural networks with stochastic depth using layerdrop and block drops have

previously been explored in (Wu et al., 2018; Fan et al., 2020; Huang et al., 2016; Liu et al., 2019b)

for efficient inference. In this chapter, we introduce stochastic compression for on-demand

compute reduction for W2V2 model. Stochastic compression enables training a single model

that can support a number of operating points with a smooth trade-off between WER and

inference latency.

As opposed to training with a fixed squeezing factor, at each iteration, we sample a squeezing

factor S that takes a value from 1 to S f . Given the squeezing factor S, we compress the input to

the transformer encoder by this factor. Similar to SEW, the output of the transformer encoder

is upsampled to the original sequence length using a linear layer. In addition to this, for

each transformer layer, we also introduce a stochastic pooling mechanism that could be

independently applied to queries and keys-values in a decoupled fashion. In contrast to the

squeezing mechanism, we do this without introducing any additional learnable parameters.

We show that stochastic pre-training and fine-tuning provides a smooth trade-off between

WER and inference time with only marginal performance degradation compared to the non-

stochastic variants. Thus allowing for a range of operating points for applications with varying

requirements. We further show that by fine-tuning the same stochastically pre-trained model

to a specific configuration (operating point), we can get the same accuracy as the correspond-

ing non-stochastic model. This removes the need for pre-training multiple models, resulting

in significant computational savings.

6.2 Related Works

There have been several works for improving the efficiency of W2V2 models for ASR. In

(Peng et al., 2021b), the authors propose model distillation and quantization techniques to

reduce the computational requirements and inference latency for the W2V2 model. While

quantization substantially improves the CPU inference time with no WER degradation, the

impact on more common GPU inference is not discussed. In contrast, model distillation

improves the inference time for both CPU and GPU; however, it substantially degrades the

WER from 2.6% to 9.5% on the clean portion of the Librispeech development dataset. Moreover,

both techniques do not reduce the pre-training time.

In (Lai et al., 2021), the authors present Prune, Adjust and Re-Prune (PARP), a method for

discovering sparse subnetwork from a pre-trained W2V2 model that gives the same or better

WER for downstream ASR task. While the proposed method discovers subnetworks with

better WER for dataset, the training time for both self-supervised pre-training and supervised

fine-tuning remain the same due to the use of unstructured sparsity masks.

Most relevant to this work is the Squeeze and Efficient Wav2vec (SEW) architecture proposed

by Wu et al. (2022). The SEW model introduces two important architectural changes to

the W2V2 architecture. First, they introduce compact wave feature extractor (WFE-C) that
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CNN Feature Encoder

Features (50Hz)

Transformer

Output (50Hz)

Raw Audio

(a) Original wav2vec 2.0

CNN Feature Encoder

Features (25Hz)

Transformer

Output (50Hz)

Downsample

Upsample

Raw Audio

(b) Squeeze and Efficient Wav2vec (SEW)

Figure 6.1: Comparing original wav2vec 2.0 and SEW model architecture with a squeezing
factor of 2. SEW architecture introduces a downsampling layer to reduce the input sequence
length by a factor of 2.

replaces the original W2V2 convolutional feature extractor (WFE-O). WFE-O uses the same

number of channels in all layers of its convolutional extractor. WFE-C starts with a small

number of channels c and doubles the channel when the sequence length is downsampled by

4 times. WFE-C distributes the forward and backward pass computation more evenly across

layers resulting in a similar WER as WFE-O while being much faster. In this work, we always

use WFE-C-c64-I1 as the compact feature extractor. We refer the readers to the Section 4.4 of

(Wu et al., 2022) for more details.

Next, they introduce Squeezed Context Networks to reduce the length of input sequence to

the transformer encoder. As shown in Figure 6.1b, they introduce a squeezing mechanism via

a downsampling layer at the output of the convolutional encoder to reduce the output rate

from 50Hz to 25Hz. The downsampled sequence reduces the memory and computational
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time for the transformer encoder. The upsampling layer at the output of transformer encoder

produces outputs at 50Hz for contrastive loss computation.

6.3 Stochastic wav2vec 2.0

In the following, we describe the proposed method for training the W2V2 model with stochas-

tic compression.

6.3.1 Basic Notations

We start by introducing basic definitions that we will later use to define query and key-value

mean pooled attention. Let us denote the queries as Q ∈RN×D , keys as K ∈RS×D , and values

as V ∈RS×M , where N and S denotes the query and key sequence lengths respectively. D and

M denote the embedding dimensions for keys and values respectively. The attention output

V ′ ∈RN×M is given as follows:

A(Q,K ,V ) =V ′ = softmax

(
QK T

p
D

)
V. (6.1)

Let us also define the mean-pooling or downsampling operator D(X ,Sp ) that takes as input a

sequence X ∈RN×Dx and a pooling factor Sp to output another sequence X p ∈RNp×Dx where

Np = ⌈ N
Sp
⌉. Here ⌈a⌉ denotes the ceil operation. Note that we may need to pad the signal

appropriately. The i-th output X p
i is given by:

X p
i =

Sp∑
j=1

X(i∗Sp )+ j

Sp
∀i ∈ {1, . . . , Np }. (6.2)

Finally, let us define the upsampling operator U (X p ,Su) that takes as input a sequence X p ∈
RNp×Dx and an upsampling factor Su to output another sequence X ∈ RN×Dx where N =
(Np ∗Su). The i-th output Xi is given by:

Xi = X p

⌊ i
Su

⌋ ∀i ∈ {1, . . . , N }, (6.3)

where ⌊a⌋ denotes the floor operation.

6.3.2 Query and Key-Value Mean Pooled Attention

The upsampling layer in the SEW architecture introduces some additional parameters to the

W2V2 model. In contrast to this, we introduce query and key-value mean pooling during self-

attention computation which can be applied independently to each layer with no additional
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parameters. This allows for finer control over the compression at each transformer layer.

Let us denote the query pooling and key-value pooling factors as Sq and Sk respectively. Given

Sq and Sk , we first compute the mean pooled queries Qp , keys Kp , and values Vp using the

previously defined downsampling operator D(·) as follows:

Qp = D(Q,Sq ), (6.4)

Kp = D(K ,Sk ), (6.5)

Vp = D(V ,Sk ). (6.6)

The output V ′ ∈RN×M for the pooled attention is:

V ′
p = A(Qp ,Kp ,Vp ), (6.7)

V ′ =U (V ′
p ,Sq ). (6.8)

6.3.3 Stochastic Compression

In contrast to SEW models, where the squeezing factor remains fixed during pre-training and

fine-tuning, at each iteration, we sample the squeezing factor uniformly from the set {1, . . . ,S f }.

Similarly, for each transformer layer we also sample the query and key-value mean pooling

factors from the sets {1, . . . ,Sq } and {1, . . . ,Sk } respectively.

6.4 Experimental Setup

6.4.1 Models

We conduct experiments with W2V2, SEW, and our proposed stochastically compressed (St-

SEW) models with 12 and 24 encoder layers. For all models, we use WFE-C-c64-l1 as the

feature extractor. In Table 6.1, we describe the main hyper-parameters for different classes

of models. Note that we can view W2V2 and SEW models as special cases of the stochastic

models with a specific setting of squeezing and pooling factors.

6.4.2 Pre-training

We pre-train models on 960h of Librispeech (Panayotov et al., 2015) dataset. We use the

same hyperparameters as W2V2 base (Baevski et al., 2020). To reduce the computational

requirements, our models are trained with 8 NVIDIA V100 GPUs using Fairseq (Ott et al., 2019)

and PyTorch (Paszke et al., 2019). We double the maximum tokens per batch and set gradient

accumulation steps to 4 to simulate 64 GPUs as used in (Baevski et al., 2020).

91



Chapter 6. Towards Data and Compute Efficient ASR

Table 6.1: Model hyper-parameters and pre-training times in hours for base (B) and large
(L) models. S f refers to possible squeeze factors, Sq and Sk refer to the possible query and
key-value pooling factors. E and D refer to the model dimension and the number of layers
(depth) in transformer respectively. We estimate the pre-training times (PT) for 400K steps for
models trained using 960 hour of Librispeech data on 8 NVIDIA V100 GPUs.

Model S f Sk Sq E D PT (hr)
W2V2-B 1 1 1 768 12 117
W2V2-L 1 1 1 1024 24 172 2

SEW-B 2 1 1 768 12 83
SEW-L 2 1 1 1024 24 115

St-SEW-B {1,2} {1,2} {1,2} 768 12 100
St-SEW-L {1,2} {1,2} {1,2} 1024 24 140

6.4.3 Fine-tuning

We add a linear layer to the top of the transformer encoder and fine-tune the model for 20K

steps using the CTC objective (Graves et al., 2006b) on the 10h subset of the Librispeech dataset.

We use the dev-other for model selection during fine-tuning. For stochastically pre-trained

models, we consider the following two strategies for fine-tuning:

Stochastic Fine-tuning: In this setting, we fine-tune stochastically by sampling the squeezing

and pooling factors similar to pre-training. During validation, we use randomly selected values

for S f , Sk , and Sq . This model allows for a smooth trade-off between WER and inference time

for different settings of squeeze and pooling factors used during inference.

Deterministic Fine-tuning: In this setting, we fine-tune the model for a fixed configuration

of squeeze and pooling factors. In contrast to stochastic fine-tuning, this model can only be

inferred with the selected configuration. However, we find that this gives better WER. Note

that, for each configuration, we fine-tune the same stochastically pre-trained model resulting

in significant computational savings as pre-training typically requires more computational

resources and time.

6.4.4 Evaluation

Similar to (Wu et al., 2022), we consider pre-training time (Table 6.1), inference time, and

word error rate (WER) (tables 6.3 and 6.4) as metrics to measure model efficiency. We report

inference times (in seconds) on dev other split using CTC greedy decoding on NVIDIA V100

with FP32 operations. We use the 4-gram language model (LM) and wav2letter decoder (Pratap

2Estimated time. The model is unstable and pre-training diverged.
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et al., 2019) for decoding with language model (LM). Similar to (Wu et al., 2022), we do not

tune hyper-parameters when decoding with LM. We use the default LM weight 2, word score

-1, and beam size 50.

Inference with Stochastic Models

For our proposed stochastically pre-trained models fine-tuned in stochastic or deterministic

settings, we provide inference time and WER for various configurations of squeeze, query and

key-value pooling factors.

6.5 Results

In the following, we first analyze the performance of stochastic W2V2 model for different query

and key-value mean-pooling choices. We then discuss the trade-offs for the stochastically

trained W2V2 model against the original W2V2 and SEW models. Finally, we present the WER

results for Base and Large on the clean and other parts of the Librispeech test sets.

6.5.1 How much query and key-value pooling?

We consider (a) {1,2,3} and (b) {1,2} as the two choices of key-value and query pooling sets to

analyze the WER and inference time trade-offs for base models pre-trained for 100K steps.

In Table 6.2, we present the pre-training time (PT) for each of these models. We can see that

the pre-training time for both (a) and (b) is quite similar. Both of these are faster than the

W2V2-B model and slower than the SEW-B model. This is expected because we occasionally

sample the squeeze and pooling factors as 1 in which case the computation time for our model

would be higher than that of SEW-B model.

Table 6.2: Comparing pre-training time for different choices of query and key-pooling factors
for St-SEW-B models trained for 100K steps.

Model {S f ,Sk ,Sq } PT (hours)

W2V2-B {1},{1},{1} 29.2
SEW-B {2},{1},{1} 20.7
St-SEW-B-1-2 {1,2},{1,2},{1,2} 24.9
St-SEW-B-1-2-3 {1,2},{1,2,3},{1,2,3} 24.6

In Figure 6.2, we present the inference time and WER trade-off for different models. We plot the

WER obtained on dev-other split when the same model is then inferred with different values for

squeeze (S f ), key-value (Sk ) and query pooling (Sq ) pooling factors indicated on the figures as

triplet in the order S f -Sk -Sq . We also train the W2V2-B and SEW-B models for comparison. We

can see that the model trained with pooling factors sampled from {1,2} outperforms the model
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Figure 6.2: We compare the different query and key-value pooling options for St-SEW-B models
trained for 100K steps. The numbers near the datapoints denote the inference configuration
in the order: squeeze (S f ), key-value pooling (Sk ), and query pooling (Sq ) factors. We can see
that using pooling factors of {1,2} results in a better performance trade-off.

that samples pooling factors from {1,2,3}. We also see that the performance for this model is

similar to the non-stochastic W2V2-B and SEW-B models. In all subsequent experiments, we

always choose the query and key-value pooling factors from {1,2} .

6.5.2 On-demand compute reduction inference

In this section, we compare the WER and inference time trade-offs for Base and Large models.

We pre-train each model for 400K steps followed by fine-tuning on the 10h transcribed subset

of the Librispeech dataset. We use St-SEW-B-Ft and St-SEW-L-Ft to denote the stochastic

pre-trained models fine-tuned in the deterministic setting as discussed before. We evaluate

the inference time and WER for the following configurations of (S f ,Sk ,Sq ) factors: (a) (1,1,1),

(b) (2,1,1) (c) (2,2,1), and (d) (2,2,2). We select (1,1,1) and (2,1,1) to compare against the W2V2

and SEW models respectively. We then increase the query and key pooling to further increase

the overall compression resulting in faster inference. We skip results for the (2,1,2) as it is very

similar to (2,2,1).

Figure 6.3 shows the WER and inference-time for Base and Large models evaluated on the

dev-other portion of the Librispeech dataset. For Base models, the same stochastically fine-

tuned (St-SEW) model performs only marginally worse than W2V2 and SEW models when

inferred using the corresponding configurations. There is a bigger performance difference in

the case of Large models especially when S f = 2 during inference. However, the difference in

performance can be recovered, if we fine-tune the models to specific configurations (St-SEW-

L-Ft). Depending on the application requirements, we can choose different operating points
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Figure 6.3: WER and inference time tradeoff for different Base and Large models. The numbers
near the datapoints denote the configuration used during inference in the order (S f -Sk -Sq ).
We see that the stochastically trained model provides a smooth trade-off between WER and
inference times. Fine-tuning the pre-trained to a specific configuration of interest improves
the WER significantly.

(configurations) for an on-demand compute reduction for a smooth trade-off in WER.

For Large models, we find that W2V2-L pre-training is unstable and diverges quickly. In

contrast to this the stochastic model pre-training and fine-tuning is stable. We always use

post-layer norm for Transformer encoder. In (Baevski et al., 2020), for stable pre-training, Large

models are trained with pre-layer norm and convolutional front-end with extra normalization

layers resulting in significantly higher training time and inference latency.

6.5.3 Test Set Evaluation

We present the WER obtained by Base and Large models on the clean and other portion of the

Librispeech test sets.

Base Model Evaluation: In Table 6.3, we present the results for the Base models. Rows (a)-(c)

present the inference times for different configurations of squeeze (S f , key pooling (Sk ), and

query pooling (Sq ) factors. Comparing configuration (1, 1, 1) and (2, 1, 1), we see that changing

the squeeze factor to 2 improves the inference time by more than 40%. Increasing the pooling

factors to 2 decreases the latency further by about 10%.

Rows (d)-(g) and (h)-(k) present the WER for the clean and other portion of the Librispeech

test set, respectively. Comparing W2V2-B and SEW-B models, we first note that the squeeze

factor to 2 only degrades the greedy decoder WER by 7% and 5% relatively for the clean and

other test sets, respectively. From rows (f) and (j), the WER for St-SEW-B model is very close to

W2V2 and SEW models in the corresponding configurations. From (g) and (k), we also see that

fine-tuning to specific configurations (St-SEW-B-Ft) gives slightly better WER.
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Table 6.3: Inference times and WER result for base models on other and clean portions of the
Librispeech test sets. We fine-tune the wav2vec 2.0 base model pre-trained on 960 hours of
Librispeech data on the 10 hour transcribed subset of the Librispeech dataset. We report the
WER obtained using greedy decoding as well as 4-gram LM (in parenthesis).

Inference (S f ,Sk ,Sq )

Model 1,1,1 2,1,1 2,2,1 2,2,2

Inference times (dev other)

(a) W2V2-B 23.9 - - -

(b) SEW-B - 13.6 - -

(c) St-SEW-B 23.5 14.0 13.3 12.6

Word Error Rate Results (test clean)

(d) W2V2-B 9.5 (5.0) - - -

(e) SEW-B - 10.2 (4.9) - -

(f) St-SEW-B 9.7 (5.1) 9.8 (5.2) 11.0 (5.4) 11.4 (5.4)

(g) St-SEW-B-Ft 9.4 (5.0) 10.0 (4.9) 10.8 (5.1) 11.2 (5.2)

Word Error Rate Results (test other)

(h) W2V2-B 16.7 (10.7) - - -

(i) SEW-B - 17.6 (10.8) - -

(j) St-SEW-B 16.8 (11.0) 17.3 (11.3) 19.0 (11.6) 19.9 (11.8)

(k) St-SEW-B-Ft 16.5 (10.8) 17.3 (10.8) 18.5 (11.3) 19.3 (11.7)

Large Model Evaluation: Table 6.4 presents the results for Large models. From row (b), we can

note that similarly to the Base model, increasing the squeeze factor to 2 reduces the inference

latency by ∼ 45%. Furthermore, increasing the pooling factors to 2 improves the latency by

another ∼ 12%.

In contrast to the Base model in Table 6.3, we find that St-SEW-L does not perform as well

when the squeeze factor is set to 2 (row d). Specifically, we see that the greedy decoding WER

on the clean test set increases from 8.8% (row c) to 10.2% (row d) when the proposed St-SEW-L

is inferred in the configuration (2, 1, 1). From rows (f) and (g), we also observe a significant

degradation on other test set for this configuration. We suspect that the randomly selected

values for S f , Sk , and Sq during validation may cause the selected model to be better for some

configurations than other. However, from rows (e) and (h), we again see that fine-tuning the

stochastic models to the configuration of interest (St-SEW-L-Ft) bridges the performance gap.

Note that WER improvement is also reflected for the case of beam search decoder that uses

4-gram language model.
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Table 6.4: Inference times and WER result for large models on other and clean portions of the
Librispeech test sets. We fine-tune the wav2vec 2.0 base model pre-trained on 960 hours of
Librispeech data on the 10 hour transcribed subset of the Librispeech dataset. We report the
WER obtained using greedy decoding as well as 4-gram LM (in parenthesis).

Inference (S f ,Sk ,Sq )

Model 1,1,1 2,1,1 2,2,1 2,2,2

Inference times (dev other)

(a) SEW-L - 22.0 - -

(b) St-SEW-L 41.7 22.9 21.3 20.1

Word Error Rate Results (test clean)

(c) SEW-L - 8.8 (4.6) - -

(d) St-SEW-L 8.5 (4.8) 10.2 (5.1) 10.4 (5.4) 9.8 (5.1)

(e) St-SEW-L-Ft 8.4 (4.7) 8.9 (4.5) 9.6 (4.7) 9.8 (4.8)

Word Error Rate Results (test other)

(f) SEW-L - 13.9 (9.1) - -

(g) St-SEW-L 13.6 (9.3) 16.2 (10.1) 16.6 (10.1) 16.3 (10.2)

(h) St-SEW-L-Ft 13.4 (9.1) 14.1 (9.1) 15.2 (9.5) 15.7 (9.9)

6.6 Conclusions

We proposed a stochastic compression technique for compute reduction during W2V2 pre-

training as well as for on-demand compute reduction during inference. We show that stochas-

tically pre-trained and fine-tuned models provide multiple operating points with smooth

performance trade-off for different applications. We further show that fine-tuning the stochas-

tically pre-trained model to a specific configuration provides the same WER as a model

pre-trained and fine-tuned from scratch for the same configuration.

Currently, we use the same squeeze and pooling factors for all utterances. In future, we will

explore techniques to adaptively choose the compression factors depending on the input

utterance to improve the WER and inference time trade-off.
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7.1 Conclusions

This thesis focused on developing compute-efficient Automatic speech recognition (ASR)

models for low-resource languages. Specifically, we looked at techniques to reduce the tran-

scribed data and computation required for deep neural networks (DNN) based ASR models.

First, in Chapter 3, we proposed a novel framework that uses dropout at the test time to

model uncertainty in prediction hypotheses. We systematically exploited this uncertainty to

estimate WER without needing the ground-truth transcripts. We further demonstrated that

the predictive uncertainty could be used to accurately localize the ASR system’s errors as well

as for uncertainty-aware semi-supervised learning. We have shown that the supervision lattice

generated by combining the dropout decodings retains alternate hypotheses for uncertain

utterances and reduces the incorrect paths when the model is confident. Our experiments

showed that the dropout-based uncertainty aware supervision lattices improve the WER over

the regular semi-supervised training framework.

Next, in Chapter 4, we looked at self-supervised pre-training methods, which aim to improve

the seed model by exploiting unlabelled data before supervised adaptation. We investigated

the domain generalization performance and the choice of sequence discriminative training

criterion for two popular pre-training methods: masked acoustic model (MAM) and wav2vec

2.0 (W2V2), which are trained by predicting masked parts of the input. Our experiments on

out-of-domain conversational speech (Switchboard) and cross-lingual data (Babel) concluded

that both self-supervised pre-training methods provide significant gains over the models

trained only with supervised data. Furthermore, we have shown that W2V2 pre-training helps

mitigate the overfitting issues with Connectionist Temporal Classification (CTC) training

and reduces the performance gap to flat-start LFMMI (E2E-LFMMI) criterion. In contrast,

E2E-LFMMI performs better when fine-tuning the MAM pre-trained model.

In Chapter 5, we shifted our attention from reducing the amount of transcribed data to

improving the computational requirements for the ASR models based on the Transformer
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architecture. Specifically, we tackled the quadratic complexity of the self-attention computa-

tion with respect to the input sequence. We first presented linear attention that generalizes

self-attention formulation by expressing the key-query similarity as a linear dot-product of

kernelized feature maps. The kernelized formulation together with the associativity property

of matrix products reduces the computation and memory complexity of self-attention to

linear with respect to sequence lengths. We further showed that this formulation enables

autoregressive inference with linear complexity and constant memory.

We then presented clustered attention as a method to approximate vanilla attention. We

showed that the queries close in Euclidean space also have similar attention distributions. We

utilize this property to cluster the queries and use the centroids for attention computation.

We also proposed improved clustered attention that improves the attention approximation by

recomputing attention between queries and a small subset of keys. Our experiments demon-

strated that the improved clustered attention outperforms vanilla attention and other efficient

attention models for a given computational budget. Our approximation experiments with

pre-trained models showed that improved attention could approximate complex attention

patterns without fine-tuning and minimal accuracy loss.

Our experimental findings also revealed the limitations of the proposed attention mechanisms.

We found that while linear attention improves inference speed, it results in WER degradation.

On the other hand, improved clustered attention does not suffer from WER degradation but

has slower inference for shorter sequences due to clustering overheads. To overcome this

limitation, in Chapter 6, we proposed a practical method for compute and data efficient ASR

with W2V2 models. We used mean-pooling to reduce the number of queries and keys-values

for the attention computation without introducing large overheads or additional parameters.

Furthermore, instead of using a fixed pooling/compression factor, we proposed sampling

these factors uniformly from a set of possible compression factors. We demonstrated that our

method of stochastic compression enables training a single model that can support a number

of compression factors at inference time, resulting in a smooth trade-off between WER and

inference latency.

To conclude, this thesis found that wav2vec 2.0 model pre-trained with stochastic compression

enables the development of computationally efficient ASR models that can be easily adapted

to new languages using only a limited amount of data.

7.2 Future Work

We believe the methods and techniques proposed in this thesis open up a number of research

directions. Below we discuss a few possible research directions.

The first half of the thesis focused on reducing the amount of transcribed data. We investigated

the dropout-based semi-supervised training in the context of supervised adaptation on a

monolingual training. A possible direction to improve the seed model would be to combine
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the transcribed data from multiple languages and utilize multilingual training approaches.

Multilingual training using language adaptive modeling (Madikeri et al., 2021; Tong et al.,

2017) or universal phone set (Vu et al., 2014) have been shown to perform better than the

monolingual models. Thus, using the improved seed model with our uncertainty-aware

semi-supervised learning framework would be a promising direction to further boost the

performance on low-resource languages. Similarly, the combination of self-supervised pre-

training on unlabelled utterances and uncertainty-aware semi-supervised learning would be

another research direction of interest.

In the second part, we focussed our attention on efficient transformer architectures. Our

proposed linear and clustered attention mechanisms enable the application of these models

to tasks and modalities involving long sequences. One particular use case of interest would

be to see if self-supervised learning using audio inputs with longer context improves the

performance for downstream ASR task. W2V2 pre-training restricts the maximum duration for

input utterance to 15 seconds due to the quadratic computational and memory complexity of

vanilla self-attention. Given the improvements in natural language pre-training using longer

context (Beltagy et al., 2020; Zaheer et al., 2020), it would be of interest to investigate the

performance benefits of pre-training with longer context for automatic speech recognition.

Moreover, clustered attention groups queries from different timesteps, which makes it un-

suitable for streaming ASR or autoregressive modeling as it would leak information from the

future time-steps. One way to address this limitation would be to use cluster centroids to

identify the top-k keys for the query members and only compute attention on those keys.

This can allow masking for autoregressive modeling. In future research, we would like to

conduct experiments on autoregressive and streaming ASR tasks. Finally, the proposed lin-

ear attention has opened several research directions. The first set of approaches introduces

relative positional embeddings for linear transformers (Qin et al., 2022; Su et al., 2021) to

improve the expressivity. The second line of work focuses on improving the kernel feature

maps by gating mechanisms (Peng et al., 2021a; Schlag et al., 2021) or through softmax kernel

approximation using random fourier features (Choromanski et al., 2021). We think a promising

direction would be constructing feature maps with structured sparsity. This would increase the

expressivity of feature maps without incurring significant overheads for sparse dot products.
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A Appendix for Chapter 4

A.1 Pre-trained Models as Feature Extractors

In this section, we compare the performance of using the pre-trained model as feature extractor

to fine-tuning the pre-trained model weights. When using the model for feature extraction,

we freeze the weights of pre-trained model. We pass the output of the encoder to a twelve

layered factorized time-delay neural network (TDNNF) architecture referred to as TDNNF-L.

We denote this setting as FE in the later experiments. In the second setting, we fine-tune the

pre-trained model together with a seven layered TDNNF architecture TDNNF-S. We conduct

these experiments for the MAM pre-trained model. For baseline, we use the previously

discussed TDNNF-L trained only on the supervised data.

A.1.1 Librispeech (100h)

Table A.1 shows that the MAM pre-trained model outperforms the baseline model in row (a)

even when the pre-trained models is used a feature extractor (b). The most notable difference

can be seen in the case of the noisy portion of the test dataset where we find ≈ 4.7% absolute

WER improvements. From row (c), we can see that the fine-tuning model results in most

improvements.

A.1.2 Switchboard (300h)

Table A.2 presents the results for the Switchboard dataset. Similar to the Librispeech ex-

periment, we find that using the pre-trained model as a feature extractor or fine-tuning the

weights outperforms the baseline model trained from scratch. Once again, the fine-tuned

model results in most improvements in terms of WER.
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Table A.1: Comparing the performance of MAM pre-trained model when used as a feature
extractor to fine-tuning the pre-trained model weights. Note that in both settings, we obtain
better WER compared to the baseline model trained only on the supervised data. Fine-tuning
the pre-trained model weights in significant improvements for the case of noisy portion of the
test set. MAM-B refers to the base transformer model used for pre-training. TDNNF-L and
TDNNF-S refer to the 12 and 7 layered TDNNF architectures, respectively. E2E-LFMMI refers
to flat-start training with LFMMI.

Word Error Rate

3-gram 4-gram

Architecture Supervision clean other clean other

Supervised Only

(a) TDNNF-L e2e-lfmmi 8.6 26.3 5.9 20.0

Pre-training + Supervised

(b) MAM-B + TDNNF-L (FE) e2e-lfmmi 7.98 22.14 5.52 16.32
(c) MAM-B + TDNNF-S e2e-lfmmi 7.78 20.19 5.35 14.75

Table A.2: Comparison of word error rates (WER) (in %) on eval2000 test set for the 300 hours
Switchboard task. The 3-gram language model is based on Switchboard, whereas the 4-gram
employs Switchboard+Fisher training set transcripts. Using a pre-trained model as a feature
extractor or fine-tuning outperforms the baseline. Fine-tuning achieves the best WER on both
callhome and switchboard part of eval set.

Word Error Rate

3-gram 4-gram

Architecture Criterion swbd ch swbd ch

Supervised Only

(a) TDNNF-L e2e-lfmmi 11.8 22.5 10.3 20.3
(b) TDNN-LSTM (Hadian et al., 2018) e2e-lfmmi 11.3 21.5 9.8 19.3

Pre-training + Supervised

(d) MAM-B + TDNNF-L (FE) e2e-lfmmi 11.3 22.0 9.9 19.7
(e) MAM-B + TDNNF-S e2e-lfmmi 10.9 20.4 9.4 18.2
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Word Error Rate

Model Criterion Swahili Tagalog

Supervised Only

(a) TDNNF e2e-lfmmi 39.5 44.9
(b) BLSTM-HMM (Inaguma et al., 2019) hybrid 38.3 46.3

Pre-training + Supervised

(c) MAM-B + TDNNF-L (FE) e2e-lfmmi 40.4 46.6
(d) MAM-B + TDNNF-S e2e-lfmmi 36.7 43.4

Table A.3: Comparison of word error rates (WER) (in %) on dev10h set for the Swahili and
Tagalog languages of the Babel dataset. Using the pre-trained model performs worse than the
baseline trained only with supervised data. Fine-tuning the pre-trained MAM model recovers
the performance and significantly outperforms the monolingual and other baselines.

A.1.3 Babel: Swahili (38h) and Tagalog (84h)

Table A.3 compares the WER for the models trained from scratch to the models pre-trained

on Librispeech. It can be seen that for both Swahili and Tagalog, using pre-trained model as

feature extractor performs worse than the models trained from scratch indicating that the

pre-trained model removes important language specific information. However, on fine-tuning,

the model adjusts its parameters to recapture this information and outperforms the baseline.
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B Appendix for Chapter 5

B.1 Linear Transformers

B.1.1 Forward and Backward Pass

Algorithm 1 Forward pass for linear transformers with causal masking

1: Inputs φ (Q) ,φ (K ) ,V
2: V̄ ← 0
3: S ← 0
4: for i = 1, . . . , N do
5: S ← S +φ (Ki )V T

i (5.14)
6: V̄ ←φ (Qi )S
7: end for
8: Return V̄

B.1.2 Gradient Derivation

In the first section of our supplementary material, we derive in detail the gradients for causally

masked linear transformers and show that they can be computed in linear time and constant

memory. In particular, we derive the gradients of a scalar loss with respect to the numerator of

the following equation,

V̂i =
φ (Qi )T ∑i

j=1φ
(
K j

)
V T

j

φ (Qi )T ∑i
j=1φ

(
K j

) . (B.1)

The gradient with respect to the denominator and the fraction are efficiently handled by

autograd. Without loss of generality, we can assume that Q and K already contain the vectors

mapped by φ (·), hence given the numerator

V̄i =QT
i

i∑
j=1

K j V T
j , (B.2)
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Algorithm 2 Backward pass for linear transformers with causal masking

1: Inputs φ (Q) ,φ (K ) ,V and G
2: G is the gradient of the loss with respect to the output of algorithm 1
3: S ← 0
4: ∇φ(Q)L← 0
5: for i = 1, . . . , N do
6: S ← S +φ (Ki )V T

i
7: ∇φ(Qi )L←Gi ST (5.17)
8: end for
9: S ← 0

10: ∇φ(K )L← 0
11: ∇V L← 0
12: for i = N , . . . ,1 do
13: S ← S +φ (Qi )GT

i
14: ∇ViL← STφ (Ki ) (5.19)
15: ∇φ(Ki )L← SVi (5.18)
16: end for
17: Return ∇φ(Q)L, ∇φ(K )L, ∇V L

and ∇V̄ L we seek to compute ∇QL, ∇KL and ∇V L. Note that Q ∈ RN×D , K ∈ RN×D and

V ∈RN×M . To derive the gradients, we first express the above equation for a single element

without using vector notation,

V̄i e =
D∑

d=1
Qi d

i∑
j=1

K j d V j e =
D∑

d=1

i∑
j=1

Qi d K j d V j e . (B.3)

Subsequently we can start deriving the gradients for Q by taking the partial derivative for any

Ql t , as follows
∂L
∂Ql t

=
M∑

e=1

∂L
∂V̄l e

∂V̄l e

∂Ql t
=

M∑
e=1

∂L
∂V̄le

(
l∑

j=1
K j t V j e

)
. (B.4)

If we write the above equation as a matrix product of gradients it becomes,

∇QiL=∇V̄i
L

(
i∑

j=1
K j V T

j

)T

, (B.5)

proving (5.17). In (B.4) we made use of the fact that Ql t only affects V̄l hence we do not need to

sum over i to compute the gradients. However, for K and V this is not the case. In particular,

K j affects all V̄i where i ≥ j . Consequently, we can write the partial derivative of the loss with
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respect to Kl t as follows,

∂L
∂Kl t

=
M∑

e=1

N∑
i=l

∂L
∂V̄i e

∂V̄i e

∂Kl t
=

M∑
e=1

N∑
i=l

∂L
∂V̄i e

∂
(∑D

d=1

∑i
j=1 Qi d K j d V j e

)
∂Kl t

=
M∑

e=1

N∑
i=l

∂L
∂V̄i e

Qi t Vl e .

(B.6)

As for Q we can now write the gradient in vectorized form,

∇KiL=
(

N∑
j=i

Q j

(
∇V̄ j

L
)T

)
Vi , (B.7)

proving (5.18). Following the same reasoning, we can compute the partial derivative of the

loss with respect to Vl t and prove (5.19). Note that the cumulative sum matrices for the

gradient with respect to Q and K have the same size, however one is computed in the forward

direction (summing from 1 to N ) similarly to the forward pass and the other is computed in

the backward direction (summing from N to 1) similar to backpropagation through time done

in RNNs.

B.2 Clustered Transformers

B.2.1 Improved clustered attention

In this section, we first describe how we can efficiently compute i-clustered attention using

sparse dot products with the top-k keys and values. We then present a flow chart demonstrat-

ing the same in Figure B.1.

As discussed in Section 5.5.2, the improved attention matrix approximation At
i for the query,

Qi belonging to the cluster j is computed as follows:

At
i l =


m̂ j exp

(
Qi K T

l

)∑N
r=1 T j r exp(Qi K T

r )
if T j l = 1

Ac
i l otherwise

, (B.8)

where, T ∈ {0,1}C×N , stores the top-k keys for each cluster. T j i = 1 if the i -th key is among the

top-k keys for the j -th cluster and 0 otherwise. In addition, m̂ j is the total probability mass on

the top-k keys for the j -th cluster given by:

m̂ j =
N∑

r=1
T j r Ac

j r . (B.9)

Note that we can compute the attention weights At
i on the top-k keys by first taking sparse

dot-product of Qi with the top-k keys followed by the softmax activation and rescaling with

the total probability mass m j . For the rest of the keys, the attention weight is the clustered-
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Ac

top-k(Ac, k=2)
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N∑
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N∑
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V̂ = V̂ t + V̂ b
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Figure B.1: Flow-chart demonstrating the computation for i-clustered attention. The lower
half of the figure shows the new value V̂ t , computed by sparse dot-products with the keys
K and values V corresponding to the top-k keys in T . The top half of the figure shows the
computation for V̂ b , which is the weighted average of the rest of the values with weights
coming from the clustered attention Ac . The resulting values V̂ is the sum of V̂ b and V̂ t .
Further details are provided in Section 5.5.2 and Appendix B.2.1.

attention weight Ac
i .

Similarly, the new values V̂i can be decomposed into the following two terms,

V̂i = V̂ t
i + V̂ b

i , (B.10)

where V̂ t
i is the weighted average of the values corresponding to the top-k keys with weights

being the improved attention on the top-k keys. On the other hand, V̂ b
i is the weighted average

of the rest of the values with weights being the clustered attention Ac
i . The following equations

show how we compute V̂ t
i and V̂ b

i ,

V̂ t
i =

N∑
l=1

T j l At
i l Vl , (B.11)

V̂ b
i =

N∑
l=1

(1−T j l )Ac
i l Vl , (B.12)

Note that V̂ t
i is weighted average of k values for each query and thus requires O (N kM)

operations. V̂ b
i only needs to be computed once per-cluster centroid and thus requires

O (NC M) operations.
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In Figure B.1 we present the i-clustered attention computation for the same example sequence

with 8 queries and the number of clusters and top-k keys set to 3. The lower half of the

figure shows the new value V̂ t , computed by first taking sparse dot-products with the top

3 keys to get the attention weights. This is followed by taking the weighted average of the 3

corresponding values. The top half of the figure shows the V̂ b computation. This is same as

clustered attention computation but with attention weights corresponding to top 3 keys set to

0 for Ac . The resulting values V̂ is the sum of V̂ b and V̂ t .

B.2.2 Quality of the approximation

Proposition 3. For the i -th query belonging to the j -th cluster, the improved clustered attention

At
i and clustered attention Ac

j relate to the full attention Ai as follows,

∥∥At
i − Ai

∥∥
1 ≤

∥∥∥Ac
j − Ai

∥∥∥
1

(B.13)

Proof. As discussed before, the improved attention matrix approximation At
i for the query, Qi

is computed as follows:

At
i l =


m̂ j exp

(
Qi K T

l

)∑N
r=1 T j r exp(Qi K T

r )
if T j l = 1

Ac
i l otherwise

, (B.14)

where, T ∈ {0,1}C×N , stores the top-k keys for each cluster, T j i = 1 if the i -th key is among the

top-k keys for the j -th cluster and 0 otherwise. m̂ j is the total probability mass on the top-k

keys for the j -th cluster, computed as follows:

m̂ j =
N∑

r=1
T j r Ac

j r . (B.15)

Given the full attention Ai , (B.14) can be simplified to

At
i l =


m̂ j

mi
Ai l if T j l = 1

Ac
i l otherwise

, (B.16)

where, mi is the total probability mass on the same top-k keys for the i -th query, computed

using the true attention Ai , as follows:

mi =
∑N

r=1 T j r exp
(
Qi K T

r

)∑N
r=1 exp

(
Qi K T

r
) (B.17)

=
N∑

r=1
T j r Ai r . (B.18)

Without loss of generality, let us assume, T j l = 1 ∀ l ∈ {1, . . . ,k} and T j l = 0 ∀ l ∈ {k +
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1, . . . , N }.

In this case, (B.16) can be written as:

At
i l =


m̂ j

mi
Ai l if l ≤ k

Ac
i l if l ≥ k +1

. (B.19)

The total probability masses on the top-k keys, mi and m̂ j can now be expressed as:

mi =
k∑

r=1
Ai r . (B.20)

m̂ j =
k∑

r=1
Ac

j r . (B.21)

From (B.19) it is clear that the clustered attention, Ac
i , and the improved clustered attention,

At
i , only differ on the keys {1, . . . ,k}. Thus, it suffices to show that At

i has lower approximation

error on these keys. The approximation error on the top-k keys {1, . . . ,k}, let it be et , between

the i-clustered attention and the full attention is as follows:

et =
k∑

l=1

∣∣Ai l − At
i l

∣∣ (B.22)

=
k∑

l=1

∣∣∣∣Ai l − Ai l
m̂ j

mi

∣∣∣∣ (B.23)

=
k∑

l=1
Ai l

∣∣∣∣1− m̂ j

mi

∣∣∣∣ (B.24)

=
∣∣∣∣1− m̂ j

mi

∣∣∣∣ k∑
l=1

Ai l (B.25)

= mi

∣∣∣∣1− m̂ j

mi

∣∣∣∣ (B.26)

= ∣∣mi −m̂ j
∣∣ (B.27)

=
∣∣∣∣∣ k∑
l=1

Ai l − Ac
j l

∣∣∣∣∣ (B.28)

≤
k∑

l=1

∣∣∣Ai l − Ac
j l

∣∣∣ (B.29)
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Therefore,

∥∥Ai − At
i

∥∥
1 =

k∑
l=1

∣∣Ai l − At
i l

∣∣+ N∑
l=k+1

∣∣Ai l − At
i l

∣∣ (B.30)

=
k∑

l=1

∣∣Ai l − At
i l

∣∣+ N∑
l=k+1

∣∣∣Ai l − Ac
j l

∣∣∣ (B.31)

≤
k∑

l=1

∣∣∣Ai l − Ac
j l

∣∣∣+ N∑
l=k+1

∣∣∣Ai l − Ac
j l

∣∣∣ (B.32)

≤ ∥∥Ai − Ac
i

∥∥
1 (B.33)

B.3 Experiments

B.3.1 Synthetic Tasks

Sequence Duplication

To examine the convergence properties of linear transformers we train on an artificial copy

task with causal masking. Namely, the transformers have to copy a series of symbols similar

to the sequence duplication task of Kitaev et al. (2020). We use a sequence of maximum

length 128 with 10 different symbols separated by a dedicated separator symbol. For all three

methods, we train a 4 layer transformer with 8 attention heads using a batch size of 64 and

the RAdam optimizer (Liu et al., 2020a) with a learning rate of 10−3 which is reduced to 10−4

after 3000 updates. Figure B.2 depicts the loss with respect to the number of gradient steps.

We observe that linear converges smoothly and reaches a lower loss than lsh due to the lack of

noise introduced by hashing. In particular, it reaches the same loss as softmax.
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Gradient steps
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linear (ours)

softmax

lsh-4

Figure B.2: Convergence comparison of softmax, linear and reformer attention on a sequence
duplication task. linear converges stably and reaches the same final performance as softmax.
The details of the experiment are in Appendix B.3.1.
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Accuracy with respect to clusters and hashing rounds
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Figure B.3: The heatmaps depict the achieved accuracy on an artificial copy task (Ap-
pendix B.3.1) as the sequence length, the number of clusters and the number of hashing
rounds varies. Improved clustered (Figure B.3a) is the only fast transformer variant that can
solve the task perfectly for any sequence length and number of clusters combination.

Ablation on clusters and sequence length

Following (Kitaev et al., 2020), we introduce a synthetic task to analyze the relationship

between the number of clusters and sequence length. In our task, the transformer models

need to copy some symbols that are masked out from either the first or second half of the

sequence. In particular, we generate a random sequence of tokens and we prepend a unique

separator token, let it be 0. The sequence is then copied to get a target of the form 0w0w ,

where w ∈ {1, . . . ,C }L , C is the number of possible symbols and L is the sequence length. To

generate the input, we replace some symbols from the first half of the sequence and some

different symbols from the second half, such that the target sequence can be reconstructed

from the input. An example of an input output pair with L = 4 can be seen in Figure B.4. Note

that to solve this task, transformers simply need to learn to attend to the corresponding tokens

in the two identical halves of the sequence.

Input 0 4 M 2 2 0 4 5 M 2

Output 0 4 5 2 2 0 4 5 2 2

Figure B.4: Example of an input and output pair for the masked copy task. M denotes the
masked out tokens.

We set the sequence length L to one of {31,63,127,255} which means the input length varies

between N = 26 and N = 29. For each sequence, we sample tokens uniformly from {1, . . . ,10}

and randomly mask out 20% of the tokens. To analyze the impact of number of clusters on

performance, we train full transformer as well as clustered variants with different number of

clusters and Reformer with different number of hashing rounds.
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All transformer variants consist of 4 layers, 6 attention heads, embedding dimension of 32 for

each head, and feed-forward dimension of 768. For both clustered and improved clustered

attention, we set the number of bits for LSH to 63 and the number of Lloyd iterations for the

K-Means to 10. Both clustered and improved clustered attention are trained with 15, 30, 60

and 100 clusters. We also train Reformer with 1, 4, 8 and 16 hashing rounds. Finally, all models

are trained using R-Adam optimizer (Liu et al., 2020b) with a learning rate of 0.0002, batch size

of 32 for 5000 iterations.

In Figure B.3, we illustrate the results of this experiment as heatmaps depicting the achieved

accuracy for a given combination of number of clusters and sequence length for clustered

transformers and number of hashing rounds and sequence length for Reformer. Note that the

vanilla transformer solves the task perfectly for all sequence lengths. We observe that both

clustered (Figure B.3b) and Reformer (Figure B.3c) require more clusters or more rounds as

the sequence length increases. However, improved clustered achieves the same performance

as vanilla transformers, namely perfect accuracy, for every number of clusters and sequence

length combination. This result increases our confidence that the required number of clusters

for our method is not a function of the sequence length but of the task at hand.

B.3.2 Autoregressive Image Generation: Training Evolution

In Figure B.5 we present the training evolution of all transformer models in our experiments.

For the MNIST experiment (Figure B.5a) we train all methods for 250 epochs. The sequence

length is small enough so that the training time does not vary significantly for all methods. We

observe that our method converges on par with softmax attention outperforming significantly

both reformer variants.

On the other hand, for CIFAR-10 (Figure B.5b) we train all methods for a fixed amount of time,

namely 7 days. We observe that lsh-1 and linear complete significantly more epochs than

softmax and lsh-4 and achieve better performance. This gap is expected to increase with a

further increase in sequence length.

B.3.3 Autoregressive Image Generation: Throughput Discussion

Stateful softmax attention

In Section 5.7.2, we report the image generation throughput and we compare with softmax

transformer and lsh. In this section we create another baseline, denoted as stateful-softmax,

that implements a softmax autoregressive transformer as a recurrent model. Namely, all

the keys and values are saved and then passed to the model again when predicting the next

element of the sequence. The state of this recurrent model is the set of keys and values which

has size proportional to the sequence length. This is qualitatively different to our proposed

model that has a state with fixed dimensions and computing the i -th state given the previous

one has fixed computational cost regardless of i .
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Figure B.5: Training evolution of transformers for our autoregressive image generation experi-
ments. It can be observed that linear transformers converge consistently faster than Reformer
and in the autoregressive experiments on par with softmax. For MNIST all methods are trained
for 250 epochs while for CIFAR we train for 7 days. The details of the experiments can be found
in Section 5.7.2.

Method Bits/dim Images/sec
Softmax 0.621 0.45 (1×)
Stateful-softmax 0.621 7.56 (16.8×)
LSH-1 0.745 0.68 (1.5×)
LSH-4 0.676 0.27 (0.6×)
Linear (ours) 0.644 142.8 (317×)

(a) Image generation on MNIST

Method Bits/dim Images/sec
Softmax 3.47 0.004 (1×)
Stateful-softmax 3.47 0.32 (80×)
LSH-1 3.39 0.015 (3.75×)
LSH-4 3.51 0.005 (1.25×)
Linear (ours) 3.40 17.85 (4,462×)

(b) Image generation on CIFAR-10

Table B.1: Comparison of autoregressive image generation throughput of MNIST and CIFAR-10
images. The experiment can be found in Section 5.7.2. For stateful-softmax we save the keys
and values and reuse them for predicting the next element. A detailed description of this extra
baseline can be found in Appendix B.3.3.

Table B.1 summarizes the results. We observe that stateful-softmax is significantly faster than

vanilla transformers. However, its complexity is still quadratic with respect to the sequence

length and our formulation is more than 50× faster for CIFAR-10. Moreover, we would like to

point out that implementing a similar stateful attention for Reformer is not a trivial task as the

sorting and chunking operations need to be performed each time a new input is provided.

Equalizing the batch size

In the previous sections we evaluate the throughput of all transformer variants for the task of

autoregressive image generation. However, another important factor to consider is latency,

namely the total time required to produce a single image. To this end, we use a batch size of

1 and measure the time required by all methods to generate a single image. In addition to
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running the inference on the GPU, we also evaluate the time required on CPU. The results are

reported in Table B.2.

Method Seconds (CPU) Seconds (GPU)
Softmax 72.6 (13.2×) 10.2 (1.4×)
Stateful-softmax 7.4 (1.3×) 10.4 (1.42×)
LSH-1 46.0 (8.3×) 19.2 (2.6×)
LSH-4 112.0 (20×) 55.8 (7.6×)
Linear (ours) 5.5 (1×) 7.3 (1×)

(a) Image generation on MNIST

Method Seconds (CPU) Seconds (GPU)
Softmax 8651.4 (191.8×) 300.1 (4.9×)
Stateful-softmax 71.9 (1.6×) 70.4 (1.14×)
LSH-1 2318.9 (51.4×) 221.6 (3.6×)
LSH-4 5263.7 (116.7×) 683.9 (11.1×)
Linear (ours) 45.1 (1×) 61.3 (1×)

(b) Image generation on CIFAR-10

Table B.2: Comparison of the time required to generate a single image with autoregressive
transformers on MNIST and CIFAR-10. We run all methods with a batch size of 1 both on CPU
and GPU and report the total time in seconds. For all numbers in the table, lower is better.

We observe that all methods underutilize the GPU and achieve significantly smaller image

generation throughput than the one shown in Table B.1. The proposed linear transformer is

faster than all the methods and in particular it is almost 6.6× faster than softmax transformers

for generating an image on CIFAR-10. Note that our linear autoregressive transformer is

the only method faster on the CPU than on the GPU in every case. This is due to the fact

that computing the attention as an RNN has such a low cost that the main computational

bottleneck becomes the inevitable outer loop over the sequence.

B.3.4 Autoregressive Image Generation: Qualitative Results

In this section, we provide qualitative results for our image generation experiments. Since the

perplexity of all models is approximately the same, as expected, the qualitative differences are

not significant. A rather interesting observation, however, is that the Reformer models provide

significantly fewer variations in their unconditional samples. Moreover, we observe that image

completion is a considerably easier task than unconditional generation as all models perform

substantially better.
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(a) Softmax (b) Linear (ours)

(c) LSH-1 (d) LSH-4

Figure B.6: Unconditional samples from the transformer models trained with MNIST. See
Section 5.7.2 for more details.
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(a) Softmax (b) Linear (ours)

(c) LSH-1 (d) LSH-4

Figure B.7: Unconditional samples from the transformer models trained with CIFAR-10. See
Section 5.7.2 for more details.
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(a) Occluded (b) Softmax (c) Linear (ours) (d) LSH-1 (e) LSH-4 (f) Original

Figure B.8: MNIST digit completion from all trained models. See Section 5.7.2 for more details.
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(a) Occluded (b) Softmax (c) Linear (ours) (d) LSH-1 (e) LSH-4 (f) Original

Figure B.9: CIFAR-10 image completions from all trained transformer models. See Section 5.7.2
for more details.
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B.3.5 Automatic Speech Recognition

In this section, we present the details for the ASR experiments such as transformer archi-

tecture, optimizer, and learning rate schedule. As mentioned in Section 5.7, for i-clustered,

unless specified otherwise, k is set to 32. Furthermore, all transformers have 6 heads with

an embedding dimension of 32 for each head and the feed-forward dimension of 768. Other

architectural details specific to each experiment are described in the corresponding section.

Wall Street Journal

Convergence Behaviour:

For this experiment, we train a transformer with the softmax, linear, clustered, and Reformer

attention variants. All models consist of 9 layers. For Reformer, we train two variants with 1

and 4 rounds of hashing with chunk size fixed to 32 as suggested. For clustered and improved

clustered attention, we set the number of clusters to 100. We also set the number of Lloyd

iterations for K-Means to 10 and the bits for LSH to 63. All models are trained to convergence

using the R-Adam optimizer (Liu et al., 2020b) with a learning rate of 0.0001, max gradient

norm set to 10.0, and weight decay of 0.01. The learning rate is dropped when the validation

loss plateaus. For each model, we select the largest batch size that fits the GPU.
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(b) Switchboard

Figure B.10: We show training/validation loss convergence for different transformer variants.
Only i-clustered has a faster or comparable wall-clock convergence to softmax attention. Both
the linear and clustered variants have a significantly better convergence than both lsh-1 and
lsh-4. Note that due to a smaller batch size softmax makes many more updates than all other
transformer variants. More details can be found in Appendix B.3.5 and Appendix B.3.5.

In Figure B.10a, we show the training loss convergence for different transformer variants. It

can be seen that softmax significantly outperforms Reformer, clustered, and linear in terms of

convergence. Furthermore, we see that i-clustered has a much faster convergence than the

clustered attention. This shows that the improved clustered attention indeed approximates the

softmax attention better. More importantly, only the i-clustered attention has a comparable
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wall-clock convergence. Since softmax has a much smaller batch size, it makes many more

updates per epoch. We think that a slightly smaller batch size with more updates would have

been a better choice for the clustered transformers w.r.t. the wall-clock convergence. This

is reflected in the Switchboard experiments, where the batch sizes for the clustered variants

were smaller due to more layers. Finally, as seen from the wall-clock convergence, the linear

and the clustered transformers significantly outperform Reformer.

Speed-Accuracy Tradeoff:

As described in Section 5.6.1, for this task we additionally train full with 4 and 6 layers. Similarly,

we train clustered with 9 layers, and 200 and 300 clusters. We also train an i-clustered model

with 9 layers and 200 clusters, and smaller models with 6 layers, and 100 and 200 clusters.

For clustered and i-clustered variants with 9 layers, we fine-tuned the previously described

models trained with 100 clusters. We fine-tuned for 15 epochs with a learning rate of 0.00001.

We train full with 4 and 6 layers to convergence in a similar fashion to the full with 9 layers

described previously. Finally, for i-clustered, we first trained a model with 6 layers and 100

clusters using the training strategy used for 9 layers and 100 clusters. We then fine-tuned this

model for 15 epochs using 200 clusters and a learning rate of 0.00001.

Switchboard

Convergence Behaviour:

For this experiment, we train a transformer with the full and clustered attention variants. All

models consist of 12 layers. For the clustered and improved clustered attention, we set the

number of clusters to 100. We also set the number of Lloyd iterations for K-Means to 10 and

the bits for LSH to 63.

Following standard practice for flat-start lattice-free MMI training, we train over multiple GPUs

with weight averaging for synchronization as described in (Povey et al., 2015). Specifically, we

modify the e2e training recipe for the Wall Street Journal in Kaldi (Povey et al., 2011) with the

following two key differences: first, the acoustic model training is done in PyTorch and second,

we use RAdam optimizer instead on natural stochastic gradient descent.

All models are trained using the R-Adam optimizer with a learning rate of 0.0002, max gradient

norm set to 10.0, and weight decay of 0.01. The learning rate is dropped when the validation

loss plateaus. We use the word error rate (WER) on the validation set for early stopping and

model selection. The full attention model is trained with a batch size of 2 while the clustered

variants: clustered and i-clustered are trained with a batch size of 6.

In Figure B.10b, we show the training loss convergence for different transformer variants. It

can be seen that i-clustered has the fastest convergence for this setup. Note that the overall

training time for clustered attention is still less than that of full as it starts to overfit early on
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the validation set WER.

Speed-Accuracy Tradeoff:

For this task, we additionally train full with 6 and 8 layers. Similarly, we train clustered with 12

layers, and 200 and 300 clusters. We also train i-clustered with 12 layer and 200 clusters, and

smaller models with 8 layers, and 100 and 200 clusters.

For the clustered and i-clustered variants with 12 layers, we fine-tuned the previously described

models trained with 100 clusters. We fine-tuned for 5 epochs with a learning rate of 0.00001.

Once again, full with 6 and 8 layers were trained to convergence similarly to full with 12 layers

described previously. Finally, for i-clustered with 8 layers, we first train a model with 100

clusters using the training strategy used for 12 layers and 100 clusters. We then fine-tuned this

model for 5 epochs using 200 clusters and a learning rate of 0.00001.

B.3.6 RoBERTa Approximation

In this section, we provide a qualitative comparison between the full attention, and the

clustered attention variants clustered and i-clustered used for approximation. As described

in Section 5.7.3, we use 25 clusters for both attention variants. In Figure B.11 we show the

attention distribution for the question tokens for a randomly selected question-context tuple

from the SQuAD dataset. For each token in the question we show the attention distribution

over the input sequence formed by concatenating the question and context tokens with CLS

and SEP tokens appended. It can be seen that with only a few clusters, improved clustered

attention approximates the softmax attention very closely even when the attention distribution

has complicated and sparse patterns. In contrast, clustered attention fails to approximate

such attention distributions. Moreover, we can further see that for almost all question tokens;

both full and improved clustered have the same tokens with the highest attention weights.

This further strengthens our belief that improved clustered attention can approximate a wide

range of complicated attention patterns.
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Manning finished the year with a career-low 67.9 passer rating, throwing for 2,249 yards and nine touchdowns,
with 17 interceptions. In contrast, Osweiler threw for 1,967 yards, 10 touchdowns and six interceptions for a rating
of 86.4. Veteran receiver Demaryius Thomas led the team with 105 receptions for 1,304 yards and six touchdowns,

while Emmanuel Sanders caught 76 passes for 1,135 yards and six scores, while adding another 106 yards
returning punts. Tight end Owen Daniels was also a big element of the passing game with 46 receptions for 517
yards. Running back C. J. Anderson was the team’s leading rusher 863 yards and seven touchdowns, while also

catching 25 passes for 183 yards. Running back Ronnie Hillman also made a big impact with 720 yards, five
touchdowns, 24 receptions, and a 4.7 yards per carry average. Overall, the offense ranked 19th in scoring with 355

points and did not have any Pro Bowl selections.
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Figure B.11: Attention matrices for question-context tuples for full attention, and clustered
and i-clustered attention used for approximation. Figure B.11a shows the context for the
question with answer highlighted in red. Figure B.11b shows the attention distributions for
full, Figure B.11c and Figure B.11d show the approximation using i-clustered and clustered
respectively. Note that i-clustered has attention patterns very similar to full while clustered
shows qualitatively different attention patterns. For each question token, we also present the
tokens with highest attention above a threshold on the right axis. For more information refer
to Appendix B.3.6.
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