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Whole-Body Ergodic Exploration with a
Manipulator Using Diffusion

Cem Bilaloglu, Tobias Löw, and Sylvain Calinon

Abstract—This paper presents a whole-body robot control
method for exploring and probing a given region of interest. The
ergodic control formalism behind such an exploration behavior
consists of matching the time-averaged statistics of a robot tra-
jectory with the spatial statistics of the target distribution. Most
existing ergodic control approaches assume the robots/sensors
as individual point agents moving in space. We introduce an
approach that decomposes the whole-body of a robotic ma-
nipulator into multiple kinematically constrained agents. Then,
we generate control actions by calculating a consensus among
the agents. To do so, we use an ergodic control formulation
called heat equation-driven area coverage (HEDAC) and slow the
diffusion using the non-stationary heat equation. Our approach
extends HEDAC to applications where robots have multiple
sensors on the whole-body (such as tactile skin) and use all
sensors to optimally explore the given region. We show that
our approach increases the exploration performance in terms of
ergodicity and scales well to real-world problems. We compare
our method in kinematic simulations with the state-of-the-art and
demonstrate the applicability of an online exploration task with
a 7-axis Franka Emika robot. Additional material available at
https://sites.google.com/view/w-ee-d/

Index Terms—Optimization and Optimal Control, Whole-Body
Motion Planning and Control, Ergodic Exploration

I. INTRODUCTION

VARIOUS exploration tasks require physical interaction
to collect information due to contact requirements or

sensory occlusion. Existing work in tactile exploration ranges
from object shape reconstruction with tactile skins [5], and
probing for stiffness mapping [4], to exploring wrench space of
an articulated object [13] and exploring end-effector poses for
insertion tasks [19]. Although it is possible to formulate these
tasks as an optimization of information measures [21], setting
up the objective is challenging and computation is expensive.
Fortunately, for a subset of problems, one can formulate the
autonomous exploration as a coverage of a region (target
distribution).
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Fig. 1. Whole-body exploration of a target distribution using the last three
links of the robot manipulator. In kinematic simulation, the exploration target
is given in red. In the real-world experiment, the robot explores the cube
region in dashed lines to localize a target object (a tennis ball whose location
is unknown). Blue, turquoise, and purple spheres are the virtual agents
constrained to the 5-th, 6-th, and 7-th links, respectively. The green and yellow
arrows show the net virtual force and torque acting on each link’s center of
mass calculated by our agent weighing strategy. We further weigh the net
wrenches acting on the active link to obtain the consensus control action for
the robot.

Existing work in spatial coverage focuses on multi-agent
systems with high-range sensors mounted on drones and
ground robots (camera, LiDAR, time of flight sensor arrays
[6]) for increasing coverage speed. Applications of these
methods explore vast regions such as crop fields [9] or bridges
[10]. However, robotic manipulators are advantageous for
exploring small but complex target distributions with physical
interaction. Nevertheless, existing methods do not consider
the link footprints and the kinematic chain composing a
robot manipulator’s whole-body for exploration and lack the
potential performance gains of increased sensor coverage. We
argue that, as the accessibility of anthropomorphic robotic
hands [20], and arms equipped with joint force-torque sensors
and tactile skins [2, 8] increases, so will the need for whole-
body exploration. Therefore, in this letter, we propose a whole-
body ergodic exploration method for robotic manipulators that
we summarized in Figure 1.

II. RELATED WORK

The common challenge in autonomous exploration is the
inherent curse of dimensionality. Indeed, a naive exploration
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based on random actions quickly becomes infeasible and
instead requires intelligent strategies leveraging prior informa-
tion [3]. In settings with minimal uncertainty about the task
priors, the best approach is to use coverage path planning
(CPP) [7, 22] or informative path planning (IPP) if the
information is unevenly distributed [18, 24]. Nevertheless,
planning methods require specifying the horizon in advance
and boil down to solving a trajectory optimization problem
that is intractable for the most general case.

Control methods are robust to uncertainty compared to
planning approaches and can be used when the terminal time
for planning is unknown [17]. In [16], Mathew and Mezić
proposed to use ergodicity—a concept that originated from sta-
tistical physics providing a metric that measures the difference
between the target distribution and time-averaged statistics of
agent trajectories [1] for control. This particular method called
spectral multiscale coverage (SMC), minimizes the ergodic
metric by matching the Fourier series weights of the target
distribution and the reconstructed distribution from the agent
trajectories (coverage). Although the original formulation uses
the Dirac delta function as the agent’s footprint to simplify the
computation of coverage, Ayvali et al. [3] proposed using KL-
divergence for arbitrary agent footprints, which also alleviates
the need for approximating the target distribution by a finite
number of basis functions. However, the techniques based on
KL-divergence are sampling-based planners, and they were
not tested in online control settings. In [19], Shetty et al.
proposed an online ergodic exploration technique for peg-in-
hole tasks. They extended the SMC algorithm by a low-rank
approximation called tensor train factorization to scale the
computation of Fourier series weights in the 6-D pose space
describing the end-effector location.

A recent alternative to SMC-based methods is heat
equation-driven area coverage (HEDAC) [11]. HEDAC en-
codes the target distribution as a virtual heat source and
calculates the potential field resulting from diffusion, mod-
eled as heat conduction in a uniform medium. Virtual heat
conduction provides a model to smooth the gradient field and
propagate information about unexplored regions to the agents.
This technique is based on the diffusion (heat) equation, an
extensively studied partial differential equation (PDE) that
can be solved in various domains such as mesh surfaces
point clouds and by using explicit or implicit time stepping
schemes [15]. Additionally, it is possible to introduce internal
and external domain boundaries where no heat conduction
is allowed to encode exploration with embedded obstacle
avoidance behavior. For instance, Ivić et al. adopted a finite
element method to solve the heat equation on a planar domain
with obstacles modeled as internal boundaries [12] using
the Neumann boundary conditions. They later extended this
approach to a three-dimensional planning setting [10] because
the re-planning frequency was too low for online control.
Existing work in HEDAC focuses on multi-agent systems, with
the only exception being drozBot [14], a robot manipulator
drawing artistic portraits. DrozBot solves the non-stationary
heat equation for a single explicit timestep to have an artistic
effect similar to doodling. The method considers only a single
point (the tip of the pen) for the planar coverage and not the

Diffuse

Fig. 2. The HEDAC [11] method computes the potential field u(x, t) that
guides the agents for ergodic exploration. The time-averaged coverage of the
agent(s) c(x, t) at time t is subtracted from the target distribution p(x) and
positive values corresponding to unexplored regions are squared and used as
the virtual heat source s(x, t). The diffusion (heat) equation (2) is then used
for diffusing the potential field and propagating information of unexplored
regions to the agents.

whole-body of the manipulator.
In this work, on the other hand, we consider the robot’s

link footprints and the kinematic chain for increasing sensor
coverage. For that purpose, we decompose the whole-body
into kinematically constrained virtual agents. The primary
challenge here is to formulate a locally consistent exploration
behavior in time and space, combining agents for global
exploration with the robot. We achieve this by solving the non-
stationary diffusion equation to slow the diffusion to increase
local exploration. Then, we combine local exploration and
introduce weighting strategies on the agent and link levels
to simplify reaching a consensus among the agents. Conse-
quently, we present the first whole-body ergodic exploration
method and the first three-dimensional control implementation
of the HEDAC approach. We summarize our contributions as
follows:

• Increased sensor coverage by modeling the whole-body
as a collection of virtual exploration agents constrained
to the robot’s kinematic chain;

• Formulating a locally consistent exploration behavior in
time and space, combining agents for global exploration;

• Controlling the robot with consensus among virtual
agents and links by the introduced weighting strategies

III. WHOLE-BODY CONTROL USING KINEMATICALLY
CONSTRAINED VIRTUAL AGENTS

A. Smooth Potential Field Resulting from Diffusion

We extend the state-of-the-art ergodic control technique
HEDAC to obtain the potential field guiding the explo-
ration behavior. Original implementation [11] solves stationary
(u̇(x, t) = 0) diffusion with virtual source s(x, t), sink a(x, t)
and convective loss u(x, t) terms

α ·∆u(x, t) = β · u(x, t) + γ · a(x, t)− s(x, t). (1)

We summarize the HEDAC algorithm which uses the potential
field u(x, t) resulting from integrating (1) in Figure 2. We
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modify HEDAC to formulate a locally consistent exploration
behavior in time and space, combining agents for global
exploration. For that purpose, unlike the original formulation,
we solve non-stationary (u̇(x, t) ̸= 0) diffusion to increase
local exploration by slowing down the diffusion

u̇(x, t) = α ·∆u(x, t)− u(x, t) + s(x, t). (2)

We omit the sink term because we want to combine agents
therefore inter-agent collision is not a concern. Moreover, we
use a single parameter (α) for tuning the exploration behavior
as proposed in [10]. We numerically integrate (2) using an
explicit time-stepping scheme

u(x, t+ 1) = u(x, t) + u̇(x, t) · δt, (3)

where the maximum stable timestep δt is a function of
the diffusion rate α and given by Courant–Friedrichs–Lewy
condition

δt

(
Nd∑
i=1

αi

δxi

)
≤ 1, (4)

with the spatial discretization δx and the number of spatial
dimensions Nd. We introduce the parameter Nk, for the
number of integration steps we take using the maximum
stepsize δt computed by (4). Note that choosing high values for
Nk would mean integrating (2) until u(x, t+1)−u(x, t) ≈ 0
and would be equivalent to stationary diffusion.

B. Kinematically Constrained Virtual Agents

We define virtual agents as atomic particles that compose
a rigid body and interact with the potential field u(x, t).
Depending on the task, virtual agents abstract a sensor/tool
used for physical interaction during exploration. Additionally,
we use the term whole-body if the sensor/tool spans multiple
bodies on different links of the manipulator. By construction,
we can locate each agent in the potential field using the
forward kinematics function fkin of the robot

xi,j = fkin(q, i, j) ∀i = 1, . . . , Nj ∀j = 1, . . . ,M, (5)

where Nj is the number of virtual agents on the j-th link, and
M is the number of links composing the whole-body. xi,j is
the position of the i-th agent on the j-th link and q is the
vector of joint variables.

C. Active Agents and Local Weighting

We call the virtual agents that we use for computing
coverage but not contributing to the control action as passive.
We use the term passive because these agents explore regions
indirectly as a secondary effect of the robot’s primary goal.
Still considering their coverage relieves the need to revisit
those locations later. On the other hand, active agents, con-
tribute to the control command of the robot with their local
exploration goal in addition to coverage.

According to our model, the potential field exerts a fictitious
force on each active agent based on the gradient of the
potential field, and we multiply this force by an agent weight
wi,j

fi,j = wi,j∇u(xi,j(t), t). (6)

Fig. 3. Comparison of uniform and local temperature weighting. The green
square is the exploration target and small arrows show the temperature
gradient. Blue dots and arrows show active agents and the force exerted on
each agent after weighting.

The naive method of computing the agent weights is to use a
uniform weighting strategy, thus assigning equal importance to
every agent. However, this is suboptimal since the significance
of agents differs depending on their position in the potential
field and the current state of the potential field itself. The value
of the potential field at a given point encodes how much this
particular region is underexplored. Accordingly, we embed this
information by using the local value sensed by the agent as
its weight. Hence, agents on the frontier of exploration (the
ones closer to the underexplored regions) will have a higher
weight than those on the overexplored regions. Thus, we set
the normalized weight of the i-th agent on the j-th link as

wi,j =
w̃i,j∑Nj

i=1 w̃i,j

with w̃i,j = u(xi,j(t), t), (7)

and call it local weighting strategy. Note that, the local weight
is a function of the potential field, i.e. both space and time, and
is therefore computed online. We show the difference between
local and uniform weighting strategies in Figure 3.

D. Active Links and Manipulability Weighting

Similarly to active agents, we call a rigid body composed
of active agents active link and compute the net force and
moment acting on it by all the agents

fnetj =

Nj∑
i=1

fi,j , mnetj =

Nj∑
i=1

ri,j × fi,j , (8)

where ri,j is the displacement vector connecting the active
agent and the j-th link’s center of mass. We concatenate force
and moment into a net wrench acting on the j-th link of the
manipulator. For the simplest kinematic control strategy, we
set the desired twist of the link vdesj equal to the net wrench
acting on the j-th link

vdesj =
[
f⊤

netj m⊤
netj

]⊤
(9)

corresponding to having identity inertia.
Here the twist commands that we generate correspond to

consensus among the agents because the gradient field exerts
similar forces to neighboring agents (local consistency) since
we set the local cooling term used for collision avoidance in
HEDAC to zero and slowed down diffusion by solving the non-
stationary diffusion equation. Moreover, the gradient (force)
field resulting from spatial diffusion is smooth, and we perform
first local exploration (moving based on the force field) and
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then global exploration (by the propagation of information as
diffusion).

We weight the contribution of the active links to the control
command because each link has different manipulability [23]
and volume ν, resulting in distinct volumetric coverage rates.
For that purpose, we compute the link weights using the scalar
manipulability index µ

wj = νjµj , (10)

with µj =
√
det
(
Jj(q)Jj(q)⊤

)
, (11)

where Jj(q) is the Jacobian of the j-th active link computed
at its center of mass.

E. Consensus Control for Whole-Body

Our setting consists of multiple weight-prioritized tasks,
encoded as task velocities with corresponding Jacobians, and
we would like to perform them in the least square optimal
sense by exploiting the redundancy of our robot

q̇des = argmin
q̇

(v̄des − J̄ q̇)⊤W (v̄des − J̄ q̇) (12)

with W = blockdiag
(
Iw1, Iw2, . . . , Iwm) (13)

where J̄ is the vertical concatenation of the Jacobians, and
v̄des is the vertical concatenation of the task velocities of
active links. We enforce task priorities by using the weighted
pseudoinverse and computing the desired joint velocities as

q̇des =
(
J̄⊤WJ̄

)−1
J̄⊤Wv̄des. (14)

Next, we use desired joint velocity to either kinematically
simulate the robot qt+1 = qt + q̇des · ∆t or as a desired
joint velocity to an impedance controller. Then, we clamp the
desired joint positions as the simplest strategy to comply with
joint limits. We give the full procedure for robot control in
Algorithm 1.

Algorithm 1: Whole-Body Exploration
Input: target distribution p(x), forward kinematics

function fkin(q, i, j), initial joint configuration
q0, number of active links M , number of
active agents Nj in j-th link

Output: control commands u(t)
initialize agents and bodies using using (5) and q0
compute δt using (4)
while true do

compute c(x, t) and s(x, t) as in [11]
for k ← 1 to Nk do

integrate (2) using (3)
for all M bodies do

for all Nj agents do
compute xi,j and fi,j using (5) and (6)

compute vdesj and wj using (9) and (11)
compute q̇des using (14)

IV. WHOLE-BODY EXPLORATION

We give the videos for all the simulated and real-world
experiments on the website.

A. Simulated Experiments

We performed kinematic simulations to measure the explo-
ration performance. We used the normalized ergodicity over
the target distribution as the exploration metric

ε =
∥max (e(x, t), 0) ∥2∫

Ω
p(x)dx

, (15)

where p(x) is the target distribution, e(x, t) is the residual
given by p(x) − c(x, t) as given in Figure 2 and calculated
as in [11]. This metric shows how good the time-averaged
statistics of agent trajectories match the target distribution, and
lower values indicate higher performance.

1) Planar Experiments: We first present the results of
planar simulations showing the exploration performance qual-
itatively using images. We tested four different configurations:
(i) SMC, (ii) passive, (iii) active/stationary using (1), and
(iv) active/non-stationary (Nk = 1) using (2). SMC and
passive configurations use a single active agent at the tip of
the last link that we control by the state-of-the-art ergodic
control methods SMC and HEDAC, respectively, where the
passive configuration also considers the coverage of the last
link indirectly for the control. We used active agents sampled
on the last link equally spaced by the unit distance for the
active configurations. We computed the metric (15) using
the coverage of the last link for all of these configurations.
We used a 75 × 75 grid for discretizing the exploration
domain and 20 basis functions for the SMC method. We
plotted the trajectories and the target distribution in Figure
4. Next, we repeated the same experiment for two different
target distributions starting from 100 uniformly sampled initial
joint configurations. We chose one diffuse and one fine-
detailed target distribution to test the scenarios advantaging
stationary/non-stationary diffusion, respectively. Although the
exploration behavior would continue indefinitely, we stopped
the simulation after 1000 timesteps. We calculated the mean
and standard deviation of the normalized ergodic metric and
plotted the results in Figure 5.

2) Three Dimensional Experiments: In the first 3D ex-
periment, we measured the effect of using multiple active
links on the exploration performance. We assumed no prior
for the exploration target and used a cube discretized on a
50 × 50 × 50 grid where each point corresponds to 1 cm as
the target distribution. We placed the target in front of a 7-
axis Franka Emika robot and sampled active agents on links
5, 6, and 7 using Poisson-disk sampling. Note that we used
the same agent configuration for computing the coverage and
the metric using (15), but we changed the number of active
links used for computing robot control commands. Similarly
to the planar experiments, we used 30 pre-sampled initial joint
configurations and plotted the results in Figure 6. Secondly,
we compared the exploration performance of the proposed
method to that of using a search pattern. In this task, the
robot explored the same target region using its whole-body
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(a) SMC (b) Passive (c) Stationary (d) Non-Stationary

Fig. 4. Planar exploration using different configurations. The black shape is the target distribution, and the colored lines are agent trajectories, where the blue
dashed lines correspond to the agent’s path at the tip of the last link. We show the configuration of the planar manipulator at equally spaced timesteps. Red
is the start configuration, and the transparency decreases as time increases.
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Fig. 5. Coverage performance given by the normalized ergodic metric for
different virtual agent configurations. Target distributions for the coverage
task are given on the top right.

composed of links 5, 6, and 7 until one of the links touched
the sphere target placed at an unknown position. We repeated
the experiment 30 times for randomly sampled target sphere
positions but used fixed initial configurations corresponding to
the end-effector poses 1, 2 given in Figure 7b. We recorded
the time until the first contact and plotted the results in Figure
7a.

B. Real-world Experiment

For the real-world experiments, we used a 7-axis Franka
Emika robot with the same object localization task performed
in kinematic simulation. We placed a tennis ball inside the
target distribution as the target object at an unknown location.
We first recorded the trajectory resulting from the exploration
behavior and then tracked the trajectory with a stiff impedance
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Fig. 6. Coverage performance given by the normalized ergodic metric for
different virtual agent configurations. The inset boxplot shows the performance
in detail for each configuration at 500-th timestep. During the experiments,
we set Nk = 3 as an empirically found moderate value and attained a control
frequency of 35, 18, and 13 Hz for active agents on the last one, two, and
three links respectively using a laptop processor.
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Fig. 7. Coverage performance given by the timesteps required until the
first contact of the whole-body with the target object (green sphere). a) The
horizontal axis of the boxplot corresponds to our method and a planned search
pattern starting from the initial end-effector poses 1 and 2. b) We show the
initial poses 1, 2 and the direction of the search pattern is indicated by the
ordering of the poses.
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Fig. 8. Real-world experiment of the robot exploring the cube in dashed lines
using its last three links, until either b) link 5, c) link 6 or d) link 7 contacts
the target object.

controller to ensure that the robot safely contacted the tennis
ball and did not hit the second robot or the stick. We ran the
experiment until one of the links made contact with the target
object, which we detected by using the joint torque sensors of
the robot. We provide the experiment setup in Figure 8.

V. DISCUSSION

We investigated the effect of using active/passive agents and
stationary/non-stationary diffusion on the exploration trajec-
tory in Figure 4. We see SMC and passive configurations do
not, and stationary diffusion configuration can not efficiently
align with the target. On the other hand, in the non-stationary
case, agents align with the target distribution for most of
their trajectories (only get misaligned when rotating for re-
alignment). This is expected since non-stationary diffusion
increases local exploration and agent coordination, resulting in
better alignment behavior. Next, we tested the time evolution
of the ergodic metric in Figure 5. On top of the qualitative
results of Figure 4, we can quantitatively argue active agents
have higher performance than the state-of-the-art SMC method
and the passive configuration. However, the performance dif-
ference between stationary/non-stationary diffusion depends
on exploration time and the target distribution. This is because
stationary diffusion (Nk ≫ 1) smooths the details and coarsely
explores diffuse targets but can not explore distal and fine-
detailed regions. In contrast, non-stationary diffusion with
Nk = 1 performs significantly better in distal and fine-grained
regions but slightly worse for a diffuse target. For Nk =
(1, 10], we obtained results that interpolate the stationary/non-
stationary diffusion results given in Figure 5. Accordingly, for
the number of integration steps Nk, we recommend using a
single step (Nk = 1) for concentrated targets, high values
(Nk ≈ 10) for diffuse targets, and low to medium values
(Nk ≈ 3) for generic cases.

In the first 3-D experiment, we see that using multiple links
increases the exploration performance as depicted in Figure

6. However, this gain diminishes as we move to the links
with less manipulability. Links closer to the base, including
link 5, have negligible weights when computing the robot
control command due to the normalization. Consequently, they
practically become passive, contributing to coverage but not
to the robot control commands. This partly explains why we
observe marginal gains after link 6. Nevertheless, we think the
primary reason is that the target distribution is small compared
to the link size. This decreases the benefit of increasing the
sensor footprint by using more links. Unfortunately, we can
not make the target distribution larger due to the manipulator’s
joint limits and fixed base. Nonetheless, if the link and target
size ratio were lower, the performance would increase with
the sensor footprint. Two such examples are using a mobile
manipulator where we can increase the target size or using the
whole-body of a robot hand connected to an arm where we
can decrease the link size relative to the target distribution.

In Figure 7, we compare the performance of the proposed
method to using a planned search pattern. On the path from 1
to 2, links 5, 6, and 7 initially stay inside the target distribution,
whereas on the path from 2 to 1, all links explore only at the
end of the path. Accordingly, these two paths correspond to
the best and worst-case scenarios for exploration. The results
show that our approach is more robust to the initial robot
configuration and can effectively leverage the whole-body as
it performs better than the planned path of 1-2. Although here
we used a uniform distribution in the form of a cube, ergodic
exploration methods such as ours generalize to arbitrary target
distributions, whereas pattern-based or coverage, informative
path-planning approaches are limited to uniform distributions
or simple geometries.

We showcased the method’s applicability with a manipu-
lator in a real-world experiment and presented the first 3D
control implementation of the HEDAC approach. The control
frequency of the method primarily depends on (i) integrating
the diffusion using (3) and (ii) the number of active agents
and links. Note that our choice of solving non-stationary
diffusion with (2) and using explicit time-stepping results in
higher computational efficiency for small Nk. In contrast,
for the stationary diffusion equation (1) using implicit time-
stepping reduces to sparse matrix multiplication with pre-
inverted system matrix and is more efficient than the iterative
solution. To reduce the effect of the number of active links
and agents on computation, we decomposed links to multiple
agents instead of using a single agent with the shape of the
link. Because coverage computation using a single agent with
the link shape can not be parallelized and is computationally
expensive due to including more zero entries in the convolution
kernel. In the end, integrating the diffusion equation is the
main bottleneck in our implementation, and increasing the
number of agents has minimal effect. Still, considering that the
exploration performance gain is minimal and the link weight
is almost zero for link 5, we think it is better to consider the
last two links for the whole-body exploration if the robot base
is fixed.

An alternative use case for the presented method is using it
as a long-horizon planner anticipating the joint limits instead
of a myopic controller. Although this would improve the
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performance, it would be minimal because, thanks to the
smooth potential field resulting from diffusion, it is unlikely
to get stuck in a local minima due to joint limits. Still, we
perceive the limited workspace due to the joint limits and
the fixed base as the primary limitation to using whole-body
exploration. Using a mobile manipulator would drastically
increase whole-body exploration’s performance because the
link size target size ratio can be lower, and we would ben-
efit from even less manipulable but large links. However, a
limitation of the current approach in such a scenario would be
the computational complexity of solving diffusion in a larger
domain. Fortunately, unsupervised learning techniques for
approximating diffusion, such as tensor train decomposition
and physics-informed neural networks, seem promising.

Finally, real-world experiments showed we can perform
whole-body tactile exploration using off-the-shelf torque-
controlled robots without additional sensors. This result pro-
vides insight into alternative platforms equipped with joint
torque sensing and searching for contacts, such as legged
robots and multi-fingered robot hands. For instance, legged
robots can use our method when exploring ground contacts,
and robot hands can use it for grasping where each finger
moves until contacting the object of interest. Although we
can sense contact by joint torques, localizing it on the robot
surface is challenging and requires whole-body tactile sensors.
Accordingly, in the future, we plan to use the method with
recursive target distribution updates and tactile sensors to
reconstruct the physical properties of the environment that can
only be measured through contact, such as deformability or
friction.

VI. CONCLUSION

In this letter, we presented a robot control method for
efficiently exploring a target distribution using a robotic ma-
nipulator’s whole-body. Unlike existing approaches for multi-
robot systems using independent agents, we used kinemati-
cally constrained agents on the links of a robotic manipu-
lator to increase coverage. We introduced active agents and
links together with weighting strategies considering the shape
and kinematic chain of the whole-body for exploration. We
combined the agents composing the whole-body for global
exploration by formulating a locally consistent exploration
behavior in time and space using non-stationary diffusion.
Lastly, we measured the performance of our method in terms
of ergodicity in kinematic simulations and demonstrated its
applicability in physical scenarios using the 7-axis Franka
Emika in an object localization task.
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godic Area Surveying Control Based on Finite Element Approximation
of the Potential Field”. In: Engineering Applications of Artificial
Intelligence 116 (Nov. 2022), p. 105441.
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