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Abstract

Disentangling the encodings of neural models
is a fundamental aspect for improving inter-
pretability, semantic control and downstream
task performance in Natural Language Process-
ing. Currently, most disentanglement methods
are unsupervised or rely on synthetic datasets
with known generative factors. We argue that
recurrent syntactic and semantic regularities
in textual data can be used to provide the
models with both structural biases and gener-
ative factors. We leverage the semantic struc-
tures present in a representative and semanti-
cally dense category of sentence types, defi-
nitional sentences, for training a Variational
Autoencoder to learn disentangled represen-
tations. Our experimental results show that
the proposed model outperforms unsupervised
baselines on several qualitative and quantita-
tive benchmarks for disentanglement, and it
also improves the results in the downstream
task of definition modeling.

1 Introduction

Learning disentangled representations is a funda-
mental step towards enhancing the interpretability
of the encodings in deep generative models, as
well as improving their downstream performance
and generalization ability. Disentangled represen-
tations aim to encode the fundamental structure
of the data in a more explicit manner, where in-
dependent latent variables are embedded for each
generative factor (Bengio et al., 2013).

Previous work in machine learning proposed
to learn disentangled representations by modify-
ing the ELBO objective of the Variational Autoen-
coders (VAE) (Kingma and Welling, 2014), within
an unsupervised framework (Higgins et al., 2017;
Kim and Mnih, 2018; Chen et al., 2018). On the
other hand, a more recent line of work claims the
benefits of supervision in disentanglement (Lo-
catello et al., 2019) and it advocates the importance
of designing frameworks able to exploit structures
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Figure 1: Left: Supervision mechanism with defini-
tion semantic roles (DSR) encoded in the latent space.
The dotted arrow represent the conditional VAE version.
Right: Evaluation framework.

in the data for introducing inductive biases. In par-
allel, disentanglement approaches for NLP have
been tackling text style transfer, and evaluating the
results with extrinsic metrics, such as style transfer
accuracy (Hu et al., 2017; John et al., 2019; Cheng
et al., 2020).

While style transfer approaches investigate the
ability to disentangle and control syntactic factors
such as tense and gender, the aspect of understand-
ing and disentangling the semantic structure in lan-
guage is under-explored, but with recent attempts
of separating syntactic and semantic latent spaces
showing promising results (Chen et al., 2019; Bao
et al., 2019). Furthermore, evaluating disentangle-
ment is challenging, because it requires knowledge
of generative factors, leading most approaches to
train on synthetic datasets (Higgins et al., 2017;
Zhang et al., 2021).

In this work, we argue that recurrent semantic
structures at sentence level can be leveraged both
as inductive biases for enhancing disentanglement
(RQ1) but also for providing meaningful genera-
tive factors that can be employed for evaluating the
degree of disentanglement (RQ2). We also inves-
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tigate whether organizing the generative factors in
groups may facilitate learning and disentanglement
(RQ3). As a result, this work focuses on natural
language definitions, which are a textual resource
characterised by a principled structure in terms of
semantic roles, as demonstrated by previous work
which proposed the extraction of structural and se-
mantic patterns in this kind of data (Silva et al.,
2016, 2018).

Seeking to address the highlighted issues and an-
swer the research questions, we make the following
contributions, also depicted in Figure 1.

1) We design a supervised framework for en-
hancing disentanglement in language representa-
tions by conditioning on the information provided
by the semantic role labels (SRL) in natural lan-
guage definitions. We present two mechanisms for
injecting SRL biases into latent variables, firstly,
reconstructing both words and corresponding SRL
in a VAE, secondly, employing SRL information as
input variables for a Conditional VAE (Zhao et al.,
2017).

2) We propose a framework for evaluating the
disentanglement properties of the encodings on
non-synthetic textual datasets. Our evaluation
framework employs semantic role label groupings
as generative factors, enabling the measurement
of several contemporary quantitative metrics. The
results show that the proposed bias injection mech-
anisms are able to increase the degree of disentan-
glement (separability) of the representations.

3) We demonstrate that models trained with our
disentanglement framework are able to outperform
contemporary baselines in the downstream task of
definition modeling (Noraset et al., 2017).

2 Disentangling framework

In this section we first describe the framework de-
signed for improving disentanglement in natural
language definitions with semantic role labels. Sec-
ondly, we present three models, shown in Figure 2
based on the Variational Autoencoder (VAE) (Bow-
man et al., 2016) architecture for achieving disen-
tanglement.

2.1 Disentangling definitions

Definition semantic roles Our framework is
based on natural language definitions, which are
a particular type of linguistic expression, charac-
terised by high abstraction, and specific phrasal
properties. Previous work in NLP for dictionary

definitions (Silva et al., 2018) has shown that there
are categories that can be consistently found in
most definitions. In fact, Silva et al. (2018) define
precise Semantic Role Labels (SRL) for phrases
representing definitions, under the name of Defini-
tion Semantic Roles (DSR).

The example from (Silva et al., 2018) classifies
the semantic roles within "english poets who lived
in the lake district" as follows. "poets" as noun
category (supertype), "english" as quality of the
term (Differentia Quality), "who lived" as event
that the subject is involved with (differentia event),
and "in the lake district" as the location of the action
(Event location). The full DSRs proposed by Silva
et al. (2018) are reported in Table 9 in Appendix A.
Disentangling using SRL Our goal is to enhance
disentanglement in natural language by injecting
categorical structures into latent variables. We find
that this goal is well aligned with the findings of Lo-
catello et al. (2019), where it is claimed that a
higher degree of disentanglement may benefit from
supervision and inductive biases. Our hypothesis
is that we may leverage such semantic information
for learning representation with higher degree of
disentanglement. While in the context of this work
we use dictionary definitions as a target empirical
setting, we conjecture that these conclusions can
be extended to broader definitional sentence-types.
The core intuition behind the approach is that the
supervision signal should increase the likelihood
of point clustering in regions corresponding to, or
related to the discrete supervision labels, given the
network architecture formulation.

2.2 Definition VAEs

Unsupervised VAE The first training framework
that we consider is the traditional variational au-
toencoder (VAE) for sentences (Bowman et al.,
2016), which operates in an unsupervised fash-
ion, as in Figure 2a. The unsupervised VAE
employs a multivariate gaussian prior distribu-
tion p(z) and generates a sentence x with a de-
coder network pθ(x|z). The joint distribution
for the decoder is defined as p(z)pθ(x|z), which,
for a sequence of tokens x of length T result as
pθ(x|z) =

∏T
i=1 pθ(xi|x<i, z). The VAE objec-

tive consists into maximizing the expectation of the
log-likelihood which is defined as Ep(x) log pθ(x).
Due to the computational intractability of the such
expectation value, the variational distribution qθ is
employed to approximate pθ(z|x).
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Figure 2: Proposed architectures for learning disentangled representations in definitions.

As a result, an evidence lower bound LVAE
(ELBO) where Ep(x)[log pθ(x)] ≥ LVAE, is de-
rived as follows:

LTokens = Eqϕ(z|x)
[
log pθ(x|z)

]
−KLqϕ(z|x)||p(z)

DSR supervised VAE The aim of this model
is to inject the categorical structure of the defini-
tion semantic roles (DSR) into the latent variables,
by factorizing them into the VAE auto-encoding
objective function. In order to achieve this goal,
we introduce the variable r for semantic roles, and
train the "DSR VAE", where both sentence and se-
mantic roles are auto-encoded. The variable r here
operates just as x, with the corresponding label val-
ues. As a result, two separate losses are produced
and added together for the final loss, as shown in
Figure 2b. The ELBO for semantic roles is defined
as follows:

LRoles = Eqϕ(z|r)
[
log pθ(r|z)

]
−KLqϕ(z|r)||p(z)

The final loss is given by LTokens + LRoles.

Conditional VAE with SRL For explicitly lever-
aging the definition semantic roles, we propose a
supervision mechanism based on the Conditional
VAE (CVAE) (Zhao et al., 2017), shown in Fig-
ure 2c. Similar to the previously described model,
we instantiate a VAE framework, where x is the
variable for the tokens, and r for the roles. We
perform auto-encoding for both roles and tokens,
and additionally, we condition the decoder network
on the roles. The CVAE is trained to maximize the
conditional log likelihood of x given r, which in-
volves an intractable marginalization over the latent
variable z.

The ELBO is defined as:

LCVAE =Eqϕ(z|r,x)
[
log pθ(x|z, r)

]

− KLqϕ(z|x, r)||p(z|r)

Training We consider LSTM-based VAE and
Transformer-based VAE (Optimus (Li et al., 2020))

as baselines. The training process follows the vari-
ational autoencoding methodology (Kingma and
Welling, 2014). First, tokenization is performed
in the sentences and the roles. The Encoder net-
work involves feeding both first into embedding
layers, then into LSTM / Transformer layers. Sub-
sequently, two vectors µ and σ are sampled with
two linear layers, and the vector z is computed with
the re-parameterization trick. Finally, the decoder
network is built with the LSTM / Transformer lay-
ers and another embedding layer, which return the
same dimension that was given as input.

3 Evaluation framework

We first present the evaluation framework that for
measuring disentanglement, then describe and jus-
tify the generative factor setup used in the experi-
ments.

3.1 DSR as generative factors

While early approaches for disentanglement in
NLP have been proposed in the context of in style
transfer applications (John et al., 2019; Cheng et al.,
2020) and are assessed purely in terms of style
transfer accuracy, evaluating the intrinsic properties
of the latent encodings is fundamental for disentan-
glement, as mentioned in several machine learning
approaches (Higgins et al., 2017; Kim and Mnih,
2018). Recently, Zhang et al. (2021) proposed a
framework for computing several popular quantita-
tive disentanglement metrics such as (Higgins et al.,
2017; Kim and Mnih, 2018) testing it on synthetic
datasets. The limitation in (Zhang et al., 2021) is
that it works only with synthetic datasets.

In this work, we propose a method where seman-
tic role labels, such as the ones provided in (Silva
et al., 2018), are used as generative factors for eval-
uating the degree of disentanglement in the en-
codings. The framework, illustrated in Figure 3,
considers multiple generative factors, where each
factor is composed by a number of semantic roles
(for example the factor "location" includes, origin-
location, and event-location). In this way, the
dataset can be seen as the result of a sampling
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of multiple generative factors, which is the same
principle used when creating synthetic datasets for
disentanglement. Once the generative factors are
defined, the framework is enabled to compute a
number of quantitative metrics for disentanglement,
following the work from Zhang et al. (2021).
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Figure 3: Generative factors for definitions.

3.2 Semantics and Syntax groups of DSR

In order to categorize the definition semantic roles
(DSR), we consider their structural and semantic
dimensions in terms of their contribution to either
the meaning (e.g., quality, location) or the structure
(e.g., main terms, modifiers) of the definition sen-
tence. We first create two DSR groups with seman-
tic and two based on syntax, to evaluate which one
would better facilitate disentanglement. For both
syntax and semantic, we then create one group with
"supertype" DSR and one without it, in order to
understand the impact of the supertype DSR. The
importance of "supertype" is due to its contribu-
tion to both abstraction groups and its predominant
presence on the datasets analyzed (≥ 97%).
Group 1: Semantics with Supertype Sets the
factors in terms of their meaning, essentially ab-
stracting categories of the DSRs, including the SU-
PERTYPE DSR as a single factor. Qualification,

location, modification, declaration (statement) and
supplementation (accessory) are semantic roles of
a given term to its definition, which are described
by the DSRs.
Group 2: Syntax with Supertype Sets the factors
in terms of their structural role in the definition
sentence, including the SUPERTYPE DSR as a
single factor. The ORIGIN-LOCATION DSR is
omitted due to its syntactic overlap with EVENT-
LOCATION and its low frequency in the datasets.
Group 3: Semantics without Supertype Similar
to group 1, but excluding the SUPERTYPE DSR,
and repositioning the factor from modifier and ac-
cessory for higher abstraction. Relations of modifi-
cation and supplementation (present in group 1) are
suppressed to focus on lexical semantics, moving
label ACCESSORY-DETERMINER to the declara-
tory group, EVENT-TIME to the event group and
all quality related labels to the qualification group.
Group 4: Syntax without Supertype Similar to
group 2, but excluding the SUPERTYPE DSR. Fur-
ther abstractions are not conducted, as the defini-
tion roles already offer a stable structure for sen-
tence construction.

4 Related work

Disentangled VAEs in language Early approaches
in text disentanglement use VAEs with multiple
adversarial losses for style transfer (Hu et al., 2017;
John et al., 2019). More recently, Cheng et al.
(2020) propose a style transfer method which mini-
mizing the mutual information between the latent
and the observed variable, while Colombo et al.
(2021) propose an upper bound of mutual informa-
tion for fair text classification. Disentanglement of
syntactic and semantic information on sentences
is explored by Chen et al. (2019), using multiple
losses for word ordering and paraphrasing, and by
Bao et al. (2019) with linearized constituency tree
losses. Finally, Dupont (2018) work on discrete
factors for image models and the improvements in
Mercatali and Freitas (2021) proposed method for
NLP lead to this work, where we move from the
latter’s implicit language features and LSTM-based
architecture to explicit automatic annotations and
a state-of-the-art Transformer-based architecture.
We focus our efforts into the representation of defi-
nitions, and propose to promote disentanglement by
using biases provided as semantic roles, designing
two VAE models to inject structural semantic in-
formation into the representation. As an alternative
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architecture for generative modeling, Generative
Adversarial Network (GAN) was not employed for
this problem due to the non-contrastive nature of
the input data (trying to leverage informed struc-
tural knowledge) and the emphasis on disentangle-
ment as a mechanism to understand separability
and control.
Disentanglement Evaluation Vishnubhotla et al.
(2021) evaluate disentanglement in synthetic text
on various NLP tasks such as classification, re-
trieval and style transfer. Zhang et al. (2021) evalu-
ate disentanglement of various VAE models on syn-
thetic datasets where generative factors are known.
Differently from these methods, we propose a new
framework to evaluate non-synthetic natural lan-
guage, where semantic role labels are used as gener-
ative factors. We model linguistic features of natu-
ral language definitions, with the goal of exploring
the semantic properties that are encapsulated in it.
Definition models Early approaches in definition
encoding include (Hill et al., 2016), which pro-
pose the first neural embedding model for dictionar-
ies, and (Bahdanau et al., 2017), which present an
RNN-based encoder decoder architecture for tex-
tual entailment and reading comprehension. More
recently, methods based on Autoencoders (Bosc
and Vincent, 2018) and transformers (Tsukagoshi
et al., 2021) have been proposed. Various ap-
proaches for the task of generating a definition from
a word (Definition Modeling) have been proposed,
including RNN-based methods (Noraset et al.,
2017), soft attention mechanisms (Gadetsky et al.,
2018), and span-based encoding schemes (Bevilac-
qua et al., 2020). The semantic aspect of natural
language definitions are explored in (Silva et al.,
2016, 2018), where the concept of definition se-
mantic roles is proposed.

5 Empirical analysis

In this section, we firstly describe the empirical
setup for experiments, secondly, we provide quali-
tative evaluation and thirdly, we measure various
quantitative metrics. Finally, we demonstrate the
capacity of the proposed models in the downstream
task of definition modeling.

5.1 Experimental setup

Datasets Definition sentences and their respective
semantic role structures are sourced from three
different datasets by (Silva et al., 2016) with the
characteristics described in Table 1. All datasets

Dataset Num sents. Avg. length Version
Wordnet 93,699 9 WordNet 3.0
Wiktionary 464,243 8 Dec, 2016
Wikipedia 1,500,323 12 Dec, 2016

Table 1: Statistics from definition datasets.

are automatically annotated with DSR tags for each
token, using the method proposed by (Silva et al.,
2016). The datasets differ not only in sentence
length and size, but also in textual style: while
WordNet and Wiktionary sentences tend to be for-
matted as dictionary definitions, Wikipedia sen-
tences are lengthier and less adherent to a typical
definition structure. For brevity, hyperparameter
choices and implementation details are covered in
sections C and D of the suplementary material.

5.2 Qualitative Evaluation
We analyse the representations of the trained
models in terms of their disentanglement and com-
position, by applying three different techniques
1) traversals of the latent space, 2) latent space
arithmetic, 3) encoding interpolation.

Latent space traversals Traversal evaluation
is a standard procedure with image disentangle-
ment (Higgins et al., 2017; Kim and Mnih, 2018).
The traversal of a latent factor is obtained as the
decoding of the vectors corresponding to the latent
variables, where the evaluated factor is changed
within a fixed interval, while all others are kept
fixed. If the representation is disentangled, when
a latent factor is traversed, the decoded sentences
should only change with respect to that factor.
This means that after training the model we are
able to probe the representation for each latent
variable. In the experiment, the traversal is set up
from a starting point given by a “seed” sentence.
As illustrated in Table 2 we observed that the
latent variables typically track a single abstract
definition role (e.g., supertype, quality, purpose),
and change the meaning of the original term
according to an abstract interpretation axis (e.g,
flying → movement, art → doutrine/teachings).
This means a certain degree of control can be
applied to the generation of both the sentence
structure and semantics.

Latent space arithmetic In this experiment,
the latent vectors for two sentences are added,
subtracted or averaged, and then the resulting
vectors are traversed. The sentence pairs are
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a flying creature
a flying animal
a flying insect

a robot
a monster
a creature

a walking demon
a flying creature
a moving animal

a martial art developed in Israel
an ancient Buddhist dagger used to stab others
an ancient martial art practiced in Japan

a Roman soldier’s movement
a military dress worn by monks
a knight’s ceremonial hat

a religious rite in which communion is offered
a literary rite in Bible study
a medicine school

Table 2: Traversals showing changed and held seman-
tic factors in Wiktionary definitions (Optimus-based
model).

A
D

D

a flying machine
a flying creature
a flying dinosaur
a flying robot
a flying object

AV
G

to make four copies of
to make five copies of
to make one copy of
to make two copies of
to make 3 copies of

SU
B

a female monarch
a monarch
the subnormal condition in females originating from...
the normal female pregnancy associated with some
the female given name in the Japanese game...

Table 3: Traversals showing changed and held seman-
tic factors after latent vector arithmetic in Wiktionary
definitions (Optimus-based model).

different by a single term, so that we can observe
the latent variables affected by the change, and
how they are affected. As illustrated in Table 3,
these operations tend to produce vectors that, when
traversed, generate sentences corresponding to
the features manipulated by the operation (e.g.,
removing the monarch supertype, leaving the
female quality).

Interpolation In this experiment, we analyse the
capability of the models built with the proposed
approach to provide a smooth transition between
latent space representations of sentences (Bow-
man et al., 2016). In practice, the interpolation
mechanism takes two sentences x1 and x2, and
uses their posterior mean as the latent features
z1 and z2, respectively. It interpolates a path
zt = z1 · (1− t)+z2 · t with t increased from 0 to 1
by a step size of 0.1. This is a deterministic process,
and no search is performed. As a result, 9 sentences
are generated on each interpolation step. In Table 4
we provide qualitative results with latent space in-
terpolation on Wiktionary. We can observe the
transition happening for each concept: migratory
→ ∅→ microscopic, aquatic → aquatic + terres-
trial → terrestrial, bird → mammal → organism
→ invertebrate. This type of localised semantic
control provided by the operations of traversal and
interpolation over intensional-level (definitional)

D
SR

O
pt

im
us

-b
as

ed

a migratory aquatic bird found in the temperate regions
of the northern hemisphere
1 a migratory bird of the eastern Mediterranean
2 a marine gastropod of the subfamily
3 a terrestrial aquatic mammal of the family
4 a terrestrial aquatic mammal of the suborder
5 a terrestrial invertebrate
6 a microscopic organism or invertebrate
a microscopic terrestrial animal or protozoan

an automobile
1 a motorcycle
a bicycle

Table 4: Interpolation examples in Wiktionary
(Optimus-based model). Only unique sentences are
shown.

sentences can potentially support quasi-symbolic
operations over the latent space. Such effects could
not be observed within the baselines.

Based on those three experiments, the composi-
tion of such latent space could be conceptualised
as in the projection illustrated in Figure 4.

supertype: bird - 
protozoan (organism)

quality: aquatic - 
terrestrial 

(lives in water)terrestrial aquatic

invertebrate

organism

mammal

bird

protozoan

gastropod

amoeba

rodent dolphin

duck

Figure 4: Conceptualisation of a two-dimension cut of
the latent space, applied to the first example in Table 4.

UMAP plot UMAP (Uniform Manifold Approx-
imation and Projection) (McInnes et al., 2018) is a
popular method for non-linear dimensionality re-
duction, that allows the visualization of complex
high-dimensional feature spaces, such as the rep-
resentation space produced by a VAE. Figure 5
presents a 2D plot of UMAP transformations for
both baselines under three training frameworks,
from which the clustering of DSR patterns can
be observed. While the supervision with DSR la-
bels promotes clustering of the patterns around
the center of the plot, cVAE compacts the clus-
ter on the edges, allowing better separation. In
the Optimus-based model, for example, the SU-
PERTYPE (green) cluster has a tendency to move
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Figure 5: UMAP plot of latent representations from Un-
supervised VAE (U), DSR supervision (S) and Condi-
tional VAE (C) (Top: LSTM, Bottom: Optimus-based).

towards the edge of plot from left (U) to right (C).
t-SNE transformations are also performed and the
plots are presented in the supplemental material
(Appendix E).

5.3 Quantitative Evaluation

In this experiment we probe the representation
learned by the proposed VAE models using eight
popular quantitative metrics for disentanglement,
namely: z-diff (Higgins et al., 2017), z-min-
var (Kim and Mnih, 2018), Mutual Information
Gap (MIG) (Chen et al., 2018), Modularity
& Explicitness (Ridgeway and Mozer, 2018),
and from (Eastwood and Williams, 2018)(dis-
entanglement, completeness, informativeness).
Further details about the metrics are provided in
Appendix B. It is relevant to mention that there
are considerations regarding inconsistency on
classification dependent probes (e.g., z-min-var,
modularity), which are not discussed here due
to space and scope considerations (we refer to
Carbonneau et al. (2022)). Therefore, we decided
to include all current metrics that could be applied
in this scenario, and the results presented next
should be interpreted considering these limitations.

Experimental Setup We evaluate VAE (U), DSR
VAE (S) and CVAE (C) on Wordnet (WN), Wik-
tionary (WT) and Wikipedia (WP) datasets. Evalu-
ation is performed under the framework explained
in Section 3. Each combination of VAE architec-
ture, generative factor grouping and representation
size was trained and quantitatively tested, by cal-
culating the previously mentioned disentanglement
metrics. For computing the metrics we follow the

experiments of Zhang et al. (2021).
Analysis The results presented in Tables 2, 4, and 5
show that, specially when using the Optimus-based
model:

LSTM
D z-diff z-min-var ↓ MIG Modularity

U S C U S C U S C U S C
WN .700 .691 .770 .482 .503 .532 .067 .057 .059 .793 .804 .765
WT .597 .619 .635 .400 .385 .430 .112 .095 .065 .535 .424 .629
WP .575 .630 .647 .398 .386 .420 .046 .041 .037 .771 .745 .757
D Explicitness Disentanglement Completeness Informativeness ↓

U S C U S C U S C U S C
WN .519 .532 .527 .022 .021 .031 .013 .013 .017 .364 .361 .399
WT .584 .593 .616 .014 .011 .013 .013 .013 .011 .377 .373 .385
WP .545 .557 .600 .007 .007 .005 .007 .007 .004 .375 .373 .374

Optimus-based
D z-diff z-min-var ↓ MIG Modularity

U S C U S C U S C U S C
WN .645 .673 .669 .483 .509 .517 .023 .012 .006 .724 .766 .750
WT .516 .532 .589 .458 .441 .480 .016 .013 .043 .827 .813 .809
WP .513 .544 .641 .471 .486 .552 .010 .011 .033 .956 .942 .943
D Explicitness Disentanglement Completeness Informativeness ↓

U S C U S C U S C U S C
WN .501 .500 .501 .058 .040 .049 .039 .027 .032 .398 .377 .398
WT .559 .547 .573 .013 .026 .028 .009 .018 .019 .333 .316 .305
WP .548 .532 .594 .024 .054 .060 .016 .034 .038 .288 .282 .280

Table 5: Quantitative disentanglement metrics (Top:
LSTM, Bottom: Optimus-based).

For the Wiktionary and Wikipedia datasets, the
application of DSR categories as biases results
in a measurable improvement in disentanglement
(RQ1). This is evidenced by the proposed model
outperforming the unsupervised baseline in six of
the eight disentanglement metrics tested, by a mar-
gin of at least 2.5%, 81% in average.

The use of DSRs as generative factors produces
meaningful disentangled representations (RQ2).
The traversal results indicate the tendency of as-
sociating certain role abstractions to latent space
dimensions, e.g., supertype, statement (purpose,
among others). The interpolation results indicate
the capture of semantic bridging across definitions,
e.g., teaching → loading (process). The UMAP
visualisation indicates slightly better factor sepa-
ration and smoother transitions for the conditional
model.

More specifically, in LSTM, z-diff presents the
highest and most consistent improvement, specially
with the CVAE, indicating higher interpretability
when inferring single generative factors from the
representations. Explicitness results are also consis-
tent, indicating higher coverage of each factor. Im-
provements on Modularity, Disentanglement Score,
Completeness and Informativeness are less consis-
tent, indicating that the factors share substantial
information between them. On the other hand, z-
min-var, MIG counter the trend of improvement,
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Figure 6: Metrics mean grouped.

Word Definition Model Unsupervised LSTM Supervised LSTM
repulse the act of making a gun the act of moving forward act in a hostile state
colonise make a new or vital part the state of being in a particular place settle or cause to be easily removed
involve make a specific purpose make a specific effect a specific act of making something
mitochondrion a cell that is used to treat the blood a substance that is used to treat a body reaction a cell that is a source of an organic process
heat a change in the surface of a liquid a sudden increase in the flow of heat a sudden increase in the temperature

Table 6: Definition generation examples for the Wordnet dataset.

due to the fact that they are designed to strongly
penalize non-alignment of single pairs <factor ↔
latent dimension> (e.g., linear combinations). As a
result, they penalize the existence of dependency
and hierarchy relations which is present in most
DSR categories, e.g., DIFFERENTIA-EVENT →
EVENT-TIME. As for the Optimus-based model,
there are similar tendencies on WT and WP cor-
pus. The conditional framework always performs
better under 6 of 8 metrics, except z-min-var and

modularity. This result indicates that our condi-
tional framework can improve the disentanglement
performance of Optimus.

We also analyse how semantic groupings affect
disentanglement in Figure 6b (RQ3). This is done
only for the LSTM-based VAE, as the Transformer-
based one was set to the optimal configuration in Li
et al. (2020). Overall, we notice that syntax based
groups have higher scores, indicating that it is eas-
ier to disentangle syntactic phrase components. For
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Modularity the result is the opposite, indicating that
semantic groupings promote higher independence
between factors. Following (Zhang et al., 2021),
the values in Table 5 for the metrics Completeness
and Disentanglement score are multiplied by 10, in
order to facilitate the visualization.

Finally, we find that a low number of latent di-
mensions leads to smaller degree of disentangle-
ment. The experiments with 4,5,7 and 128 latents
are reported in Figure 6a.

5.4 Definition Generation

In this experiment, we assess the proposed VAE
models in the task of "Definition Modeling" (No-
raset et al., 2017), where the goal is to generate a
natural language definition given the word to be
defined (definiendum).

Experimental setup During training, we adopt the
"seed" setup (Noraset et al., 2017), which involves
providing the definiendum concatenated with the
definition tokens as input for the model. At genera-
tion time, the model takes as input only the word
which needs to be defined, and leverages a trained
model for computing the definition latent encoding.
Such encoding is then fed into a softmax function
and subsequently a multinomial probability distri-
bution is sampled for decoding the latent variable
into the final definition sentence.

To compare with the baseline of definition
generation (Gadetsky et al., 2018), we only
consider LSTM-based VAEs under the proposed
unsupervised and DSR-supervised framework,
both using the "seed" setup. The conditional
LSTM and optimus-based models are not explored
in this experiment in order to have a more fair
comparison with the Definition model. We train
the baseline and our models with similar setups,
following (Gadetsky et al., 2018). We perform
language model pretraining on the WikiText-103
dataset (Merity et al., 2016) for 1 epoch, then train
on the downstream dataset for 10 epochs. Addi-
tionally, all models are initialised using Google
Word2Vec pretrained vectors, following (Gadetsky
et al., 2018).

Results We report the perplexity and Bleu (Pap-
ineni et al., 2002) results in Table 7. We observe
that the proposed variational autoencoder models
achieve an improvement on both perplexity and
Bleu compared to the RNN baseline. The DSR

VAE achieves the best perplexity and Bleu on 2 out
of 3 datasets while the unsupervised VAE is the
best performing model in the other cases. Success
of VAE models can be attributed to their disen-
tangling properties, which promotes learning of
latent spaces that are less sparse, a benefit deriv-
ing from sampling variable for re-parameterization.
Improvements from the DSR VAE are marginal,
but can be attributed to the additional information
that is injected into its latent variables.

Perplexity ↓ Bleu
Data DM VAE DSR DM VAE DSR
WN 88.59 80.36 80.27 9.12 10.27 10.26
WT 42.51 39.09 38.64 6.70 7.53 7.59
WP 13.09 12.39 12.47 11.89 12.32 12.34

Table 7: Quantitative metrics for definition generation.

Some generation examples from the Wordnet
dataset are provided in Table 6. Such examples
show that the proposed VAE models are able to
leverage the structural and semantic information of
the learned definition roles to better approximate
the defined concept. In particular, we notice some
semantically strong linguistic elements in the defi-
nitions decoded with DSR supervision, for example
DSR is the only model able to link the verb "re-
pulse" with the hostile adjective, the verb colonise
with the similar verb "settle", and the word "heat"
with temperature. We include more generation ex-
amples of the Optimus-based model in Appendix E.

The strong performance in this definition gener-
ation task indicates that the disentangled represen-
tations have provided the VAE models with higher
generalization capability, suggesting that disentan-
gling is beneficial for diverse applications.

6 Conclusion

We propose a novel VAE-based framework for
learning and evaluating disentangled representa-
tions in natural language definitions. We leverage
the semantic structure present in dictionaries as in-
ductive biases for improving disentanglement in
VAEs, and as generative factors during evaluation.
Our evaluation shows, both with qualitative inves-
tigations and with quantitative metrics, that the
proposed framework is able to produce encodings
with a higher degree of disentanglement. Finally,
our models outperform existing baselines on a def-
inition modeling application, demonstrating the
generalization capabilities of disentangled repre-
sentations.
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Limitations

The type of structural supervision chosen for the ap-
proach here proposed is specificaly fit to definition
(dictionary style) sentences, in order to leverage se-
mantic information from such structures. However,
this limits the scope of comparison with other meth-
ods applied to general sentences. Additionally, the
qualitative improvements we observed in terms of
latent space traversals, arithmetic and interpolation
do not clearly correlate with the disentanglement
metrics, despite overall improvement. This raises
some questions regarding the relation between ex-
plainability properties and general latent space sep-
arability.
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A Definition Semantic Roles

The datasets used in our experiments are introduced
in (Silva et al., 2018). We report in Table 9 the
annotated categories.

Role Description
Supertype the immediate or ancestral entity’s superclass
Differentia
quality

a quality that distinguishes the entity from the
others under the same supertype

Differentia
event

an event (action, state or process) in which the
entity participates and that is mandatory to dis-
tinguish it from the others under the same super-
type

Event
location

the location of a differentia event

Event time the time in which a differentia event happens
Origin
location

the entity’s location of origin

Quality
modifier

degree, frequency or manner modifiers that con-
strain a differentia quality

Purpose the main goal of the entity’s existence or occur-
rence

Associated
fact

a fact whose occurrence is/was linked to the
entity’s existence or occurrence

Accessory
determiner

a determiner expression that doesn’t constrain
the supertype / differentia scope

Accessory
quality

a quality that is not essential to characterize the
entity

Role
particle

a particle, such as a phrasal verb complement,
non-contiguous to the other role components

Table 8: Semantic Role Labels for dictionary defini-
tions.

B Disentanglement Metrics

1. zdiff accuracy (Higgins et al., 2017): The
accuracy of a predictor for p(y|zbdiff ), where
zbdiff is the absolute linear difference between
the inferred latent representations for a batch
B of latent vectors, written as a percentage
value. Higher values imply better disentangle-
ment.

2. zmin_var error (Kim and Mnih, 2018): For
a chosen factor k, data is generated with
this factor fixed but all other factors varying
randomly; their representations are obtained,
with each dimension normalised by its empir-
ical standard deviation over the full data (or
a large enough random subset); the empiri-
cal variance is taken for each dimension of
these normalised representations. Then the in-
dex of the dimension with the lowest variance
and the target index k provide one training
input/output example for the classifier. Thus,
if the representation is perfectly disentangled,

the empirical variance in the dimension cor-
responding to the fixed factor will be 0. The
representations are normalised so that the arg
min is invariant to rescaling of the represen-
tations in each dimension. Since both inputs
and outputs lie in a discrete space, the opti-
mal classifier is the majority-vote classifier,
and the metric is the error rate of the classifier.
Lower values imply better disentanglement.

3. Mutual Information Gap (MIG) (Chen et al.,
2018): The difference between the top two
latent variables with the highest mutual in-
formation. Empirical mutual information
between a latent representation zj and a
ground truth factor vk, is estimated using
the joint distribution defined by q(zj , vk) =∑N

n=1 p(vk)p(n|vk)q(zj |n). A higher mutual
information implies that zj contains a more
information about vk, and the mutual infor-
mation is maximal if there exists a determin-
istic, invertible relationship between zj and
vk. MIG values are in the interval [0, 1],
with higher values implying better disentan-
glement.

4. Modularity (Ridgeway and Mozer, 2018):
The deviation from an ideally modular case
of latent representation. If latent vector di-
mension i is ideally modular, it will have high
mutual information with a single factor and
zero mutual information with all other factors.
A deviation δi of 0 indicates perfect modu-
larity and 1 indicates that this dimension has
equal mutual information with every factor.
Thus, 1− δi is used as a modularity score for
vector dimension i and the mean of 1 − δi
over i as the modularity score for the over-
all representation. Higher values imply better
disentanglement.

5. Explicitness (Ridgeway and Mozer, 2018):
Mean of the ROC area-under-the-curve
(AUCjk) of a one-versus-rest logistic-
regression classifier that takes the latent vec-
tors as input and has factor values as targets,
over a factor index j and an index k on values
of factor j. Represents the coverage of the
representation, in other words, how well each
factor is represented. Higher values imply
better disentanglement.

6. Disentanglement Score (Eastwood and
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Williams, 2018): The degree to which a
representation factorises or disentangles the
underlying factors of variation, with each
variable (or dimension) capturing at most
one generative factor. It is computed as
a weighted average of a disentanglement
score Di = (1 − HK(Pi.)) for each latent
dimension variable ci, on the relevance of
each ci, where HK(Pi.) denotes the entropy
and Pij denotes the ’probability’ of ci being
important for predicting zj . If ci is important
for predicting a single generative factor, the
score will be 1. If ci is equally important
for predicting all generative factors, the
score will be 0. Higher values imply better
disentanglement.

7. Completeness Score (Eastwood and Williams,
2018): The degree to which each underlying
factor is captured by a single latent dimen-
sion variable. For a given zj it is given by
Cj = (1 − HD(P̃ .j)), where HD(P̃ .j) =

−∑D−1
d=0 P̃djlogDP̃ij denotes the entropy of

the P̃ .j distribution. If a single latent dimen-
sion variable contributes to zj’s prediction, the
score will be 1 (complete). If all code vari-
ables contribute equally to zj’s prediction, the
score will be 0 (maximally over-complete).
Higher values imply better disentanglement.

8. Informativeness Score (Eastwood and
Williams, 2018): The amount of information
that a representation captures about the
underlying factors of variation. Given a
latent representation c, It is quantified for
each generative factor zj by the prediction
error E(zj , ẑj) (averaged over the dataset),
where E is an appropriate error function
and ẑj = fj(c). Lower values imply better
disentanglement.

C Hyperparameter choices

Experiments are conducted to cover a set of 3 hy-
perparameters: First, the VAE architecture used:
1) Unsupervised VAE 2) Supervised with SRL 3)
CVAE with SRL. Second, the generative factor
grouping, which includes: 1) Semantic w/ super-
type 2) Syntactic w/ supertype 3) Semantic w/o
supertype 4) Syntactic w/o supertype. Third, the
dimensionality of VAE latent representation (z): 4,
5, 7, 128.

The choice of architecture allows evaluation of
the impact of DSR label conditioning in two dis-
tinct ways: as part of the autoencoding objective
function, and as a conditional variable of the de-
coder, addressing our research questions RQ1 and
RQ2. The choice of generative factor grouping
can indicate the best ways to organize the factors,
addressing RQ3.

The dimensionality of the representation is set
to match the number of generative factors, in an
attempt to force disentanglement by alignment of
each dimension to a single factor. The dimension
sizes are then defined to be 4 (alignment with group-
ings 3 and 4), 5 (alignment with grouping 2) or 7
(alignment with grouping 1). However, different
levels of disentanglement can be achieved with mis-
matching dimensions and factors. So all possible
combinations of factors and representation sizes
are tested and a size of 128 is included to evaluate
the impact of a higher number of parameters in
each grouping.

D Implementation Details

As for LSTM-based VAE, hyperparameters are cho-
sen with the following values, based on a previous
experiment from (Shen et al., 2020). (1) Number
of hidden layers: 1, (2) Dimension of the hidden
layer: 512, (3) VAE λKL = 0.1, (4) Epochs=20,
(5) Batch size=32 for Wikipedia, 64 for the rest.
Dropout (20%) is done for both encoder and de-
coder inputs. To provide the inputs and outputs for
the VAEs, the definition sentences are tokenized
into sub-words with a Byte Pair Encoding (BPE)
scheme, and converted into token embeddings with
the T5 transformer model (Raffel et al., 2020), with
an embedding size of 512. With respect to Opti-
mus, we use memory setup to inject latent repre-
sentation into the decoder. The encoder and de-
coder are pretrained BERT with bert-base-cased
version and GPT2, respectively. Some additional
values of hyperparameters are: (1) Epochs=10, (2)
Batch size=32. (3) latent size=32. In the supervised
framework, a new embedding layer is considered
to learn the representations of semantic roles. In
the conditional framework, we add semantic roles
into the vocabulary of pretrained BERT encoder.

E Further Experimental Results

t-SNE plot Alternative dimensionality reduction
method (t-distributed Stochastic Neighbor Embed-
ding) (Van der Maaten and Hinton, 2008), used to
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visualise the clustering of DSR patterns, as seen in
Figure 7.

Figure 7: t-SNE plot of latent representation generated
from LSTM and Optimus-based models under Unsuper-
vised VAE (U), DSR supervision (S) and Conditional
VAE (C) (Top: LSTM, Bottom: Optimus-based).

Optimus-based model definition generation
Table 9 lists the generated definitions from the Un-
supervised Optimus-based model on Wordnet. The
perplexity is 35.46 that is much lower than 80.27
from LSTM.

Word Generated Definition
Fox a member of the Mayflower
Untermeyer United States writer of short stories
organise make logical or comprehensible
dishrag remove the fur from
altocumulus
cloud

a clear blue sky

shuffle move quickly on or move quickly forward
sharpen make sharp or sharper
semantic er-
ror

discrimination that invalidates an earlier charac-
teristic

railway sta-
tion

station where planes take off and land or take off

Antonio
Pignatelli

Italian cardinal and theologian

union a cooperative level of play in league with other
players

love knot a knot of contrasting color or yarn used for tying
a wedding band

commodity
brokerage

a place where stockbrokers sell their stock

Table 9: Generation definitions from the Optimus-based
model.
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