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Abstract
This paper presents the text-to-speech (TTS) system submit-
ted by Idiap Research Institute to the Blizzard Challenge 2023.
Our system follows the conventional pipeline of text analysis,
acoustic modeling (AM) and vocoding. For text analysis, open-
source pretrained part-of-speech (POS) taggers and lemmatiz-
ers are utilized to provide more accurate grapheme-to-phoneme
(G2P) conversion on top of the eSpeak backend. The rest of
the system incorporates a fully diffusion-based approach which
comprises a diffusion transformer-based acoustic model and
FastDiff as the vocoder, both of which are trained only on the
provided data to ensure high-quality synthesis. Our entry pro-
vides a baseline for the cascading diffusion AM-vocoder archi-
tecture since no extra design is adopted to enhance the natu-
ralness of speech. Evaluation results have demonstrated high
synthesis quality of our system and the effectiveness of the pro-
posed phonemization pipeline.
Index Terms: speech synthesis, Blizzard Challenge, French
TTS, diffusion transformer

1. Introduction
The hub task of the Blizzard Challenge 2023 is to build a voice
from the provided French data, which consists of around 51
hours of audiobook recordings read by a female French speaker.
The spoke task focuses on speaker adaptation and aims to build
a voice from around 2 hours of audiobook recordings read by
another female French speaker. The Idiap system was submit-
ted to both the hub task and the spoke task.

The top priority of the text-to-speech (TTS) task is to gen-
erate high-quality, natural, and intelligible speech. Since neural
networks were first introduced to TTS [1, 2], the quality of the
synthesized speech has been improved dramatically over the in-
tervening years. In recent years, deep generative model (DGM)
based TTS systems [3, 4, 5] have demonstrated their superior-
ity in high-quality and fast synthesis over previous sequence-to-
sequence modeling counterparts [6, 7, 8]. In particular, the more
recent diffusion-based acoustic models [9, 10, 5] and vocoders
[11, 12, 13] have dominated in terms of quality and naturalness.
Since 2023, emerging large-scale pretrained language models
[14, 15] and DGMs [16, 17] have revolutionized speech syn-
thesis research in generating human-level natural speech and
adapting to the target speaker, speaking style or language with
very few data. However, these models are neither open to the
research community nor can be trained on normal hardware.

Given the provided data are of sufficient quality and quan-
tity, the challenges mainly lie in how to process liaisons and
heterophonic homographs in the language which takes place
during the text analysis. In French, the liaison refers to the
act of pronouncing a linking consonant between two words in

a suitable phonetic and syntactic context, which usually gives
information about the grammatical structure of a noun phrase.
The relatively rare heterophonic homographs refer to words that
are spelled the same but pronounced differently, and almost al-
ways occur between words of different grammatical categories.
These special properties require extra efforts to deliver accurate
grapheme-to-phoneme (G2P) conversion in a neural TTS sys-
tem that uses phoneme input. Available open-source non-neural
French phonemizers include the Montreal Forced Aligner [18],
Gruut 1 and eSpeak (also eSpeak-ng) 2. Among them, the first
two only perform G2P on word level and handle neither liaison
nor homographs. While the eSpeak is a rule-based phonemizer
and handles liaison in many cases, it is unable to distinguish
heterophonic homographs at the grammatical level since it does
not consider part-of-speech. There are also open-source neu-
ral G2P models [19] available for the French language, how-
ever these models are normally trained on open-source lexicons
that do not usually include liaisons and homographs; this limits
their performance in real-life scenarios. For systems that sup-
port character input [6, 8, 3, 4], the problem can be solved to
some extent by the neural network itself given the corpus covers
a wide range of the special cases. However, the use of charac-
ters as textual input will largely induce higher computation cost
and decelerate training and inference due to longer input length
compared to using phonemes.

From the practical point of view, the limited computa-
tional resources available to us and the short time frame of the
challenge are pertinent. Here at Idiap, the servers are mostly
equipped with consumer GPU cards and are not optimized for
multi-GPU training, leaving us a limited selection of model
architectures. In addition, despite Idiap’s being situated in a
French speaking region, no dedicated toolboxes or dictionar-
ies have been developed for French TTS in recent years. This
requires us to utilize publicly available resources as much as
possible to cope with the aforementioned particularities of the
French language.

Based on the analyses above, we aim to build a TTS sys-
tem that 1) employs accessible model architectures that offer
high-quality and natural synthesis, 2) properly handles the spe-
cial properties of the French language, and 3) can be trained
efficiently on our infrastructure which allows fast verifica-
tion and iteration. Specifically, for text analysis, we lever-
age publicly available part-of-speech (POS) taggers and lem-
matizers to achieve more accurate G2P conversion on top
of the eSpeak backend. For neural architectures, our sys-
tem adopts a conventional cascading architecture consisting
of a diffusion transformer-based acoustic model and FastD-

1https://github.com/rhasspy/gruut
2https://github.com/espeak-ng/espeak-ng



iff [13], a diffusion-based vocoder. The acoustic model em-
ploys a standard non-autoregressive encoder-decoder design
that purely relies on the generative modeling power of the diffu-
sion, which makes our system a baseline of the diffusion-based
AM-vocoder architecture. Evaluation results have shown a high
quality synthesis achieved by our system and the effectiveness
of the text analysis pipeline.

2. Text Analysis
2.1. Liaisons

The liaison in the French language refers to the phonetic link-
ing or connection between words in spoken language. It in-
volves the pronunciation of a consonant sound at the end of a
word when the following word begins with a vowel sound. Liai-
son is a characteristic feature of French pronunciation and helps
maintain the smooth flow of speech. In most cases, it is limited
to word sequences that have a logical connection in meaning,
such as an article followed by a noun, an adjective followed by
a noun, a personal pronoun followed by a verb, and similar pat-
terns.

The presence of specific liaison patterns in French makes
rule-based phonemization a highly suitable technique, which is
exactly the one built into eSpeak. Other types of phonemizers
also exist, such as the lexicon-based Gruut. In a lexicon-based
phonemizer, words are either looked up in a pre-existing lexi-
con or their pronunciations are predicted using a pretrained G2P
model. However, the word-by-word nature of lexicon-based
phonemization necessitates additional rules to handle liaisons
between words, which are often unavailable in such systems.
Recent advancements in G2P solutions, such as sequence-to-
sequence neural networks utilized in [20, 19], directly predict
phonemes from the input text. Nevertheless, the effectiveness of
these models heavily relies on the coverage of the training text
corpus, limiting their practicality due to the scarcity of high-
quality datasets.

2.2. Heterophonic homographs

In general, heterophonic homographs in French are words that
are spelled the same but pronounced differently and have differ-
ent meanings. Fortunately, their existence is relatively rare, and
the phenomenon almost always occurs between words of differ-
ent grammatical categories, which makes it possible to disam-
biguate by inferring from the grammatical context.

The first step is to understand in what grammatical cate-
gories the common homographs exist. Among publicly avail-
able resources online, Wiktionary 3 provides a comprehensive
list of 813 heterophonic homographs that exist in the French
language. In one blog 4 and [21], the most common scenarios
are summarized and the corresponding examples are given. In
summary, these scenarios include 1) indicative imperfect first
person plural of a verb vs. plural of a noun that end with “-
tions”, 2) indicative present third person plural of a verb vs. ad-
jective or noun that end with “-ent”, 3) infinitive of a first group
verb vs. nouns that end with “-er”, and 4) miscellaneous cases.

Intuitively, for most cases where words in a pair fall in dif-
ferent grammatical categories, the disambiguation can be done
by identifying the part-of-speech of words. For other cases

3https://fr.wiktionary.org/wiki/Cat%C3%
A9gorie:Homographes_non_homophones_en_fran%
C3%A7ais

4https://a3nm.net/blog/french_non_
homophonous_homographs.html

where the two words belong to the same category, such as “con-
vient” and “pressent”, this can be solved by inferring the orig-
inal form of the word from the context, i.e., lemmatization, to
determine their pronunciations.

2.3. Method

Having known the above particularities in the French language,
we construct the text analysis module as follows. First, the text
input is phonemized by the eSpeak G2P backend. Since eSpeak
is able to process liaisons, we only need to refine its correspond-
ing output of homographs considering the grammatical context.
To achieve this, we first create a look-up table where different
pronunciations of each homographs and the corresponding part-
of-speech categories or original forms can be queried, mainly
referring to the last two sources mentioned above. During in-
ference, if any homograph in the look-up table exists in the text,
we utilize publicly available pretrained POS taggers 5 and lem-
matizers 6 to recognize the part-of-speech or the original form
of the homograph. Using the inferred information, we refer to
the look-up table to obtain the actual phonemes of each homo-
graphs. Finally, we compare the phonemes generated by eSpeak
with the queried phonemes and rectify the incorrect output.

3. Neural Architectures
To balance synthesis quality and training efficiency, we employ
a cascading diffusion-based architecture consisting of a diffu-
sion transformer acoustic model and the FastDiff vocoder.

3.1. Acoustic model

The acoustic model [22] comprises 1) the transformer-based
text encoder that encodes phoneme embeddings into hidden
representations, 2) the variance adapter that predicts the pitch,
energy, and duration of each phoneme and expands the hid-
den representations to the length of the mel-spectrogram, and
3) the diffusion transformer decoder which generates the mel-
spectrogram through a diffusion process. The diffusion trans-
former is an faster alternative to the most commonly used non-
causal WaveNet that offers equivalent synthesis quality.

The architecture of the acoustic model is rather standard:
there are no extra components or designs that particularly en-
hance the naturalness or the speaking style, thus it purely re-
lies on the generative modeling power of the diffusion to render
natural speech. We take the chance to see how the standard dif-
fusion architecture performs compared to other more advanced
competitors, especially when trained on a highly expressive cor-
pus.

3.2. Vocoder

FastDiff is a conditional diffusion-based vocoder for high-
quality waveform synthesis. The denoiser network employs
a stack of time-aware location-variable convolutions with di-
verse receptive field patterns to model long-term time depen-
dencies. Originally, a noise predictor was further adopted to
derive tighter schedules to accelerate inference without distinct
quality degradation. However, we found this algorithm is diffi-
cult to implement and the derived schedule must be optimized
for every dataset, which makes it less favorable for the adapta-

5https://huggingface.co/qanastek/
pos-french-camembert-flair

6https://github.com/explosion/spacy-models/
releases/tag/fr_dep_news_trf-3.5.0



Transformer Encoder

Variance Adapter

DiT Block

Phonemes

C

N ×

t 𝑥!

FastDiff Vocoder

Waveforms

(a) Overview

adaLN

Self-Attention

Gate

adaLN

Conv1D

Gate

𝑥!

Linear Layer

𝐶 + 𝑡

𝛼!

𝛾! , 𝛽!

𝛼"

𝛾" , 𝛽"

(b) DiT block

Linear Layer

𝐶 + 𝑡

𝛾 ∗
𝑋 − 𝑚𝑒𝑎𝑛

𝑣𝑎𝑟
+ 𝛽

scale shift

(c) Adaptive layer norm (adaLN)

Figure 1: The architecture of the TTS system. The acoustic model and the vocoder are trained separately.

tion task. Therefore, we use the linear schedule instead of the
fast schedule. We also found that FastDiff can be trained more
efficiently compared to its GAN-based counterparts, which usu-
ally require days of training and multiple GPUs.

4. Experiments
4.1. Data

For the hub task, the NEB corpus consists of 289 chapters of 5
audiobooks from Librivox read by a female French speaker Na-
dine Eckert-Boulet (NEB), totaling 51 hours and 12 minutes.
Around two thirds of the utterances are annotated with texts,
phonemes and phoneme durations, while the other one third
have texts only. We found the phoneme annotations provided
in the dataset lack the tonal and stress marks that are offered
by eSpeak, and are likely to be generated by speech recognition
models since minor errors can be found. Given the phonemes
are unavailable during inference as part of the challenge, and the
provided data are insufficient to train a dedicated G2P model,
we decide to use eSpeak’s phoneme set and run the phoneme-
audio alignment using Montreal Forced Aligner [18] to obtain
the phoneme durations. Two sets of 500 utterances are selected
as the validation and test set, while the rest are used as training
set. All data are preprocessed following the practice in Fast-
Speech 2 [7], with a sampling rate of 22,050 Hz.

For the spoke task, the AD corpus consists of 2515 utter-
ances read by another female French speaker Aurélie Derbier
(AD), totaling 2 hours and 3 minutes. We randomly select 50
utterances for the validation set and test set respectively, while
the rest specifications follow the hub task.

4.2. Implementation details

The model configurations of the acoustic model follow [22], in-
cluding a 4-layer transformer encoder with 256 hidden size, a
variance adapter same as the one in [7], and a 4-layer diffusion
transformer decoder with 256 hidden size and 2 heads. For the
vocoder, we use the official implementation 7 without modifica-
tion. The number of parameters of the acoustic model is around
29M, while the vocoder has around 13M parameters.

7https://github.com/Rongjiehuang/FastDiff

4.3. Training and inference

All experiments are conducted on a single NVIDIA RTX 3090
GPU. For the hub task, the acoustic model is trained using a
batch size of 40,000 speech frames for 200k iterations, with the
“rsqrt” (reciprocal of the square root) scheduler, 4,000 warm-up
steps, and a learning rate factor of 2. For the diffusion process, a
beta schedule of 16 steps is used for both training and inference.
The vocoder is trained using a batch size of 25,600 samples
for 1M iterations, with a constant learning rate of 2 × 10−4.
We use a diffusion schedule of 1000 steps for training and a
faster schedule of 200 steps for inference. Both of the acoustic
model and the vocoder are trained from scratch, which takes
around 1 day and 2 days, respectively. The real-time factor of
the entire system is 0.48, in which the acoustic model counts
for 0.01 while the vocoder makes up the majority of inference
time.

For the spoke task, we finetune the entire acoustic model
and vocoder used for the hub task to adapt to the AD voice.
Specifically, the acoustic model is finetuned for 20k steps with
a learning rate of 2 × 10−4, while the vocoder is finetuned for
10k steps with a learning rate of 1× 10−4.

5. Results and Analyses
Our system is identified as T, whereas A represents natural
speech, and BF and BT are two reference systems.

5.1. Hub task

5.1.1. Quality

Our system is ranked the 7th among 18 participants with a mean
MOS score of 3.8. Three systems achieved significantly higher
synthesis quality compared to ours, while four together with
our system yielded comparable results. In the detailed results
broken down by the qualification of testers, we found that non-
native listeners and non-speech experts tended to give higher
scores compared to native listeners and speech experts. The re-
sults suggest that despite our system offering high signal qual-
ity, it might be at a disadvantage in terms of naturalness. This
can be attributed to the lack of more advanced prosody mod-
eling techniques in the acoustic model, since only the conven-
tional variance adapter was used.



Figure 2: MOS results of quality, hub task.

5.1.2. Similarity

For the similarity test, the ranking is 9/18 with a mean MOS
score of 3.0. Similar patterns can be found in the results break-
down as in the quality test. We also notice that the speaking
style of the generated speech can sometimes be distinct from
the reference, which can be attributed to the generative model-
ing nature of the diffusion decoder and the highly variable voice
in the audio book. Additional style modeling methods should be
introduced to alleviate the issue.

Figure 3: MOS results of similarity, hub task.

5.1.3. Intelligibility

In the heterophonic homograph intelligibility test, our system,
ranked 6/18, achieves an accuracy of 83%, which is 17% higher
than the reference system BF that relies solely on the eSpeak
backend. The results demonstrate the effectiveness of our pro-
posed text analysis pipeline. Since our method mainly depends
on the POS taggers and lemmatizers to correct the incorrect out-
put of eSpeak, we would expect using more accurate models can
further improve the phonemization accuracy.

(a) Pronunciation accuracy (b) Significant difference

Figure 4: Intelligibility of heterophonic homographs, hub task.

However, in the conventional intelligibility test, the word
error rate of our system is surprisingly high at 19.4%. One
possible explanation for this phenomenon is that the lack of
speaking style and prosody modeling techniques in the acous-
tic model results in the fast speaking rate commonly existing
in the audio book corpus, which hampers the understanding of
such semantically unpredictable sentences. It could also have
been caused by the inaccurate alignment between phonemes and

speech frames generated by MFA, in which case using a more
advanced forced alignment tool would help mitigate the issue.

5.2. Spoke task

In the spoke task of speaker adaptation, our system, ranked
in the middle, receives a quality MOS of 3.9 and a similarity
MOS of 3.6. Around four systems achieved significantly higher
scores than our system in both tests. The results are reasonable
since we only perform finetuning on the acoustic model and the
vocoder without other dedicated adaptation techniques.

6. Summary
In this paper, we described our entries to the Blizzard Chal-
lenge 2023. Our system employed a cascading pipeline of text
analysis, acoustic modeling, and vocoding. For text analysis,
we utilized pretrained POS taggers and lemmatizers to refine
the output phonemes of eSpeak in case of heterophonic homo-
graphs. The neural architecture of our system adopted a full-
diffusion approach to ensure high-quality synthesis, consisting
of a diffusion transformer-based acoustic model and the Fast-
Diff vocoder. Our system completely relied on the generative
modeling power of diffusion without any extra design for en-
hancing naturalness, thus presented a baseline of the cascad-
ing diffusion AM-vocoder architecture. Finally, we analyzed
official evaluation results and discussed potential means of im-
provements.
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