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Abstract
Given the success of diffusion in synthesizing realistic speech,
we investigate how diffusion can be included in adaptive text-to-
speech systems. Inspired by the adaptable layer norm modules
for Transformer, we adapt a new backbone of diffusion mod-
els, Diffusion Transformer, for acoustic modeling. Specifically,
the adaptive layer norm in the architecture is used to condition
the diffusion network on text representations, which further en-
ables parameter-efficient adaptation. We show the new archi-
tecture to be a faster alternative to its convolutional counterpart
for general text-to-speech, while demonstrating a clear advan-
tage on naturalness and similarity over the Transformer for few-
shot and few-parameter adaptation. In the zero-shot scenario,
while the new backbone is a decent alternative, the main ben-
efit of such an architecture is to enable high-quality parameter-
efficient adaptation when finetuning is performed.
Index Terms: speech synthesis, adaptive TTS, diffusion trans-
former, adaptive layer norm

1. Introduction
Adaptive text-to-speech (TTS) [1, 2, 3, 4] aims to synthesize
personalized voices of target speakers or speaking styles. In the
typical scenario of adaptive TTS, a source acoustic model pre-
trained on a large multi-speaker corpus is adapted with limited
data of the target to synthesize the desired voice. In general,
adaptive TTS systems should be well generalizable and adapt-
able to various speaker traits and acoustic conditions with as
few data as possible. Meanwhile, the adapted voice should be
of high quality and naturalness, in terms of which deep gener-
ative models [5, 6, 7] have demonstrated their superiority over
previous solutions. In particular, the more recent diffusion mod-
els [7, 8, 9] have dominated in terms of quality and naturalness.

While the generalizability and adaptability have been the
most important properties of adaptive TTS systems and in many
cases interrelated, they can be attributed to different parts of the
model or algorithm design. On the one hand, the techniques that
improve the ability to generalize to various features in speech
signals can be categorized into 1) employing reference encoders
to generate representations of the desired attribute of speech on
various semantic levels [3, 4, 10], which are normally plugged
in before the decoder; 2) learning algorithms that help factor-
ize such representations into expressive components [1, 2, 11],
which are usually combined with reference encoders; and 3) ad-
hoc designs of the model structure that control desired features
[2, 3, 12], which are more model-specific. On the other hand,
adaptability, while partly overlapping with the former, empha-
sizes more the application itself, including considerations of
few-data [3, 13], few-parameter [3] and zero-shot [4, 14] sce-
narios. However, no matter in which concept, there is a clear

distinction between generic techniques that fit different back-
bones, such as reference encoders, and ones with ad-hoc archi-
tectural designs of the network. The latter are more associated
with the adaptability of the model, especially in few-data and
parameter-efficient settings. Furthermore, when combined with
generic adaptation techniques, such architectures will enable
both compute-efficient zero-shot adaptation, and high-quality
adaptation when finetuning is performed.

In general, we are interested in integrating adaptable com-
ponents into diffusion-based acoustic models that add extra
adaptability on top of their high-quality synthesis. Despite dif-
fusion models having been well studied for general acoustic
modeling, few works have explored them for adaptive TTS sys-
tems. Guided-TTS 2 [13] utilizes diffusion with classifier guid-
ance to adapt to diverse voices, while lacking parameter effi-
ciency since the whole decoder needs finetuning during adapta-
tion. In Grad-StyleSpeech [15], the diffusion mostly works as
a post-net that refines the output of an adaptive Transformer
decoder, and the researchers only tested adapting the whole
diffusion post-net in the few-shot setting. Another study [16]
shows the convolutional diffusion decoder can be adapted using
conditional layer normalization, however, it must be used with
adaptive Transformer layers to achieve usable adaptation qual-
ity. Our search for solutions focuses on the architecture design
of the diffusion backbone. Such a design will not only facil-
itate parameter-efficient adaptation during finetuning, but also
has the potential to be combined with reference encoders to im-
prove the network’s generalizability.

In this paper, we propose to adapt a novel backbone of
diffusion models, Diffusion Transformer (DiT) [17], for adap-
tive TTS. Inspired by the recent innovation in image synthesis
and the effectiveness of conditional layer norm [2, 3, 14] in the
Transformer network, we adapt the DiT’s adaptive layer norm
to receive a sequence as condition instead of the class embed-
ding, which is suitable for TTS tasks. Through a series of ex-
periments, we demonstrate that 1) for general TTS tasks, the
DiT can serve as a substitute backbone for present diffusion
decoders in the acoustic model, yielding comparable perfor-
mance to current designs while providing faster synthesis; 2) for
few-shot adaptation, the benefits of the DiT include its capabil-
ity to perform parameter-efficient adaptation, and its superior-
ity in speech quality and similarity over previous Transformer-
based solutions; 3) when based on zero-shot adaptation solu-
tions, the DiT can efficiently achieve high-quality adaptation
when finetuning is necessary. Audio samples are available at
https://recherchetts.github.io/dit/.
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Figure 1: The architecture of the DiT-based acoustic model. The reference encoder only exists in adaptive TTS systems.

2. Diffusion Transformer for TTS
Like other deep generative model-based solutions, a typical
diffusion-based acoustic model comprises a Transformer text
encoder and a diffusion decoder. Essentially, diffusion mod-
els generate high-quality and natural samples by denoising a
sample from a prior distribution to real data through a diffusion
process. In most cases, the learning problem of diffusion can be
expressed as learning a denoiser network that predicts the noise
in each diffusion step, while other parameterization forms of the
denoiser also exist.

2.1. Architecture

In principle, the denoiser network takes the sample from the
previous step as input to predict the noise in the reverse diffu-
sion process while being conditioned on text representations C
and the step embedding t. The network design enjoys flexibil-
ity as long as its output has the same dimension as the input.
The prevalent architectures of the denoiser network in acoustic
models include the bidirectional dilated convolutional network
(CNN) [8, 7, 18], also referred to as the non-causal WaveNet
[19], and the U-Net [9, 13]. The former is best known for the
inductive bias of audio signals and also commonly used in vari-
ational autoencoders [20] and flow models [5, 6, 21], while the
U-Net [22] is a generic network that originates from image pro-
cessing.

Recently, Peebles and Xie [17] proposed a new class of dif-
fusion models based on the Transformer architecture, namely
Diffusion Transformer (DiT), which was shown to outperform
U-Net backbones and inherit the scalability, robustness and ef-
ficiency of the Transformer model class. As is depicted in Fig-
ure 1b, the DiT blocks receive the sample from the last step
as input, perform the common transformations of the Trans-
former and generate the output. The innovation of DiT lies in
the way conditions are injected into the network: the standard
layer norm modules in the Transformer blocks are replaced with
adaptive layer norm (adaLN), so that the dimension-wise scale
and shift parameters γ and β can be regressed from the sum
of the class embedding c and the step embedding t through a
linear layer. In addition to adaLN, the authors further propose
to zero-initiate the final adaptive layer norm in each block to
accelerate convergence, and also regress scaling parameters α
that are placed before any residual connections within the DiT
block. This is referred to as adaLN-Zero. The authors demon-

strate that adaLN-Zero achieves the best performance and adds
the least computation cost to the model compared to introducing
conditions by in-context learning and cross-attention.

The original DiT was tested on image synthesis tasks, in
which only the class embedding controls the content to be gen-
erated. To adapt it for TTS, we make the adaLN-Zero accept a
sequence of encoded text representations. In actuality, the im-
plementation of adaLN-Zero requires no modification whatso-
ever. The novelty lies in the fact that the regression of all scale
and shift parameters is now performed on the sum of the text
representation matrix C and the step embedding t, generating
the necessary scale and shift parameters for each vector in the
input sequence, as is shown in Figure 1c. Note that the size of
the text representation matrix matches that of the hidden repre-
sentations in the DiT block, since they are both expanded to the
length of the mel spectrogram using phoneme durations. There-
fore, instead of the same scale and shift vectors applied on the
entire input sequence in the affine transform of the layer norm,
a sequence of such vectors with the same dimension as the in-
put is applied. This allows the adaptive layer norm to modulate
the input sequence using the text representations without adding
any computation cost compared to the original adaLN.

2.2. Generator-based diffusion

The common parameterization method of diffusion is to let the
neural network be a noise predictor. It originates from the re-
verse diffusion process:

pθ (xt−1 | xt) = N (xt−1;µθ (xt, t) ,Σθ (xt, t)) (1)

where the reverse transition probability pθ (xt−1 | xt) is pa-
rameterized by a neural network θ. By setting Σθ (xt, t) to
a constant and reparameterizing x0 = 1√

ᾱt

(
xt −

√
1− ᾱtϵ

)
which is derived from the noise adding function of the forward
process: q(xt|x0) = N (xt;

√
ᾱtx0, (1−ᾱt)I) , the problem of

learning µθ can be converted to estimating the Gaussian noise
ϵ, resulting in the following simplified loss function:

Lsimple (θ) = Et,x0,ϵ

[
∥ϵ− ϵθ (xt, t)∥2

]
(2)

With the diffusion in this form, it usually requires hundreds to
thousands of denoising steps to ensure high-quality synthesis.

An alternative way to parameterize the denoiser is to make
it directly predict the clean data in each denoising step. Specifi-
cally, the neural network fθ(xt, t) that outputs x0 given xt now



models the distribution pθ(x0 | xt). Next, xt−1 is sampled us-
ing the posterior distribution:

q (xt−1 | xt,x0) = N
(
xt−1; µ̃t (xt,x0) , β̃tI

)
µ̃t (xt,x0) =

√
ᾱt−1βt

1− ᾱt
x0 +

√
αt (1− ᾱt−1)

1− ᾱt
xt,

β̃t =
1− ᾱt−1

1− ᾱt
βt.

(3)

The rest of the inference process remains the same. The loss is
then defined in the data space:

Lgen
simple (θ) = Et,x0

[
∥x0 − fθ (xt, t)∥2

]
(4)

This parameterization method is sometimes referred to as the
generator-based method [23, 18]. Some recent works [18, 24]
utilize this method to enable fast synthesis for diffusion-based
acoustic models. Huang et al. [18] compared the generator-
based method with the conventional denoising-based method
with varying diffusion steps and found that the former achieved
the highest quality in all settings. To accelerate inference while
maintaining high synthesis quality, we adopt the generator-
based method in our model.

2.3. Comparison with baseline

We first test our model on basic TTS tasks and compare the DiT
architecture with the prevalent non-causal WaveNet. We would
expect the DiT to perform identically to the baseline in terms of
speech quality.
Implementation details. Both models consist of a 4-layer
Transformer phoneme encoder with a hidden size of 256, a vari-
ance adapter same as the one in FastSpeech 2 [25], and a dif-
fusion decoder. The DiT network is configured as 4-layer with
a hidden size of 256 and 2 attention heads, which is the same
as a commonly-used Transformer decoder, while the WaveNet
network is set to 20-layer with 256 hidden size. Our implemen-
tation is based on the open-source software 1 2 of related mod-
els. The numbers of parameters of the WaveNet-based model
and the DiT-based model are 30.50M and 28.83M, respectively.
Data. We train the models on the single speaker corpus
LJSpeech [26]. Two sets of 500 utterances are selected as the
validation and test set, while the rest are used as training set.
All data are preprocessed following the practice in FastSpeech
2, with a sampling rate of 22,050 Hz.
Training and inference. The models are trained on one
NVIDIA RTX3090 GPU using a batch size of 40,000 speech
frames, with the “rsqrt” (reciprocal of the square root) sched-
uler, 4,000 warm-up steps, and a learning rate factor of 2. For
the diffusion process, a beta schedule of 16 steps is used for
both training and inference. A HiFi-GAN [27] vocoder trained
on LJSpeech is used to synthesize waveforms. The inference is
performed on the same hardware.
Evaluation. For objective evaluation, we utilize the Speech-
Brain [28] toolkit to run speaker verification and speech recog-
nition 3 on the entire test set. The averaged speaker cosine sim-
ilarity (SPK) and character error rate (CER) are calculated as
indicators of how well the model captures the speaker identity
and the intelligibility of synthesized samples. For subjective
evaluation, we recruited 20 native raters on Prolific 4 crowd-
sourcing platform to rate the overall quality and naturalness of

1NATSpeech: https://github.com/NATSpeech/NATSpeech
2DiT: https://github.com/facebookresearch/DiT
3spkrec-ecapa-voxceleb; asr-wav2vec2-librispeech
4https://www.prolific.co

Table 1: The MOS scores with 95% confidence, SPK and CER
scores on LJSpeech, and real-time factors.

Arch. MOS (↑) SPK (↑) CER (↓) RTF (↓)

Vocoder 4.35 ± 0.10 0.983 1.83% -

WaveNet 4.06 ± 0.10 0.790 2.41% 0.021
DiT 4.01 ± 0.10 0.784 2.38% 0.012

randomly selected 20 samples from the test set using the P.808
toolkit [29]. We also calculate the real-time factor (RTF) of the
two models that reflects the synthesis speed, which is conducted
when synthesizing around 200 paragraphs.

2.4. Results

All test results are listed in Table 1. The subjective test results
show the DiT architecture has a gap of only 0.05 compared to
the non-causal WaveNet within the 95% confidence interval of
0.10 which, consistent with our expectation, suggests the DiT
offers a similar synthesis quality to the prevalent architecture.
This is also reflected on the two objective test scores, which
only demonstrate minor difference between the two architec-
tures.

The RTFs indicate that the model with a DiT backbone is
overall 70% faster than the one with a WaveNet backbone, using
the model configuration above. By breaking down the time cost
into different components, we found that the 4-layer DiT-based
decoder has around 2.4 times the speed of a 20-layer WaveNet-
based decoder.

Overall, the results of the basic TTS task demonstrate that
the DiT is a faster alternative of the diffusion backbone to the
non-causal WaveNet, which also shows a slight advantage on
the model size. This is perhaps not persuasive enough for
switching the diffusion backbone, however, the merit of DiT
lies in its ability to be adapted efficiently, which will be elabo-
rated in the next section.

3. Adaptive DiT
3.1. Method

In Transformer [30], the layer norm [31] helps reduce the vari-
ance of the hidden representations after the attention and feed-
forward transformation to stabilize and speed up training. Pre-
vious works [2, 3, 14] have found that the layer norm in Trans-
former can greatly influence the hidden activation and the final
prediction with the learnable scale and shift parameters. Fur-
thermore, these parameters can be regressed from the speaker
or style representation, e.g. the speaker embedding, through a
small neural network, which can be finetuned during adaptation.
The method significantly reduces the number of parameters to
be adapted for each new speaker or style, while maintaining
high-quality synthesis.

As for DiT, the architecture unification enables us to ap-
ply the same method to the adaptive layer norm. Inherently,
the adaLN receives all the conditional input to the decoder, in-
cluding the speaker embedding and possibly embeddings from
reference encoders. The nature cancels the requirement for any
additional input to the decoder.

In the following experiments, we compare our adaptive
DiT model with AdaSpeech, a Transformer-based solution with
conditional layer norm. Given the diffusion’s superiority in



Table 2: The subjective and objective test results of few-shot adaptation experiments.

Dataset VCTK LibriTTS

Metric #Params MOS (↑) SMOS (↑) SPK (↑) CER (↓) SPK (↑) CER (↓)

Vocoder - 4.37 ± 0.08 - 0.955 3.16% 0.929 2.61%

AdaSpeech 1.184M 2.76 ± 0.08 2.86 ± 0.10 0.505 3.12% 0.508 3.77%
DiT 1.711M 3.77 ± 0.09 3.94 ± 0.10 0.570 2.50% 0.582 3.46%

high-quality synthesis, we would expect the DiT to offer better
speech quality and speaker similarity compared to the baseline.

3.2. Experimental setup

Implementation details. We implement necessary compo-
nents to construct AdaSpeech using the same TTS framework
as before, including the phoneme- and utterance-level encoders
in the acoustic condition modeling module and the condi-
tional layer norm in the Transformer decoder layers. We use
the same acoustic condition modeling module as AdaSpeech,
thus the only difference between the DiT-based model and
AdaSpeech is the decoder architecture. The model configura-
tion of AdaSpeech follows the official settings, while the DiT
follows the previous configuration.
Data. All models are pretrained on the two clean subsets
train-clean-360 and train-clean-100 of the multi-
speaker LibriTTS dataset [32], with a total of 1151 speakers
and 245 hours. For adaptation, we use LibriTTS and the multi-
speaker corpus VCTK [33] to test the in-domain and out-of-
domain adaptation performances. For LibriTTS, we select 10
speakers from the test-clean subset, and 10 random utter-
ances for each speaker as test set. For VCTK, 11 speakers (7
females and 4 males) with different accents are selected fol-
lowing [4], while for each speaker 10 utterances with the same
spoken content across all speakers are selected as test set.
Training, adaptation, and inference. Following AdaSpeech,
all models are trained in two stages in which the numbers of
steps are 60,000 and 40,000 respectively, on the same hardware
as before. The batch size is set to 50,000 speech frames for
AdaSpeech and 40,000 for the DiT-based model. Other config-
urations follow the official or previous settings unless otherwise
stated. During adaptation, only the speaker embedding and the
layer norm modules are finetuned using 10 random utterances
of the target speaker for 2,000 steps using a fixed learning rate
of 2× 10−4. A HiFi-GAN vocoder trained on VCTK is used to
synthesize waveforms.
Evaluation. Subjective tests are carried for the more chal-
lenging LibriTTS to VCTK out-of-domain adaptation task. The
same 20 native raters are involved in the subjective test to rate
the MOS for naturalness and the SMOS (Similarity MOS) for
speaker similarity of 22 speaker-balanced samples from the
VCTK test set generated by each system. The reference of each
utterance given in the subjective test is the vocoder synthesized
sample of the utterance. The objective SPK and CER scores are
calculated on the entire test sets of both VCTK and LibriTTS.
We calculate the number of parameters to be finetuned for each
model.

3.3. Results and analyses

The subjective and objective test results are shown in Table
2. In the out-of-domain adaptation task, subjective test re-
sults demonstrate a clear improvement of both naturalness and
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Figure 2: The speaker cosine similarity (SPK) and character
error rate (CER) of varying adaptation data. The number of
utterances used for adaptation is labeled on each data point.
AS: AdaSpeech, LT: LibriTTS.

speaker similarity by the DiT decoder compared to the Trans-
former. In objective evaluation, the DiT achieves a higher
speaker similarity score and a lower character error rate, which
indicates the DiT is able to generate more intelligible speech
with a voice more similar to the reference. In the in-domain
adaptation task, the DiT results in a higher speaker similarity
score, while AdaSpeech does not improve much. The DiT has
approximately 50% more parameters finetuned compared to the
Transformer, due to the extra scaling parameters α.

We further study the naturalness and speaker similarity with
varying amount of adaptation data on VCTK and LibriTTS, and
conduct objective tests. As is shown in Figure 2, with increasing
number of utterances used for adaptation, the speaker similarity
and intelligibility continue to improve for all models and on
both datasets. Overall, the DiT outperforms the Transformer
in both metrics under all settings, and the difference between
the two models becomes larger when the more utterances are
available.

It is worth noting that, during our test listening of the
adapted samples, we found AdaSpeech is more prone to the
noise in the training data than the DiT, resulting in the adapted
samples being more noisy. This is likely due to the low-quality
samples in the train-clean-360 subset, since adapting
an AdaSpeech trained on VCTK results in a cleaner voice.
Nonetheless, this phenomenon suggests the DiT is more robust
against noises, which can be explained with the diffusion’s de-
noising nature.

3.4. Zero-shot adaptation

Previous experiments have demonstrated that the DiT is able to
generate a more high-quality voice with better similarity to the
target when adapted compared to the Transformer. Although



Table 3: The objective test results of zero-shot adaptation.

Arch. AdaSpeech GenerSpeech

Metric SPK (↑) CER (↓) SPK (↑) CER (↓)

Vocoder 0.955 3.16% 0.955 3.16%

Transformer 0.107 2.66% 0.292 6.90%
DiT 0.132 2.34% 0.299 4.43%
WaveNet 0.134 2.20% 0.307 4.06%

we mainly focus on few-shot adaptation tasks, we are still in-
terested to see how the architecture performs in the zero-shot
setting. We also take the chance to demystify what part of the
model architecture contributes the most to the generalizability
of the model.

We first test the Transformer decoder, the DiT decoder, and
the non-causal WaveNet-based diffusion decoder on top of the
acoustic condition modeling module (the reference encoding) of
AdaSpeech. All three models are trained on LibriTTS using the
recipe described in Section 3.3. For inference, we randomly se-
lect one utterance from the target speaker in the VCTK test set.
The objective test results are shown in Table 3. It can be ob-
served that the DiT- and the WaveNet-based diffusion decoders
bring similar slight improvements to the speaker similarity com-
pared to the Transformer decoder, although all scores are sig-
nificantly lower than few-shot adaptation. The WaveNet-based
diffusion decoder seems to yield better intelligibility than DiT,
however both diffusion decoders outperform the Transformer.

We further base the two diffusion decoders on a state-of-
the-art zero-shot solution, GenerSpeech [10], and its official
implementation 5. All models share the same official train-
ing recipe. Note that in GenerSpeech, a flow-based post-net
is used on top of the Transformer decoder to refine the output.
We found the 4-layer DiT in this setting is difficult to converge,
hence we use a 6-layer one instead. This time the diffusion does
not show much improvement on the speaker similarity anymore
compared to the Transformer. However, the two diffusion-based
models yield notably higher intelligibility which is reflected on
the CER, with the WaveNet backbone slight better than the DiT.

Overall, the results suggest that despite the diffusion pro-
viding slightly better speaker similarity, the bulk of generaliz-
ability lies in the reference encoding part of one adaptive sys-
tem. Under these certain architectures of the acoustic model,
the main benefit of a diffusion decoder in a zero-shot adaptive
system is the higher-quality synthesis, rather than better simi-
larity. In comparison with few-shot adaptation, the results also
demonstrate the necessity of finetuning to achieve high similar-
ity. On the choice of backbone architecture in the zero-shot set-
ting, the WaveNet seems to slightly outperform the DiT. How-
ever, as is discussed above, the adaptive layer norm in the DiT
backbone enables the model to be adapted efficiently when fine-
tuning is performed, while the DiT is still a decent alternative
to the prevalent non-causal WaveNet in zero-shot usage.

4. Conclusions
In this paper, we proposed to utilize a new backbone of diffu-
sion models, Diffusion Transformer, for adaptive TTS. Specif-
ically, the adaptive layer norm in the architecture was used to
condition the diffusion network on text representations, which

5https://github.com/Rongjiehuang/GenerSpeech

further enabled parameter-efficient adaptation. On basic TTS
tasks, the new architecture was verified to be a faster alternative
to its convolutional counterpart. For few-shot adaptation, the
DiT decoder demonstrated a clear advantage on naturalness and
speaker similarity over the Transformer decoder while main-
taining parameter efficiency. When used in a zero-shot adaptive
system, while we found the DiT is a decent alternative to the
non-causal WaveNet, its main merit is to provide efficient high-
quality adaptation when finetuning is performed.
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