
Learning and Optimization of Anticipatory Feedback
Controllers for Robot Manipulation

THIS IS A TEMPORARY TITLE PAGE
It will be replaced for the final print by a version

provided by the registrar’s office.

Thèse n. 1234 2023
présentée le 06 mars 2023
à la Faculté des sciences et techniques de l’ingénieur
Laboratoire de l’IDIAP
Programme doctoral en génie électrique
École polytechnique fédérale de Lausanne

pour l’obtention du grade de Docteur ès Sciences
par

Hakan Girgin

acceptée sur proposition du jury :
Prof Maryam Kamgarpour, président du jury
Dr Jean-Marc Odobez, Dr Sylvain Calinon, directeurs de thèse
Prof Tamim Asfour, rapporteur
Prof Nicolas Boumal, rapporteur
Prof Ludovic Righetti, rapporteur

Lausanne, EPFL, 2023

Biggest obstacle I ever faced was
my own limited perception of myself.

— RuPaul

To my family

Acknowledgements
Despite many things said about starting a PhD thesis, this has been one of the most
eye-opening experiences of my life. Apart from the knowledge and expertise that I
gathered during the work in this thesis, I also had great friendships, new life perspectives
and discovered a new perception of myself via personal and professional challenges. For
this, I am proud of what I have accomplished by staying true to myself no matter how
hard it got in this vast fancy pool of delusion.
First of all, I would like to express my gratitude towards my supervisor Dr. Sylvain
Calinon for giving me the chance of pursuing a PhD degree in his lab and in my new home
Switzerland. I would like to extend my gratitude to Dr. Emre Ugur for introducing me to
the world of robot learning and for providing me with lots of opportunities that prepared
me for this PhD thesis. I would like to thank to all my friends at Idiap, especially Florian,
Thibaut, Noémie, Julius, Teguh, Cem, Tobias, Amir, Teng, Clément, Antonio, Andras
for the valuable discussions and moments of coffee breaks in the workplace, and their
sincere friendship outside.
I could not have undertaken this journey without my dearest friends Edanur, Mert,
Osman and Ömer and I would like to thank them for their unconditional love and support
throughout these years. Special thanks to my joyful friend Didem for all of our adventures
together full of laughter and great coffee, and all the positivity that she brought to my
life. Another special thanks to my all-around-capable friend Asli for making me feel
home with the delicious food she prepared and for being there for me. I would like to
extend my special thanks to Olivia for teaching me the Swiss life by sharing amazing
hikes, food, and discussions. I would like to thank Emmanuel, Éloise and my godson
Zacharie for being my second family in Switzerland. Thanks should also go to Ina and
Mathias, who made my last years of PhD and my journey in Montreux memorable and
filled with lots of fun.
I am extremely grateful to my mother Belgin, my sister Ayça and my aunt Meral to
whom I dedicate this thesis. Their support, love, and efforts to keep me away from all
the negative situations are what kept me strong even in the hardest times.
Martigny, April 4, 2023 Hakan Girgin

i

Abstract
Programming intelligent robots requires robust controllers that can achieve desired tasks
while adapting to the changes in the task and the environment. In this thesis, we
address the challenges in designing such adaptive and anticipatory feedback controllers
in robot manipulation tasks from the perspective of two main approaches: optimization
and learning. Optimization methods determine a feedback or feedforward controller
that achieves tasks by using a model of the task and the dynamics of the tasks. An
optimization expert is often required for tuning, modeling, and solver selection. On
the other hand, learning from demonstration (LfD) is an intuitive way of programming
robots by showing them demonstrations of how to achieve a task. It requires an expert
who can demonstrate the task, without the need for coding or modeling.
Many existing solvers for optimization problems in robotics are not easily adaptable,
difficult to implement, and/or require tuning effort. This prevents their wide adoption,
benchmarking, and potential future contributions to the solvers, as well as their direct
real-time applications. Furthermore, they do not fully exploit the geometric structures
that we often have in robotic tasks. In the first part of the thesis, we address these
challenges by proposing a projection-based first-order optimization solver for robotics
problems with geometric constraints. We show that Euclidean projections onto the
manifold defined by these geometric shapes can significantly improve performance even
when compared to second-order methods.
The adaptive behavior of the feedback control gain matrices found by optimal control
is under-exploited in robotics. However, they are known to contain important local
information about the dynamics task. We extend the system level synthesis (SLS)
framework to build novel capabilities of these gains. In particular, we show that this
anticipatory feedback controller with memory can remember and act on past states,
which is crucial for tasks with time correlations. We further exploit their capabilities
in the real-time adaptation of the task parameters using local information from the
optimization and in hierarchical optimal control using the redundancies at the planning
level.
In the second part of the thesis, we address the challenges in modeling for optimization
by turning our attention to learning methods. Several open questions are discussed in
this thesis: 1. What to model? (or What to learn?); 2. How to execute these models on
the real robot?; 3. How to demonstrate?; and 4. How many times to demonstrate? We
propose two different ways of exploiting demonstrations for designing feedback controllers.

iii

Abstract

The first method uses demonstrations to warm-start and guides an optimal control
problem of planar pushing which otherwise can get stuck at local optima. The second
method proposes an adaptive impedance controller that can mimic the generalization
and multimodality capabilities of a learned trajectory policy. We then investigate the
epistemic uncertainties in such policies and provide an active learning method to refine
them iteratively.
Keywords: constrained optimization, projection-based optimization, feedback control,
hierarchical optimal control, learning from demonstration, active learning, learning to
control

iv

Résumé
La programmation de robots intelligents nécessite des contrôleurs robustes qui peuvent
réaliser des tâches souhaitées tout en s’adaptant aux changements dans la tâche et
l’environnement. Dans cette thèse, nous abordons les défis de la conception de tels
contrôleurs adaptatifs et anticipatifs dans les tâches de manipulation de robots à partir de
deux approches principales : l’optimisation et l’apprentissage. Les méthodes d’optimisation
déterminent un contrôleur rétroactif ou prédictif qui réalise des tâches en utilisant un
modèle de celles-ci et de leurs dynamiques. Un expert en optimisation est souvent
requis pour l’ajustement, la modélisation et la sélection du solveur. D’un autre côté,
l’apprentissage par démonstration est une façon intuitive de programmer les robots en
leur montrant comment réaliser une tâche. Cette opération nécessite un expert qui peut
procurer des démonstrations de la tâche sans avoir recours à des notions avancées de
programmation et/ou de mathématiques.
De nombreux solveurs existants pour les problèmes d’optimisation en robotique ne sont
pas facilement adaptable, difficiles à implémenter et/ou nécessitent un effort d’ajustement.
Ces points rendent leurs adoptions, évaluations, applications, et une quelconque contri-
bution par un tiers difficiles. De plus, ils n’exploitent pas complètement les structures
géométriques que nous avons souvent dans les tâches de robotique. Dans la première
partie de la thèse, nous abordons ces défis en proposant un solveur d’optimisation de
premier ordre basé sur la projection pour les problèmes de robotique avec des contraintes
géométriques. Nous montrons que les projections euclidiennes sur la variété définie par
ces formes géométriques peuvent significativement améliorer les performances même
lorsqu’elles sont comparées à des méthodes du deuxième ordre.
L’adaptabilité du movement par des matrices de gains obtenues par le contrôle optimal
est sous-exploitée en robotique. Cependant, on sait qu’elles contiennent des informations
locales importantes sur la dynamique de la tâche. Nous étendons le system level synthesis
(SLS) pour développer de nouvelles capacités de ces gains. En particulier, nous montrons
que ce contrôleur de rétroaction anticipatif avec mémoire peut se souvenir et agir sur les
états passés, ce qui est crucial pour les tâches avec des corrélations temporelles. Nous
exploitons encore plus leurs capacités dans l’adaptation en temps réel des paramètres de
la tâche à l’aide d’informations locales provenant de l’optimisation et dans le contrôle
optimal hiérarchique en utilisant les redondances au niveau de la planification.
Dans la deuxième partie de la thèse, nous abordons les défis liés à la modélisation pour
l’optimisation en nous tournant vers les méthodes d’apprentissage. Plusieurs questions

v

Résumé

ouvertes sont discutées dans cette thèse : 1. Que faut-il modéliser ? (ou que faut-il
apprendre ?) ; 2. Comment exécuter ces modèles sur le robot réel ? ; 3. Comment montrer
une tâche ? ; et 4. Combien de fois démonstrations a-t-on besoin ? Nous proposons
deux façons différentes d’exploiter les démonstrations pour concevoir des contrôleurs
de rétroaction. La première méthode utilise les démonstrations pour initier et guider
un problème de contrôle optimal de poussée planaire qui peut autrement se retrouver
bloqué dans des optima locaux. La deuxième méthode propose un contrôleur d’impédance
adaptatif qui peut imiter les capacités de généralisation et multimodalité d’une consigne
apprise de trajet. Nous investiguons alors les incertitudes épistémiques dans ces consignes
et fournissons une méthode d’apprentissage actif pour les affiner itérativement.
Mots-clés : optimisation sous contraintes, optimisation basée sur la projection eucli-
dienne, contrôle rétroactif, contrôle optimal hiérarchique, apprentissage par démonstration,
apprentissage actif, apprentissage pour contrôle

vi

List of Tables
3.1 Projections onto bounded domain, affine hyperplane, quadric and second-

order cone . 19
3.2 Comparison of MPC with iLQR and ALSPG for planar push 31
3.3 Comparison of motion planning for obstacle avoidance for three cases . 32

6.1 Performance of DS-DDP, DC-DDP, and WS-DDP for offline programming 75
6.2 Metric-based comparison for the ball-in-box task (in Figure 6.9). 88

7.1 conditionals and priors where W(·) and Dir(·) correspond to Wishart and
Dirichlet distributions . 95

A.1 Constraints of different interaction modes 123

vii

List of Figures
3.1 Projection view of inverse kinematics problem. These problems can be

tested online with closed-loop controllers on the provided website1created
as extensions of the toolbox Robotics Codes from Scratch2. 20

3.2 Comparison of iLQR and SPGOC in terms of convergence time evolution
vs the number of timesteps or horizon. 27

3.3 Illustration of inverse kinematics problems solved with the proposed algo-
rithm. 30

3.4 SPG algorithm applied to a pusher-slider system. 31

3.5 Motion planning problem in the presence of 4 scaled and rotated rectan-
gular obstacles. 33

3.6 MPC setup for tracking an object subject to box constraints. 34

3.7 Error in the objective and the squared norm of the constraint value during
1 min execution of MPC on Franka Emika robot. 34

4.1 (a) The robot decides where to place the object according to the initial po-
sition and with the anticipation to pick up the sugar cube and put it inside
the cup. (b) Pick-and-place task with the Franka Emika robot deciding
autonomously to grasp the object from different parts, as an adaptation
to different initial configurations. The memory feedback property allows
the robot to remember where it placed the mug and grasped the object,
so that it can place it accordingly. 36

4.2 Simulated task where the robot, initially holding a coffee mug, needs to
place it on the table within a certain range (brown disk), pick up a sugar
cube (white cube) and drop it onto the mug. 45

4.3 Adaptation of the robot to different initial configurations shown in trans-
parent and the grasping locations shown in solid colors. 46

ix

List of Figures

4.4 Testing of the reactivity of the controller to different physical perturbations,
each resulting in successful completion of the task by adaption. The plot
of z-axis position (m) in time (s) gathered from the robot perturbed
before grasping the object. The curves of color green, orange and blue
correspond to the first, second and third screenshots respectively, while
the dashed black line corresponds to the nominal solution. The robot
decides on-the-fly to grasp from different locations and remembers these
locations to place the yellow object without colliding with the environment. 46

4.5 (a) Nominal behavior of the robot without any adaptation. (b) The final
relative height is changed at the initial time and the robot adapts to this
new height with a new plan, by remembering where it grasped the object.
(c) Online adaptation by increasing the relative height of the final position
after grasping the object. (d) Adaptation to change of the relative height
at the beginning of the movement combined with a change in the final
position introduced after the grasping phase. 47

4.6 Here, we show three phases of the movement, pick, handover and place
to show three different adapted behaviors, denoted as (a), (b) and (c)
for each phase. The grasping locations are highlighted by a star sign
placed at the same exact locations of the objects to differentiate them.
Before the pick phase, in (a) and (c), the robot is perturbed upwards and
downwards respectively, while (b) is not perturbed. After the pick phase,
and before handover, a new target location to place the object which are
denoted by transparent yellow cylinder is introduced, with the red ones
being the original targets. Finally, in the place phase, the second robot can
successfully adapt to new target location thanks to the proposed online
adaptation scheme. It also could correctly place the object without hitting
the floor by remembering where it was grasped by the first arm. 51

5.1 From left to right: kinematic/mechanical redundancy (morphology level),
task redundancy (spatial level), planning redundancy (spatiotemporal
level). 53

5.2 LQR with initially at the position shown by the cross and (a) 2 intermediary
tasks at time step t with hierarchies Vt

1 > Vt
2 and the final task Goal,

(b) 2 intermediary tasks at time step t, 1 intermediary task at time step
t + 1 with hierarchies Vt

1 > Vt
2 > Vt+1

3 , and the final task Goal, (c) 2
intermediary tasks at time step t, 2 intermediary tasks at time step t+ 1
with hierarchies Vt

1 > Vt
2 > Vt+1

3 > Vt+1
4 , and the final task Goal. Tasks

are represented with Gaussian ellipsoids, while the resulting trajectory is
represented by black lines. The grey dashed line represents the shortest
line between the mean of the Gaussian ellipsoid of Vt

2 and the line ellipsoid
(thin Gaussian ellipsoid) Vt

1. 58

x

List of Figures

5.3 Comparison between nullspace (solid black line) and standard formulation
(dashed lines) with scaling δ1, δ2, δ3 and δ4 are 1, 0.1, 0.01 and 0.001
respectively, using a point mass object with double integrator dynamics.
The agent has to go to the goal point GT as its primary task, at the final
time step T , with variance shown by a green circle. If possible, it should
pass through a viapoint VT −k, as a secondary task, at the time step T − k,
with the same variance shown by orange circle. When the secondary task
is far away from the primary task in space and time, nullspace planning
tries to pass through VT −k, and still succeed to accomplish the primary
task. On the other hand, no matter the scaling of the cost, standard
control cannot have the same performance. 59

5.4 Two agents (black and red) have a primary task of reaching their goal
positions at time step T and a secondary goal to meet at some position
at time step T/2. If obstacles perturb their executions, we observe the
nullspace effect with a shift of the meeting position. 60

5.5 A robotic application of nullspace structure within LQR. 61

5.6 10 realizations (starting from different initial positions) of the primary
controller and the nullspace controller 65

6.1 Convergence curve . 75

6.2 Solving time . 75

6.3 Tracking performance under disturbance. The dashed lines present the
tolerance. 76

6.4 Pushing task with face switching. The manipulator starts from (a) and
selects an optimal face (orange) and contact point (b) for pushing, until
reaching the planned face switching point (c). Next, the manipulator
changes to face (d) and touches the object again at the selected point (e),
followed by the next phase of pushing (f), until reaching the final target
(g). This example is for Ns = 1. (d)∼(f) should be repeated if Ns > 1.
The colored line is used to express the current active face, and the black
arrow in (d) represents the face switching process. 77

6.5 Planar pushing with face switching. Both simulation and experimental
results reach final targets within tolerance. 78

6.6 Drawing task for a 2D point mass. The parameters of the proposed
controller are set to Σq=σqI, Σq̇=σq̇I, K=500I and D=3

√
500I. The

original controller and the proposed controller produce the same behavior
if the tolerance of tracking the probabilistic model is set close to zero (left
plot). For the tolerances σq=10−5 and σq̇=10−3, the proposed controller
adds stabilizing feedback terms. This results in a probabilistic feedback
control that is robust to perturbations (right plot). 82

xi

List of Figures

6.7 Multiple-mode navigation task for a 2D point mass. The parameters of
the proposed controller are set to Σq=10−5I, Σq̇=10−3I, K=100I and
D=3

√
100I. The dashed trajectories show the behavior of the original

controller (red) and the proposed controller (blue) without perturbations.
The solid trajectories show the result of all controllers under the impact of
an external force fext that pushes the point mass in positive q2-direction
for 0.1 seconds. 84

6.8 Target reaching task for a 2D point mass initialized at three different posi-
tions depicted by the small black circles. The parameters of the proposed
controller are set to Σq=10−5I, Σq̇=10−3I, K=100I and D=3

√
100I.

The target, depicted by the filled black circle, jumps from the position
indicated by the grey circle in the lower right corner to the final target in
the upper right corner after 2.3 seconds. The duration of the motion is 4
seconds. 86

6.9 The Franka Emika robot has to drop a ball into the box using the presented
imitation controller (blue). The skill is demonstrated (orange trajectories)
for a given box position (orange crosses). Experiment 1 (left): The original
controller (red) and the proposed controller are tested on two different
static box positions (context 1 and 2). Experiment 2 (center and right):
The proposed controller is tested in a dynamic scenario, where the context
variable changes during the execution (i.e. the box is moving from position
1 to 3) such that the position reference (green) changes accordingly. The
proposed controller adapts its stiffness based on the variability of the
demonstrations and based on the correlation of the trajectory phase with
the context variable (indicated by the stiffness ratio). 87

7.1 (a) Demonstrations and (b)-(c) reproductions of a reaching task in a
cluttered environment. The goal position is denoted by G and the obstacles
are represented as dashed rectangles. The demonstrated trajectories are
depicted with red lines. The policy samples acquired from the BGMM
and PoE are depicted by colored lines. 97

7.2 Uncertainty colormaps of the learned control policy for a reaching task
in a cluttered environment. (a), (b) and (c) show the total, aleatoric
and epistemic uncertainties of the BGMM, respectively. High to low
uncertainties are depicted by colors ranging from yellow to purple. (d)
depicts the information-density cost and the Gaussian components of the
GMM model approximating this cost. 100

7.3 Evolution of the quadratic Rényi entropy of (a) the GMM model that
approximates highly uncertain regions and (b) the marginal BGMM model.
Top figures represent the evolution for the proposed active learning, while
the error bars in bottom figures show the mean and the standard deviation
of 5 different random exploration for 5 iterations. 103

xii

List of Figures

7.4 Reproductions of the learned policy after 10 iterations of active learning.
The numbers on (a) denotes the location the query point at each iteration
of active learning. 103

7.5 The task is to put the cup inside a box covered from top and bottom,
starting from anywhere in the space. The robot has to maintain a specific
end-effector orientation to perform the task without pouring the cup. The
main challenge is not to collide with the box and the other obstacles in
the environment. 104

7.6 Overview of the simulated pouring environment. 107
7.7 Subset of demonstrations for different contexts. 108
7.8 Quantitative results for simulated 1D context pouring. 108
7.9 Quantitative results for simulated 2D context pouring. 110
7.10 Quantitative results for simulated 3D context pouring. 111
7.11 Visualization of the context space during the first 3 iterations of the active

learning process. The heatmap represents the entropy of the epistemic
uncertainty, yellow indicating high uncertainty. Demonstrations are shown
as grey stars. The context chosen for the next demonstration is shown
as a red star. Transparent ellipses show the marginal distribution of the
ProMP in the context space. 112

7.12 Overview of the pouring task with a 7-axis robot. 112

8.1 Non-robust linear quadratic tracking controller (LQT-ADMM) and robust
system level synthesis controller (SLS-ADMM) executed from 5 different
initial positions. SLS-ADMM is optimized to be robust with respect to
the control bounds. 118

A.1 Kinematics of pusher-slider system allowing face switching. 124

xiii

Contents
Acknowledgements i

Abstract (English/Français) iii

1 Introduction 1
1.1 Motivation & Challenges . 4
1.2 Organization of the thesis . 5

2 Background 7
2.1 Behavior Primitives . 7

2.1.1 Learning Primitives from Demonstration 7
2.1.2 Learning policies for control . 8
2.1.3 Improvement of Primitives using Active Learning 10

2.2 Optimal Control . 11
2.2.1 Linear quadratic tracking with least-squares 12
2.2.2 Batch-LQT . 12

2.3 Robot Dynamics . 13

I Optimization of Controllers 15

3 Projection-based first-order constrained optimization solver for robotics 17
3.1 Related work . 18
3.2 Background . 19

3.2.1 Euclidean projections onto sets 19
3.2.2 Projection view of inverse kinematics 20

3.3 Augmented Lagrangian Spectral Projected Gradient Descent for Robotics 21
3.3.1 Spectral projected gradient descent 21
3.3.2 Augmented Lagrangian spectral projected gradient descent (ALSPG) 22
3.3.3 Handling of inequality constraints 24
3.3.4 Optimal Control with ALSPG 25

3.4 Convex polytope projections and linear transformations 26
3.4.1 Convex polytope projections . 27
3.4.2 Linear transformation of projections 28

xv

Contents

3.5 Experiments . 29
3.5.1 Constrained inverse kinematics 29
3.5.2 Motion planning and MPC on planar push 30
3.5.3 Motion planning with obstacle avoidance 32
3.5.4 MPC on Franka Emika . 32

3.6 Conclusion . 33

4 Robust Anticipatory Robot Skills with Memory 35
4.1 Related Work . 37
4.2 Background . 38
4.3 Methods . 40

4.3.1 Extended system level synthesis (eSLS) 40
4.3.2 Iterative system level synthesis (iSLS) 41

4.4 Experiments and Results . 44
4.4.1 Simulated task . 44
4.4.2 Pick-and-place task . 46
4.4.3 Bimanual handover task . 49

4.5 Conclusion . 50

5 Nullspace Methods in Planning and Control 53
5.1 Inverse kinematics with nullspace structure 53
5.2 Nullspace structure in linear quadratic tracking (LQT) 56
5.3 Experiments . 57

5.3.1 Proof-of-concept examples . 57
5.3.2 Robot Simulation . 59

5.4 Nullspace feedback controller in system level synthesis (SLS) 60
5.5 Bilevel optimization of hierarchical optimal control 63
5.6 Experiments . 64

5.6.1 Viapoint reaching . 64
5.7 Conclusion . 66

II Learning of Controllers 67

6 Learning robotic skills from demonstrations 69
6.1 Learning trajectory models to warm-start optimal control 70

6.1.1 Problem formulation . 71
6.1.2 Demonstration-started DDP (DS-DDP) 72
6.1.3 Demonstration-constrained DDP (DC-DDP) 73
6.1.4 Warm-starting DDP (WS-DDP) 73
6.1.5 Adaptation to disturbance . 73
6.1.6 Experiments . 74
6.1.7 Conclusion . 78

xvi

Contents

6.2 Learning trajectory models for adaptive control 79
6.2.1 Probabilistic Movement Primitives 79
6.2.2 Formulation of the proposed controller 80
6.2.3 Single Mode . 82
6.2.4 Multiple Modes . 83
6.2.5 Feedback of the Context . 85
6.2.6 Experimental Validation . 87
6.2.7 Conclusion . 89

7 Active learning of feedback controllers 91
7.1 Related Work . 93
7.2 Background . 94

7.2.1 Bayesian Gaussian Mixture Model 95
7.2.2 Product of Experts . 96

7.3 Active Learning of Control Policies . 97
7.3.1 Uncertainty decomposition . 98
7.3.2 Rényi entropy of the posterior distribution 99
7.3.3 Information-density cost for active learning 100
7.3.4 Experiments . 101

7.4 Active Learning of Trajectory Policies 105
7.4.1 Experiments . 106
7.4.2 Simulated pouring . 107
7.4.3 Real robot pouring task . 111

7.5 Conclusion . 112

8 Discussion & Future Work 115
8.1 Projection-based optimization for robotics 115
8.2 System level synthesis: perspectives on robust optimal control and inverse

optimal control . 116
8.3 Combining learning and optimization of controllers 118

9 Conclusion 121

A Appendix 123
A.1 Planar Push Dynamics . 123

A.1.1 Kinematics . 123
A.1.2 Generalized Motion Cone . 123
A.1.3 Generalized Motion Equation . 124

A.2 Mathematical background . 125
A.2.1 Pseudo-inverse and nullspace of a row matrix 125
A.2.2 Properties of the nullspace matrix 126
A.2.3 Separable costs and constraints 126

xvii

Contents

A.2.4 Expectation of some linear and quadratic forms 127
A.2.5 Probabilistic inequalities . 127
A.2.6 Projection onto sublevel set of a convex function 128

A.3 Controller derivation . 129
A.3.1 eSLS closed-loop map . 129

A.4 Nullspace in inverse kinematics and optimal control 131
A.4.1 Nullspace method for linear equality constrained QP 131
A.4.2 Bilevel optimization . 131

Bibliography 133

Curriculum Vitae 147

xviii

1 Introduction

There are many layers to the programming of robots to make them achieve a desired
task. Robots are merely composed of links whose positions and velocities need to be
controlled by the joints that connect them. Depending on the robotic platform used,
these joints (or motors at the joints) can be controlled by position, velocity, torque or
current control commands with an ordering from the highest level to lowest level control.
Control field offers ways to design open-loop and closed-loop controllers knowing the
state of the robot and the control actions that can be applied to the joints.

Open-loop control consists of determining a reference trajectory of states and control
commands to track, and applying these commands blindly, without any feedback of the
current situation. In contrast, closed-loop control is when these reference trajectories and
control commands are used in a way to correct themselves using a sensory feedback of
the environment and/or of the robot itself. Designing such controllers requires a careful
tuning and/or optimization of either the trajectory parameters or the control parameters.
Optimization and learning of these parameters has become increasingly popular with the
advances of the computational power of devices.

For example, in robotics, the problem of inverse kinematics has been thoroughly investi-
gated and algorithms have been created based on the Jacobian matrix of the forward
kinematics function [1]. These algorithms are based on the optimization of an objective
function of the joint configurations, that encodes reaching a desired end-effector pose and
finding the optimal joint configuration. Taking this as a reference configuration to reach,
either an offline path can be planned starting from an initial configuration, or feedback
controllers (e.g. a proportional-derivative controllers) can be designed to drive the robot
to the reference configuration. Planning this path or determining the optimal feedback
controllers via optimization is the topic of optimal control (or trajectory optimization or
motion planning).

Iterative linear quadratic regulator (iLQR) [2] and differential dynamic programming
(DDP) [3] are efficient dynamic programming-based algorithms to solve optimal control

1

Chapter 1. Introduction

problems. An important property of these algorithms is that they do not only output
open-loop control commands or trajectories, but they also find a locally stable optimal
feedback controller with time-variant gain matrices. However, in robotics, these feedback
matrices have been under exploited as the feedback mechanism in model predictive
control (MPC) has gained more attraction. Even though, one can design various ways
of exploiting these matrices in conjunction with MPC for better performances and
adaptation [4], their properties and capabilities are still an open research question.

The methods that output feedback controllers are, in their basic forms, unconstrained
optimization solvers. However, oftentimes, we need to enforce constraints such as joint
and torque limits, obstacle avoidance, virtual safety fixtures or force closures to optimize
trajectories that take the physical real life constraints into account. There are many
commercially available second-order solvers to address general constrained optimization
problems such as SNOPT [5], SLSQP [6], LANCELOT [7] and IPOPT [8]. However,
in robotics, the literature on optimization is still focusing on developing solvers that
effectively solve each robotic problem separately. For example, in the motion planning
literature, one can find many constrained variants of iLQR and DDP [9, 10, 11], as well as
trajectory optimization solvers such as TrajOpt [12], CHOMP [13]. The reason for such
diversity and abundance of optimizers in robotics is mainly the fact that each task or
each problem in robotics can be described in such a unique way that we can not assume
that one solver is the most efficient for all problems. Also, the convergence and the speed
of the optimizers depend significantly on the initialization, the hyperparameter selection
and the mathematical modeling of the problem. This requires a great expert knowledge
in coding, tuning and modeling optimization problems, even though a commercial solver
is used.

A closer look at the modeling of the constrained optimization problems in robotics
reveals that the constraints are often described by a geometric primitive or a combination
of such primitives. Examples include reaching a point with an accuracy represented
by an ellipsoid, avoiding obstacles represented as convex polytopes, exploiting semi-
positive definite ellipsoids of manipulability and stiffness matrices and constructing
virtual fixtures as hyperplanes. A common property of most of these primitives is that
Euclidean projections onto the manifold defined by them can be computed efficiently.
Also, projection-based optimization algorithms in these cases have been shown to perform
better than plain constrained version of the same problems [14].

Another affordable and intuitive solution to the difficulty in optimization in robotics,
especially in modeling of objectives and the task dynamics, comes from the field of
learning, in particular, learning from demonstration (LfD). LfD requires an expert
with the knowledge on how to achieve a task (e.g. factory employee on the assembly
line) and not with the engineering knowledge to program the robot, in contrast to
the optimization experts mentioned before. This expert shows a demonstration of the
task either by grabbing the robot arm (i.e. kinesthetic teaching), teleoperating using

2

haptic devices, or just letting the robot “look” at them (i.e. learning from observation).
Indeed, the robot records all the sensory information in the form of datasets to later
learn from them. Learning here refers to encoding the demonstration data into compact
(probabilistic/deterministic/(un)parametric) models that can achieve the task.

The general definition of LfD raises naturally several questions that have been investigated
as challenges of LfD in robotics: 1. What to model? (or What to learn?); 2. How to
execute these models on the real robot?; 3. How to demonstrate?; and 4. How many
times to demonstrate?. Depending on the task, one may choose different sources of
sensory information to model (e.g. joint positions and time, end-effector position and
force etc.) in the form of movement primitives. These primitives can be combined in
parallel and in series to form more complex behaviors. The choice of the model of the
movement primitive affects directly the control law that is going to execute the output
of the learned model. For example, if a primitive model outputs a trajectory to track,
an impedance controller can be designed; whereas if the output is already joint torque
commands, then a different procedure should be followed as in [15]. Several combinations
of movement primitives with a control strategy are present in the literature [16].

An interesting note here is that unlike many other application fields of machine learning
(e.g. computer vision), in robotics, we do not have access to many data, as collecting
demonstrations from experts is costly. We can not expect to be efficient to demonstrate
a movement in 100 random ways until making sure that the robot learned how to achieve
the task. One can find very important to learn robust generalizable models from as few
demonstrations as possible. This brings back Questions 3 and 4 into discussion.

Consider the case when we have a model of the movement learned from one random
demonstration of the task and we measure the quality (generalizability, robustness,
adaptation etc) of the model and decide to demonstrate once more. How one can decide
how different demonstration they should do so that the robot learns the most. If the
demonstration is too close, then it is basically the same information that does not change
the model much. On the other hand, if the demonstration is too far, then the model can
learn just an average model that performs very bad everywhere. Also, when do they
decide that the robot learned enough.

Active learning is a sub-field that addresses these questions in principled manners. It
uses the uncertainty in the probabilistic models to define the input space regions where
the model is the most uncertain. It then selects the next demonstrations from there in
order to maximize the information gain [17]. The type of uncertainty caused by the lack
of data in the learning of the model is called the epistemic uncertainty as opposed the
aleatoric uncertainty representing variations and noise in the model. In robotics, active
learning has been explored with methods based on heuristics, and not the epistemic
uncertainties in the model [18, 19].

3

Chapter 1. Introduction

With the view of robotic problems explored from the perspective of optimization and
learning, there are several open research questions and under exploited areas that we
cited until now. In the next section, we will detail these areas with their corresponding
challenges that motivated this thesis and its accompanied contributions.

1.1 Motivation & Challenges

Many existing second-order solvers are not easily adaptable and/or difficult to imple-
ment, which hinders benchmarking and potential improvements. As powerful as these
solvers may be, their applications for finding real-time fast feedback mechanisms such as
closed-loop inverse kinematics and MPC requires tuning and adaptation of the solver.
Furthermore, the fact that the constraints in robotics can often be described using a
geometric shape (e.g. friction cones, bounding boxes or reaching precisions as spheres)
has not been exploited in these solvers. These constraints have in common that they can
be formulated as easy-to-compute projections rather than constraints. In Chapter 3, we
address these challenges by proposing a very simple, yet powerful first-order solver that
can be easily implemented without having large memory requirements. This chapter
argues that exploiting the projection capability of these sets instead of treating them as
generic constraints in the solvers significantly improves the performance.

A fast constrained optimization solver as the one presented in Chapter 3 can be used as
a path planner that outputs optimal trajectories to a separate controller, or as a short
horizon optimal controller to be used with MPC feedback mechanism. In DDP and
iLQR, we can also obtain time-variant local optimal feedback controllers with feedback
gain matrices and feedforward control commands that can be exploited either directly in
case of small disturbances, or in MPC to be re-optimized. In robotics, the capabilities of
these feedback and feedforward control outputs of such solvers in terms of adaptation
are underexploited. Although, feedback gain matrices have been shown to contain local
information about how to achieve a task [20]. In Chapter 4, we address this challenge by
proposing a new framework based on system level synthesis (SLS) [21] and showing that
adaptation capabilities of these terms without having to resort to replanning strategies
such as MPC. In Chapter 5, we extend these capabilities in hierarchical optimal control
exploiting redundancies in the planning (e.g. sparse cost function). This way, we propose
a principled way of solving hierarchical optimal control problems by also providing
associated feedback gains and show their fast local adaptation in the case of a change in
the desired states.

Chapters 3 to 5 assume that we have access to a perfect model of the dynamics of the
robot or of the task, and we have the knowledge of designing a cost function that achieves
the task at hand. Even though, in practice, we can create trajectories and controllers
that achieve the task at hand, it is rather difficult to assume that they can be generalized
to different variations of the same tasks or of the environment. Also, programming robots

4

1.2 Organization of the thesis

by modeling and coding every aspect of the task may be time-consuming and requires
expertise in robotics.

A standard way is to learn trajectory policies and then combine them with a controller.
A challenge here is to design such controllers that exploit the generalization capabilities
of the learned trajectory policy as much as possible (Section 6.2). But when the task
dynamics need to be modeled, it becomes more complicated to find such controller. In
this case, we prefer optimal control strategies, and in particular the feedback mechanism
in MPC. There is not a principled way of exploiting learned trajectory policies in MPC. In
Section 6.1, we show a way to combine learned trajectory policies to warm-start optimal
control, preventing it to being stuck at local minima.

Learning policies and dynamics models from data brings its own challenges inherent to
data science. As gathering demonstrations is costly in LfD, a challenge is to reduce the
number of demonstrations and quantify the epistemic uncertainties in the probabilistic
models that represent the policies. In Chapter 7, we provide principled ways of measuring
what constitutes a good demonstration for trajectory and control policies.

1.2 Organization of the thesis

Chapter 2 gives the general background to the thesis with related work in the literature.
Chapter 3 to Chapter 7 are divided into two parts: optimization of controllers and
learning of controllers.

Part I: Optimization of Controllers: Three chapters, from Chapter 3 to Chapter 5
are presented in this part. Chapter 3 presents a projection-based first-order constrained
optimization solver for robotics problems with geometric constraints. Chapter 4 investi-
gates a method to optimize feedback controllers as opposed to open-loop controllers as in
the previous section. This method serves as a basis to create robust anticipatory robot
skills that can be adapted fast online to the changes in the environment. We further
exploit such controllers in the problems of hierarchical motion planning in Chapter 5
and propose a principled way of finding adaptive feedback controllers using nullspace
methods.

Part II: Learning of Controllers: This part is composed of two chapters: Chapter 6
and Chapter 7. Chapter 6 gives two contributions for learning robotic skills from
demonstration. We first present a way to exploit expert demonstrations to warm-start
and guide optimal control problems in a challenging planar pushing task. Then, we
present our contribution on how to design an adaptive and generalizable impedance
controller that mimics expert demonstrations. In order to iteratively improve the learned
skills, Chapter 7 investigates what constitutes a good demonstration and how to give
demonstrations in the context of active learning using epistemic uncertainties of the

5

Chapter 1. Introduction

dataset. It presents two contributions with active learning on control policies and
trajectory policies, and discusses their comparisons.

Chapter 8 gives discussion on the contributions of this thesis and the relevant future
work. Chapter 9 concludes the thesis.

6

2 Background

2.1 Behavior Primitives

In robotics, “movement primitives” or “behavior primitives” are often used to describe
the motor skills that can generalize over similar tasks and that can be organized in
series (succeeding movements) and in parallel (hierarchical movements) to form a library
of unit movements. I will use the term behavior primitives in this thesis proposal to
enforce the idea that the primitives used in human-robot collaboration tasks require
not only movements but also applying forces without movements as well. A behavior
primitive is a policy that can be described by three levels of abstractions: task-level,
trajectory-level and action-state level. In task-level abstraction, a behavior primitive
is a function π : x, s → o that maps a sequence of states x = [x1, ...,xT] and contexts
s to a sequence of options o = [o1, ..., oT], i.e. discrete set of predefined action units
[22]. Trajectory-level representation function π : x0, s → τ takes an initial state x0 and
contexts s to a trajectory τ . These two types can sometimes be referred to as control
policy and trajectory policy in the learning literature or feedback control and open-loop
trajectory in the control literature, respectively. Finally, action-state level abstraction
is a function π : xt, s → ut mapping the current state xt and contexts s to the current
control command (or action) ut [23].

2.1.1 Learning Primitives from Demonstration

Learning skills from demonstration requires an expert to show how to perform a given
task. Teaching can be done by recording observations of human movements using visual
input/wearable devices or measurements of robot motion using kinesthetic teaching, i.e.,
guiding the robot arm to follow a desired trajectory by holding it. While the former
introduces difficulties such as correspondence problem, that is to find a mapping from the
human movement to the robot joint motion, the latter is more widely used in robotics
because it eliminates this problem [24].

7

Chapter 2. Background

Learning from demonstration (LfD) can be divided into two broad categories: behavior
bloning (BC) and inverse reinforcement learning (IRL), also called as inverse optimal
control (IOC). BC consists of inferring the parameters of a behavior primitive model
from a given dataset of demonstration by minimizing a predetermined cost function.
When this cost function is not available beforehand, it can be learned via IRL methods
[25, 26, 27, 28, 29].

As policy gradient methods in reinforcement learning, BC and IRL methods can also be
divided into model-based and model-free. Most of the behavior primitive learning from
demonstration works belong to the model-free behavioral cloning [30, 31, 32, 33, 34, 35, 36].
Recently proposed Bayesian Gaussian mixture models (BGMMs) [37] learn a joint
distribution p(xt,ut) in action-state abstraction, then condition on the current state
xt to find the conditional (predictive) distribution of the policy p(ut|xt). Stability
and hierarchical organization are also provided within product of experts (PoE) [38]
framework. Model-free methods assume that the reproduced trajectories are feasible
within the dynamics and kinematics constraints of the robot and of the environment.
However, in manipulation tasks, the system robot-environment to be controlled becomes
immediately underactuated [39], even though the robot actuation is redundant.

Model-based methods refer to a method of policy learning using the knowledge of the
robot and environment dynamics. Learning dynamics model is beneficial as learning
policy in BC and IRL methods becomes data-efficient and fast. The inferred policy can
also be easily transferred across different tasks within the same environment since it
satisfies the system dynamics. Model-based approaches such as [40, 41] propose to match
the distribution of the trajectory created from rollouts of the dynamics model and the
policy to the distribution of the trajectory induced by expert demonstration. These
methods require the observation of control inputs in the demonstration dataset. This is
not always accessible in kinesthetic teaching of interaction tasks since the interaction
torques applied by the human would bias the torques measured on the joints of the robot.
Learning from observation [42], a relatively new area of LfD, offers a solution to this
problem. To infer the unobserved actions, it uses an inverse dynamics model which has
been previously learned using an exploratory policy. These actions are then exploited for
the learning of a policy [43].

2.1.2 Learning policies for control

In LfD, there are different ways of modeling the demonstration data in the form of
control policies or trajectory policies. These policies are often modeled as (unnormalized)
probability density functions as exploiting the uncertainties of the learning method
and the variations in the demonstrations are crucial for the success of the task (see
Chapter 7). Moreover, tractable probabilistic models offer important characteristics
such as conditioning, marginalization, products and weighted summation (for mixture

8

2.1 Behavior Primitives

densities) that proved to be very useful in robotics literature. These operations allowed
models to have task-(in)dependent skills, to be combined in parallel for fuse of information
from different types of demonstrations, and to represent multimodal skills to encode
different ways of performing the same task [15].

The control policies defined as probability distributions p(ut|xt) and the trajectory
policies defined as probability distributions p(τ) are related by the equation

p(τ |s) = p(x0)
T∏

t=1
p(xt+1|xt, s)

where
p(xt+1|xt, s) =

∫
p(xt+1|xt,ut)p(ut|xt, s)dut.

where s is the context variables that depend on the task. Learning distributions with
respect to this variable allows models to generalize to different tasks parameters such as
geometric aspects [44], mass of the objects [45] etc.

The advantages of learning trajectory policies compared to control policies are: 1. ease
of collecting demonstrations for learning trajectory policies as there is no need to record
control commands (which sometimes cannot be done); and 2. better generalization
capabilities in terms of the trajectory in a task with simple dynamics. The disadvantages
are: 1. non-dynamics-aware learning process hinders good generalization capabilities
in the presence of complex dynamics; and 2. it needs to be combined with a separate
controller which may not reflect the full capabilities of the learned model.

There are several ways of learning trajectory policies from demonstration. The most
common way is to collect demonstrations D =

{
{qk

t , q̇
k
t }T

t=1, sk

}K

k=1
where K denotes the

number of demonstrations from the robot via kinesthetic teaching. Each demonstration
k contains the robot’s position and velocity trajectories {qk

t , q̇
k
t }T

t=1 with a time horizon
T , and some optional context variables sk describing the information that affects the
whole trajectory, such as environment properties (e.g. size of objects). We then select a
parametric (or nonparametric) model p(τ |s) [32] or p(xt+1|xt, s) [35] and learn its pa-
rameters (or hyperparameters) that maximizes this model likelihood. Inputting reference
trajectories into a stable controller is a standard way of designing such controllers.

Learning control policies requires a recording of control commands on top of the demonstra-
tions required for learning the trajectory policies, i.e. D =

{
{qk

t , q̇
k
t ,u

k
t }T

t=1, sk

}K

k=1
. With

these demonstrations, one can learn a parametric (or nonparametric) state-dependent
model p(ut|xt, s) [33, 37]. Learning control policies has been proved to be useful in the
reinforcement learning literature [46], with the challenge of the stability of the controllers.
Indeed, learning probabilistic models of feedback controllers without any guarantees still
requires some kind of local stability criterion for safe application in the robot. In [47], we

9

Chapter 2. Background

describe a way to learn locally stable control policies that can generalize well to different
tasks using generative adversarial networks (GANs). Another such example can also be
found in Section 7.2.2.

2.1.3 Improvement of Primitives using Active Learning

A collection of work focuses on improving and fine-tuning learned movement primitive
representations using reinforcement learning (RL) [48, 49] and iterative learning control
(ILC) [50]. LfD provides a good initial start to these methods, that will then improve
it using a reward function and random explorations. In contrast, information-theoretic
explorations in model-free BC methods to enhance the quality and the generalizability of
the learned behavior primitive have been exploited only in very few works [18, 51, 19].

An active learning framework develops and tests new hypotheses in an interactive learning
process, in contrast to passive learning systems that attempt to explain the model
according to the available training data. Consider an example of policy representation
with action-state level abstraction where the robot learns a probabilistic model p(ut|xt, s)
given N context variables. To improve this policy, the robot is expected to request a
demonstration for the (N+1)-th context variable using the uncertainty in the posterior
model p(ut,xt|s) which is assumed to be available, for example, using variational inference
methods. One of the simplest and widely used active learning method is uncertainty
sampling. Using an uncertainty measure, the learner is expected to request a query point
from the input space where it is the most uncertain about. An example of uncertainty
measure, entropy, can be maximized as

s∗
H = arg max

s
−
∫

ut,xt

p(ut,xt|s) log p(ut,xt|s)dutdxt, (2.1)

to provide an information-theoretic approach to determine the optimal context variable
to query next. The learned model p(ut,xt|s) incorporates both aleatoric (caused by
the variance in the demonstration) and epistemic uncertainties (caused by never-seen
data space and lack of sufficient data). We are interested in minimizing the epistemic
uncertainties in our model. To this end, we can train several probabilistic representations
with different local convergence properties {pe(ut|xt, s)}E

e=1 where E represents the
number of models learned. We can maximize the disagreement between each individual
model and the consensus model

s∗
E = arg max

s

E∑
e=1

KL
(
pe(ut,xt|s)||pc(ut,xt|s)

)
, (2.2)

where pc(ut,xt|s) is the consensus model which can be found by an average or fusion
and KL(p||q) is the KL divergence between probability distribution p and q. Some other
techniques consist in reducing the variance assuming a regression problem, which is in

10

2.2 Optimal Control

general not tractable. Simplifications can result in using Fisher Information and Cramér-
Rao inequality for variance reduction techniques such as in [52]. All the aforementioned
methods are myopic in the sense that they only care about the information content
of single data instance, which can result in selecting outliers or exploring far away in
the context space where no generalization is required. Information density method
overcomes this problem by choosing instances that have high information content and
still representative of the underlying distribution, using a weighted product of uncertainty
measure and similarity measure as

s∗
ID = arg max

s
Φ(s)

(∫
s̃∈U

Ψ(s, s̃)ds̃

)β

, (2.3)

where Φ(s) represents an uncertainty measure (entropy, ensemble, etc.) of context variable
s, Ψ(s, s̃) represents a similarity measure (Euclidean distance, correlation coefficients,
etc.) between the context variable s and all unlabeled potential context variables s̃ from
the unlabeled context space U , and β measures the relative weight on the similarity
measure over the uncertainty measure [17].

2.2 Optimal Control

Robot behavior primitives learned with state-action abstractions give a probabilistic
controller, with no guarantee of stability, unless explicitly constrained to be stable. Pignat
et al. [37] propose to fuse their probabilistic non stable controller with a stable one that
is attracted to the demonstration. On the contrary, trajectory-level abstractions provide
desired states and precisions to a stable optimal controller such as in [53]. Optimal
control minimizes a cost function of the state and the actions c(·) to find optimal control
commands to achieve desired states given the dynamics model, and can be described as

min
u0,...,T −1

c(x1,...,T ,u0,...,T −1) s.t. xt+1 = f(xt,ut), (2.4)

where T is the number of timesteps in the execution. Model Predictive Control (MPC)
is one of the most popular optimal controllers [54], because it can handle model uncer-
tainties and adapt to the changes by iteratively replanning at every timestep. However,
computational efficiency depends on the nonlinearities contained in the cost function c(·)
and the dynamics model f(·). Other intelligent controllers such as variable impedance
controller and adaptive controller are used mainly to cope with unexpected disturbances
from the environment.

11

Chapter 2. Background

2.2.1 Linear quadratic tracking with least-squares

Linear system evolution

The linear system evolution of the dynamics xt+1 = Atxt + Btut in stacked vector form
can be written with the expression x = Sxx1 + Suu. To find this, we begin by writing

x1 = A0x0 + B0u0,

x2 = A1x1 + B1u1 = A1(A0x0 + B0u0) + B1u1,
...

xT =
T −1∏
t=0

AT −t−1x0 +
T −2∏
t=0

AT −t−1B0u0 +
T −3∏
t=0

AT −t−1B1u1 + · · · + BT −1uT −1,

in a matrix form, we get an expression of the form x = Sxx1 + Suu, with


x1
x2
x3
...

xT


︸ ︷︷ ︸

x

=


A0

A1A0
...∏T −1

t=0 AT −t−1


︸ ︷︷ ︸

Sx

x0+


B0 0 · · · 0

A1B0 B1 · · · 0
...

...∏T −2
t=0 AT −t−1B0

∏T −3
t=0 AT −t−1B1 · · · BT −1


︸ ︷︷ ︸

Su


u0
u1
...

uT−1


︸ ︷︷ ︸

u

,

(2.5)

by stacking the decision variables x1,...,T , u0,...,T −1 into x =
[
x⊤

1 , . . . ,x
⊤
T

]⊤
, u =[

u⊤
0 , . . . ,u

⊤
T −1

]⊤
.

2.2.2 Batch-LQT

The following LQT problem

min
xt,ut

∑T
t=0(xt − µx)⊤Qt(xt − µx) + u⊤

t Rtut

s.t. xt+1 = Axt + But

(2.6)

can be transformed to its stacked (batch) version using Q=blkdiag(Q0,Q1, . . . ,QT) and
R=blkdiag(R0,R1, . . . ,RT) as

minx,u ∥x − µx∥2
Q + ∥u∥2

R

s.t. x = Sxx0 + Suu,
(2.7)

which can be solved for u analytically by replacing x in the cost function by the equality
constraint and transforming the cost function to be independent of x as Jbatch-lqt=∥Sxx0+
Suu − xd∥2

Q + ∥u − ud∥2
R. This is a quadratic function of u and can be solved for u in

12

2.3 Robot Dynamics

the least-squares sense as in

û = (S⊤
u QSu + R)−1S⊤

u Q(µx − Sxx0)

2.3 Robot Dynamics

The rigid-body dynamics of a robot manipulator with n degrees of freedom is described
as

M(q)q̈ + C(q, q̇)q̇ + g(q) = u + τext, (2.8)

where q, q̇, q̈ are the joint positions, velocities and accelerations, respectively. The
inertia matrix M(q) ∈ Rn×n, the Coriolis and centrifugal matrix C(q, q̇) ∈ Rn×n and
the gravitational term g(q) ∈ Rn are the state-dependent parameters of the dynamics
model, with state represented by y=[q⊤, q̇⊤]⊤. The torque-control action u ∈ Rn and
the external torques τext ∈ Rn acting on the robot form the input to the intrinsic robot
dynamics.

13

Part IOptimization of Controllers

15

3 Projection-based first-order con-
strained optimization solver for
robotics
Many tasks in robotics can be framed as constrained optimization problems. The
inverse kinematics (IK) problem finds a configuration of the robot that corresponds
to a desired pose in the task space while satisfying constraints such as joint limits or
center-of-mass stability. Motion planning and optimal control determine a trajectory
of configurations and/or control commands achieving the task subject to the dynamics
and the constraints of the task and the environment over a certain time horizon. Model
predictive control (MPC) recasts the optimal control problems with shorter horizons to
solve simpler constrained optimization problems in real-time. In this work, we present a
projection-based first-order optimization method that can be implemented and used for
all these aforementioned problems.

There are many commercially available second-order solvers to address general constrained
optimization problems such as SNOPT [5], SLSQP [6], LANCELOT [7] and IPOPT
[8]. However, in robotics, the literature on optimization is still focusing on developing
solvers that effectively solve each robotic problem separately. For example, in the motion
planning literature, one can find many constrained variants of differential dynamic
programming (DDP) [9] or iterative linear quadratic regulator (iLQR) [10], TrajOpt
[12], CHOMP [13] and ALTRO [11]. Furthermore, some of these solvers are not easily
adaptable and/or difficult to implement, which hinders benchmarking and potential
improvements. As powerful as these solvers are, their applications for finding real-time
feedback mechanisms such as closed-loop inverse kinematics and MPC requires tuning
and adaptations of the solver. In this chapter, we address these challenges by proposing
a very simple, yet powerful solver that can be easily implemented without having large
memory requirements.

The constraints in many of these problems are described as geometric set primitives or
their combinations (see Table 3.1). Examples include joint angle or velocity limits or
center-of-mass stability as bounded domain sets, avoiding/reaching geometric shapes
such as spheres and convex polytopes as hyperplane and quadric sets, friction cone

17

Chapter 3. Projection-based first-order constrained optimization solver for
robotics

constraints as second-order cone sets. These constraints have in common that they can
be formulated as projections rather than constraints. This chapter argues that exploiting
the projection capability of these sets instead of treating them as generic constraints in
the solvers significantly improves the performance.

Projected gradient descent is the simplest algorithm that takes into account these
projections. Its idea is to project the gradient to have a next iterate inside the constraint
set. In the optimization literature, a first-order projection-based solver called spectral
projected gradient descent (SPG) emerges as an alternative [55]. SPG has been studied
and applied to many fields because of its great practical performance even compared to
second-order constrained optimization solvers [14]. Its extension to additional arbitrary
constraints has been proposed as within augmented Lagrangian methods [56, 57, 58].
However, as the application of this idea to popular second-order methods in robotics is
not trivial [59], the usefulness of projections in the field has been overlooked.

In this chapter, we integrate the recent work in [58] into robotics optimization problems
ranging from IK to MPC by providing the most common Euclidean projections with an
additional rectangular projection. We propose an extension with multiple projections and
additional nonlinear constraints. In particular, we provide an efficient direct-shooting
optimal control formulation of this solver to address motion planning and MPC problems.

3.1 Related work

Euclidean projections and the analytical expressions to many projections can be found
in the thesis [60]. It also gives a general theory on how to project onto a level set of an
arbitrary function using KKT conditions. Extensive studies and theoretical background
on the projections and their properties can be found in [61]. In [62], the authors propose
an efficient algorithm for the projection onto arbitrary convex constraint sets and show
that exploiting projections in the optimization significantly increases the performance.
[63] discusses and benchmarks algorithms for finding the projection onto the intersection
of convex sets. One of the main algorithms for this is Dykstra’s alternating projection
algorithm [64].

The simplest algorithm that exploits projections is the projected gradient descent. Spectral
projected gradient descent improves over this by exploiting the curvature information
via its spectral stepsizes. A detailed review on spectral projected gradient methods is
given in [57].

In [65], the authors propose to use a projected gradient descent algorithm to solve the
subproblems of sequential quadratic programming (SQP). They show that their method
can solve MPC of an inverted pendulum faster than SNOPT. Our work is closest to
theirs with the differences that we use SPG instead of a vanilla projected gradient descent

18

3.2 Background

Table 3.1: Projections onto bounded domain, affine hyperplane, quadric and second-order
cone

Bounds Affine hyperplane Quadric Second-order cone
C l≤x≤u l≤a⊤x≤u l≤ 1

2 x⊤x≤u ∥x∥≤t

ΠC


x if l≤x≤u
u if x>u
l if x<l


x if l≤a⊤x≤u
x − a(a⊤x−u)

∥a∥2
2

if a⊤x>u

x − a(a⊤x−l)
∥a∥2

2
if a⊤x<l


x if l≤ 1

2 x⊤x≤u
x

√
2u

∥x∥ if 1
2 x⊤x>u

x
√

2l
∥x∥ if l> 1

2 x⊤x


(x, t), if ∥x∥≤t
(0, 0), if ∥x∥≤−t
∥x∥+t

2 (x
∥x∥ , 1) otherwise

to solve the subprolems of augmented Lagrangian instead of SQP. Instead, we propose
a direct way of handling multiple projections and inequality constraints, which is not
trivial in [65].

In [66], authors propose a projection of the update direction of the control input onto the
nullspace of the linearized constraints in iLQR. This approach can only handle simple
equality constraints (for example, velocity-level constraints of second-order systems) and
cannot treat position-level constraints for such systems, which is a very common and
practical class of constraints in real world applications.

3.2 Background

In this section, we give the background on the projections motivating their use in standard
robotic tasks such as hierarchical inverse kinematics and obstacle avoidance.

3.2.1 Euclidean projections onto sets

The solution x∗ to the following constrained optimization problem

min
x

∥x − x0∥2
2

s.t. x ∈ C
(3.1)

is called an Euclidean projection of the point x0 onto the set C and is denoted as
x∗=ΠC(x0). This operation determines the point x ∈ C that is closest to x0 in Euclidean
sense. For many sets C, ΠC(·) admits analytical expressions that are given in Table 3.1.
Even though, usually these sets are convex (e.g. bounded domains), some nonconvex
sets also admit analytical solution(s) that are easy to compute (e.g. being outside of a
sphere). Note that many of these sets are frequently used in robotics, from joint/torque
limits and avoiding spherical/square obstacles to satisfying virtual fixtures defined in the
task space of the robot.

19

Chapter 3. Projection-based first-order constrained optimization solver for
robotics

(a) Reaching a point (standard IK problem):
Cp = {p | p = pd}

(b) Reaching under/above/on a plane (in the
halfspace): Cp = {p | a⊤p≤b}

(c) Reaching inside/outside/on a circle: Cp =
{p | ∥p − pd∥2

2≤r2}
(d) Reaching inside/outside/on a rectangle:
Cp = {p | ∥A(p − pd)∥∞≤L/2}

Figure 3.1: Projection view of inverse kinematics problem. These problems can be tested
online with closed-loop controllers on the provided website1created as extensions of the
toolbox Robotics Codes from Scratch2.

3.2.2 Projection view of inverse kinematics

The inverse kinematics (IK) problem in robotics corresponds to finding a joint configura-
tion q∗ of the robot that corresponds to a given desired end-effector pose pd. Iterative
procedures are developed to robustly solve this problem considering singularities at the
Jacobian level. The success and the convergence speed of these algorithms depend on the
initialization of the problem, which is often selected as the current joint configuration of
the robot q0. With this view in mind, we can express IK as a projection problem of the
initial joint angles q0 onto a set Cq and of the initial end-effector position p0 onto a set
Cp. These two sets are assumed to be nonempty and closed sets that admit tractable
and efficient projections. A common example for Cq is the box constraints for the joint

20

3.3 Augmented Lagrangian Spectral Projected Gradient Descent for Robotics

limits. Figure 3.1 shows examples for the set Cp with Figure 3.1a showing an
equality constraint to a desired point, Figure 3.1b shows an affine hyperplane constraint
for virtually limiting the robot to be under/on a plane, Figure 3.1c and Figure 3.1d show
quadric constraints for the end-effector to stay inside/outside or on the boundary of a
circle/square. In this work, we exploit these easy projections in a first-order optimization
solver with the claim of finding solutions faster than standard constrained optimization
problems.

3.3 Augmented Lagrangian Spectral Projected Gradient
Descent for Robotics

This section gives the spectral projected gradient descent (SPG) algorithm along with the
nonmonotone line search procedure. These algorithms are easy to implement without big
memory requirements and yet result in powerful solvers. Next, we give the augmented
Lagrangian spectral projected gradient descent (ALSPG) algorithm with extensions to
general inequality constraints and multiple projections.

3.3.1 Spectral projected gradient descent

Spectral projected gradient descent (SPG) is an improved version of a vanilla projected
gradient descent using spectral stepsizes. Its excellent numerical results even in com-
parison to second-order methods have been a point of attraction in the optimization
literature [14]. SPG tackles constrained optimization problems in the form of

min
x

f(x)
s.t. x ∈ C,

(3.2)

by constructing a local quadratic model of the objective function

f(x) ≊ f(xk)+∇f(xk)⊤(x−xk)+ 1
2γk

∥x−xk∥2
2 = 1

2γk
∥x−(xk −γk∇f(xk))∥2

2 +const.

and by minimizing it subject to the constraints as

min
x

1
2γk

∥x − (xk − γk∇f(xk))∥2
2

s.t. x ∈ C,
(3.3)

whose solution is an Euclidean projection as described in Section 3.2.1 and given by
ΠC(xk − γk∇f(xk)). The local search direction dk for SPG is then given by

dk = ΠC(xk − γk∇f(xk)) − xk, (3.4)
1https://hgirgin.github.io/IKSPG.html
2https://robotics-codes-from-scratch.github.io/

21

https://hgirgin.github.io/IKSPG.html
https://robotics-codes-from-scratch.github.io/

Chapter 3. Projection-based first-order constrained optimization solver for
robotics

which is used in a nonmonotone line search (Algorithm 1) with xk+1 = xk + αkdk, to
find αk satisfying f(xk+1) ≤ fmax + αkγk∇f(xk)⊤dk, where fmax = max{f(xk−j) | 0 ≤
j ≤ min{k,M − 1}}. Nonmonotone line search allows for increasing objective values for
some iterations M preventing getting stuck at bad local minima.

The choice of γk affects the convergence properties significantly since it introduces
curvature information to the solver. Note that when choosing γk = 1, SPG is equivalent
to the widely known projected gradient descent. SPG uses spectral stepsizes obtained by
a least-square approximation of the Hessian matrix by γkI. These spectral stepsizes are
computed by

γ
(1)
k = s⊤

k sk

s⊤
k yk

and γ
(2)
k = s⊤

k yk

y⊤
k yk

, (3.5)

where sk = xk − xk−1 and yk = ∇f(xk) − ∇f(xk−1) [14]. In the case of quadratic
objective function in the form of x⊤Qx, these two values correspond to the maximum
and minimum eigenvalues of the matrix Q. Recent developments in SPG have shown that
an alternating use of these spectral stepsizes lead to a better performances. The initial
spectral stepsize can be computed by setting x̄0 = x0 − γsmall∇f(x0), and computing
s̄0 = x̄0 − x0 and ȳ0 = ∇f(x̄0) − ∇f(x0). Note that this heuristic operation costs one
more gradient computation. The final algorithm is then given by Algorithm 2.

Algorithm 1: Non-monotone line search
Set β = 10−4, α = 1, M = 10, c = ∇f(xk)⊤dk,
fmax = max{f(xk−j)|0 ≤ j ≤ min{k,M − 1}}
while f(xk + αdk) > fmax + αβc do

ᾱ = −0.5α2c

(
f(xk + αdk) − f(xk) − αc

)−1

if 0.1 ≤ ᾱ ≤ 0.9 then
α = ᾱ

else
α = α/2

end
end

3.3.2 Augmented Lagrangian spectral projected gradient descent (AL-
SPG)

SPG algorithm has been shown to be a powerful competition to second-order solvers in
many ways. Each iteration can be significantly cheaper than a second-order method if
a computationally efficient projection is used and provides better directions than other
first-order methods. However, SPG alone is usually not sufficient to solve problems in
robotics with complicated nonlinear constraints. [58] provides an augmented Lagrangian

22

3.3 Augmented Lagrangian Spectral Projected Gradient Descent for Robotics

Algorithm 2: Spectral Projected Gradient Descent
Initialize xk, γk ϵ=10−5, k=0;
while ∥ΠC(xk − ∇f(xk)) − xk∥∞ > ϵ do

Find a search direction by dk = ΠC(xk − γk∇f(xk)) − xk

Do non-monotone line search using Algorithm 1 to find xk+1
Update the spectral stepsize
sk+1 = xk+1 − xk and yk+1 = ∇f(xk+1) − ∇f(xk)
γ(1) = s⊤

k+1sk+1

s⊤
k+1yk+1

and γ(2) = s⊤
k+1yk+1

y⊤
k+1yk+1

if γ(1) < 2γ(2) then
γk+1 = γ(2)

else
γk+1 = γ(1) − 1

2γ
(2)

end
k = k + 1

end

framework to solve problems with constraints g(x) ∈ C and x ∈ D, where g(·) is a convex
function, C is a convex set, and D is closed nonempty set, both equipped with easy
projections.

In this section, we build on the work in [58] with the extension of multiple projections
and additional general equality and inequality constraints. The general optimization
problem that we are tackling here is

min
x∈D

f(x)
s.t. gi(x) ∈ Ci, ∀i ∈ {1, . . . , p}

(3.6)

where gi(·) are assumed to be arbitrary nonlinear functions. Note that even though
the convergence results in [58] apply to the case when these are convex functions and
convex sets, we found in practice that the algorithm is powerful enough to extend to
more general cases. For simplicity, we redefine the additional equality constraints as an
additional set to be projected onto with Cy = {y | y = 0} with ΠCg (h(·)) = 0. Also, we
transform inequality constraints to equality constraints using the proposed method in
the following Section 3.3.3.

We use the following augmented Lagrangian function

L(x, {λCi , ρCi}p
i=1) = f(x) +

p∑
i=1

ρCi

2

∥∥∥∥∥g(x) + λCi

ρCi
− ΠCi

(
g(x) + λCi

ρCi

)∥∥∥∥∥
2

2
(3.7)

23

Chapter 3. Projection-based first-order constrained optimization solver for
robotics

whose derivative wrt x is given by

∇L(x, {λCi , ρCi}p
i=1) = ∇f(x) +

p∑
i=1

ρCi

2 ∇g⊤
i (x)

(
gi(x) + λCi

ρCi
− ΠCi

(
gi(x) + λCi

ρCi

))
,

using the property of convex Euclidean projections derivative [61]

∇∥g(x) − Π(g(x))∥2
2 = ∇g(x)⊤

(
g(x) − Π(g(x)

)
. (3.8)

This way, we obtain a formulation which does not need the gradient of the projection func-
tion ΠCi(·). One iteration of ALSPG optimizes the subproblem arg minx∈D L(x, {λCi , ρCi}p

i=1)
given {λCi , ρCi}p

i=1, and then updates these according to the next iterate. Defining the aux-
iliary function V (x,λCi , ρCi)=

∥∥∥∥g(x) − ΠCi

(
g(x) + λCi

ρCi

)∥∥∥∥, the algorithm is summarized
in Algorithm 3. Note that one can define and tune many heuristics around augmented
Lagrangian methods with possible extensions to primal-dual methods and here we give
only one possible way of implementing ALSPG.

Algorithm 3: ALSPG
Set λCi

0 =0, ρCi
0 =0.1, k=0, ϵ > 0

while ∥∆L(x, {λCi , ρCi}p
i=1)∥ > ϵ do

xk+1 = arg minx∈D L(x, {λCi , ρCi}p
i=1) with SPG in Algorithm 2

foreach Ci do

λCi
k+1 = ρCi

(
gi(x) + λCi

ρCi
− ΠCi

(
gi(x) + λCi

ρCi

))
if V (xk+1,λ

Ci
k+1, ρ

Ci
k) ≤ V (xk,λ

Ci
k , ρ

Ci
k) then

ρCi
k+1=ρCi

k

else
ρCi

k+1=10ρCi
k

end
end

end

3.3.3 Handling of inequality constraints

In robotics, one frequent and intuitive way of incorporating the constraints into the
optimization problem is to use soft constraints and tune the weights until a satisfactory
result is obtained. However, this approach breaks the hierarchy of the task without any
real guarantee of constraint satisfaction. Soft constraints are obtained by transforming the
hard constraint function into a positive cost function using auxiliary functions such as the
barrier function. In this section, we propose to exploit such soft constraint functions as
hard constraints to reduce each inequality constraint to an equality constraint, eliminating
the need of using slack variables. Note that this procedure is in line with the construction

24

3.3 Augmented Lagrangian Spectral Projected Gradient Descent for Robotics

of a standard augmented Lagrangian for inequality constraints.

Let gi(x) ≤ 0 be the ith inequality constraint with i=1, . . . ,M and g(·) : Rn → R. We
define hi(x) = max(0, gi(x), where h(·) : Rn → R+. Then, the statement gi(x)) ≤ 0 is
equivalent to hi(x) = 0. Moreover, we can generalize this statement to obtain one single
equality constraint from any number of inequality constraints in order to increase the
computational speed. This generalization is given by the theorem below.

Theorem 1. The statement gi(x) ≤ 0, ∀i=1, . . . ,M is equivalent to h(x) = ∑M
i=1 hi(x) =

0, where hi(x) = max(0, gi(x)).

Proof. 1. If gi(x) ≤ 0, ∀i=1, . . . ,M , then it is by definition that ∑M
i=1 hi(x) = 0.

2. Assume ∑M
i=1 hi(x) = 0 and ∃j s.t. gj(x) > 0, ∀j=1, . . . , N < M . Then,∑M

i=1 hi(x) = ∑N
j=1 hj(x) = ∑N

j=1 gj(x) > 0, which contradicts the assumption.

Although it seems to simplify the problem a lot in terms of dimensions, using Theorem 1
to reduce compactly all inequality constraints into one single constraint would lose some
contribution about the gradients from each constraint in one iteration of any solver. In
practice, this presents itself as a trade-off between the number of iterations and the
computational complexity of each iteration to solve the optimization problem.

3.3.4 Optimal Control with ALSPG

We consider the following generic constrained optimization problem

min
x∈Cx,u∈Cu

c(x,u)

s.t. x = F (x0,u),
h(x,u) = 0,

(3.9)

where x =
[
x⊤

1 ,x
⊤
2 , . . . ,x

⊤
t , . . . ,x

⊤
T

]⊤
, u =

[
u⊤

0 ,u
⊤
1 , . . . ,u

⊤
t , . . . ,u

⊤
T −1

]⊤
and the function

F (·, ·) correspond to the forward rollout of the states using a dynamics model xt+1 =
f(xt,ut), namely, F (x0,u) =

[
f(x0,u0)⊤,f(x1,u1)⊤, . . . ,f(xt,ut)⊤, . . . ,f(xT −1,uT −1)⊤

]⊤
.

We use a direct shooting approach and transform Equation (3.9) into a problem in u

only by
min
u∈Cu

c(F (x0,u),u)

s.t. F (x0,u) ∈ Cx,

h(F (x0,u),u) = 0,
(3.10)

which is exactly in the form of Equation (3.6), if g1(u) = F (x0,u) and g2(u) =
h(F (x0,u),u). The unconstrained version of this problem can be solved with least-

25

Chapter 3. Projection-based first-order constrained optimization solver for
robotics

square approaches. However, assuming xt ∈ Rm, ut ∈ Rn, this requires an inversion of a
matrix of size Tn× Tn, whereas here we only work with the gradients of the objective
function and the functions gi(·). The component that requires a special attention is
∇F (x0,u) and in particular, its tranpose product with a vector. It turns out that this
product can be efficiently computed with a recursive formula (as also described in [65]),
resulting in fast SPG iterations. Denoting At = ∇xtf(xt,ut) and Bt = ∇utf(xt,ut), and
∇uF (x0,u)⊤y = z with y =

[
y0,y1, . . . ,yt, . . . ,yT −1

]
, z =

[
z0, z1, . . . ,zt, . . . ,zT −1

]
,

one can show that

∇uF (x0,u)⊤y =


B⊤

0 B⊤
0 A⊤

1 B⊤
0 A⊤

1 A⊤
2 . . . B⊤

0
∏T −1

t=1 A⊤
t

0 B⊤
1 B⊤

1 A⊤
2 . . . B⊤

1
∏T −1

t=2 A⊤
t

...
...

...
0 0 0 . . . B⊤

T −1




y0
y1
...

yT −1

 (3.11)

=



B⊤
0 (y0 + A⊤

1 y1 + A⊤
1 A⊤

2 y2 +∏T −1
t=1 A⊤

t yT −1)
B⊤

1 (y1 + A⊤
2 y2 + A⊤

2 A⊤
3 y3 +∏T −1

t=2 A⊤
t yT −1)

...
B⊤

T −2(yT −2 + A⊤
T −1yT −1)

B⊤
T −1yT −1


(3.12)

where the terms in parantheses can be computed recursively backward by z̄t+1 =
(yt+1 + A⊤

t z̄t), zt = B⊤
t−1z̄t and z̄T −1 = yT −1, without having to construct the big

matrix ∇uF (x0,u)⊤.

Note that when there are no constraints on the state and h(·) = 0, then Equation (3.10)
can be solved directly with SPG algorithm. We believe that SPG can be used to solve
problems with higher horizons even faster than iLQR. For a breakdown of computational
times compared to the number of timesteps for a reaching planning tasks without
constraints for 7DoF manipulator, see Figure 3.2. Here we plotted the average convergence
time in (s) for both algorithms with 5 different end positions in task space and horizons
of 100, 1000, 2000, 3000 and 5000 timesteps. iLQR is implemented with dynamic
programming, and SPG as explained in the previous section, both in Python.

3.4 Convex polytope projections and linear transformations

Often, Euclidean projection problems are composed of a linear transformation of the
constraint set onto which the projection is easy, hindering the analytical projection
property of this set. ALSPG can be used directly to solve for this kind of problems in
a very efficient way, still exploiting the projection capability of the base constraint set.
For example, consider a unit second-order cone set as CSOC = {(z, t) | ∥z∥2 ≤ t} and
a generic second-order cone (SOC) constraint as C={x | ∥Ax + b∥2 ≤ c⊤x + d}. This

26

3.4 Convex polytope projections and linear transformations

Figure 3.2: Comparison of iLQR and SPGOC in terms of convergence time evolution vs
the number of timesteps or horizon.

can be transformed to a unit second-order cone set by taking g(x)=
[
Ax + b c⊤x + d

]
and therefore C={x | g(x) ∈ CSOC}. Then the optimization problem of projection onto
a generic second-order cone, namely, arg minx∥x − x0∥2

2 s.t. ∥Ax + b∥2 ≤ c⊤x + d

can be rewritten as arg minx∥x − x0∥2
2 s.t. g(x) ∈ CSOC and can be solved efficiently

using ALSPG algorithm with only unit second-order cone projections, without requiring
explicit derivatives of the cone constraints.

In the case of convex polytope projections, we can even find some conditions when the
linear transformation does not break the analytical projections. Especially for rectangular
projections, which are a special case of convex polytope projections, we can find special
conditions such that we can still find analytical expressions even if we rotate and scale
the rectangles. In the next section, we give the development and insights of convex
polytope projections as these are one of the most commonly encountered constraint
types in robotics problems such obstacle avoidance. We then explain what kind of linear
transformations can be applied to projections to preserve analytical projection capability.

3.4.1 Convex polytope projections

A convex polytope of n sides can be described by n lines with slopes ai and intercepts
bi. The inside region of this polytope (e.g. for reaching) is given by and constraints
Cin

polytope = {x|
∧n

i=0 a⊤
i x ≤ ui} while the outside region (e.g. for obstacle avoidance) is

given by its negative statement with or constraints Cout
polytope = {x|

∨n
i=0 a⊤

i x > li}. The
projection onto Cin

polytope can be described as a summation of n hyperplane projections
in ALSPG. Even though constraints for the set Cout

polytope can not be easily described in
general optimization solvers, we can show that the projection of a point x0 onto this set

27

Chapter 3. Projection-based first-order constrained optimization solver for
robotics

requires finding the closest hyperplane i to x0, then the projection outside the hyperplane
with index i, namely Πi

Cout
polytope

(x0). The minimum value of the objective function of
the projection becomes ∥Πi

Cout
polytope

(x0) − x0∥ which is equal to the distance of x0 to the
hyperplane i (one can check this by inserting the corresponding values from Table 3.1).
This observation makes significant simplifications for the solvers that can take projections
into account.

In this section, we give the simplifications of this idea for often-encountered rectangular
regions. The constraint of being inside a square region, also called a box constraint, can
be described by infinity norms as the set Cin

rect={x|∥x∥∞ ≤ u} represents the inside region
of a square of width u centered at the origin. This is basically a compact description of 4
lines (in 2D) describing the square, i.e., x ≤ u, −u ≤ x, y ≤ u, −u ≤ y. This observation
allows us to write down Cout

rect={x | l ≤ ∥x∥∞} which represents the outside region of a
square of width l centered at the origin. Cin

rect is a simple clipping operation for x0 as
described in Table 3.1. However, Cout

rect requires setting up the optimization problem for
the Euclidean projection and checking the KKT conditions. For conciseness, we give
here only the resulting projection. Denoting k the index where k= arg maxi |x0,i|, the
projection onto Cout

rect is then given by

ΠC(x0)j =

x0,j if x0,k≤l
l sign x0,k otherwise

(3.13)

3.4.2 Linear transformation of projections

Having stated projections for some basic geometric primitives, one may need to apply
rotation and translation operations to such shapes to exploit more complex ones. One
such example is the transformation of square projections onto rotated and translated
square regions. Considering a convex set C = {x|f(x) ≤ t}, one can show that the
projection onto C′ = {x|f(A(x−xc)) ≤ t} is given by ΠC′(x0) = A−1ΠC(A(x0−xc))+xc,
where A is an orthogonal matrix. For creating rectangular regions, one needs to scale
each dimension of the variable, i.e. multiplying by a diagonal matrix. Even though this
does not generalize to all cases, for the rectangular regions, one can show that A can
be in the form of a multiplication of an orthogonal matrix and a diagonal matrix. For
example, while a square of length L can be described by the set C = {x|∥x∥∞ = L/2},
a rectangle of length L and width W , which is rotated by an angle θ can be described
with the transformation matrix A = R(θ)D, where R is the rotation matrix, and
D = diag(1, L/W).

28

3.5 Experiments

3.5 Experiments

In this section, we perform experiments solving inverse kinematics problems, motion
planning and MPC for a task with hybrid dynamics, and motion planning for rectangular
obstacle avoidance. The motivation behind these experiments is to show that: 1. the
proposed way of solving these robotics problem can be unconventionally faster than
the second-order methods such as iLQR and 2. exploiting projections whenever we can
instead of leaving the constraints for the solver to treat them as generic constraints
increases the performance significantly.

3.5.1 Constrained inverse kinematics

A constrained inverse kinematics problem can be described in many ways using projections.
One typical way is to find a q ∈ Cq that minimizes a cost to be away from a given initial
configuration q0 while respecting general constraints h(q) = 0 and projection constraints
f(q) ∈ Cx

minq∈Cq ∥q − q0∥2
2

s.t. h(q) = 0,
f(q) ∈ Cx,

(3.14)

where f(·) can represent entities such as the end-effector pose or the center of mass
for which the constraints are easier to be expressed as projections onto Cx, and Cq

can represent the configuration space within the joint limits. Figure 3.1 shows 3DoF
planar manipulator with f(·) representing the end-effector position and Cx denoting (a)
Cx = {x | x=xd}, (b) Cx = {x | a⊤x + b=0}, (c)Cx = {x | ≤ r2

i ≤ ∥x − xd∥2
2 ≤ r2

o} and
(d) Cx = {x | ∥x − xd∥∞,W ≤ L}. We applied ALSPG algorithm iteratively to obtain a
reactive control loop and we implemented it on an interactive webpage running python.
The reader can refer to the provided website3 for trying the code.

Talos IK: We tested our algorithm on a high dimensional (32 DoF) inverse kinematics
problem of TALOS robot subject to constraints i) center of mass inside a box, ii) end-
effector constrained to lie inside a sphere and iii) foot position and orientations are
given. We compared two versions of ALSPG algorithm 1) by casting these constraints
as projections onto Cx, 2) by keeping all the constraints inside the function h(·) to see
direct advantages of exploiting projections in ALSPG. We ran the algorithm from 1000
different random initial configurations for both cases and compared the number of function
and Jacobian evaluations, nf and nj . For the case 1), we obtained nf =897.64 ± 82.84
and nj=883.44 ± 81.7, while for the case 2), we obtained nf =6459.4 ± 3756.8 and
nj=3791.79 ± 1061.05.

Robust IK: In this experiment, we would like to achieve a task of reaching and staying
in the half-space under a plane whose slope is stochastic because, for example, of the

3https://hgirgin.github.io/IK_SPG.html

29

https://hgirgin.github.io/IK_SPG.html

Chapter 3. Projection-based first-order constrained optimization solver for
robotics

(a) Talos inverse kinematics problem with foot
pose, center of mass stability (red point inside
yellow rectangular prism) and end-effector in-
side a (pink) sphere constraints.

(b) Robust inverse kinematics solution with
Cp = {p | µ⊤p + Ψ−1(η)∥Σ 1

2 p∥2 ≤ 0}

Figure 3.3: Illustration of inverse kinematics problems solved with the proposed algorithm.

uncertainties in the measurements of the vision system. The constraint can be written as
a⊤f(q) ≤ 0, where a ∼ N (µ,Σ). We can transform it into a chance-constraint to provide
some safety guarantees in a probabilistic manner. The idea is to find a joint configuration
q such that it will stay under a stochastic hyperplane with a probability of η ≥ 0.5. Using
Appendix A.2.5, this inequality can be written as a second-order cone constraint wrt f(q)
as µ⊤f(q) + Ψ−1(η)∥Σ

1
2 f(q)∥2 ≤ 0, where Ψ(·) is the cumulative distribution function

of zero mean unit variance Gaussian variable. Defining g(q) =
[
(Σ 1

2 f(q))⊤ µ⊤f(q)
]⊤

,
the optimization problem can then be defined as

min
q∈Cq

∥q − q0∥2
2

s.t. g(q) ∈ CSOC
(3.15)

which can be solved efficiently without using second-order cone (SOC) gradients using
the algorithm proposed in this chapter. We tested the algorithm on a 3DoF robot shown
in Figure 3.3b by optimizing for a joint configuration for a probability of η = 0.8 and
then computing continuously the constraint violation for the last 1000 times by sampling
a line slope from the given distribution. We obtained a constraint violation percentage
of around 80% as expected.

3.5.2 Motion planning and MPC on planar push

Non-prehensile manipulation has been widely studied as a challenging task for model-
based planning and control, with the pusher-slider system as one of the most prominent

30

3.5 Experiments

Table 3.2: Comparison of MPC with iLQR and ALSPG for planar push

iLQR ALSPG
Convergence time (s) 14.5 ± 1.25 2.93 ± 0.5
Number of function ev. 26689.5 ± 1830.5 6104.0 ± 1455.6
Number of jacobian ev. 225.9 ± 27.4 78.4 ± 8.5

(a) Pusher-slider system path optimized by the
proposed algorithm to go from the state (0, 0, 0)
to (0.1, 0.1, π/3). Optimal control solved with
SPG results in a smooth path for the pusher-
slider system.

(b) Convergence error mean and variance plot
for iLQR and ALSPG motion planning algo-
rithm for 10 different goal conditions starting
from the same initial positions and control com-
mands.

Figure 3.4: SPG algorithm applied to a pusher-slider system.

examples (see Figure 3.4). The reasons include hybrid dynamics with various interaction
modes, underactuation and contact uncertainty. In this experiment, we study motion
planning and MPC on this planar push system, without any constraints, to compare to a
standard iLQR implementation. Motion planning convergence results for 10 different
tasks are given for iLQR and ALSPG along with means and variances in Figure 3.4b.
Although iLQR seems to converge to medium accuracy faster than ALSPG, because of
the difficulties in the task dynamics, it seems to get stuck at local minima very easily.
On the other hand, ALSPG seems to performing better in terms of variance and local
minima. We applied MPC with iLQR and ALSPG with an horizon of 60 timesteps
and stopped the MPC as soon as it reached the goal position with a desired precision.
Table 3.2 shows this comparison in terms of convergence time (s), number of function
evaluations and number of Jacobian evaluations. According to these findings, ALSPG
seems to be perform better than a standard iLQR, even when there are no constraints in
the problem.

31

Chapter 3. Projection-based first-order constrained optimization solver for
robotics

Table 3.3: Comparison of motion planning for obstacle avoidance for three cases

ALSPG-Proj. SLSQP-Proj. ALSPG-WoProj.
Convergence time (ms) 392.0 ± 66.2 679.0 ± 260.0 2780.0 ± 530.9
Number of function ev. 332.0 ± 60.6 438.4 ± 200.7 571.8 ± 109.9
Number of jacobian ev. 187.8 ± 34.6 389.2 ± 164.3 399.0 ± 93.9

3.5.3 Motion planning with obstacle avoidance

Obstacle avoidance problems are usually described using geometric constraints. In
manipulators, capsules and spheres are used to represent the robot and the environment,
such that the shortest distance computations and their gradients can be computed
efficiently. In autonomous parking, obstacles and cars are usually described as 2D
rectangular objects. In this experiment, we take a 2D double integrator point car
reaching a target pose in the presence of rectangular obstacles (see Figure 3.5). We apply
ALSPG algorithm with and without projections (ALSPG-Proj. and ALSPG-WoProj.)
to illustrate the main advantages of having an explicit projection function over direct
constraints. The main difference is without projections, the solvers need to compute the
gradient of the constraints, whereas with projections, this is not necessary. In order to
understand the differences between a first-order and a second-order methods, we also
compared ALSPG-Proj to AL-SLSQP with projections (SLSQP-Proj.), which is the
same algorithm except the subproblem is solved by a second-order solver SLSQP from
Scipy. The objective function is c(x,u) = 10−1∥xT − xG

T ∥2
2 + 10−4∥uT ∥2

2. We performed
5 experiments each with different settings of 4 rectangular obstacles and compared the
convergence properties. The results are given in Table 3.3. The comparison between
ALSPG-Proj. and ALSPG-WoProj. reports a clear advantage of using projections
instead of plain constraints in the convergence properties. Although the convergence
time comparison is not necessarily fair for SPG implementations as the SLSQP solver
calls C++ functions, the comparison of ALSPG-Proj. and SLSQP-Proj. shows that
ALSPG-Proj. still achieves lower convergence time.

3.5.4 MPC on Franka Emika

We tested ALSPG algorithm on an MPC problem of tracking an object with box
constraints on the end-effector position of a Franka Emika robot (see Figure 3.6). The
Aruco marker on the object is tracked by a camera held by another robot. In this
experiment, the goal is to show the real-time applicability of the proposed algorithm for
a constrained problem in the presence of disturbances. In Figure 3.7, the error of the
constraints and the objective function is given for a 1 min. time period of MPC with
a short-horizon of 50 timesteps. Between 20-30s and s, the robot is disturbed by the
user thanks to the compliant torque controller run on the robot. We can see that the
algorithm drives smoothly the error to zero. The accompanying video can be seen in the

32

3.6 Conclusion

Figure 3.5: Motion planning problem in the presence of 4 scaled and rotated rectangular
obstacles.

provided website.

3.6 Conclusion

In this chapter, we presented a fast first-order constrained optimization framework based
on geometric projections widely used in robotics problems ranging from inverse kinematics
to motion planning. We show that many of the geometric constraints can be rewritten as
a logical combination of geometric primitives onto which the projections admit analytical
expressions. We build an augmented Lagrangian method with spectral projected gradient
descent as subproblem solver for constrained optimal control. We demonstrate : i. the
advantages of using projections when compared to setting up the geometric constraints
as plain constraints with gradient information to the solvers; and ii. the advantages of
using spectral projected gradient descent based motion planning compared to a standard
second-order iLQR algorithm through experiments on different robotic tasks.

Sample-based MPC have been increasingly popular in recent years thanks to its fast
practical implementations despite their lack of theoretical guarantees. In contrast, second-
order methods for MPC require a lot of computational power but with somewhat better
convergence guarantees. We argue that ALSPG, being already in between these two
methodologies in terms of these properties, promises great future work to combine it
with sample-based MPC to further increase its advantages of both sides.

33

https://hgirgin.github.io/IK_SPG.html

Chapter 3. Projection-based first-order constrained optimization solver for
robotics

Figure 3.6: MPC setup for tracking an object subject to box constraints.

Figure 3.7: Error in the objective and the squared norm of the constraint value during 1
min execution of MPC on Franka Emika robot.

34

4 Robust Anticipatory Robot Skills
with Memory

Optimal control can be found in a great variety of applications from economics [67] to
engineering problems such as energy management [68] and robotics [69, 70]. It consists of
determining optimal actions in problems following a known forward model that describe
state changes in time when actions are applied.

In robotics, optimal control has been applied in many applications such as biped walking
generation [71, 72], centroidal dynamics trajectory [73, 74] and whole-body motion
planning [75]. These works often consider the solution of optimal trajectories of states
and actions as a plan over a horizon, which is then tracked with lower level feedback
control mechanisms. As the forward models that define these actions are not perfect
representations of the real physical movements, feedback control is designed to achieve
the planned motion even in the presence of noise, delays and unpredictable perturbations
in the environment.

Among others, model predictive control (MPC) [76] is a powerful feedback mechanism in
optimal control, that became a key methodology to control complex dynamical systems
such as humanoids [77]. It allows to compute the optimal plan over a short receding
horizon, apply the first few control commands until a new plan is recomputed using the
current state of the robot. However, due to scaling issues, MPC approaches still have
many challenges to be solved for high dimensional systems, for longer receding horizons,
and for high frequency control.

Linear quadratic tracking (LQT) [78] and iterative linear quadratic regulator (iLQR)
[2] and their variants are increasingly used in MPC frameworks for controlling high
dimensional robotic systems such as humanoids and manipulators [4, 79, 77, 80]. In
particular, dynamic programming solutions for these methods are often computationally
less intensive than other trajectory optimization methods, with the additional benefit of
outputting a full state feedback controller with gains over the horizon. While some works
exploit these gains in real-time applications, other works use only the feedforward nominal
solutions in MPC. The feedback controller structure in iLQR enables the feedback gains

35

Chapter 4. Robust Anticipatory Robot Skills with Memory

(a) Mug-sugar cube scenario exploit-
ing task precisions

(b) Pick-and-place task exploiting object affordances. The
same controller results in two different grasping locations.

Figure 4.1: (a) The robot decides where to place the object according to the initial
position and with the anticipation to pick up the sugar cube and put it inside the cup.
(b) Pick-and-place task with the Franka Emika robot deciding autonomously to grasp
the object from different parts, as an adaptation to different initial configurations. The
memory feedback property allows the robot to remember where it placed the mug and
grasped the object, so that it can place it accordingly.

to react to the current state of the system while anticipating the future states. While this
is enough in many applications, they can not succeed in robotic applications where the
robot needs to remember what it has done before to react and replan, since it does not
have the notion of memory of the past states. The latter requires a controller which gets
feedback from both the past states and the current state to find optimal control actions.
For example, a robot grasping an object from its different parts needs to remember where
it grasped the object to place it without collision as illustrated in Figure 4.1b.

Recently, System Level Synthesis (SLS) [21] was proposed as an optimal controller
reacting not only to the current state but also to the past states of the system through
closed-loop mappings optimization. This framework has been proven to be useful in
distributed control systems with uncertain dynamical systems. Such a controller with
memory could be exploited in tasks requiring correlations between states at different
timesteps, as opposed to a controller without memory such as LQR controller. However,
the SLS framework has a couple of limitations to be used in robotics applications requiring
a memory of states with sparse cost functions and nonlinear dynamics.

In this chapter, we investigate how optimal control framework can produce anticipatory
and reactive robot skills with a memory of the states to produce smart behaviors that
can exploit task precisions and object affordances. We propose to achieve our goal with
the following extensions to the SLS framework: 1) by adding a feedforward part to the
controller enabling trajectory and viapoint tracking, 2) by extending the approach to
nonquadratic costs and nonlinear systems using Newton method optimization; and 3) by
providing fast adaptation and replanning strategies.

This chapter is organized as follows. First, Section 4.1 presents the related work in
controllers with memory and SLS controllers, mostly within the domain of robotics. In

36

4.1 Related Work

Section 4.2, we introduce the SLS framework and explain how LQR is a specific case
of SLS. Then, in Section 4.3, we show our proposed extensions over SLS that enables
its application in robotics and the proposed adaptation and replanning strategies when
the robot encounters new situations. In Section 4.4, we showcase our approach with
two scenarios exploiting task precisions and object affordances in pick-and-place tasks
in a simulated and a real environment with a 7-axis Franka Emika robot. Finally, we
conclude the work and discuss potential impacts of the work in Section 4.5.

Publication Note
The material presented in this chapter is adapted from the following publications:

• Girgin, H., Jankowski, J., and Calinon, S. (2023). Reactive anticipatory robot
skills with memory. In Robotics Research (pp. 436-451). Cham: Springer Nature
Switzerland.

4.1 Related Work

Feedback controllers that can act on the history of states are investigated in robotics
mainly via reinforcement learning algorithms by changing the structure of the policy,
especially with recurrent neural networks (RNN) [81]. In [82], the authors propose to
learn stable bipedal locomotion with an RNN policy, where the memory serves as a model
of the physical parameters of the task. In [83], a deep learning architecture for learning
a policy that can remember some important information from the past observations is
developed by augmenting the policy state with a continuous memory state. The authors
showed that their guided policy search algorithm could solve a peg sorting task with a
manipulator which needs to remember the target hole position given at the beginning
of the training and a plate and bottle placing task where the robot needs to remember
which object it is holding to determine the orientation.

System level synthesis (SLS) has been developed in a collection of works that are
summarized in [21]. It provides a novel perspective on robust optimal control design by
optimizing over the closed-loop mappings of the system, instead of directly optimizing
the controller. The authors showed how SLS can be exploited in the domain of large-scale
distributed optimal control and robust optimal control.

In [84], SLS has been exploited to learn unknown dynamics for safe control with LQR,
including robust safety guarantees in the state and input constraints. In [85], perception
based SLS controllers are designed for autonomous control of vehicles learning linear
time invariant dynamical systems from image data. In [86], robust perception-based SLS
controller is applied for the safe control of a quadrotor. The work in [87] gives necessary
and sufficient conditions for the existence of SLS controller for nonlinear systems and [88]

37

Chapter 4. Robust Anticipatory Robot Skills with Memory

exploits these ideas by designing a nonlinear controller for a constrained LQR problem
by blending several linear controllers.

4.2 Background

This section follows [21] to present the SLS framework for regulation problems. A linear-
time-varying (LTV) system can be written as xt+1 = Atxt + Btut + wt,∀t={0, . . . , T},
where xt ∈ Rm is the state, ut ∈ Rn is the control input, and wt ∈ Rm is an ex-
ogenous disturbance term. By stacking these vectors for each time-step t, we define
x=

[
x⊤

0 x⊤
1 . . . x⊤

T

]
, u=

[
u⊤

0 u⊤
1 . . . u⊤

T

]
and w=

[
x⊤

0 w⊤
0 w⊤

1 . . . w⊤
T −1

]
, which

allows us to express the dynamics as

x = ZAdx + ZBdu + w, (4.1)

where Z is a delaying operator with identity matrices along its first block sub-diagonal and
zeros elsewhere, Ad= blkdiag (A0,A1, . . . ,AT) and Bd= blkdiag(
B0,B1, . . . ,BT). In this work, we consider the stacked disturbance as w∼N (0,
Σw), where Σw=blkdiag(Σx0 ,Σnoise).

We assume a controller of the form u=Kx, where K is a lower block triangular matrix.
Note that this controller is more advanced than the controller found by linear quadratic
regulator (LQR). In fact, the former includes the latter at its block-diagonal elements
while the off-block-diagonal elements act on the history of the states. Inserting the
controller definition into (4.1), we get x=ZAdx + ZBdKx + w, which results in the
closed-loop responses

x = Φxw, Φx =
(

I − Z(Ad + BdK)
)−1

, (4.2)

u = Φuw, Φu = K

(
I − Z(Ad + BdK)

)−1
, (4.3)

where {Φx,Φu} describe the closed loop system responses from the exogenous distur-
bance w to the state x and control input u, respectively. SLS optimizes directly over
these system responses, instead of the controller map K as was done by the dynamic
programming solutions of LQR. As the controller K is a block lower triangular matrix,

38

4.2 Background

these maps are also lower block triangular matrices as follows:

Φx =


Φ0,0

x 0 0 · · · 0 0
Φ1,0

x Φ1,1
x 0 · · · 0 0

...
...

...
...

ΦT,0
x ΦT,1

x ΦT,2
x · · · ΦT,T −1

x ΦT,T
x

 ,

Φu =


Φ0,0

u 0 0 · · · 0 0
Φ1,0

u Φ1,1
u 0 · · · 0 0

...
...

...
...

ΦT,0
u ΦT,1

u ΦT,2
u · · · ΦT,T −1

u ΦT,T
u

 .

By inserting (4.2) and (4.3) into the dynamics equation (4.1), we obtain

Φxw = ZAdΦxw + ZBdΦuw + w,

=⇒ Φx = ZAdΦx + ZBdΦu + I = Sx + SuΦu, (4.4)

where the implication is because we want this pair of system responses to remain
independent of the noise in the system for every initial state, and Sx=(I − ZAd)−1,
Su=SxZBd. Note that these matrices can also be constructed recursively as explained
in Section 2.2.1. The objective of SLS is to optimize directly over these lower block
triangular system responses {Φx,Φu} so that there exists a linear controller K such that
K=ΦuΦ−1

x and (4.4) holds as outlined by the Theorem 2.1 of [21].

Linear quadratic regulator: We consider now a linear quadratic regulator problem
with random noise in the process and with a random initial state as

min
xt,ut

∑T
t=0E[x⊤

t Qtxt + u⊤
t Rtut]

s.t. xt+1 = Axt + But + wt.
(4.5)

Using the stacked vectors x, u and w and the block diagonal matrices Q=blkdiag(Q0,Q1, . . . ,QT)
and R=blkdiag(R0,R1, . . . ,RT), this problem can be recast as optimization over system
responses as

min
Φx,Φu

E[∥Φxw∥2
Q + ∥Φuw∥2

R]

s.t. Φx = Sx + SuΦu,

Φx,Φu ∈ L
(4.6)

where L represents the space of lower block triangular matrices. Solving (4.6), we obtain
a feedback controller achieving the desired system responses. It is possible to show
that we can remove the expectation and treat the cost function as a random valued
cost function. This allows us to solve the problem independently of the value of w.
Therefore, in the remainder of this chapter, we take the cost functions as random valued

39

Chapter 4. Robust Anticipatory Robot Skills with Memory

cost functions instead of their expectations.

Note that because of the constraint to lie on the space L, this problem cannot be
solved directly as we would solve a simple LQR problem. Instead, we make use of the
column separability of the objective function and the equality constraint representing
the dynamics model to separate the problem into T independent subproblems containing
only the nonzero part of each block column of the system responses as in [21].

The controller found by solving (4.6) can be applied directly to problems with linear
forward models and quadratic costs, if the task is to regulate the state to a set-point or
to a reference trajectory, which is already dynamically feasible by the plant. In fact, in
these cases, one can transform the forward state dynamics to forward error dynamics
and still exploit SLS to solve such tasks. However, in most of the robotics applications,
the reference trajectory is composed of sparse viapoints and/or the system is nonlinear
and/or the cost is nonquadratic. In the next section, we show how to alleviate these
problems as part of our contributions.

4.3 Methods

In this section, we show that we can solve SLS problems for tracking analytically and how
to solve them for nonlinear systems and nonquadratic costs. In Section 4.3.1, we extend
the SLS method to extended system level synthesis (eSLS) by adding a feedforward
part that describes the desired states and the desired control commands. Then, in
Section 4.3.2, we exploit eSLS to solve the problems with nonquadratic cost and nonlinear
dynamics, resulting in an iterative system level synthesis (iSLS) approach, which greatly
extends the domain of applications of the standard SLS.

4.3.1 Extended system level synthesis (eSLS)

The closed loop responses in Equation (4.2) and Equation (4.3) cannot represent the
closed-loop dynamics well when the problem is to track a desired state x(d,t) and a
desired control command u(d,t) by minimizing J=E[∥x − xd∥2

Q + ∥u − ud∥2
R] In this

section, we propose a new closed-loop response model that can explicitly encode the
desired states and the control commands by extending the linear feedback controller in
SLS to include also a feedforward term as u = Kx + k. Inserting this into the dynamics
equation Equation (4.1), we obtain x = ZAdx + ZBd(Kx + k) + w, which results in
the closed-loop responses

x = Φxw + dx, dx = ΦxZBdk, (4.7)
u = Φuw + du, du=Kdx + k, (4.8)

40

4.3 Methods

where Φx and Φu are defined as in Equation (4.2) and Equation (4.3). When we insert x

and u in Equation (4.7) and Equation (4.8) into the dynamics equation Equation (4.1),
we get the dynamics constraints on our optimization variables from Φxw + dx=Sxw +
Su(Φuw + du), which is satisfied for any noise in the system by Equation (4.4) and
dx = Sudu. This can be used to show that k=(I − KSu)du. By a few manipulations
of equations, one can rewrite the controller into the more interpretable form of u =
Kx+k = K(x−dx)+du, where dx and du can be interpreted as the planned trajectory
of states and control commands, respectively, assuming zero noise and zero initial state.
The feedback part drives the system to a new plan when there is noise, perturbations or
nonzero initial state.

The final convex optimization problem becomes

min
Φx,Φu,
dx,du

∥Φxw+dx−xd∥2
Q + ∥Φuw+du−ud∥2

R

s.t. Φx = Sx + SuΦu,

dx = Sudu,

Φx,Φu ∈ L

(4.9)

which can be solved analytically for the optimization variables. For the sake of readability,
we omit the details on the derivation and instead give the final algorithm in Algorithm 4.

Algorithm 4: Extended System Level Synthesis
Solve for feedforward terms

du = (S⊤
u QSu + R)−1(S⊤

u Qxd + Rud),

while i < T do Solve for feedback terms

Φ̂i
u = −(Si⊤

u QiSi
u + Ri)−1Si⊤

u QiSi
x

Φ̂i
x = Si

x + Si
uΦ̂i

u

end
Compute the feedback and feedforward parts of the controller with K=ΦuΦ−1

x ,
k=(I − KSu)du

4.3.2 Iterative system level synthesis (iSLS)

In this subsection, we consider the problem of system level synthesis for non-linear
dynamical systems and non-quadratic cost functions. We perform a first order Taylor
expansion of the dynamical system xt+1=f(xt,ut)+wt around some nominal realization
of the plant denoted as (x̂t, ût,µwt), namely, xt+1 ≈ f(x̂t, ût) + µwt + At(xt − x̂t) +
Bt(ut − ût) + (wt − µwt) with Jacobian matrices {At = ∂f

∂xt
|x̂t,ût ,Bt = ∂f

∂ut
|x̂t,ût}. Using

41

Chapter 4. Robust Anticipatory Robot Skills with Memory

the notations x̂t+1=f(x̂t, ût)+µwt , ∆xt=xt − x̂t, ∆ut=ut − ût, the linearized dynamics
model can be rewritten as

∆xt+1 = At∆xt + Bt∆ut + ∆wt,∀t,
⇐⇒ ∆x = ZAd∆x + ZBd∆u + ∆w,

where the second line is the stacked form of the linearized dynamics model. We assume
a controller of the form ∆u = K∆x + k and follow the same procedure described
in the previous section to write the closed-loop responses as ∆x = Φx∆w + dx and
∆u = Φu∆w + du, where the variables Φx,Φu,dx,du satisfy the same constraints in
(4.9) and (4.4) with respect to the linearized dynamics model.

The cost function c(xt,ut) can be approximated by a second order Taylor expansion
around (x̂t, ût), namely, c(xt,ut) ≈ c(x̂t, ût) + c⊤

xt
∆xt + c⊤

ut
∆ut + 1

2∆x⊤
t Cxtxt∆xt +

1
2∆u⊤

t Cutut∆ut + ∆u⊤
t Cutxt∆xt with cxt= ∂c

∂xt
|x̂t,ût , cut= ∂c

∂ut
|x̂t,ût , Cxtxt= ∂2c

∂xt
2 |x̂t,ût ,

Cutut= ∂2c
∂ut

2 |x̂t,ût , Cutxt= ∂2c
∂utxt

|x̂t,ût . Using the notations x(d,t)= − C−1
xtxt

cxt , u(d,t)= −
C−1

utut
cut and assuming that Cutxt=0 and neglecting the constant terms, the quadratized

cost function becomes

c(xt,ut) = (∆xt − x(d,t))⊤Cxtxt(∆xt − x(d,t))+
(∆ut − u(d,t))⊤Cutut(∆ut − u(d,t)), (4.10)

c(x,u) = ∥∆x − xd∥2
Cxx

+ ∥∆u − ud∥2
Cuu

(4.11)

where the second equality is the stacked form of the quadratized cost function.

We propose to perform a Newton’s step at each iteration by solving a tracking problem
of the same form as (4.9) by changing the state and the control to ∆x and ∆u. Thus,
this results in the following convex optimization problem

min
Φx,Φu,
dx,du

∥Φx∆w+dx−xd∥2
Cxx

+ ∥Φu∆w+du−ud∥2
Cuu

s.t. Φx = Sx + SuΦu,

dx = Sudu,

Φx,Φu ∈ L

(4.12)

which can be solved analytically the same way as eSLS. Newton optimization methods
are known to be prone to overshoots, which can be handled via line search. We propose
a line search algorithm based on the feedforward control term of our controller as was
done by previously proposed iLQR algorithms [2]. Specifically, we define a variable α
with a line search strategy with dk+1

u = αdk
u. We accept this update if the trajectories

found by these closed loop dynamics models decrease our actual cost function, otherwise
we decrease α and re-assess. This corresponds to updating k in the same manner.

42

4.3 Methods

Algorithm 5: Iterative System Level Synthesis (iSLS)
Initialize the nominal state x̂t and control ût ;
Initialize the change in the cost ∆c ;
Set a threshold τ ;
while |∆c| > τ do Solve iSLS

Linearize the dynamics and quadratize the cost function around {x̂t, ût}T
t=0

to find A, B, Cxx, xd and ud ;
Solve (4.12) to find K and k ;
Do line search to update k using the controller ∆u = K∆x + k and the
dynamics model ;

Update ∆c.
end

Time correlations between states

The controller defined by SLS reacts not only to the current state error of the robot, but
also to the history of previous states. Such a controller with memory can be exploited
in tasks requiring correlations between states at different timesteps, as opposed to a
controller without memory such as LQR controllers. An SLS controller can remember
what it did in the previous part of the trajectory to use this information to better
anticipate the future states and to successfully complete tasks where the future trajectory
depends on past states. An example of such task is illustrated in Figure 4.1.

To achieve correlations between different timesteps, we make use of the off-block-diagonal
elements of the precision matrix. Let us denote xt1 and xt2 the states at t1 and t2 that
we want to correlate. The correlations that we consider in this work are in the form
Cxt1+c∼xt2 , where C and c are the coefficient matrix and the vector, respectively. We
define the correlation cost c(xt1 ,xt2) as

c(xt1 ,xt2) = (Cxt1 + c − xt2)⊤Qc(Cxt1 + c − xt2),
= x⊤

t1 C⊤QcC︸ ︷︷ ︸
Qt1

xt1 + (xt2 − c)⊤ Qc︸︷︷︸
Qt2

(xt2 − c)

+ x⊤
t1 C⊤Qc︸ ︷︷ ︸

−Qt1t2

(xt2 − c) − 2(xt2 − c)⊤ QcC︸ ︷︷ ︸
−Qt2t1

xt1 ,

=
[

xt1

xt2 − c

]⊤ [
Qt1 Qt1t2

Qt2t1 Qt2

] [
xt1

xt2 − c

]
. (4.13)

This means adding off-block-diagonal elements to a typical block-diagonal precision
matrix Q:=blkdiag(Q0,Q1, . . . ,QT), by setting Q(t1, t1) = C⊤QcC, Q(t2, t2) = Qc,
Q(t1, t2) = −C⊤Qc and Q(t2, t1) = −QcC, where Q(ti, tj) represents the precision

43

Chapter 4. Robust Anticipatory Robot Skills with Memory

matrix block corresponding to the timesteps i and j.

Adaptation to new reference states

We remark that while the system responses encode the information about the precision
of the task only, the feedforward part of the responses, namely, dx and du, encode the
desired states xd and the desired control commands ud. Moreover, dx and du are a linear
function of xd and ud (see Algorithm 4), which makes them easily recomputable when one
changes the desired states and control commands while keeping the precision matrices
constant. Examples include trajectory tracking with the same precision throughout
the horizon, a task where the robot needs to reach different viapoints and final goal
tasks. At the controller level, this only corresponds to a change in the feedforward
term k, while the feedback part K stays the same. We have k = (I − KSu)du,=
(I − KSu)(S⊤

u QSu + R)−1(S⊤
u Qxd + Rud),= Fxxd + Fuud, where the terms Fx=(I −

KSu)(S⊤
u QSu + R)−1S⊤

u Q and Fu=(I − KSu)(S⊤
u QSu + R)−1R can be computed

offline and can be used when the desired state and control commands are changed to
determine the new feedforward control term k only by matrix-vector multiplication
operation along the changed time and dimensions.

In the eSLS formulation with linear dynamics and quadratic cost, the replanned motion
and the controller are optimal, i.e., if one wants to optimize from scratch when the
desired state is changed, then one ends up with the same solution. However, in iSLS, the
replanned motion produces valid trajectories only in the vicinity of the optimal solution.
We argue and show that this can still be exploited to produce trajectories which achieve
the task successfully without any computation overhead of planning from scratch.

4.4 Experiments and Results

This section showcases the proposed approach with robotic tasks on a simulated and real
environment with Franka Emika robot. The experiment videos for the real task can be
found in the video1.

4.4.1 Simulated task

We implemented a simulated robotic task exploiting task precisions with the help of the
memory feedback. The robot, initially holding a coffee mug, needs to place it on the
table within a certain range depicted as brown disk shape on the table (first viapoint,
t=20), pick up a sugar cube depicted as a white cube (second viapoint, t=70) and drop it
onto the mug (goal point, t=100) as illustrated in Figure 4.1a. Depending on the initial
position of the robot or the perturbations in the environment, the robot can decide on

1The video can be accessed via https://hgirgin.github.io

44

4.4 Experiments and Results

(a) Adaptation to two different initial posi-
tions (transparent robots) by following the
arrows.

(b) Comparison of the execution of MPC-
LQT (blue robot) and eSLS (white robot)
controllers

Figure 4.2: Simulated task where the robot, initially holding a coffee mug, needs to place
it on the table within a certain range (brown disk), pick up a sugar cube (white cube)
and drop it onto the mug.

different locations to place the mug. This location needs then to be remembered to drop
the sugar cube from the correct location. We implemented eSLS with a double integrator
dynamics with 100 timesteps to design a feedback controller on the task space and an
inverse kinematics controller to track the reference trajectory generated online by the
feedback controller. The cost function have three state cost components and a control
cost as c=∥x20 − cd∥2

Q20
+ ∥x70 − cs∥2

Q70
+ ∥x20 − x100∥2

Q20,100
+ 0.01∥u∥, where cd and

cs are the center of the brown disk and the location of the sugar cube, respectively,
and Q20= diag(103, 103, 105, 105, 105, 105), Q70=105×I Q20,100= diag(105×I3,03). Fig-
ure 4.2a shows two examples of eSLS controller starting from two different positions
and hence choosing two different locations to place the mug by anticipating that it will
need to put the sugar cube inside the mug. These locations differ as there is a trade-off
between the state and control costs. As the eSLS controller has memory, the robot can
remember this location to accomplish the task.

As a baseline to compare, we chose to design an LQT controller solved by dynamic
programming. Obviously, this controller have no information about the previous states
and neither about the off-diagonal elements in the precision matrices, hence it can not
achieve the task alone. A quick but not generalizable solution to this problem is to
recompute LQT controller after the mug is placed on the table, almost as in MPC,
but recomputing the solution only once. We call this controller MPC-LQT. We argue
and show that this strategy is far from the optimal behavior because it eliminates the
anticipatory and memory aspects of the controller. We tested MPC-LQT against our
proposed framework with 10 different initial positions of the robot end-effector, each
deciding on different locations of the mug. One such execution is shown in Figure 4.2b,
with blue and white robots illustrating MPC-LQT and eSLS strategies, respectively.

45

Chapter 4. Robust Anticipatory Robot Skills with Memory

Figure 4.3: Adaptation of the robot to different initial configurations shown in transparent
and the grasping locations shown in solid colors.

Figure 4.4: Testing of the reactivity of the controller to different physical perturbations,
each resulting in successful completion of the task by adaption. The plot of z-axis position
(m) in time (s) gathered from the robot perturbed before grasping the object. The curves
of color green, orange and blue correspond to the first, second and third screenshots
respectively, while the dashed black line corresponds to the nominal solution. The robot
decides on-the-fly to grasp from different locations and remembers these locations to
place the yellow object without colliding with the environment.

Each robot, starting from the same initial position depicted by a red circle, places the
mug in different locations following the blue and white arrows, and picks up the sugar
cube and places it inside the mug correctly. Even though successful, one can see from
the geometry in the figure that the final path taken by the MPC-LQT controller (blue) is
longer than the proposed eSLS controller (white). Indeed, when we compute the costs of
the tasks for both cases, we obtained a cost of 474.3±204.3 for eSLS and 1004.7±464.2
for MPC-LQT, which also quantitatively proves the optimality of the behavior produced
by our proposed controller. Indeed, after the mug is placed on the table, the recomputed
controller of MPC-LQT can also put the sugar cube inside the mug successfully. However,
in the optimal behavior as in eSLS, the robot decides on the location of the mug by
anticipating that it will need to put the sugar cube inside, which is a missing feature in
the baseline.

4.4.2 Pick-and-place task

The robot needs to grasp a cylindrical object and place it at a given position while
keeping an upright orientation of the end-effector, as seen in Figure 4.1. The grasping
position is defined by precise x-y positions of the center of the cylinder, whereas the
z-position and the rotation around the z-axis are kept at a very low precision. It results in

46

4.4 Experiments and Results

Figure 4.5: (a) Nominal behavior of the robot without any adaptation. (b) The final
relative height is changed at the initial time and the robot adapts to this new height
with a new plan, by remembering where it grasped the object. (c) Online adaptation
by increasing the relative height of the final position after grasping the object. (d)
Adaptation to change of the relative height at the beginning of the movement combined
with a change in the final position introduced after the grasping phase.

different grasping heights that the robot needs to decide, by anticipating where it is going
to place the object. This behaviour exploits the grasping affordances of a cylindrical
object by allowing the robot to choose where and how it is going to grasp the object. The
placing location is defined by precise x-y coordinates, while the z-coordinate is defined
relatively to the z-coordinate when grasped. Consequently, the robot needs to remember
where it grasped the object in order to place it at the relative placing z-position. Notice
that without any memory feedback controller, the robot could try to place the object in
wrong and dangerous locations as it can force the object to go downwards and collide
with the environment.

Dynamics:

We denote θ, θ̇, θ̈, x, ẋ, q, the joint angles, the joint velocities, the joint accelerations,
the end-effector positions, the end-effector velocities and the end-effector orientation in
quaternion format, respectively. We define fpos

kin (·) and forn
kin (·) as the forward kinematics

functions outputting end-effector positions and orientations, respectively. We denote
Logq0(q1) as the logarithmic map between the quaternions q0 and q1 and define quaternion
costs with the methods described in [89].

Inspired by the work in [90], we choose to incorporate the constraints and other nonlin-
earities into the forward dynamics model of the state in order to alleviate the problems
of calculating the Hessian of the cost function. In fact, defining the forward dynamics as
such allows to have a quadratic cost function with a precision matrix that defines directly

47

Chapter 4. Robust Anticipatory Robot Skills with Memory

the accuracy of the state itself. This, in turn, becomes very useful when one wants to
replan the motion and the controller by changing not only the joint positions, but also the
end-effector positions and orientations. Joint limit constraints can be handled as a soft
constraint in the cost function as this approach provides very good results already without
resorting to more complicated inequality constrained optimization. However, in this work,
we choose to represent these limits inside the state as well to illustrate the generalization
and adaptation capability of the controller for a given quadratic cost function. We first
define the joint limit violation function as f lim(θ)=

(
max (θl−θ,0)+ max (θ−θu,0)

)2
,

where θl and θu are the lower and upper bounds on the joint angles, respectively. Note
that when this function is nonzero, it means that the joint limits are violated, which im-
plies that we can use this state as quadratic function to drive it to zero. We then choose to
represent the state by zt=[θt, θ̇t,xt, ẋt,Logq0(qt),f lim]∈R31 and the control by ut=θ̈∈R7

with the forward dynamics defined as
[
θt+1 θ̇t+1, xt+1, ẋt+1, Logq0(qt+1), f lim

t+1

]
=
[
θt+θ̇tδt, θ̇t+utδt, fpos

kin (θt+1), J(θt+1)θ̇t, Logq0(forn
kin (θt+1)), f lim(θt+1)

]
.

Cost:

The cost function is designed by three key points describing the phases of grasping, lifting
up and placing at given timesteps. For the grasping phase, there is high precision on the
x-y axis of the end-effector, and on the end-effector velocity, whereas the precision on the
z axis is left very low to give the robot the choice to grasp anywhere along the object.
The lifting phase is implemented so as to keep the arm safe during the pick-and-place
operation to avoid any obstacle on the table. Here, we have high precision only on
reaching a z-position 10 cm higher than where the object was grasped during the grasping
phase, and no precision on the other dimensions. For the placing phase, we have high
precision on the x-y positions, on keeping z position the same as where it grasped the
object, and on end-effector velocity. Note that this is only possible by exploiting the
off-diagonal elements in the precision matrix, as explained in Section 4.3.2. For the
orientations, starting from the grasping phase, we set a high precision on keeping an
upright orientation (but free to turn around z-axis) in order to keep the balance of the
long cylindrical object.

Results:

We implemented a 50Hz iSLS controller with a duration of 8s, which outputs the desired
state and control to a 1kHz impedance controller. A vision system is implemented to
track the target object location for testing the adaptation aspect of the controller to
the changes in the task. We conducted several experiments with the robot to test the
adaptation, reactivity and memory capabilities of the controller. We first tested the
adaptation to different initial configurations. We selected randomly 3 configurations
that are close to the nominal one, but still corresponding to visibly different end-effector

48

4.4 Experiments and Results

positions and orientations, as seen in Figure 4.3. We noticed that the robot could
adapt its grasping position to different z-dimensions because of the low precision on that
axis. Here, the robot is aware of the possible grasping affordances of the object via our
controller and exploits these to decide autonomously from which part of the object to
grasp. It then remembers the grasping location and use it to place the object on the
desired position without colliding with the environment.

For testing the reactivity to perturbations of the proposed controller, we applied some force
to the robot changing its nominal behavior, i.e. different configurations corresponding to
different end-effector positions and orientations, as can be seen in Figure 4.4. We noticed
that the robot reacts to the perturbations by mostly changing its grasping locations,
whilst still trying to reach the desired x-y location of the object. Even if it decides only
where to grasp the object to cope with the perturbations, it can remember these locations
to place the object correctly without collision as can be seen from the robot trajectories
in the plot on the far right of Figure 4.4. In one example shown in the bottom-right
of Figure 4.4, we changed the orientation by turning it around the z-axis. The robot’s
reaction to this perturbation was considerably smaller than the other perturbation types.
This is indeed the expected behavior of the robot, since the error on the orientation with
this change stayed very close to zero as a result of the quaternion cost function design.

Finally, we tested the proposed fast adaptation capability of the controller with memory
by conducting three different experiments shown by (b), (c) and (d) in Figure 4.5. In
all cases, we use the same optimized controller which produce the nominal behavior in
(a), and reused it to replan in the other cases where the target locations are changed
either at the beginning of the movement or on-the-fly. The change in the target location
is tracked by the vision system following the marker on the object. In (b), we changed
the final height of the placing location to a lower value at the initial time. In (c) and (d),
the placing locations are changed on-the-fly by increasing the final height and changing
the final x-y position, respectively. We recomputed online the feedforward part of the
iSLS controller, namely k as described in Section 4.3.2, each time there is a significant
difference between the current and detected target locations. In all cases, we see that
the robot is able adapt successfully by replanning fast to new desired states without any
collision, as can also be seen in the video.

4.4.3 Bimanual handover task

This task can be seen as an extension of the previous pick-and-place task using two
simulated Franka Emika robots instead of one and involving a handover phase. The
states zt∈R62 and the control commands ut∈R14 have the same elements as before for
each of the robot, doubling the dimensionality of each.

The cost function is designed by three key points describing the phases of grasping, lifting

49

Chapter 4. Robust Anticipatory Robot Skills with Memory

up/handover and placing, respectively. The grasping and lifting up phases are the same
as the first task for the first arm. In the handover phase, we add high precision forcing
x-y positions of the end-effectors of both arms to be equal without specifying at which
point, and z-position of the second arm 5 cm lower than the first arm, with zero velocities
for both arms. The placing condition is the same as before, but this time for the second
arm. Here, depending on where the first arm grasped the object, both arms need to
coordinate to decide and plan where to meet for the handover phase. The second arm
then needs to remember this information to place the object accordingly to the floor.

The video accompanying this work shows experimental results testing for different initial
configurations, perturbations and replanning with respect to different final locations to
place the object. For conciseness, we only show here three different behaviors produced by
the proposed controller as can be seen in Figure 4.6, where each behavior is denoted with
(a), (b) and (c) letters. Here, we show three phases of the movement, pick, handover and
place to show the adaptation in different phases. The grasping locations are highlighted by
a star sign placed at the same exact locations of the objects to distinguish between them.
Before the pick phase, in (a) and (c), the robot is perturbed upwards and downwards
respectively, while (b) is not perturbed. As expected, the robot chooses different grasping
locations for each case considering the grasping affordance of the object. After the pick
phase, and before handover, we introduce a new target location to place the object, which
are denoted by transparent yellow cylinder, while the red ones being the original targets.
In the handover, we can already see that the second arm can adapt its end-effector
according to the grasping location of the first arm thanks to the memory feedback on the
z-axis. Finally, in the place phase, the second robot can successfully adapt to the new
target location thanks to the proposed online adaptation scheme. It could also correctly
place the object without hitting the floor by remembering where it was grasped by the
first arm. We argue that the proposed controller can generate smart behaviors without
requiring any vision system to track the grasping locations.

4.5 Conclusion

We presented an approach for synthesizing reactive and anticipatory controllers that
can remember all previous states in the horizon, which is relevant for robotic tasks
requiring to have a memory of previous movements. In this context, we proposed to
extend SLS controllers to have a feedforward term that can handle viapoint tasks and a
Newton optimization method for solving SLS for nonlinear systems and nonquadratic cost
functions. We showed that our proposed method outperforms the baseline solutions for
producing optimal anticipatory behaviors that require a memory feedback. We showcased
our method on high dimensional robotic systems in the presence of perturbations, and
demonstrated a step towards adaptation when there is a change of the desired states in
the task.

50

4.5 Conclusion

Figure 4.6: Here, we show three phases of the movement, pick, handover and place to
show three different adapted behaviors, denoted as (a), (b) and (c) for each phase. The
grasping locations are highlighted by a star sign placed at the same exact locations of
the objects to differentiate them. Before the pick phase, in (a) and (c), the robot is
perturbed upwards and downwards respectively, while (b) is not perturbed. After the
pick phase, and before handover, a new target location to place the object which are
denoted by transparent yellow cylinder is introduced, with the red ones being the original
targets. Finally, in the place phase, the second robot can successfully adapt to new target
location thanks to the proposed online adaptation scheme. It also could correctly place
the object without hitting the floor by remembering where it was grasped by the first
arm.

SLS offers the advantage that it does not require the experimenter to engineer the
problem for each specific use case by augmenting the state-space with the relevant part
of the history. In that sense, SLS is generic and formalizes this problem, since it does
not require a change in the framework, by allowing the system to freely change which
past states are correlated and the way they are correlated. In this work, we tackled
problems where we see important practical utility of this feature. However correlating
only a couple of timesteps in this work, one could also design these tasks to remember
not only one timestep but several timesteps in order to capture an important part of the
movement that the robot did in the past and that it needs to remember in the future to
react accordingly.

51

5 Nullspace Methods in Planning
and Control

A collection of work in neuroscience informs us that being skillful is not related to being
precise [91, 92, 93, 94]. It is instead related to the exploitation of various forms of
redundancy and variations in an optimal way. Figure 5.1 illustrates the various forms
of redundancy that can be exploited in robotics. In this planar example, kinematic
redundancy arises when a 2D point is tracked by a 3-axis robot [95, 96, 97, 98]. This
form of redundancy at the morphology level is the one that is the most exploited in
robotics. Most tasks do not require a specific point to be tracked, but instead consider
a region or distribution of the different options in which the tip of the robot can move
while satisfying the task constraints [99]. Task redundancies at the spatial level then
arises when we consider for example different ways of grasping an object as was discussed
in Section 4.4.2. We show in this chapter that redundancy can also be exploited at a
spatiotemporal level within path planning formulations for tasks that require only sparse
definition of the cost functions.

Figure 5.1: From left to right: kinematic/mechanical redundancy (morphology level),
task redundancy (spatial level), planning redundancy (spatiotemporal level).

5.1 Inverse kinematics with nullspace structure

Redundant degrees of freedom of a robot allow robots to accomplish additional tasks
in the task space at the same as achieving a primary goal. For example, a robot can

53

Chapter 5. Nullspace Methods in Planning and Control

reach a position and an orientation in the task-space, while still being able to move some
of its joints for secondary tasks such as avoiding obstacles. In the literature, nullspace
methods emerge as a solution for automatically finding the optimal way of exploiting
the kinematic redundancies in this hierarchical desired task representation. Nullspace
methods in optimization problems can be used as a method to solve linear-quadratic
problems. As a starting basis, we give the optimization problem

min
q

∥A2q − b2∥2
2

s.t. A1q − b1 = 0,
(5.1)

that admits the analytical solution

q∗ = A†
1b1 + (A2N1)†(b2 − A2A†

1b1), (5.2)

where A1 and A2 are non-invertible full row rank matrices, the pseudoinverse and
nullspace matrices Ni are defined with respect to full row rank matrices and the solution
is derived in Appendix A.4.1. The interpretation of Equation (5.2) is that the task
related to A1 and b1 has to be fulfilled and if possible, the task related to A2 and b2
should be minimized as a secondary task.

An example of this is hierarchical inverse kinematics, where the problem is defined as
determining a joint configuration that achieves a secondary task f2(q) = x2 only if the
primary task f1(q) = x1 is satisfied. This problem can be written as

min
q

∥f2(q) − x2∥2
2

s.t. f1(q) − x1 = 0,
(5.3)

which can be solved using a constrained version of a Gauss-Newton method [100] that
sequentially linearizes the constraint and quadratizes the objective function around
qk (i.e., by approximating the Hessian of ∥f(q)∥2

2 with J(q)J⊤(q)). The resulting
linear-quadratic subproblem is

min
δq

∥J2(qk)δq − δx2∥2
2

s.t. J1(qk)δq − δx1 = 0,
(5.4)

where δq = q − qk and δxi = fi(qk) − xi. Using Equation (5.2), this problem can be
solved as

δq∗ = J1(qk)†δx1 + (J2(qk)N1(qk))†(δx2 − J2(qk)J1(qk)†δx1) (5.5)

which is the task-priority formulation of inverse kinematics described in [101]. This can
even be extended to have K tasks, starting from δq1 = J1(qk)†δx1 with the recursive

54

5.1 Inverse kinematics with nullspace structure

formulation [102]

δqi+1 = δqi + (JiN
A
i−1)†(δxi − Jiδqi), (5.6)

where NA
i = I − JA

i
†
JA

i is the projection matrix onto the nullspace of the augmented
Jacobian matrix JA

i = [J⊤
1 J⊤

2 . . .J
⊤
i]⊤. NA

i can also be formulated recursively as

NA
i = NA

i−1 − (JiN
A
i−1)†(JiN

A
i−1),

with NA
0 = I, see [103] for details.

After finding a search direction δqk using the nullspace method, one needs to perform a
line search along this direction. For this, we need to use a merit function to measure
progress in both the objective function and the constraints. A standard one is the
quadratic penalty merit function with M(q) = ∥f2(q) − x2∥2

2 + ρ∥f1(q) − x1∥2
2. A step

αkδqk is accepted the following sufficient decrease condition holds:

M(qk + αkδqk) ≤ M(qk) (5.7)

where ρ is chosen large enough [104]. We follow the heuristic update rule in augmented
Lagrangian method presented also in Chapter 3.

The pseudoinverse J† can be computed in different ways according to the rank of
J . If J is full row-rank, then J† = J⊤(JJ⊤)−1, or else if J is full column-rank,
then J† = (J⊤J)−1J⊤. Using a singular value decomposition (SVD) to compute the
pseudoinverse provides a more general method as it can be used either in the rank-
deficient case or in the full-rank case. For simplicity, we will adopt in this chapter the
SVD perspective for the computation of pseudoinverses. Pseudoinverse computation
details are given in Appendix A.2.1.

In inverse kinematics, we can encounter kinematic singularities arising from the singularity
of the Jacobian matrix which can result in high velocities that could potentially damage the
robot. These singularities can be handled using a damped (or regularized) pseudoinverse
computed as

J‡ = J⊤(JJ⊤ + λIx)−1 = (J⊤J + λIu)−1
J⊤, (5.8)

where λ is the damping factor. Ix and Iu are identity matrices with dimensions of x and
u, respectively. Using SVD, we can show the existence of the nullspace in the presence
of damping (see Appendix A.2.1). Note that the nullspace formulations can contain
kinematic singularities because of the computation of (J2N1)† in the same way as using
damped pseudoinverses [105].

55

Chapter 5. Nullspace Methods in Planning and Control

5.2 Nullspace structure in linear quadratic tracking (LQT)

Nullspace structure in MPC allows us to exploit the redundancy in space-time. At each
time step, we can have tasks that require different precisions and that are redundant in
space dimensions, with different priorities. In the same way, we can have tasks that are
redundant in time dimensions for each space dimension.

When we consider the batch version of LQT (see Section 2.2.2), the purpose of the cost
on the control commands is to prevent high, non-smooth control actions. Mathematically,
it allows us to regularize and to invert S⊤

u QSu (by adding a full-rank R) which may be
otherwise non-invertible due to the sparse definition of the cost on the state (e.g. a final
timestep cost only). There might be infinitely many choice of R that would satisfy our
problem requirements, but setting a specific one, we constrain the problem to have a
unique solution. We can see this by considering the problem in Equation (2.7) without
the cost on the control commands as

minx,u ∥x − µx∥2
Q

s.t. x = Sxx0 + Suu.
(5.9)

We can transform this constrained problem into an unconstrained problem as

minu ∥Sxx0 + Suu − µx∥2
Q,

which can be solved by taking the derivative of the cost function with respect to u and
equating it to zero as

S⊤
u QSuu = S⊤

u Q(µx − Sxx0)

This equation suggests that we can exploit the nullspace of S⊤
u QSu as

û = (S⊤
u QSu)†S⊤

u Q(µx − Sxx0) + Ny,

where N is the nullspace of S⊤
u QSu and y is an arbitrary vector. Note that this

formulation is only an example of what we can set as the nullspace and was used in
[106]. We show now how to derive the nullspace structure in a proper way by defining
mathematically the term hierarchical tasks.

Definition 1. Two tasks defined by the stacked reference states µ
(1)
x , µ

(2)
x and block-

diagonal precision matrices Q(1), Q(2) are said to be prioritized one over another (1 > 2)
if the controller achieves the same cost values ∥x − µ

(1)
x ∥2

Q(1) regardless of whether there
is a secondary task.

Let x(1),u(1)= arg minx,u c1(x,u) s.t. x=Sxx0 +Suu where c1(x,u)=∥x−µ
(1)
x ∥2

Q(1) +
∥u∥2

Rd1
is the cost function to solve for a primary task defined by the superscript (1). We

would like to find out the conditions to hierarchically add some arbitrary pair {δx, δu}
to the primary task solution pair {x(1),u(1)}, i.e., without changing the value of the

56

5.3 Experiments

primary objective cx
1(x(1))=∥x(1) − µ

(1)
x ∥2

Q(1) . The new objective function can be written
as

cx
1δ(δx) = ∥x(1) + δx − µ(1)

x ∥2
Q(1) ,

= ∥x(1) − µ(1)
x ∥2

Q(1)︸ ︷︷ ︸
cx

1 (x(1))

+ ∥δx∥2
Q(1) + 2(x(1) − µ(1)

x)⊤Q(1)δx︸ ︷︷ ︸
cδ(δx)

,

Here, we can solve cδ(δx)=0 to find the solution set of δx that does not affect the
primary cost. However, δx is constrained to the system dynamics by δx=Suδu. We can
therefore replace it by this expression to obtain

cδ(δu) = ∥Suδu∥2
Q(1) + 2(x(1) − µ(1)

x)⊤Q(1)Suδu = 0, (5.10)

which admits the set of solutions {0, 2(µ(1)
x −x(1)),NSuy,NQ(1)Su

y}, where y is arbitrary.
If we remove the first two trivial particular solutions from the set, and remark that
δx=Suδu=SuNSuy=0, the only non-trivial solution left is δu=NQ(1)Su

y. This means
that any arbitrary y that we choose will not alter the task success defined as the cost
value on the state. Note that this nullspace seems different from NS⊤

u Q(1)Su
, which is the

one presented in [106], however, one can show that they represent the same nullspaces as
the nullspace of A and A⊤A are the same, i.e., NS⊤

u Q(1)Su
= NQ(1)Su

.

Our goal is to minimize a secondary objective function such that it achieves hierarchically
the first task. Denoting N=NQ(1)Su

, the solution δu that achieves this objective can be
written as

δu∗ = N(arg min
y

∥Sxx0 + Su(u(1) + Ny) − µ(2)
x ∥2

Q(2) + ∥u(1) + Ny∥2
R), (5.11)

= N

(
N(S⊤

u Q(2)Su + R)N
)†

N

(
S⊤

u Q(2)(µ(2)
x − x(1)) − Ru(1)

)
, (5.12)

=
(

N(S⊤
u Q(2)Su + R)N

)†(
S⊤

u Q(2)(µ(2)
x − x(1)) − Ru(1)

)
, (5.13)

where the second and third equalities are derived using the first and the third properties
listed in Appendix A.2.2, respectively.

5.3 Experiments

5.3.1 Proof-of-concept examples

Our first example consists in reaching a goal position Goal, while passing through
viapoints with different precisions and different hierarchies, see Figure 5.2. The primary
viapoint represented by Vt

1 is to be on the line (depicted by the thin ellipsoid) at time step
t = T/2 (used as half-time of the execution for the plot). This task creates redundancy in

57

Chapter 5. Nullspace Methods in Planning and Control

space-time because according to the upcoming secondary tasks and previous actions taken,
the position on the line at time step t can change. The secondary viapoint represented
by Vt

2 has an isotropic precision with no redundancy in any space dimension, meaning
that at time step t, the objective of the secondary task is to be at the center of the pink
circle. Figure 5.2(a) shows an LQR execution with a unit mass double integrator starting
from the initial position (shown by the cross), with 2 viapoint tasks at time step t with
hierarchies Vt

1 > Vt
2 and the final task Goal. At time step t, the algorithm finds the best

compromise between accomplishing both tasks, and taking into account their priorities.
Such a compromise can be found intuitively as the intersection point between the thin
ellipse and the projection of the center of the pink circle onto the thin ellipse, hence the
dashed gray line.

Figure 5.2(b) shows the trajectory of the same agent, with the addition of a tertiary task
Vt+1

3 to be achieved at time step t+1 and whose variance is represented by a purple circle.
Since this position can be reached without disturbing the primary and secondary tasks,
the trajectory changes so as to accomplish all three tasks. Figure 5.2(c) shows that the
addition of another quaternary task Vt+1

4 to be achieved at time step t+ 1, represented
by a turquoise circle, does not change the trajectory shown in Figure 5.2(b) because this
task is in conflict with the tertiary task and is thus neglected due to its priority.

Figure 5.2: LQR with initially at the position shown by the cross and (a) 2 intermediary
tasks at time step t with hierarchies Vt

1 > Vt
2 and the final task Goal, (b) 2 intermediary

tasks at time step t, 1 intermediary task at time step t+1 with hierarchies Vt
1 > Vt

2 > Vt+1
3 ,

and the final task Goal, (c) 2 intermediary tasks at time step t, 2 intermediary tasks at
time step t+ 1 with hierarchies Vt

1 > Vt
2 > Vt+1

3 > Vt+1
4 , and the final task Goal. Tasks

are represented with Gaussian ellipsoids, while the resulting trajectory is represented by
black lines. The grey dashed line represents the shortest line between the mean of the
Gaussian ellipsoid of Vt

2 and the line ellipsoid (thin Gaussian ellipsoid) Vt
1.

Figure 5.3 shows an example where the nullspace formulation has an advantage over the
naive attempt of minimizing both tasks errors at the same, using an hyperparameter δ to
set importance weights between the tasks, where δ = 0 means that only the primary task
is achieved and for a large δ only the secondary task is achieved. In this example, we
want to reach the point GT at the final time step T with a given variance represented by

58

5.3 Experiments

Figure 5.3: Comparison between nullspace (solid black line) and standard formulation
(dashed lines) with scaling δ1, δ2, δ3 and δ4 are 1, 0.1, 0.01 and 0.001 respectively, using
a point mass object with double integrator dynamics. The agent has to go to the goal
point GT as its primary task, at the final time step T , with variance shown by a green
circle. If possible, it should pass through a viapoint VT −k, as a secondary task, at the
time step T − k, with the same variance shown by orange circle. When the secondary
task is far away from the primary task in space and time, nullspace planning tries to
pass through VT −k, and still succeed to accomplish the primary task. On the other hand,
no matter the scaling of the cost, standard control cannot have the same performance.

the green circle as the primary task. We also want to pass through the viapoint VT −k, k
time steps before the final time step T , with a given variance represented by the orange
circle as the secondary task. With real-world robots, we have restrictions on the norm of
the control commands, hence achieving both tasks would become impossible if they are
too far away in space dimensions but very close in time dimensions. In this Figure, any
naive attempts to accomplish the tasks with a hierarchy imposed by δ fails, except for
very small values, which are not interesting, because we know intuitively that we can still
do much better by trying to achieve the secondary task than achieving only the primary
task.

5.3.2 Robot Simulation

The setup consists of two robotic agents, represented by point mass agents shown in
Figure 5.5 (black and red). They have to reach a goal position as a primary task while
meeting with each other at the halfway of their movement (at t=T/2) as a secondary task.
One can think of many real life applications that can be represented by this example: a
bimanual robot passing an object from one hand to the other and then using both hands
individually, or two mobile robots that have to exchange some products in a factory
before moving to their respective location. These applications require the robots to have

59

Chapter 5. Nullspace Methods in Planning and Control

multiple layers of workload, such as safety, main mission completion, social navigation,
etc. Considering that these two agents are perturbed during their execution to avoid some
obstacles, we expect them to perform their main mission and do the secondary tasks in
the nullspace. In Figure 5.5, we see that any perturbation that is not in conflict between
the main task of reaching the goal can be performed using the nullspace structure by
autonomously modifying the meeting position.

Figure 5.4: Two agents (black and red) have a primary task of reaching their goal
positions at time step T and a secondary goal to meet at some position at time step T/2.
If obstacles perturb their executions, we observe the nullspace effect with a shift of the
meeting position.

We can think of another robotic application where we can exploit the redundancies
in space-time dimensions of the robot. In Fig. 5.5, we have a 4 DoF robot controlled
by acceleration commands over T time steps. The 8-dimensional state consists of 4-
dimensional joint positions and 4-dimensional joint velocities. Therefore we have a total
of 8T DoF along the trajectory of the robot. The robot has to pick up a cup at time
step T/2 and place it at another location at time step T . We assume that picking up
the cup and placing it both spend 8 DoF, which makes a total of 16 DoF used. The
resulting trajectory is shown in Figure 5.5(a). Then, we impose a secondary objective
to hold a 90 degree angle with its last 2 joints after picking up the cup. This is helpful
for the robot to hold the cup with a better manipulability, as a human would do. Note
that the secondary objective uses only 2 DoF at each time step, with a total of 2 × (T/2)
DoF used. The resulting trajectory of Figure 5.5(b) shows that the robot is able to keep
90 degree angles only when it is not in conflict with the tasks of picking up the cup and
placing it.

5.4 Nullspace feedback controller in system level synthesis
(SLS)

In this section, we would like to find a feedback controller as in LQT to achieve hierarchical
tasks in optimal control. To find such a controller, we describe the problem in terms
of the system level synthesis (SLS) framework Chapter 4 as it allows us to work with
closed-loop maps instead of open-loop trajectories.

To find a nullspace feedback controller to achieve a secondary task without disturbing the

60

5.4 Nullspace feedback controller in system level synthesis (SLS)

(a) Without nullspace (b) With nullspace

Figure 5.5: A robotic application of nullspace structure within LQR.

first one, we can perform sensitivity analysis on the cost function for the primary task
whose solution is given by {Φ(1)

x ,Φ(1)
u ,d

(1)
x ,d

(1)
u }. Note that the primary task solution

is found by minimizing c1(x,u)=∥x − µ
(1)
x ∥2

Q(1) + ∥u∥2
Rd1

as in the previous section for
LQT, but using SLS method presented in Chapter 4. Following the same procedure, we
then add {δΦx, δΦu, δdx, δdu} to the solution such that the primary cost on the task
level stays the same, but it accomplishes at the same time a secondary task.

We take (5.10), replace δu by δΦuw + δdu and x(1) by Φ(1)
x w + d

(1)
x to obtain

cδ(δΦu, δdu) = Ew[∥Su(δΦuw + δdu)∥2
Q(1)+

2(Φ(1)
x w + d(1)

x − µ(1)
x)⊤Q(1)Su(δΦuw + δdu)],

= ∥SuδΦuΣ
1
2
w∥2

Q(1) + 2 Tr[Φ(1)
x ΣQ(1)SuδΦu]︸ ︷︷ ︸

Jδ(δΦu)

+

,∥δdu∥2
Q(1) + (d(1)

x − µ(1)
x)⊤Q(1)Suδdu︸ ︷︷ ︸

Jδ(δdu)

,

= Jδ(δΦu) + Jδ(δdu), (5.14)

whose non-trivial set of solutions for {δdu, δΦi
u} lies in the nullspace of {Q(1)Su,Q

(1,i:)Si:
u}

denoted as {N=NQ(1)Su
,N i=NQ(1,i:)Si:

u
}, i.e., δdu=Ny and δΦi

u=N iY i, where y and
Y i are arbitrary. Note that the index i represents the block column index for the
corresponding matrix. For example, Y i corresponds to the ith block column of Y , and
Y i: corresponds to the matrix that is obtained by extracting all the elements of Y after
(and including) the ith block column. Then the optimization problem that we are trying

61

Chapter 5. Nullspace Methods in Planning and Control

to solve becomes

min
δΦu,δdu

∥Φxw+dx−µ
(2)
x ∥2

Q(2) + ∥Φuw+du−u(2)∥2
R

s.t. Φx = Sx + SuΦu,

dx = Sudu,

Φu = Φ(1)
u + δΦu,

du = d
(1)
u + δdu,

δΦi
u = N iY i,

du = Ny,

δΦu ∈ L

(5.15)

whose objective can be decomposed as two parts (as in Appendix A.3), J2(Φu,du)=J2(du)+∑
i J

i
2(Φi

u), where J2(du) = ∥Sudu − µ
(2)
x ∥2

Q(2) + ∥du − µ
(2)
u ∥2

R and J i
2(Φi

u) = ∥(Si
x +

Si:
uΦi

u)σi
w∥2

Q(2,i:) + ∥Φi
uσi

w∥2
R such that it achieves hierarchically the first task, i.e,

Φi
u = Φ(1,i)

u + N iY i and du = d
(1)
u + Ny. Inserting these constraints inside, we

obtain

J2(y) = ∥d(1)
x + SuNy − µ(2)

x ∥2
Q(2) + ∥d(1)

u + Ny − µ(2)
u ∥2

R,

J i
2(Y i) = ∥(Φ(1,i)

x + Si:
uN iY i)σi

w∥2
Q(2,i:) + ∥(Φ(1,i)

u + N iY i)σi
w∥2

Ri:

which can be minimized analytically for y and Y i to find

δd∗
u = N arg min

y
J2(d(1)

u + Ny),

=
(

N(S⊤
u Q(2)Su)N

)†(
S⊤

u Q(2)(µ(2)
x − d(1)

x) + R(µ(2)
u − d(1)

u)
)
, (5.16)

and

δΦi∗
u = N i arg min

Y i

J i
2(Φ(1,i)

u + N iY i),

= −
(

N i(Si:⊤
u Q(2,i:)Si:

u)N i
)†(

Si:⊤
u Q(2,i:)Φ(1,i)

x + RΦ(1,i)
u

)
(5.17)

Note that such a feedback controller allows us to apply adaptation methods proposed in
Chapter 4 into the hierarchical task definition by noticing that the desired states µ

(1)
x

and µ
(2)
x only appear in δd∗

u linearly. The same observation allowed us to store some
matrices and adapt very fast by a simple matrix vector multiplication in the case of a
change in the desired states. We can apply the same ideas here to get an optimal solution
of the same problem with different desired states. This observation is becoming more
interesting when we consider the nullspace structure in iSLS in the next section.

62

5.5 Bilevel optimization of hierarchical optimal control

5.5 Bilevel optimization of hierarchical optimal control

The nullspace definition and emergence of the nullspace matrices are similar to the
inverse kinematics previously discussed in Section 5.1 once we establish what we mean
by hierarchical tasks. We follow again Section 5.1 to look at the hierarchical inverse
kinematics problem from the perspective of bilevel optimization.

First we notice that the solution to the problem in (5.3) is also the solution to the
following problem (see Appendix A.4.2)

min
q

∥f2(q) − x2∥2
2

s.t. ∥f1(q) − x1∥2
2 is minimum.

(5.18)

and the iterations in constrained Gauss-Newton are the same iterations in both problems.
Using Definition 1, we apply this idea to define the hierarchical optimal control problem
as

min
u

∥g2(u)∥2
2 + ∥u∥2

R

s.t. ∥g1(u)∥2
2 is minimum.

(5.19)

where the costs ∥gi(u)∥2
2 describe the costs on the trajectory level only without including

the quadratic terms on the control, such that there is some planning redundancy. We
will see later how this redundancy appears in the subproblems for solving (5.19). Note
that here we assume these costs include the dynamics model as was done in Section 3.3.4
in the form x = F (x0,u).

To solve (5.19), we first transform this problem into a single level optimization problem
by replacing the constraint with its KKT conditions ∇g1(u)⊤g1(u) = 0 as follows

min
u

∥g2(u)∥2
2 + ∥u∥2

R

s.t. ∇g1(u)⊤g1(u) = 0
(5.20)

We linearize it around uk and the subproblem of the Gauss-Newton method is

min
∆u

∥∇g2(uk)∆u + g2(uk)∥2
2 + ∥∆u + uk∥2

R

s.t. ∇g1(uk)⊤g1(uk) + ∇g1(uk)⊤∇g1(uk)∆u = 0
(5.21)

which is a linearly constrained quadratic program with respect to ∆u = u − uk, that
can be solved by the constrained Gauss-Newton method as in Appendix A.4.1. We can
use the nullspace methods to re-write the equality constraint as

∆u = −∇g1(uk)†g1(uk) + N1(uk)y, (5.22)
= ∆u(1) + N1(uk)y, (5.23)

63

Chapter 5. Nullspace Methods in Planning and Control

with an arbitrary y (see Equation (A.36)). Inserting this into Equation (5.21), we obtain

min
y

∥∇g2(uk)
(
∆u(1) + N1(uk)y

)
+ g2(uk)∥2

2 + ∥∆u(1) + N1(uk)y + uk∥2
R (5.24)

which is in the same form as in the linear quadratic case Equation (5.11). We can then
directly give the solution as

y∗ = −
(

N1(∇g⊤
2 ∇g2 + R)N1

)†(
∇g⊤

2 (∇g2∆u(1) + g2) + R(∆u(1) + uk)
)

(5.25)

which gives the optimal solution to the subproblem of hierarchical iLQR as

∆u∗ = ∆u(1) + N1(uk)y∗. (5.26)

As usual, we choose a merit function for the line search on the solution ∆u∗ as M(q) =
∥g2(u)∥2

2 + ∥u∥2
R + µ∥∇g1(q)⊤g1(q)∥1 as described in Section 5.1.

Note that we assumed at the beginning that each gi(·) represents a an objective function
of the trajectory only. Although this was to simplify the reasoning process, this can be
further extended easily to the cases where gi(·) represents a general cost function.

To find a feedback controller stabilizing around the trajectory found by the convergence
of the above procedure, we can use the hierarchical SLS described in Section 5.4 around
the linearization of that trajectory.

Verification with quadratic costs:

At this stage, it is worth to take a step back to see what this would correspond to
in the quadratic objective function case, also for sanity check. We define gi(u) =
Q

1
2

(i)
(F (x0,u) − µ

(1)
x), hence ∇gi(u) = Q

1
2

(1)
Su and

∆u(1) = −∇g1(uk)†g1(uk), (5.27)

= −(Q
1
2

(1)
Su)†Q

1
2

(1)
(F (x0,uk) − µ(1)

x), (5.28)
= −(S⊤

u Q(1)Su)†S⊤
u Q(1)(xk − µ(1)

x) (5.29)

5.6 Experiments

5.6.1 Viapoint reaching

We performed experiments on a 2D double integrator system with the task of reaching a
goal position while passing through some viapoints as can be seen in Figure 5.6. The
state of the system is composed of the position and the velocity of the point mass as

64

5.6 Experiments

x = [p,v]. The primary task is defined as the sum of reaching the green crosses at
timesteps 40 and 70 (p1

40, p1
70), passing through the same viapoints at timesteps 20 and

50, reaching the goal position and zero velocity (G, x1
100) at the final timestep: c1(x) =

∥p40 −p1
40∥2

2 +∥p70 −p1
70∥2

2 +∥p20 −p50∥2
2 +∥x100 −x1

100∥2
2. The secondary task is the sum

of reaching the purple crosses at timesteps 30 and 70: c2(x) = ∥p40 −p1
40∥2

2 +∥p70 −p1
70∥2

2.
We expect that the controller found by eSLS will do the task at timestep 30, but ignore
the task at timestep 70 as this timestep is already occupied by the green viapoint.
We solved the following problem using the nullspace method and eSLS as described in
Section 5.4

min
u

c2(x) + ∥u∥2
R

s.t. c1(x) is minimum.
x = Sxx0 + Suu

(5.30)

and we obtained an eSLS feedback controller in the form of u = Kx+k. For comparison,
we solved a standard eSLS problem with the objective function c1(x)+∥u∥2

R and obtained
the orange trajectory seen in Figure 5.6. Note that it passes through the green viapoints,
passes through the same positions at timestep 20 and 50, and reaches the goal position
with zero velocity. We then applied the controllers K,k starting from 10 different initial
positions and applied these controllers in the presence of noise on the dynamics. First,
we see that the noise and the change in the initial position change the position at which
the point mass passes through at timesteps 20 and 50, it still passes through the green
viapoints and reaches the goal. Second, as expected, the controller robustly passes
through the first purple viapoint while ignoring the second one as the timestep 70 is not
free.

0 10 20 30 40 50 60 70 80 90 100
t

1

0

1

2

x G

Position

0 10 20 30 40 50 60 70 80 90 100
t

20

0

20
Velocity

0 10 20 30 40 50 60 70 80 90 100
t

1

0

1

2

y

G

0 10 20 30 40 50 60 70 80 90 100
t

20

0

20

primary controller
nullspace controller

primary viapoints
secondary viapoints

time correlations
Goal

Figure 5.6: 10 realizations (starting from different initial positions) of the primary
controller and the nullspace controller

65

Chapter 5. Nullspace Methods in Planning and Control

5.7 Conclusion

In this chapter, we tackled the problem of hierarchical optimization for optimal control.
We showed that we can set up a bilevel optimization problem and solve it using a
linearization of the KKT conditions for the Gauss-Newton method, where each subproblem
is solved using nullspace projection operators. We integrated a hierarchical planning
strategy with the previously proposed eSLS framework to obtain feedback controllers
that are aware of the hierarchies in the task.

Future work consists of analyzing the capabilities of such an optimization problem in
terms of initialization, robustness, and computational efficiency. An interesting direction
is to combine the proposed method within MPC for the robot to decide automatically
which tasks to accomplish respecting their hierarchies.

66

Part IILearning of Controllers

67

6 Learning robotic skills from
demonstrations

Robotic systems are composed of a feedback loop between the robot and its surroundings.
If we could perfectly model everything that connects this loop, including the robot’s
real-life behavior as a reaction to the changes in the surrounding, and the changes
in the surrounding as a reaction to the robot’s behavior, we could then have perfect
controllers. Feedback control is a way to handle what can not be modeled by reacting to
the errors produced by the unmodeled effects. We saw in Chapters 3 to 5 that we can
set up optimization problems to find such feedback mechanisms when we have a precise
definition of the success of the task as a cost function or constraints, and a good model
of the evolution of the state of the task as the robot applies control actions.

In this chapter, we remove the assumptions that we have this expert knowledge of
designing cost functions or modeling the task dynamics in a way to be efficiently solved
for the particular choice of the solver. Instead, we are interested in two cases: 1. the
dynamics model of the task is too complex that the standard solvers fail to find a
convergent solution and 2. defining an objective function is much more difficult compared
to demonstrating a couple of realizations of the task with different parameters. In
both cases, we argue that leveraging learning from demonstration methods significantly
improves performance.

In Section 6.1, we exploit human demonstrations in several ways to warm-start and/or
guide optimal control problems. We argue that the proposed method indeed saves the
solvers from local optima and leads them to the convergence point.

Inputting reference trajectories into a stable controller is a standard way of designing such
controllers. The challenge here is to be able to exploit fully the capabilities of the learned
reference trajectory model during the execution of the trajectory with the designed
controller. In Section 6.2, we propose a method to combine impedance controllers with
a probabilistic trajectory model to reconcile the generalization and the multimodality
aspects of the model with the robustness of the controller.

69

Chapter 6. Learning robotic skills from demonstrations

6.1 Learning trajectory models to warm-start optimal con-
trol

Publication Note
The material presented in this section is adapted from the following publication:

• Xue, T., Girgin, H., Lembono, T. and Calinon, S. (2023). Demonstration-guided
Optimal Control for Long-term Non-prehensile Planar Manipulation. In Proc.
IEEE Intl Conf. on Robotics and Automation (ICRA).

My contribution concerns the idea of applying a trust region method to DDP to fully
exploit the offline feedback and feedforward gains for online execution.

In this section, we focus on long-term non-prehensile planar manipulation, which concerns
achieving reliable non-prehensile planar manipulation with a long-term horizon, involving
joint logistic and geometric planning and feedback control over diverse interaction modes
and face switches. For example, to push an object, a prerequisite is to decide how much
force should be applied, and which point to push. Moreover, in some cases such as
pushing an object with small distance but large rotation, relying on a single fixed face is
not feasible. Therefore, a sequence of face switching is required, as well as contact mode
schedule resulting from Coulomb friction.

To achieve non-prehensile planar manipulation, four main challenges appear as follows:
1. Hybrid Dynamics. The dynamics of a pusher-slider system depends on the current
interaction mode and contact face between the pusher and the slider. In this section,
we consider not only the motion involving various interaction modes, e.g., separation,
sticking, sliding up, and sliding down, but also the switching between the contact faces,
i.e., left, bottom, right, and up (unlike previous works [107, 108] that only work with a
single face). The transitions between different faces and the separation to the other three
contacting modes pose important difficulty for gradient-based optimization methods.
2. Underactuation. The contact force between the pusher and the slider is constrained
within a motion cone, which makes it impossible to exert arbitrary acceleration on the
object to achieve omnidirectional movement.
3. Long-horizon TAMP. Due to the characteristics of hybrid dynamics and under-
actuation, it is important to reason over long horizon using both logic and geometric
descriptors, where the logic variables relate to contact modes and faces and the geometric
variables relate to contact points, slider states, switching points, and control commands.
4. Contact Uncertainty. Arising from the frictional contact interactions between the
pusher and the slider, as well as between the slider and the table, the contact is hard
to be modeled precisely, therefore a controller enabling online contact adaptation is
required.

70

6.1 Learning trajectory models to warm-start optimal control

To address these challenges, we propose a hybrid framework based on optimization
and learning from human demonstrations. An interface is first built to collect human
demonstrations of the pushing task. Given a specific target configuration, we use k-nearest
neighbor (k-NN) algorithm to retrieve a demonstration trajectory closest to the target
configuration, and we use it to formulate the soft constraints of a hierarchical optimal
control problem. The optimal control problem is solved offline to produce the optimal
trajectory and the optimal control commands. A feedback controller is then used to
adapt to the contact uncertainty online by following the offline trajectory.

The main contribution of our work is an approach to solve the complete long-term
non-prehensile manipulation task by covering all of the interaction modes and the
face switching cases, with the ability of offline planning and online tracking. This is
achieved by introducing human demonstration into the optimal control problem. By using
demonstrated continuous variables to express the discrete variables implicitly, we can
successfully project traditional TAMP formulation into geometric field. A demonstration-
guided hierarchical optimization framework is then proposed, allowing the robot to obtain
(sub)optimal solutions very quickly. A real-time feedback controller is finally proposed
to replan the trajectory, by compensating for model mismatch and contact uncertainty
when interacting with the real physical world.

6.1.1 Problem formulation

A optimal control problem (OCP) can be described as

min
ut

cT (xT) +
T −1∑
t=1

ct(xt,ut), (6.1)

s.t. xt+1 = f(xt,ut), (6.2)

where (6.1) is the cost function and (6.2) is the dynamic equation. Practically, due to
the nonlinearity and high degrees of freedom involved in robotics, numerical optimization
is mostly used to solve this kind of problem. We use DDP [109] in this work, which
has been shown effective for this problem [110, 111]. It can also provide local feedback
mechanism that was used to keep the robustness of controller in [112].

After minimizing the cost-to-go function w.r.t. ∆ut, a local stabilizing controller can be
obtained as

ut = ût + Kt (xt − x̂t) + kt, (6.3)

where Kt is a feedback gain, and kt is a feedforward term.

Given (6.1) is a non-convex problem, DDP solves it by optimizing around the current
solution iteratively. The convergence is very sensitive to the initial guess, which means
that it is easy to be stuck at poor local optima if the initial guess is far away from the

71

Chapter 6. Learning robotic skills from demonstrations

optimal solution.

6.1.2 Demonstration-started DDP (DS-DDP)

To solve the problem of getting stuck at poor local optima, we introduce human demon-
strations into the basic DDP as initialization, which is a popular way for warm-starting
OCP [113]. The demonstrations are designed as continuous variables, which can implicitly
express the discrete variables instead of explicitly specifying the mode sequence as in
previous work [107, 108, 114]. In this way, we convert the joint logic and geometric
optimization problem to a typical geometric optimization problem, which can be solved
much efficiently.

The collected human demonstrations are denoted as [q̃s, q̃f , ṽ, ũ], with q̃s = [q̃s0 , q̃s1 , · · · , q̃sT],
q̃f = [q̃f0 , q̃f1 , · · · , q̃fT

], where q̃st ∈ R3 and q̃ft ∈ R2 represent the state of the
slider and the pusher at timestep t, respectively. ṽ = [ṽ0, ṽ1, · · · , ṽT −1] ∈ R2 and
ũ = [ũ0, ũ1, · · · , ũT −1] ∈ R2 denote the velocity and acceleration at each timestep.

Given a target q∗
s , we use k-NN to select the index of j∗ with the closest demonstration

q̃sT to the target in the task space by evaluating

j∗ = min
j∈S

dist(q̃j
sT
, q∗

s), (6.4)

where S = {j : j ∈ {0, 1, · · · , nd}, nd is the number of demonstrations, and

dist(x,y) = (
d∑

r=1
|xr − yr|p)1/p, (6.5)

where d is the dimension of slider state, and p = 2.

The cost function of DS-DDP is defined as:

c1 = cre + crg + cbd, (6.6)

with
cre = (µT − xT)⊤QT (µT − xT), crg =

T −1∑
t=0

(u⊤
t Rut),

cbd =
T −1∑
t=0

(f cut(ut,ul)⊤Kf cut(ut,ul)),

where cre is the reaching cost, and crg, cbd are the regularizer and boundary penalizer of
control commands. ul is the predefined bounding box of u. f cut is a soft-thresholding
function. The initial guess u0 = ũ is drawn from human demonstrations directly.

Although this method seems like an effective warm-starting method, it is restricted by

72

6.1 Learning trajectory models to warm-start optimal control

the number of acquired demonstrations.

6.1.3 Demonstration-constrained DDP (DC-DDP)

To alleviate the problem mentioned above, we propose to use demonstration as the soft
constraints of control commands in OCP. It is achieved by designing the cost function as

c2 = cre + crg + cbd + csw + cve + cac, (6.7)

with

csw =
tN∑

n=t0

((µn − xn)⊤Qn(µn − xn)), (6.8)

cve =
T −1∑
t=0

((ṽt − vt)⊤Rdv(ṽt − vt)), (6.9)

cac =
T −1∑
t=0

((ũt − ut)⊤Rdu(ũt − ut)), (6.10)

where csw, cve and cac are designed to follow the demonstrated face switching strategy,
pusher velocity and pusher acceleration. n = [t0, · · · , tN] is the timestep when the contact
face switches, µ = [q̃⊤

s q̃⊤
f ṽ⊤]⊤ is the state of the selected demonstration, and ṽt, ũt are

the demonstrated velocity and acceleration at timestep t.

6.1.4 Warm-starting DDP (WS-DDP)

Demonstration-constrained DDP shows good performance and can avoid poor local op-
tima, but in order to further improve its convergence properties, we propose a hierarchical
optimization framework, where the solution of DC-DDP is used to initialize another
DDP problem that we call Warm-starting DDP (WS-DDP).

The cost function of WS-DDP is as same as DS-DDP, allowing it to explore much freely
towards the final target. The initial guess u0 = u∗

DC is the result of previous DC-DDP.

6.1.5 Adaptation to disturbance

Similarly to basic DDP, we can see that for a tracking problem, the resulting optimal
control policy takes the same form as (6.3), characterized by a feedback gain and a
feedforward term. Typically, the optimal control policy is used to generate control
commands at each timestep based on the current state to stabilize the motion along
the nominal trajectory. However, the frictions and other unmodeled nonlinearities
might cause undesired behaviors, especially when the error between the current state

73

Chapter 6. Learning robotic skills from demonstrations

and the planned solution ∥xt − x̂t∥2 is too big. To alleviate this issue, we propose to
use an error filtering method based on a trust region defined as a ball of radius r as
Bt(r) = {x ∈ Rn|∥x − x̂t∥ < r} (as was done in Chapter 3). By denoting the actual
robot state as x0

t , we filter the xt in (6.3) as follows: if x0
t ∈ Bt(r), then we take xt = x̂t,

else we take xt = x0
t . This means that if the error between the actual robot state and

the planned state is small, we can use the feedforward terms of the controller directly,
and if it is big, then we replan the trajectory using the feedback controller gains. This
allows us to fully exploit the feedback and feedforward gains computed offline during the
online execution of the task avoiding expensive recomputations at each timestep.

6.1.6 Experiments

We evaluate in this section the proposed offline programming method (Sec. 6.1.6) and
the proposed online tracking controller (Sec. 6.1.6).

Offline Programming

In this work, the task space is the horizontal plane on the table, and it is limited as T =
{[x, y, θ] : x ∈ [−25cm, 25cm], y ∈ [−25cm, 25cm], θ ∈ [−π, π]}. We collected 3 representa-
tive demonstrations, which are [15cm,−10cm,−π/2], [0,−20cm, π/2], [15cm,−15cm, π/2],
corresponding to Ns = 0, Ns = 1 and Ns = 2, respectively, where Ns is the number of
face switches during the demonstration. The initial state is defined as [0 0 0 αpx 0 0 0]⊤,
where α = 1.3, corresponding to the separation mode in Sec. A.1.2, allowing the pusher to
select the contact point at the beginning. The cost function gains are set to QT = 106 ×
diag{1, 1, 1, 106p−5, 101−6p, 10−3, 10−3}, Qn = 106 ×diag{10−3, 10−3, 10−3, p, (1−p), 0, 0},
where p = 1 when θf = 0 or θf = π, otherwise p = 0. R = K = diag{1, 1},
Rdu = Rdv = diag{100, 100}.

In other works, planar pushing tasks are often formulated as Mixed-Integer Programming
(MIP) problems [107, 114, 108]. To compare with our method, we use demonstrations
as the initialization for MIP as well, which is called as DS-MIP. CasADi [115] with the
Bonmin solver [116] and Crocoddyl [117] with the FDDP solver are used separately to
solve DS-MIP and DS-DDP. Fig. 6.1 and Fig. 6.2 show the convergence curve and the
solving time of 10 randomly selected target configurations. The vertical axis of Fig. 6.1
is the norm of the reaching error at each iteration with respect to the initial error. We
can see in these figures that DS-MIP can almost get the same result as DS-DDP but
needs 10 times more time. This is because of the nonconvex nature of integer variables.
By implicitly expressing integer variables as demonstrated continuous control commands,
TAMP problems can be solved much more efficiently. Moreover, we also find that the
proposed DC-DDP and WS-DDP can achieve better results in relatively longer time
(but still acceptable) compared to DS-DDP. This shows that simply initializing using
the demonstration as done in DS-DDP is not enough, and constraining the search space

74

6.1 Learning trajectory models to warm-start optimal control

Figure 6.1: Convergence curve Figure 6.2: Solving time

Table 6.1: Performance of DS-DDP, DC-DDP, and WS-DDP for offline programming

Method xerr/cm yerr/cm θerr/rad succ_rate

DS-DDP 0.24 ± 2.22 0.96 ± 4.03 0.10 ± 0.34 74%
DC-DDP 0.04 ± 1.33 0.85 ± 1.91 0.02 ± 0.08 75%
WS-DDP 0.11 ± 1.01 0.56 ± 1.63 0.01 ± 0.07 84%

using demonstrations as the soft constraints during early iterations helps to reach a
better solution.

Additionally, we tested the generalization ability of the proposed demonstration-guided
offline programming method. A successful offline programming is defined as: {xerr <

1cm, yerr < 1cm, θerr < 5◦}, where xerr, yerr and θerr are the difference between final
pose and target pose. 100 targets are randomly selected in the task space T to test the
generalization capability. The statistical results are listed in Table 6.1. Clearly, with
demonstrations, the success rate significantly increases for random-selected targets. By
using only 3 demonstrations, DC-DDP can accomplish 75 out of 100 random targets
in task space, also with low mean and standard deviations for the errors. WS-DDP
achieves a slightly higher success rate based on the DC-DDP solution, showing that this
demonstration-guided hierarchical optimization framework can generalize to unknown
targets very well. Practically, the generalization result does not change a lot as long as
the selected 3 demonstrations are informative. It would be studied in the future about
how to collect demonstrations more efficiently and actively.

75

Chapter 6. Learning robotic skills from demonstrations

Figure 6.3: Tracking performance under disturbance. The dashed lines present the
tolerance.

Online Tracking

For online tracking, we investigated both numerical simulation and real robot experiments.
In simulation, we introduce a disturbance on the state as x = x + ϵ from the beginning
to the end, where ϵx ∼ U(−xM , xM), ϵy ∼ U(−yM , yM), ϵθ ∼ U(−θM , θM), are the
components of ϵ, drawn from a uniform distributions. Fig. 6.3 shows the evolution
of the errors on x, y, and θ, computed as the difference between the final point and
the target, for increasing xM , yM and θM . The tolerance for online tracking is set as
{xerr < 3cm, yerr < 3cm, θerr < 5◦/0.087rad}. We can find that the controller can
successfully resist 4cm perturbation for x and y, and 0.117rad for θ.

Then, we tested the proposed method on the real robot setup (Fig. ??), using a 7-axis
Franka Emika robot and a RealSense D435 camera. The slider (rs = 6cm) is a 3D-printed
prismatic object with PLA, lying on a flat plywood surface, with an Aruco Marker on
the top face. A wooden pusher (rp = 0.5cm) is attached to the robot to move the object.
The motion of the object is tracked by the camera at 30 HZ, and the feedback controller
runs at 100 HZ, with a low-level Cartesian impedance controller (1000 HZ) actuating the
robot.

In this experiment, we tried one line tracking task with disturbance and two face
switching tasks. Both simulated and experimental results achieve the targets within
specified tolerance (see accompanying video). The trajectories in Fig. 6.5 correspond
to one of the task requiring one face switching to push the object from [0, 0, 0] to
[20cm,−20cm, π/2]. The control strategy is intuitive: pushing it from the left face to
slightly adjust the pose and then changing to the top face for the next phase of pushing.
Fig. 6.5-(a) is the simulation trajectory, which is generated by using PyBullet [118], while

76

6.1 Learning trajectory models to warm-start optimal control

(a) Initialization (b) Contact (c) Pushing (d) Face switching

(e) Contact (f) Pushing (g) Reaching

Figure 6.4: Pushing task with face switching. The manipulator starts from (a) and
selects an optimal face (orange) and contact point (b) for pushing, until reaching the
planned face switching point (c). Next, the manipulator changes to face (d) and touches
the object again at the selected point (e), followed by the next phase of pushing (f), until
reaching the final target (g). This example is for Ns = 1. (d)∼(f) should be repeated if
Ns > 1. The colored line is used to express the current active face, and the black arrow
in (d) represents the face switching process.

77

Chapter 6. Learning robotic skills from demonstrations

a) Simulation results b) Experimental results

Figure 6.5: Planar pushing with face switching. Both simulation and experimental results
reach final targets within tolerance.

Fig. 6.5-(b) shows the real robot trajectory. It is observed that these two trajectories are
significantly different, because of the different friction parameters in the two different
worlds. Still, both can overcome the uncertainty to reach the final target. Despite the
existence of unstructured elements such as differences in the visual system and the robot
controller, several assumptions of the dynamics model, as well as immeasurable friction,
the feedback controller is able to cope with these different mismatches and track the
reference trajectory successfully. Fig. 6.4 shows the keyframes of the pusher pushing
the slider toward the target, indicating that 7 steps are needed with the face switching
strategy. Another final target configuration, [5cm,−18cm, π/5], which requires two face
switches, is additionally shown in the video.

6.1.7 Conclusion

In this section, we propose to add separation modes and face switching mechanisms to the
problem of pushing objects on a planar surface. We showed that by introducing human
demonstrations, the typical TAMP problem can be expressed as a classical geometric
optimization problem, which is much more efficient to be solved. With the proposed
demonstration-guided hierarchical optimization framework, we demonstrated significantly
better results in terms of generalization and precision compared to the state-of-the-
art methods. With more demonstrations, the proposed approach has the potential to
precisely reach almost any point in the task space. Additionally, we developed a feedback
controller based on DDP feedback gains to replan the trajectory for online tracking. We
tested the combination of these approaches in both PyBullet simulation and in real robot
application, showing good performance to resist contact uncertainty.

78

6.2 Learning trajectory models for adaptive control

Currently, we are using a feedback controller to track the offline trajectory. If the system
is subject to large perturbation such as rotating 180◦, an online Model Predictive Control
(MPC) may still be required. Nevertheless, our demonstration-guided method is also
promising as an optimizer within MPC to avoid poor local optima.

As future work, we aim to apply our demonstration-guided approach to a broader range
of manipulation tasks (namely, beyond pushing problems), which requires further study
on how to extract constraints from demonstration, and how to formulate an optimal
control problem based on the extracted constraints. It would also be relevant to explore
extensions of TAMP problems by introducing similar continuous human demonstration.
Another future work consists in exploiting human demonstrations in model-based learning
strategies to let the robot automatically refine the pushing model and its motion.

6.2 Learning trajectory models for adaptive control

Publication Note
The material presented in this chapter is adapted from the following publication:

• Jankowski, J., Girgin, H. and Calinon, S. (2021). Probabilistic Adaptive Control
for Robust Behavior Imitation. IEEE Robotics and Automation Letters (RA-L),
6:2, 1997-2004.

In this publication, my contribution is to partly develop the proposed mathematical
model and to help with comparisons with the state-of-the-art.

6.2.1 Probabilistic Movement Primitives

One well-established LfD approach is called probabilistic movement primitives (ProMPs)
[119], which permits movement representation and generation. ProMPs have been
successfully used for learning different robotic tasks from demonstrations, including
rhythmic tasks [120], striking tasks [121], or human-robot collaboration tasks [122]. One
of the main capabilities of ProMPs lies in the task generalization, which is usually
achieved by conditioning the trajectory distribution to some desired keypoints. It is
also desirable and possible to generalize with respect to a context or external variable,
which is known before executing the task (such as the mass of an object or the volume
of a liquid to pour), by learning the joint distribution of the context variable and the
trajectory [123].

A ProMP is a probability distribution over trajectories built from a series of N demon-
strations (trajectories) of length T and of D dimensions. A demonstration τ ∈ R(T ×D)

is approximated by a sum of M basis functions, which are often chosen as radial basis

79

Chapter 6. Learning robotic skills from demonstrations

functions (RBF)
τi = Φwi + ϵ, with Φ = Φ1d ⊗ ID, (6.11)

where ⊗ represents the Kronecker product, ϵ is zero-mean i.i.d. Gaussian noise, wi of size
MD × 1 is the weight associated to the ith demonstration, Φ1d

T ×M is the basis function
matrix with Φ1d

t,m = Φm(t) corresponding to the mth basis function indexed at time t,
and ID is an identity matrix. The weight vectors associated to each demonstration are
computed with least squares as

wi = (Φ⊤Φ)−1Φ⊤τi. (6.12)

A probability distribution p(w) can then be learned from the demonstrations {wi}N
i=1,

usually with a multivariate Gaussian or a GMM.

Control with ProMPs: For a given time t, the corresponding position q(t) and velocity
q̇(t) is encoded as

q(t) = Φ(t)w, q̇(t) = Φ̇(t)w. (6.13)

To track the trajectory distribution encoded by the learned probabilistic model p(w) ∼
N (µw,Σw), Paraschos et al. derive a time-varying feedback controller by matching the
rolled-out closed-loop system dynamics with the robot state distribution of the ProMP
model. Therefore, the system dynamics are linearized, while assuming perfect knowledge
of the system dynamics. Thus, unmodeled perturbations may lead to strong deviations
from the expected behavior. Furthermore, they do not show how their controller can be
extended to the multimodal case or to dynamically changing context variables. In the
following, we refer to their controller as original controller, which is used as a baseline to
benchmark our proposed controller.

More recently, Paraschos et al. proposed to learn a joint distribution of the motion
trajectory and the recorded control action along the trajectory [124]. The controller is
derived by conditioning the control action distribution on the current robot position and
velocity to obtain a control policy distribution. They propose to stabilize the controlled
system by adding linear feedback terms to let the robot converge back to the mean of
the trajectory distribution only if the robot is ’far’ from the demonstrated region in
the state space. This approach does not require the knowledge of the system dynamics.
However, it is limited to the collection of demonstrations only through teleoperation,
e.g. by capturing the motion of a human demonstrator and executing the motion on the
robot in realtime, to be able to record the control actions.

6.2.2 Formulation of the proposed controller

As an underlying control structure, we propose to use a compliant controller

u = −K(q − qd) − D(q̇ − q̇d) + Mq̈d + Cq̇d + g, (6.14)

80

6.2 Learning trajectory models for adaptive control

that enables a robot with the dynamics in Equation (2.8) to track a reference trajectory
{qd=Φ(t)w, q̇d=Φ̇(t)w, q̈d=Φ̈(t)w}T

t=1 with the user-defined positive definite feedback
gains K,D ∈ Rn×n. Note that for a stationary w, the closed-loop system controlled by
this controller is known to be asymptotically stable. The resulting closed-loop dynamics
are linear in the trajectory weights w, which can also be interpreted as a latent auxiliary
control input. In contrast to the original control formulation, this avoids the necessity of
linearizing the passive system dynamics in Equation (2.8) and introduces a stabilizing
feedback structure.

As in [125], we model the weight vector w as a random variable that correlates with the
demonstrations D and the current robot state y. Thus, we find a probabilistic imitation
controller by marginalizing over the weight vectors with

p(u|y,D) =
∫

w
p(u|y,w)p(w|y,D)dw. (6.15)

Paraschos et al. derive their controller in a similar fashion [124], however, we propose
to exploit the compliant control structure in Equation (6.14) instead of learning a joint
distribution of robot states and control actions. The probability distribution p(u|y,w)
focuses all the probability mass at the deterministic controller given in Equation (6.14).
Hence, the probability distribution can be written as a Dirac function, such that

p(u|y,w) = δ(Aw + b), (6.16)
with A = KΦ + (C + D)Φ̇ + MΦ̈,

b = −Kq − Dq̇ + g.

It can be seen that the nonlinear feedback controller is linear w.r.t. the weight vector w,
which results in tractable control distributions.

The conditional distribution p(w|y,D) of the weight vectors can be reformulated by
Bayes’ theorem

p(w|y,D) ∝ p(y|w)p(w|D), (6.17)

such that the learned ProMP model p(w|D) evolves from the formulation of a probabilistic
imitation controller. We complete the probabilistic model in Equation (6.17) by letting
the robot state y be correlated with the current weight vector by using a linear Gaussian
model p(y|w)=N (Φw,Σq)N (Φ̇w,Σq̇). Here, the covariance matrices Σq and Σq̇ can
be understood as a tracking tolerance for the controller w.r.t. a given weight vector w.

81

Chapter 6. Learning robotic skills from demonstrations

Figure 6.6: Drawing task for a 2D point mass. The parameters of the proposed controller
are set to Σq=σqI, Σq̇=σq̇I, K=500I and D=3

√
500I. The original controller and

the proposed controller produce the same behavior if the tolerance of tracking the
probabilistic model is set close to zero (left plot). For the tolerances σq=10−5 and
σq̇=10−3, the proposed controller adds stabilizing feedback terms. This results in a
probabilistic feedback control that is robust to perturbations (right plot).

6.2.3 Single Mode

For simple tasks, e.g. reaching tasks in non-cluttered environments, it is sufficient to learn
a single Gaussian distribution of weight vectors w to model the demonstrated movement.
In these cases, as also investigated in the original work [125], the learned distribution of
weight vectors is given by p(w|D) = N (µw,Σw).

As a result, the distribution in Equation (6.17) can be computed closed-form as

p(w|y,D) = N (µw|y,Σw|y), (6.18)

where the conditional mean µw|y depends on time and the robot state.

Since the result is a Gaussian distribution, the solution of the integral in Equation (6.15)
becomes analytically tractable. Hence, we obtain a state and time-dependent Gaussian
distribution of feedback control actions that are conditioned on the demonstrations,
namely

p(u|y,D) = N (Aµw|y + b, AΣw|yA⊤), (6.19)

with A and b given by Equation (6.16). Obtaining a Gaussian distribution of control
actions can be exploited by a product of experts scheme in order to blend multiple
complementary probabilistic controllers, as shown in [126, 127]. However, in this section,
we focus on the imitation performance when using the most likely control action that is
given by the mean of the control distribution

µu = −K̃(q − Φµw) − D̃(q̇ − Φ̇µw) + MΦ̈µw + CΦ̇µw + g. (6.20)

82

6.2 Learning trajectory models for adaptive control

The feedback gain matrices are given by

K̃ = K − AΣw|yΦ⊤Σ−1
q ,

D̃ = D − AΣw|yΦ̇⊤Σ−1
q̇ .

(6.21)

This shows that the resulting controller has time-varying feedback gains that depend on
the variations of the demonstrations.

We validate our analysis and the underlying assumptions in Figure 6.6 by simulating
the proposed controller, the original formulation and a controller with constant feedback
gains (Stiff) in a single-mode drawing task. The left plot shows that the proposed
controller with close-to-zero tolerances and the original controller result in a similar
behavior. The plot on the right side illustrates the trajectories when there is a random
force τext ∼ N (0, 10I) perturbing the system and the tolerances are set to σq=10−5 and
σq̇=10−3. The proposed controller shows higher robustness to the perturbations than
the original controller.

6.2.4 Multiple Modes

For more complicated tasks, it can be desirable to use a more expressive model for the
distribution of trajectory weight vectors in order to capture multiple modes. One way to
do so is to use a mixture of Gaussians that is a weighted sum of N Gaussian components

p(w|D) =
N∑

n=1
πnN (µn

w,Σn
w), (6.22)

where πn is the mixing coefficient.The conditional distribution of a Gaussian mixture
model is itself a Gaussian mixture model given by

p(w|y,D) =
N∑

n=1
γn(y)N (µn

w|y,Σ
n
w|y), (6.23)

where N (µn
w|y,Σ

n
w|y) is the conditional distribution of the n-th component and is com-

puted in the same way as Equation (6.18). The new mixing coefficients are given
by

γn(y) = πnpn(y|D)∑N
l=1 πlpl(y|D)

, (6.24)

with pn(y|D) = N (Ψµn
w,Σy + ΨΣn

wΨ⊤), (6.25)

which can be interpreted as the belief of the robot being in mode n. Here, the fea-
ture matrix is given by Ψ=[Φ⊤, Φ̇⊤]⊤, and the robot state covariance is given by

83

Chapter 6. Learning robotic skills from demonstrations

Figure 6.7: Multiple-mode navigation task for a 2D point mass. The parameters of the
proposed controller are set to Σq=10−5I, Σq̇=10−3I, K=100I and D=3

√
100I. The

dashed trajectories show the behavior of the original controller (red) and the proposed
controller (blue) without perturbations. The solid trajectories show the result of all
controllers under the impact of an external force fext that pushes the point mass in
positive q2-direction for 0.1 seconds.

Σy=blockdiag(Σq,Σq̇). This results in a mixture of Gaussian policies given by

p(u|y,D) =
N∑

n=1
γn(y)N (µn

u,Σn
u),

with µn
u = Aµn

w|y + b,

Σn
u = AΣn

w|yA⊤.

(6.26)

For the practical control of a robot, it is necessary to find the most likely control
action. However, for a Gaussian mixture model, this corresponds to solving a non-convex
optimization problem. Due to the time constraints of a realtime control loop, we propose
to approximate the control distribution by finding the most likely component based on
its mixture coefficient. Consequently, we use the mean control action of the selected
component as the control input to the system such that u=µn∗

u with γn∗(y)>γn(y),
∀n ̸= n∗.

From a theoretic perspective, the resulting closed-loop system corresponds to a hybrid
system, where the function γn(y) represents the guard which indicates the state-dependent
switching between multiple closed-loop system dynamics that are all equivalent to the
single-mode case that has been discussed in Section 6.2.3.

Figure 6.7 shows the results for a navigation task with two modes that represent possible
paths to avoid the collision with the obstacle (black circle). The synthetic demonstrations
of the two modes have been separated in advance and the Gaussian components have

84

6.2 Learning trajectory models for adaptive control

been computed individually with π1=π2=0.5. For the implementation of the original
controller and the stiff controller, we use the mixture coefficient computation of our
proposed controller, given in Equation (6.24), to find the most likely mode and apply
the corresponding control command to the point mass. The dashed signals show the
resulting trajectories in the absence of disturbances when started from the initial positions
indicated by the small black circles. The solid signals show the resulting trajectories
when there is a vertical force fext perturbing the point mass during 0.1 seconds. All
controllers make use of the two modes in realtime by switching to the upper path after
the point mass has been pushed in that direction. The original controller is not able to
recover from the short-term perturbation that is caused by the external force and by the
mode switching. The stiff controller and the proposed controller show a low tracking
error also for the perturbed case.

6.2.5 Feedback of the Context

To encode more general and adaptive skills, it is useful to introduce state-independent
context variables that are supposed to affect the behavior of the robot. Context variables
are also discussed in the original work of Paraschos et al. [125], however only considering
the offline adaptation of a single ProMP distribution. Context variables can be used to
encode information about the task, e.g. the position and size of the object to pick, but
also information about the environment, e.g. the position and size of an obstacle. Since
this information may change during the execution of a learned skill, it is desirable to
incorporate the context as another random variable in the control policy to generate a
reactive behavior. Thus, we reformulate the controller in Equation (6.15) by augmenting
the set of conditions by the context s with

p(u|y, s,D) =
∫

w
p(u|w,y)p(w|y, s,D)dw. (6.27)

The conditional distribution of the weight vectors w is again given by Bayes’ theorem

p(w|y, s,D) = p(y|w)p(w, s|D)
p(y, s|D) . (6.28)

Here, the joint probability distribution p(w, s|D) can be learned by fitting a single Gaus-
sian distribution as in [125] or by fitting a Gaussian mixture model to the demonstrated
data. For the sake of compactness, we directly consider the case of an arbitrary number
N of Gaussian components representing the learned joint distribution

p(w, s|D) =
N∑

n=1
π̃nN

((
µw

µs

)n

,

(
Σw Σws

Σsw Σs

)n)
.

85

Chapter 6. Learning robotic skills from demonstrations

Figure 6.8: Target reaching task for a 2D point mass initialized at three different positions
depicted by the small black circles. The parameters of the proposed controller are set
to Σq=10−5I, Σq̇=10−3I, K=100I and D=3

√
100I. The target, depicted by the filled

black circle, jumps from the position indicated by the grey circle in the lower right corner
to the final target in the upper right corner after 2.3 seconds. The duration of the motion
is 4 seconds.

Analogously to the multimodality case in 6.2.4, the result of the conditional distribution
in Equation (6.28) is given by a mixture of Gaussians

p(w|y, s,D) =
N∑

n=1
γn(y, s)N (µn

w|y,s,Σ
n
w|y,s), (6.29)

where the mean of the n-th component additionally depends on the current context
variable s. The new component coefficient γn(y, s) can be viewed as the belief of the
robot being in mode n. It is given by

γn(y, s) = π̃npn(y|s,D)pn(s|D)∑N
l=1 π̃lpl(y|s,D)pl(s|D)

,

with pn(y|s,D) = N (Ψµn
w|s,Σy + ΨΣn

w|sΨ⊤),

where the marginalized context distribution is given by pn(s|D)=N (µn
s ,Σn

s).

Similarly to Section 6.2.4, we propose to approximate the Gaussian mixture distribution
by the most likely component and to use the corresponding mean control action, such
that u = Aµn∗

w|y,s + b with γn∗(y, s) > γn(y, s), ∀n ̸= n∗.

Figure 6.8 illustrates the behavior of a 2D point mass for a single-mode goal reaching task
where the target is jumping during the execution of the task. For the implementation of the
original controller, we used its control formulation and replaced the stationary ProMP

86

6.2 Learning trajectory models for adaptive control

distribution parameters µw and Σw by the context-conditional ProMP distribution
parameters µw|s and Σw|s. The stiff controller tracks the mean µw|s of the conditional
distribution with the constant feedback gains K and D. In addition to the synthetic
trajectory demonstrations, a target position, depicted by the yellow circle, has been
recorded as a context variable s=qtarget. During the simulation, the context changes by
a jump from the gray filled circle to the black filled circle at t=2.3s. The full simulation
duration is t=4s.

Figure 6.9: The Franka Emika robot has to drop a ball into the box using the presented
imitation controller (blue). The skill is demonstrated (orange trajectories) for a given
box position (orange crosses). Experiment 1 (left): The original controller (red) and
the proposed controller are tested on two different static box positions (context 1 and
2). Experiment 2 (center and right): The proposed controller is tested in a dynamic
scenario, where the context variable changes during the execution (i.e. the box is moving
from position 1 to 3) such that the position reference (green) changes accordingly. The
proposed controller adapts its stiffness based on the variability of the demonstrations
and based on the correlation of the trajectory phase with the context variable (indicated
by the stiffness ratio).

6.2.6 Experimental Validation

We conduct the experiments using a 7-axis Franka Emika Panda robot, by using the
mathematical model of the system dynamics in Equation (2.8). As this model does
not include parasitic, nonlinear effects such as joint friction, these appear as inherent
perturbations during the execution. This is the case in many robotic platforms and thus
model-based controllers should be able to cope with these perturbations. The objective of
the experiments is to show that our proposed controller can achieve this robustness while
imitating reactively the demonstrated behavior and exploiting variations in realtime.

We consider the task of placing a ball inside a box in a cluttered environment. The
task is fulfilled if the ball has been dropped into the box that is moving during the
execution without colliding with the environment. Figure 4.1 shows the experimental
setup, including the initial robot pose in the lower-left corner. The box position is

87

Chapter 6. Learning robotic skills from demonstrations

detected by a stereo vision system and is used as a context variable. We provide 16
demonstrations of the robot end-effector trajectory using kinesthetic teaching. In Figure
6.9, each demonstrated trajectory is a solution to the task for a given context value (box
position), depicted by yellow crosses. Note that the context values are fixed during each
demonstration, such that tracking a moving box has not been demonstrated explicitly.
We manually separate the demonstrations into two modes. The first mode encodes
solutions for situations where the box is on the table with some variations, while the
second mode encodes solutions when the box is placed on the blocks on the left with no
variations.

We compute two individual ProMP models according to Section 6.2.5 by using the
separated demonstrations. We then combine the individual models to obtain a Gaus-
sian mixture model by computing the mixture coefficients according to the number of
demonstrations provided for each mode. Each of the two components uses 12 radial basis
functions as trajectory features. We implement the original formulation using an inverse
dynamics approach as described in [125].

The parameters of the proposed controller are selected as Σq=10−5I, Σq̇=10−3I,
K=103I and D=3

√
103I. To resolve the kinematic redundancy of the robot for both

controllers, we implement a compliant regulator in the nullspace of the end-effector task
using the initial configuration as a reference. Both approaches run at a control frequency
of 1 kHz.

Figure 6.9 illustrates the results of the experiments (see also the accompanying video).
In the left plot, we show a comparison between the proposed controller and the original
controller for a box position that does not change during the execution. The dashed lines
depict the behavior of the original controller and the proposed controller for the lower
box position, while the corresponding solid lines show the behavior for the upper left
box position. We can see that both controllers manage to generate motions without the
robot colliding with the environment. However, the original controller does not move the
robot to the required position, and the robot fails to put the ball into the box because
of the inherent perturbations that are not part of the model that both controllers are
based on. Our proposed controller, on the other hand, manages to move the robot to
successfully drop the ball into the box, for both box positions, as also indicated by the
evaluation of the tracking error in Table 6.2.

Table 6.2: Metric-based comparison for the ball-in-box task (in Figure 6.9).

Method and Context Tracking Error
Original, Context 1 319.45
Proposed, Context 1 0.46
Original, Context 2 520.76
Proposed, Context 2 0.71

88

6.2 Learning trajectory models for adaptive control

In the second experiment, we evaluate the capability of the proposed controller to adapt
robustly to dynamic changes of the context variable, i.e. the box position. The center
plot and the right plot in Figure 6.9 shows the resulting end-effector trajectory produced
by the proposed controller. During the execution of the task, the box is moved from
position 1 (as labeled in Figure 6.9) to position 2 then 3, as depicted by the black curve in
the center plot. The corresponding markers on the robot trajectory roughly indicate the
end-effector positions at that time. The mean of the conditioned trajectory distribution
represents the reference of the controller. It can be seen that the movement of the box
results in jerky changes of the reference around t=4s, which would be tracked stiffly by
a controller with constant feedback gains. The plot in the lower-right corner of Figure
6.9 illustrates the ratio between the determinant of the varying stiffness gain K̃ and the
tuned constant stiffness gain K. It shows that the controller learned to use a higher
stiffness as the correlation between the context and the trajectory phase increases. In
this case, the correlation grows towards the end of the trajectory as the context mainly
affects the final position of the end-effector. In summary, the proposed controller solves
the given task by switching from the second mode to the first mode after moving the box
from the upper left position to a lower position. The resulting trajectory shows that the
controller produces smooth transitions between the two modes, together with a smooth
adaptation to the changing box position by exploiting the demonstrated variations.

6.2.7 Conclusion

In this section, we derived a stochastic feedback controller by imposing a compliant
control structure on the latent trajectory feature variable w and conditioning the control
action on the demonstrated behavior. We showed that the original controller proposed
in [125] is similar to a limit case of our proposed controller. We analyzed the robustness
of the closed-loop system depending on the parameters of the proposed controller and
compared the results with the original controller. Furthermore, we showed that our
proposed controller readily extends to multiple modes and to the adaptation to dynamic
context variables in realtime. We evaluated the theoretical hypotheses in simulated and
real-world experiments with the Franka Emika robot. We showcased in these experiments
that our proposed controller outperforms the original controller in terms of robustness,
and that this property is a key to the successful reproduction of demonstrated movements
with robots characterized by unmodeled dynamic effects (typically, joint friction).

In future work, we plan to investigate practical limitations of the presented approach,
e.g. finding computational bottlenecks and testing tasks with more than two concurring
modes. We also plan to extend the proposed approach to the problem of robustness to
context variables that are far from the demonstrated distribution and against intentional
physical interactions to consider human-robot interaction in a principled way (e.g. to
safely switch to a different mode by interacting with the robot). Furthermore, we plan
to investigate adaptation mechanisms for the phase variable of the reference distribution

89

Chapter 6. Learning robotic skills from demonstrations

in order to relax the time-dependency of the proposed controller.

90

7 Active learning of feedback con-
trollers

Learning from demonstration (LfD) offers an intuitive framework to overcome the difficulty
of programming robots by teaching them movements using an adaptive representation.
In LfD, the demonstrations are often acquired by kinesthetic teaching or by teleoperation.
One of the main advantages of these techniques is that they allow non-expert users to
easily (re-)program the robots by generalizing the models to different tasks. This requires
a set of demonstrations to provide various executions of the task, whose acquisition is
often costly. Thus, we want to collect these demonstrations in an efficient manner. Often,
non-expert users struggle to identify what demonstration will be the most informative to
the robot [128]. One way to alleviate this limitation is to provide the user with some
feedback, such as a visual illustration of what the robot has currently learned [129].
Yet, such an approach requires the appropriate design of a feedback mechanism, which
might not be trivial in a high-dimensional task, and still requires the user to choose the
demonstration eventually.

Active learning is a promising approach to address the aforementioned issues. An active
learning framework develops and tests new hypotheses in an interactive learning process.
In robotics, the robot is first provided with initial demonstrations from which an initial
model of the task can be built. Then, at each stage of the active learning framework, the
robot requests a new demonstration in order to improve the model. This contrasts with
passive learning systems that attempt to explain the model only according to available
training data. Ideally, the robot should request the new demonstration around a query
point that will maximize the information gain. Specifically, the information gain is
related to the part of the input space where the model uncertainties are the highest [17].

In robotics applications, two different kinds of uncertainties arise, namely (i) aleatoric
uncertainties and (ii) epistemic uncertainties. The aleatoric uncertainties represent the
variations in the demonstrations and are typically used to adapt the behavior of the
robot, e.g. its compliance at different phases of the task. In contrast, the epistemic
uncertainties are related to the lack of knowledge (i.e. data) in the demonstrations and is

91

Chapter 7. Active learning of feedback controllers

typically used for informative exploration. In other words, aleatoric uncertainties cannot
be reduced by adding more data, while epistemic uncertainties can be. For this reason,
the quantification of epistemic uncertainties is crucial for active learning frameworks. A
natural way to take these uncertainties into account is through Bayesian inference [130].

In this chapter, we propose an active learning approach to improve the generalization
capabilities of control and trajectory policies in a behavior cloning setup. Our approach
is based on the Bayesian inference method in [37] which models a joint state-action
distribution p(xt,ut) with Bayesian Gaussian mixture models (BGMMs). The conditional
(predictive) distribution of the policy p(ut|xt) is then found by conditioning on the current
state xt. In [37], the authors use a product of experts (PoE) framework to exploit the
uncertainties inherent to Bayesian models to fuse several control policies (see Section 7.2
for a brief background).

In Section 7.3, we extend the work in [37] to apply active learning based on an information
density function. We first propose a decomposition of the covariance matrix of the
posterior BGMM distribution into aleatoric and epistemic parts in Section 7.3.1. The
quadratic Rényi entropy is then used to compute the related uncertainties of Gaussian
mixture models (GMMs) in closed form (see Section 7.3.2). As explained in Section 7.3.3,
the next query point of our active learning framework is obtained by maximizing an
information-density cost based on the quadratic Rényi entropies. In particular, we
propose to approximate this cost with a GMM to represent highly uncertain region
distribution. This notably avoids local optima problems during uncertainty maximization.
Finally, we demonstrate the efficiency of our approach on a reaching task in a cluttered
environment in a 2D simulated example and with a real experiment on a Panda robot
(see Section 7.3.4). The experiment setup is presented in Figure 7.5a.

One limitation of the method presented in Section 7.3 is that the uncertainties are
computed for an action given the current state. Hence, it is not applicable to robotic
tasks where one needs to reason about the uncertainty over the whole task (e.g., over the
whole trajectory), which is often the case in robotics (for instance for object grasping,
assembly or navigation tasks). Also, the method requires the possibility to start and
show a demonstration from any given state, which is not always possible (for instance,
starting a demonstration in the middle of a dynamic throwing task or a pouring task is
not feasible).

To address the aforementioned limitations, in Section 7.4, we present an active learning
framework based on a joint trajectory-context distribution p(τ , s) learned from demon-
strations. We propose an active learning approach for ProMPs and quantify separately
aleatoric and epistemic uncertainties in ProMP the same way as in Section 7.3 using
BGMM. We demonstrate the applicability of our approach in Section 7.4.1 on three
different pouring task experiments. The first two experiments are performed in simulation
to allow quantitative comparisons and for reproducibility purposes. The last experiment

92

7.1 Related Work

shows the applicability of the approach on a real 7-DoF robot pouring task.

7.1 Related Work

A collection of recent work focuses on improving and fine-tuning learned movement
representations using reinforcement learning (RL) [48, 49] and iterative learning control
(ILC) [50]. As these methods iteratively minimize a reward function, LfD can be used
to determine the initial point of the optimization in order to favor a safe exploration.
In contrast, information-theoretic explorations in behavior cloning methods have been
exploited only in few works to enhance the quality and the generalization abilities of the
learned movement models [18, 51, 19].

One of the simplest and widely used active learning methods is uncertainty sampling.
Using an uncertainty measure, the robot is expected to request a query point in the
most uncertain region of the input space. If the model can only encode aleatoric
uncertainties, one can train several probabilistic representations with different local
convergence properties. The disagreement between each individual model and their
average model is then maximized using KL divergence as explained in [17]. Other
techniques consist in reducing the variance of error in a regression problem. In general,
this is intractable. Simplifications occur by using Fisher Information and Cramér-Rao
inequality as in [52]. All the aforementioned methods are myopic as they only care about
the information content of single data instances. This can result in models selecting
outliers or exploring far away in the context space where no generalization is required.
Information-density methods overcome this problem by choosing instances that have
high information content and are still representative of the underlying distribution. This
is achieved by using a weighted product of uncertainty measure (entropy, ensemble, etc)
and similarity measure (Euclidean distance, correlation coefficients, etc.) [17].

As the data acquisition process is usually costly in robotics, active learning has emerged
as a viable solution. It has been shown that active learning permits a faster exploration
of the action space [131], which is particularly true in the context of developmental
robotics, where active learning is often referred to as curiosity-driven learning [132, 133].
In the context of learning from demonstrations, active imitation learning [134] is a topic
gaining interest. It has indeed been successfully used in a variety of robotic tasks, such
as autonomous navigation [135, 51]. In [136], the authors leverage the uncertainties on
a discrete hypothesis space to request meaningful demonstrations to a human teacher.
Several approaches have also been proposed in the context where the learner does not
request full demonstrations, but only the action to take at a given state [134, 137]

In [18], the authors use Gaussian Process Regression (GPR) in a reaching task to
map object positions to the weights encoding the trajectories via Dynamic Movement
Primitives (DMP). They demonstrate an active learning framework based on the GPR

93

Chapter 7. Active learning of feedback controllers

epistemic uncertainties for reaching to a predefined set of object positions to improve
their DMP model. They work with time-dependent trajectory policies without control
information. They measure the epistemic uncertainty of a whole trajectory given a
context, while aleatoric uncertainties (variations) are not considered. Our work differs
from [18] in two ways. First, as we consider state-dependent policies including both
aleatoric and epistemic uncertainties. Second, their approach in [18] exploits uncertainty
sampling, which would diverge if the uncertainty is defined over a continuous variable
instead of a discrete set of variables. To overcome this problem, we use information-density
methods.

In [19] the authors propose an active learning method for learning ProMPs. The
distribution is learned in the ProMP weight space using a GMM. They then use the
marginal distribution over the internal context space (trajectory keypoint) to request
demonstrations for contexts that are the furthest from any Gaussian (as Mahalanobis
distance). Their approach is evaluated for a reaching task where different grasps are
possible, with attempts to generalize over different poses of the object. This approach
has several limitations. First, they choose the next context to query based only on some
distance in the context space. While in their application this can make sense since the
contexts (keypoints) are closely correlated with the trajectory distributions, this is not
relevant for a more general external context. Indeed, representing the context space
well is not so useful, as our ProMPs are used to generate trajectory distributions for a
given context. Rather, what matters is whether a given context influences the trajectory
distribution. In this regard, their method would aim to represent a context variable with
no influence on trajectories equally well as other more meaningful context variables. In
contrast, our method focuses on the conditional distribution of the weights given the
context, hence learning dependencies and correlations between the context variables and
the movement. A second limitation is that the use of a GMM does not take into account
epistemic uncertainties but only aleatoric ones, while work in active learning [17] has
shown that metrics based on aleatoric uncertainties are less effective than those based
on epistemic uncertainties. Lastly, their approach uses a heuristics to add Gaussians
during learning using a threshold. Indeed, the Mahalanobis distance does not depend on
the weights attributed to the different Gaussians, which might bias the learning towards
unlikely portions of the context space. In contrast, we use Bayesian inference to infer the
number of Gaussians using a Dirichlet prior on the mixing coefficients.

7.2 Background

In this section, we present the BGMM framework exploited to learn control policies
presented in [37]. As state-dependent control policies learned with BGMM can create
unstable behaviors, the BGMM policy is fused with another stable control policy within
the PoE framework.

94

7.2 Background

7.2.1 Bayesian Gaussian Mixture Model

In this section, the Bayesian analysis of a Gaussian Mixture Model (GMM) is treated
following [130]. Let x =

[
xi⊤

xo⊤
]⊤

∈ RD be the joint observation of the input and the
output with dimension D = Di+Do. The joint distribution is defined with a mixture of
K multivariate normal distributions (MVNs) with means µ={µk}, precision matrices
Λ={Λk} and mixing coefficients π={πk} as

p(x|π,µ,Λ) =
K∑

k=1
πkN (x|µk,Λ−1

k).

We define a latent variable z, each component of which is a binary variable zk ∈ {0, 1}
such that ∑K

k=1 zk = 1. We can associate the mixing coefficients to the latent vari-
ables with p(zk=1) = πk so that p(z|π) = ∏K

k=1 π
zk
k . We then obtain p(x|z,µ,Λ) =∏K

k=1 N (x|µk,Λ−1
k)zk . The conditional distributions p(Z|π), p(X|Z,µ,Λ), the conju-

gate prior distributions p(µ,Λ) and p(π) of the joint observation dataset X={xn} and
the latent variable dataset Z={zn} are summarized in Table 7.1.

Table 7.1: conditionals and priors where W(·) and Dir(·) correspond to Wishart and
Dirichlet distributions

Conditional of X ∏N
n=1

∏K
k=1 N (xn|µk,Λ−1

k)znk

p(X|Z,µ,Λ)
Conditional of Z ∏N

n=1
∏K

k=1 π
znk
kp(Z|π)

Prior on µ,Λ ∏K
k=1 N

(
µk|m0, (β0Λk)−1

)
W(Λk|W0, ν0)

p(µ,Λ)
Prior on π Dir(π|α0)

p(π)

As explained in [130], closed-form update equations for Expectation-Maximization (EM)
algorithm is derived by using a factorized variational distribution. Note that EM update
equations are usually implemented in machine learning libraries such as scikit-learn for
Python.

For robotic applications, we determine the predictive density of a new observation point
x̂ =

[
x̂i⊤ x̂o⊤

]⊤
equivalent to a mixture of multivariate t-distributions with mean m̂k,

covariance matrix L̂k, mixing coefficients π̂k and degree of freedoms ν̂k as [130]

p(x̂|X) =
K∑

k=1
πkt(x̂|mk,Lk, νk), (7.1)

95

Chapter 7. Active learning of feedback controllers

where

πk = αk∑K
k=1 αk

, (7.2)

νk = νk + 1 −D, (7.3)

Lk = (νk + 1 −D)βk

1 + βk
Wk, (7.4)

mk = m̄k. (7.5)

with the update equations on αk,βk νk, Wk and m̄k are given in [130]. We can then
define the distribution of the output conditioned on the input as

p(x̂o|x̂i,X) =
K∑

k=1
πo

k|it(x̂i|mo
k|i,Lo

k|i, νo
k|i), (7.6)

where

πo
k|i = πkt(x̂i|mi

k,L
i
k, ν

i
k)∑K

j=1 πjt(x̂i|mi
j ,L

i
j , ν

i
j)
, (7.7)

νo
k|i = νk +Di, (7.8)

m̂o
k|i = mo

k + Loi
k Lii

k
−1(x̂i − mi

k), (7.9)

Ls = Loo
k − Loi

k Lii
k

−1
Loi⊤

k , (7.10)

Lo
k|i = νk + (x̂i − mi

k)⊤Lii
k

−1(x̂i − mi
k)

νo
k|i

Ls. (7.11)

In this work, we consider the input x̂i and the output x̂o equivalent to the state x and the
control command u, respectively. Note that the stability of this controller is determined
by the positive-definiteness of the term Loi

k Lii
k

−1. To guarantee the controller stability,
the PoE framework is introduced in the next section.

7.2.2 Product of Experts

Robot movements learned with state-action abstractions result in probabilistic controllers
with no guarantee of stability, unless explicitly constrained to be stable as in [35].
To overcome this problem, we fuse the probabilistic unstable controller with another
probabilistic stable controller which acts as an attractor towards the demonstration
area when the uncertainty in the unstable controller is high. We refer to this fusion
of controllers as a product of experts (PoE), where each expert represents a stochastic
controller with different uncertainty properties. Note that many types of controllers with
different uncertainties can be fused to work in parallel. For more details, we refer the
reader to [37].

96

7.3 Active Learning of Control Policies

In this work, the stabilizing controller is defined as a probabilistic linear quadratic tracker
policy, which can be expressed as a MVN. It can be viewed as a controller which attracts
the system to the demonstrated regions when the BGMM controller is very uncertain.
When the BGMM control policy is a GMM, the fusion or PoE is defined as the product
of a GMM and a MVN, which results in another GMM policy. As an illustrative example,
consider a 2D reaching task in a cluttered environment. Fig. 7.1a displays the initial
demonstrations starting from different initial positions (cross) to reach goal position (G).
We choose 5 different random test initial positions and reproduce the trajectories by
sampling from a BGMM model and a PoE model. The resulting trajectories are shown
in Fig. 7.1b and 7.1c, respectively. Even though the trajectories are more stable in 7.1c
(notice that some of the trajectories in 7.1b diverge), the task cannot be accomplished
without colliding with the obstacles. In this case, supplementary demonstrations are
necessary, and active learning permits to collect them in an informed way.

(a) Initial demonstrations (b) Policy samples from BGMM (c) Policy samples from PoE

Figure 7.1: (a) Demonstrations and (b)-(c) reproductions of a reaching task in a cluttered
environment. The goal position is denoted by G and the obstacles are represented as
dashed rectangles. The demonstrated trajectories are depicted with red lines. The policy
samples acquired from the BGMM and PoE are depicted by colored lines.

7.3 Active Learning of Control Policies

Publication Note
The material presented in this chapter is adapted from the following publication:

• Girgin, H., Pignat, E., Jaquier, N. and Calinon, S. (2020). Active Improvement of
Control Policies with Bayesian Gaussian Mixture Model. In Proc. of IEEE/RSJ
Intl Conf. on Intelligent Robots and Systems (IROS), pp. 5395-5401.

Control policies are defined as the probability distribution of control commands or actions

97

Chapter 7. Active learning of feedback controllers

u given the state x, denoted as p(u|x). They encode the demonstration trajectories along
with the dynamics information of the controlled system. As described in Section 7.2.1,
we impose a BGMM model structure for the control policy and estimate the parameters
of the predictive conditional distribution from the demonstrations.

In this section, we present the proposed active learning of control policies approach. First,
a cost function is defined using the epistemic uncertainties in the BGMM control policy
and optimized while considering a soft constraint to be a on the desired region of the
state-space. The robot then asks for a new demonstration around the query point found
by the optimization process. The data of the new demonstration is added to the previous
dataset and the BGMM parameters are updated. The robot iterates this process until it
reaches a predefined percentage of uncertainty reduction.

In order to build the active learning cost function, the covariance matrices of the control
policy must be decomposed into its aleatoric and epistemic parts (Section 7.3.1). Then,
we deploy Rényi entropy to calculate epistemic uncertainties in closed-form (Section 7.3.2).
The complete formulation of the resulting cost is presented in Section 7.3.3.

7.3.1 Uncertainty decomposition

The uncertainty in the posterior distribution of the BGMM model encodes the variations
in the demonstrations, called aleatoric uncertainty, along with the epistemic uncertainty,
measuring the lack of knowledge of the model. These different uncertainty modalities are
depicted in Fig. 7.2 for our illustrative example. In active learning, we are interested in
increasing the knowledge of the model, by providing demonstrations around interesting
regions of input space.

In BGMM model, the covariance matrix of the conditional posterior predictive distribution
of (7.11) can be decomposed into aleatoric and epistemic parts as

L̂o
k|i = L̂aleatoric

k + L̂epistemic
k (7.12)

where

L̂aleatoric
k = ν̂k

ν̂o
k|i

Loo
k − Loi

k Lii
k

−1
Loi⊤

k , (7.13)

L̂epistemic
k = (x̂i − m̂i

k)⊤Lii
k

−1(x̂i − m̂i
k)

ν̂o
k|i

Loo
k − Loi

k Lii
k

−1
Loi⊤

k , (7.14)

Notice that the aleatoric uncertainty does not depend on the input point x̂i, while the
epistemic uncertainty is a quadratic function of x̂i. The former represents the variability
and the noise in the demonstrations and the latter encodes the uncertainty caused by
finite data. In robotics, both types of uncertainty are important to capture, i.e. the
variations of the demonstrations and the uncertainty in the model, for applications such

98

7.3 Active Learning of Control Policies

as compliance adaptation and active learning.

7.3.2 Rényi entropy of the posterior distribution

When the posterior distribution p(u|x) is a multivariate GMM (or can be approximated
by one), the information-theoretical Shannon entropy does not admit an analytical form.
In order to avoid a significant amount of computational burden for the minimization
of active learning cost, we use instead the quadratic Rényi entropy, which admit a
differentiable closed form for GMMs [138]. Another reason is that it is very close to
Shannon entropy value as will be detailed below.

A random variable U from a multivariate t-distribution U ∼ tν(u|µ(x),Σ(x)) can be
approximated by a multivariate normal distribution with mean µ̃(x) and covariance
Σ̃(x) using moment-matching method, so that

µ̃(x) = µ(x), Σ̃(x) = ν

ν − 2Σ(x).

This approximation can be extended to mixtures using the same mixing coefficients. The
Rényi entropy of order α is defined as Hα(p) = 1

1−α log
∫
pα(x)dx with α > 0 and α ̸= 1.

In the limit case where α → 1, the Rényi entropy is equivalent to the Shannon entropy
defined as Hα(p) = −

∫
p(x)logp(x)dx. In this section, we propose to use quadratic

Rényi entropy defined as

H2(p(u|x)) = −log
∫
p2(u|x)du

since it admits a closed-form expression for GMMs. Note that the Rényi entropy is a
non-increasing function of α, so that H1(.) > H2(.). In an active learning framework,
the entropy can be used as an uncertainty measure to minimize by searching for the
queries that have high entropy values. Even though the Shannon entropy is usually
used in information theory, maximizing the quadratic Rényi entropy is equivalent to
maximizing a lower bound of the Shannon entropy, which would also maximize it
suboptimally. The quadratic Rényi entropy for a posterior distribution represented as a
GMM p(u|x) = ∑K

k=1 πk(x)N (µk(x),Σk(x)) can be expressed as [138]

H2(p(u|x)) = − log
K∑

i=1

K∑
j=1

πi(x)πj(x)e∆ij(x), (7.15)

where

∆ij = 1
2

(
µijΣ−1

ij µij − (µ⊤
i Σ−1

i µi + µ⊤
j Σ−1

j µj) − log
|Σ−1

i + Σ−1
j |

|Σ−1
i ||Σ−1

j |
− d log 2π

)
(7.16)

for the ith and jth components of a GMM, with Σij = (Σ−1
i + Σ−1

j)−1 and µij =

99

Chapter 7. Active learning of feedback controllers

Figure 7.2: Uncertainty colormaps of the learned control policy for a reaching task
in a cluttered environment. (a), (b) and (c) show the total, aleatoric and epistemic
uncertainties of the BGMM, respectively. High to low uncertainties are depicted by
colors ranging from yellow to purple. (d) depicts the information-density cost and the
Gaussian components of the GMM model approximating this cost.

Σij(Σ−1
i µi + Σ−1

j µj).

Fig. 7.2 depicts (a) the total, (b) aleatoric and (c) epistemic uncertainties computed via
the quadratic Rényi entropy of the BGMM model of our illustrative example (Fig. 7.1a).
Yellow and purple colors depict high and low uncertainties, respectively. Note that the
uncertainty of the aleatoric model stays constant as we move away from known data,
while it increases in epistemic model. As the epistemic model describes unseen regions,
it must be used for an efficient search in the state-space.

7.3.3 Information-density cost for active learning

Following a similar approach to information weighted technique described in Section 7.1,
we constrain the optimization space by adding a similarity function that measures the
closeness to a region of space where we want to improve our model. In this work, we
represent this region as a probabilistic density function (pdf). Note that, even though the
region of interest may often be represented as a uniform distribution, one may want to
favor some parts of this region compared to others using other distributions. Therefore,
we can solve the following optimization problem

arg min
x

−H2(p(u|x)) − β log psim(x), (7.17)

with the epistemic cost in closed-form, to find the next query point x, where β is a
variable weighing the relative importance of the costs. In practice, uniform distributions
will result in negative infinity log probabilities in the outside regions and will not have
a defined gradient at the border. Therefore, we approximate the uniform distribution
by an MVN using the same mean and diagonal covariance matrix to alleviate this issue.
Another problem with the optimization of Eq. (7.17) is the existence of flat regions
from which the optimization cannot escape. To overcome this problem, we propose to

100

7.3 Active Learning of Control Policies

approximate the epistemic cost in Eq. (7.17) as a GMM with a variational distribution
q(x) = ∑K

k=1 πkN (x|µk,Λ−1
k) to represent all the regions where epistemic uncertainty is

high, using reverse KL divergence as in

arg min
x

KL

(
q(x)||H2(p(u|x)) + β log psim(x)

)
. (7.18)

Note that one can also augment the epistemic cost defined in Eq. (7.17) with other costs
(see robotic experiment in Section V.B.), so that q(x) can represent a more constrained
space (e.g. being away from an undesirable region). We can obtain the next query point
either by sampling from q(x) or by taking the mean of one of the components. As we add
more demonstrations and improve our model using this query point, the optimization in
Eq. (7.18) can be started with the parameters of the previous q(x), which would increase
convergence speed. We expect a decrease of entropy in q(x) at each iteration of active
learning. This gives us a natural way of monitoring the uncertainty reduction.

Fig. 7.2d shows the information density colormap favoring to be inside of the figure frame
where we want to generalize our model. It also shows the GMM contour ellipses (with 1
standard deviation) which approximate the high information-density regions (yellow).
The transparency reflects the mixing coefficient of the GMM. We can observe that the
highly uncertain regions are well approximated.

7.3.4 Experiments

Illustrative reaching task

We use the proposed active learning framework to gather iteratively 10 more demonstra-
tions for our illustrative 2D reaching task. At each step, the model informs the teacher
on the next query point, given by the mean of the GMM component with the highest
mixing coefficient (corresponding to the highest uncertainty). As any sample from that
component can be used as a next query point, the closest feasible position to the mean
can be chosen if the mean does not correspond to a feasible location, e.g. if it collides
with the obstacles.

Note that we are interested in reducing the epistemic uncertainties in the conditional
model, which is a function of the input point as in (7.14). In order to define an entropy
reduction, we need a measure that does not depend on the input point. We can thus
measure how much the entropy changes via the GMM model which approximates highly
uncertain regions. Fig. 7.3a-(top) shows the evolution of the quadratic Rényi entropy
of the GMM model across the active learning iterations. Red crosses show the current
entropy values, whereas the black curve is 2D polynomial fit to these values. We can
observe that the entropy of the GMM is reduced until there is no component left which
can specialize on certain regions with small covariance (small covariance means low

101

Chapter 7. Active learning of feedback controllers

entropy). After 6 iterations, the entropy starts to increase as the components are more
diffused with bigger covariance matrices. We generally observed that the entropy of the
GMM behaves similarly to the the black curve in Fig. 7.3a-(top). The evolution of the
entropy of the marginal model p(x) is represented in Fig. 7.3b-(top). As expected, the
entropy of the marginal model decreases with the quantity of data. Therefore, it results
in no explicit method to infer the convergence of the learning process. In contrast, with
our GMM model, one can argue that the system has learned a significant percentage of
the unseen regions after 6 iterations.

We conducted 5 more experiments performing active learning where new random demon-
strations are provided for 5 iterations. The mean and standard deviation of 5 experiments
at each iteration are shown in Fig. 7.3a-(bottom) for the GMM model and in Fig. 7.3b-
(bottom) for the marginal model. This demonstrates that the random exploration is not
guaranteed to reduce the epistemic uncertainties, even in the marginal model.

The resulting reproductions from the chosen random initial test positions using samples
from the updated BGMM and PoE policies are shown in Fig. 7.4a and Fig. 7.4b,
respectively. We observe that both policies successfully avoids all the obstacles in the
average, while using PoE framework results in a more stable system. The query points of
each iteration of active learning are also labeled in Fig. 7.4a. We observe that these query
points are rather intuitive, as they correspond to locations that could be chosen by a
human to better teach the task to the robot. However, informative query points may be
very difficult to choose in other cases where the query space is not easily interpretable.

Robot Experiment

We investigate the reaching in a cluttered environment task shown in Figure 7.5a within
our active learning framework. The main challenge of this task is to place the cup inside
the white box without colliding with the environment and without pouring the cup. The
robot can place the cup from any open side of the box, as long as the cup is inside.
Planning methods can be applied to find a joint configuration trajectory starting from
a given initial configuration of the robot without colliding with the environment, given
the size and positions of the obstacles. However, learning control policies using BGMM
offers the advantage of sampling the next state much faster than standard planning
methods. It also provides a formal way of improving the planned trajectory using active
learning framework proposed in this work. For the improvement of the learned policy, it
is difficult for the teacher to choose informative joint configurations intuitively as the
demonstrations can take place starting from many different end-effector positions, which
correspond to many more joint configurations. Our goal in this experiment is to show
that our method provides “intuitive” and informative query points in the joint space of
the robot.

102

7.3 Active Learning of Control Policies

Figure 7.3: Evolution of the quadratic Rényi entropy of (a) the GMM model that
approximates highly uncertain regions and (b) the marginal BGMM model. Top figures
represent the evolution for the proposed active learning, while the error bars in bottom
figures show the mean and the standard deviation of 5 different random exploration for 5
iterations.

(a) Policy samples from BGMM (b) Policy samples from PoE

Figure 7.4: Reproductions of the learned policy after 10 iterations of active learning. The
numbers on (a) denotes the location the query point at each iteration of active learning.

103

Chapter 7. Active learning of feedback controllers

(a) Experimental setup with Franka
Emika Panda robot.

(b) (Left) Initial configurations of the demonstrations,
(Right) Requested initial configurations for demonstra-
tion

Figure 7.5: The task is to put the cup inside a box covered from top and bottom, starting
from anywhere in the space. The robot has to maintain a specific end-effector orientation
to perform the task without pouring the cup. The main challenge is not to collide with
the box and the other obstacles in the environment.

We first demonstrate the reaching task from 11 different initial configurations and learn
our control policy. Note that the demonstrations are taken from each side of the box,
where it was easy to perform kinesthetic teaching. The initial configurations of the
demonstrations are depicted in Figure 7.5b (left).

To improve the model, one need to start from a rather different and informative initial
configuration of the arm, which is not easy. Note that the robot has to maintain upright
position of the cup to place it inside the box without pouring it and without colliding with
the environment. That is why the search space we are interested in is constrained such
that we add 2 more cost functions to Eq. (7.17) in the form of probability distributions:
i) a cost to keep orientation with respect to x-y axis of the robot base fixed and ii) a
cost to be within the joint limit range of the robot as

p(x) = H2(p(u|x)) + βflimits(x) + α log pupright(x)

where flimits(·) is typically the sum of lognormal cumulative distribution functions repre-
senting inequality functions which represent the joint limits and pupright(·) is a normal
distribution on the quaternion describing upright orientation in the manifold.

We approximate this cost by a GMM of 10 components minimizing KL divergence between
q(x) and q(x) as in Eq. 7.18. The resulting query configurations (samples from GMM)
are given in Figure 7.5b (right). We can see that our GMM could in fact approximate
highly uncertain and unseen configurations of the robot as it requests demonstrations
around these regions. These configurations are also within the joints range of the robot,
and maintain approximately a fixed x-y axis orientation so that the robot will keep
the cup upright, without pouring. Although showing that the usefulness of encoding

104

7.4 Active Learning of Trajectory Policies

aleatoric uncertainties here is out of scope of this section, it has been exploited in the
previous work in [37]. Since the aperture size of the sides are big enough, one can imagine
exploiting high variations in the demonstrations while the end-effector enters one side of
the box. The learned model would create compliant control commands in these areas
which would help the teacher to correct the robot movement during a failing execution.
Note that GPR could not encode aleatoric uncertainties.

7.4 Active Learning of Trajectory Policies

Publication Note
The material presented in this chapter is adapted from the following publication:

• Kulak, T., Girgin, H., Odobez, J.-M. and Calinon, S. (2021). Active Learning of
Bayesian Probabilistic Movement Primitives. IEEE Robotics and Automation
Letters (RA-L), 6:2, 2163-2170.

My contribution in this section is the development of mathematical formulae for the
application of the BGMM models in ProMP.

The goal of the task lies in how to modulate the movement represented as ProMP weights
w based on different contexts s. We denote the context space C as the space of all
possible contexts we would like our robot to be able to generalize to. Formally, this
means that there exists an unknown ground truth target distribution pGT(s,w) that can
be used to generate robot movements pGT(w|s) adapted for context s.

A common way [32, 123] to take into account context variables is to learn the joint
distribution of contexts and weights p(s,w), where s is the context variable of size Ds.
For notation convenience, we introduce w̃i = [s⊤

i ,w
⊤
i]⊤, hence p(s,w) = p(w̃). The most

general and common uncertainty measure is the Shannon entropy [139]. Initially proposed
for discrete random variables, the Shannon entropy has been extended to continuous
probability distributions, in which case it is called continuous (or differential) entropy.
We propose to quantify the uncertainty of our conditional ProMP by calculating the
(continuous) entropy of its epistemic part.

The entropy of a mixture of multivariate t-distributions cannot be obtained analytically.
To avoid computationally expensive Monte Carlo sampling methods, we propose to
approximate the distribution with a GMM, for which there is a closed-form lower
bound of the entropy. The epistemic part of the conditional ProMP distribution can be
approximated by a mixture of K Gaussians using moment matching:

π̃k(c) = π̂o
k|i, µ̃k(c) = m̂o

k|i, Σ̃k(c) = ν̂o
k|i

ν̂o
k|i− 2L̂ep

k (c). (7.19)

105

Chapter 7. Active learning of feedback controllers

We propose to use the closed-form lower bound introduced in [140], which has been
shown to be tight. It is expressed as (for clarity purposes we omit the fact that all GMM
parameters depend on c)

Hlower
(
pep(x̂o|x̂i,X)

)
= 1

2

(
K log 2π +K +

K∑
i=1

π̃i log |Σ̃i|
)

−
K∑

i=1
π̃i log

K∑
j=1

π̃je
−Cα(pi,pj), (7.20)

where Cα(pi, pj) is the Chernoff α-divergence distance function between the ith and jth

Gaussians for α ∈ [0, 1]:

Cα(pi, pj) = (1 − α)α
2 (µ̃i − µ̃j)⊤

(
(1 − α)Σ̃i + αΣ̃j

)−1
(µ̃i − µ̃j) +

1
2 log

(
|(1 − α)Σ̃i + αΣ̃j |

|Σ̃i|1−α|Σ̃j |α

)
. (7.21)

In practice we choose α = 1/2, in which case the Chernoff divergence is the Bhattacharyya
distance. Finding the context which maximizes the epistemic entropy can be done
either using a grid search if the context space is of low dimension, or using a Bayesian
optimization algorithm.

7.4.1 Experiments

In this section, we evaluate our active learning method in four different ways related to
the pouring task. The first three favor quantitative results and reproducibility by using
a simulated environment and a given database of demonstrations to choose from. In the
last experiment, we consider the pouring task on a real 7 DoF Franka Emika robot.

In all experiments, we use N = 20 evenly spread Gaussian radial basis functions (RBFs)
for ProMP. The width of the RBFs are set as h = (T −1

N)2. The hyperparameters of the
BGMM are the default hyperparameters of the scikit-learn library. We choose a diagonal
covariance matrix prior, with a standard deviation of 0.1 for the context variables and 1
for the ProMP weights. We use a maximum number of 5 Gaussians, or strictly less than
the number of demonstrations if there are less than 6 demonstrations.

Throughout the experiments, we compare our method to three baselines. The first one
(Random) is a random strategy using the same BGMM representation as our method.
The second one (GP) is an adaptation of [18] for external context variables: we learn the
conditional model of the trajectories given the context with a Gaussian process (GP)1

1Alternatively, we could also learn a GP from contexts to ProMP weights, but in practice it gave the
same results as learning directly from contexts to trajectories. For this reason, we do not include it in

106

7.4 Active Learning of Trajectory Policies

Figure 7.6: Overview of the simulated pouring environment.

using a squared exponential kernel (hyperparameters optimization gave a length scale
of 1 and output variance of 0.12). The active learning approach for the GP baseline
selects the context for which the conditional distribution of the trajectories given the
context has the most variance. The third baseline (Conkey19) is an adaptation of [19]
(introduced in Section 7.1) for external context variables: we learn the joint distribution
of contexts and ProMP weights with a GMM and use the Mahalanobis distance in the
context space as an active learning measure. We use the same covariance prior as with
our approach, and we use β = 3 for the hyperparameter governing how many outliers are
discarded when adding a new datapoint to the Gaussian mixture, see Eq. (7) of [19] for
more details2.

7.4.2 Simulated pouring

We use here a simulated pouring environment implementing the Franka Emika robot in
the PyBullet simulator [118]. The goal of this task is to pour liquid (simulated as rigid
spherical particles because PyBullet does not support fluids simulation at the time of
this work) from a pitcher into a mug. An overview of the simulated setup is shown in
Figure 7.6. In the first two simulated environments, we avoid learning the affordances of
the object and control directly the orientation of the edge of the pitcher, from where the
liquid is poured. This permits us to make the task with a reference trajectory of just one
variable: the angle of the pitcher. In the third simulated environment, we go beyond the
one-dimensional control angle case, and show the robustness of our approach for more
complex movements encoded in a 6-dimensional control variable.

1D context

In this first experiment, we consider a one-dimensional context variable, which represents
the amount of liquid in the pitcher. As the mug volume is lower than the pitcher volume,
one difficulty of the task is to stop pouring when the mug is full. We consider context
variables varying from 0.05 to 1, representing how full the pitcher is (from 5% to 100%).
In this experiment, the goal is to fill the mug completely (without overflowing).

this work.
2Authors advised to choose β between 2 and 3, we chose 3 because it gave the best results.

107

Chapter 7. Active learning of feedback controllers

0 100 200 300 400 500 600
Timestep

0

−π
6

−π
3

−π
2

An
gl

e
(ra

d)

c=0.05
c=0.19
c=0.34
c=0.48
c=0.63
c=0.77
c=0.91

(a) Teleoperated demonstrations, 1D context

0 200 400 600 800 1000
Timestep

0

−π
6

−π
3

−π
2

An
gl

e
(ra

d)

c=[0.05,0.05]T
c=[0.05,0.50]T
c=[0.05,1.00]T
c=[0.50,0.05]T
c=[0.50,0.50]T
c=[0.50,1.00]T
c=[1.00,0.05]T
c=[1.00,0.50]T
c=[1.00,1.00]T

(b) Generated demonstrations, 2D context

Figure 7.7: Subset of demonstrations for different contexts.

0 5 10 15 20
Requested Demonstrations

−20

−15

−10

−5

0

5

10

15

M
ea

n
Ep

ist
em

ic
en

tro
py

BGMM-Random
BGMM-Epistemic

(a) Reduction of epistemic uncertainty w.r.t num-
ber of demonstrations

5 10 15 20
Requested Demonstrations

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

M
ea

n
ta

sk
 c

os
t

BGMM-Random
BGMM-Epistemic
Conkey19
GP

(b) Reduction of task cost w.r.t number of
demonstrations

Figure 7.8: Quantitative results for simulated 1D context pouring.

In order to have demonstrations exhibiting realistic variations, we provide real hu-
man demonstrations using teleoperation. As the reference trajectory contains only a
one-dimensional angle, teleoperation is made simply using a camera by detecting the
angle of a colored object held by the human demonstrator. We build a dataset of 100
demonstrations for contexts evenly spread between 0.05 and 1. Namely, we choose
C = {0.05 + 1−0.05

99 k}99
k=0 and provide one teleoperated demonstration for each context

in C. This permits reproducibility of the results and a fair comparison of the methods
as they have access to the same demonstrations for given contexts. Demonstrations
are aligned using linear interpolation. A subset of aligned demonstrations is shown in
Figure 7.7a. We can effectively see that, the more the pitcher is filled, the less it has
to be tilted to pour into the mug. We start the active learning process with 2 initial
demonstrations, for contexts randomly chosen in the context space C. We make the
experiment 20 times with different initial demonstrations. We show in Figure 7.8 how it
compares to a random strategy which randomly chooses the next context. In Figure 7.8a,
we plot the mean epistemic entropy (averaged on the context space C) in function of the

108

7.4 Active Learning of Trajectory Policies

number of requested demonstrations. We can see that our strategy outperforms the ran-
dom strategy in terms of reduction of the epistemic uncertainties. The diminution of the
epistemic uncertainty is particularly big during the first 5 demonstrations requested with
our method. In Fig. 7.8b, we propose an objective metric for comparing quantitatively
the two methods. We introduce the task cost, which is simply a ℓ2 norm between the
final volume in the mug and the desired final volume (approximated with the number of
balls in the mug. The desired number of balls is 50, which corresponds to the mug being
almost completely filled. Filling it too much is possible and increases the task cost as
well). We observe in Figure 7.8b that our method significantly outperforms the random
strategy in the beginning of the learning process (5 demonstrations), while afterwards
the results are similar. This suggests that our active learning strategy improves learning
with few demonstrations. As the context is low-dimensional (1 dimension), this is not
surprising that for more than 10 demonstrations, active learning does not yield any
improvement over a random strategy which has also explored the context space well. It
is also interesting to note that our method has less variance across experiments than
the random strategy. Also, our movement representation with a BGMM gives much
better results than the GP approach as it achieves a significantly lower task cost at
all stages of the learning process. We can see that our method also outperforms [19],
whose performance stagnates during the learning process. We believe this is due to the
heuristics that are proposed to add Gaussians to the mixture, which had only been tested
in the 2D case in the original paper, and that would probably need to be adjusted.

2D context

In this experiment we propose to add another context variable: the desired final volume
in the mug. This context variable also ranges from 0.05 to 1, representing how full the
mug is (from 5% to 100%). We then have c = [cpitcher, cmug]T . For this task, we manually
implement a controller performing the task, which is used as the human demonstrator
(note that the demonstrations may not be perfect, e.g., when there is not enough liquid
in the pitcher initially to fill the mug to its desired level). A sample of generated
demonstrations can be found in Fig. 7.7b. We can see that, for a given desired volume in
the mug, the smaller the initial volume of the pitcher is, the more the pitcher needs to
be tilted. And, for a given initial volume of the pitcher, the more the mug needs to be
filled, the more the object has to be tilted. Note that we do not bring the pitcher back
to its horizontal position when it is fully emptied. As in the previous experiment, for
reproducibility reasons, we precompute a database of generated demonstrations. A grid
of width 20 is used to represent the context space for which demonstrations are generated,
yielding 400 demonstrations. Namely, C = {(0.05 + 1−0.05

99 i, 0.05 + 1−0.05
99 j)}19

i,j=0. We
also perform 20 experiments where each experiment starts with 2 randomly sampled
demonstrations from the database. Results are shown in Figure 7.9. We can see in
Figure 7.9a that our strategy outperforms the random strategy in terms of reduction
of the epistemic uncertainties. More importantly, we see in Figure 7.9b that the active

109

Chapter 7. Active learning of feedback controllers

0 5 10 15 20
Requested Demonstrations

−10

−5

0

5

10

15

20

25

M
ea

n
Ep

ist
em

ic
en

tro
py

BGMM-Random
BGMM-Epistemic

(a) Reduction of epistemic uncertainty w.r.t num-
ber of demonstrations

5 10 15 20
Requested Demonstrations

4

6

8

10

12

14

16

18

20

M
ea

n
ta

sk
 c

os
t

BGMM-Random
BGMM-Epistemic
Conkey19
GP

(b) Reduction of task cost w.r.t number of
demonstrations

Figure 7.9: Quantitative results for simulated 2D context pouring.

learning strategy can learn the task using fewer demonstrations than a random strategy.
Namely, the model improved with 5 demonstrations obtained using our method achieves
lower task cost than if the same model was improved with 10 demonstrations using the
random strategy. Similarly, 10 actively gathered demonstrations contribute better to the
task cost than 20 randomly gathered ones. This shows that the entropy of the epistemic
uncertainties of a BGMM is a good metric for actively learning ProMPs. We also observe
that our BGMM approach significantly outperforms the GP baseline. In particular, we
see that the GP approach is on par with the BGMM-Random approach after 5 requested
demonstrations, but then performs worse than the two approaches based on BGMMs.
This motivates the use of our Bayesian representation based on ProMPs for learning
robot movements, instead of a Gaussian Process approach. Note also that our approach
has the additional advantage of quantifying the aleatoric uncertainty as well, which can
typically be exploited in ProMPs for designing compliant controllers. Also, we observe
that in this experiment the Conkey19 approach performs similarly to our approach,
though slightly worse. As explained in the previous subsection, we believe this is because
this approach was developed for a 2-dimensional context case.

3D context

In this experiment, we want to test the robustness of our method with respect to
higher-dimensional context and control variables. Hence, we add a third context variable
related to the position where the pitcher was grasped by the robot. Namely, the
robot always starts from the same position but the pitcher can have been grasped
at different heights between the base and the top. This makes the movement more
complex as one rotation angle is not sufficient anymore to characterize it, and there are
correlations between the robot translations and rotations. We use a 6-dimensional control
variable consisting of position and orientation (Euler angles) of the robot end-effector. A
controller is implemented to execute the task, and is used as the human demonstrator.

110

7.4 Active Learning of Trajectory Policies

0 5 10 15 20
Requested Demonstrations

−75

−50

−25

0

25

50

75

100
M

ea
n

Ep
ist

em
ic

en
tro

py

BGMM-Random
BGMM-Epistemic

(a) Reduction of epistemic uncertainty w.r.t num-
ber of demonstrations

5 10 15 20
Requested Demonstrations

8

10

12

14

16

M
ea

n
ta

sk
 c

os
t

BGMM-Random
BGMM-Epistemic
Conkey19
GP

(b) Reduction of task cost w.r.t number of
demonstrations

Figure 7.10: Quantitative results for simulated 3D context pouring.

For this experiment, due to the higher dimensionality of the context space, we do
not precompute a database of demonstrations as in previous experiments but generate
online the demonstrations requested by the algorithm, and use a Bayesian optimization
algorithm (the tree-structured Parzen estimator approach [141] implemented in the
hyperopt Python package [142]) to calculate the context yielding the highest epistemic
entropy.

We can see in Figure 7.10a that the reduction of the epistemic uncertainties is bigger with
our active learning metric than with the random baseline, similarly to what we observed
in the past two experiments, and that this epistemic reduction correlates with a better
task cost error (see Figure 7.10b), confirming that the epistemic uncertainties seem to
be a good active learning metric. Finally, our method outperforms the two alternative
baselines from the literature by a very large margin in this more complicated experiment.

7.4.3 Real robot pouring task

In this experiment we demonstrate the viability of our approach on a pouring task with
a real 7-axis Franka Emika robot. An overview of the physical setup can be seen in
Figure 7.12. The context space is 2-dimensional as in the previous simulated experiment,
with context variables ranging from 10% to 100%. In this experiment, we also show the
robustness of our approach to several degrees of freedom as we choose the demonstrations
to be 3-dimensional (position in the vertical plane containing the pitcher and the glass,
and orientation of the pitcher). We give 2 initial demonstrations to the robot in random
contexts, and the robot iteratively requests 20 additional demonstrations. The first
3 iterations of the active learning process are shown in Figure 7.11. We can see that
the robot starts by requesting demonstrations at the corners of the state space, which
is normal because this is where it is the most uncertain. Note that we could use an

111

Chapter 7. Active learning of feedback controllers

(a) First iteration (b) Second iteration (c) Third iteration

Figure 7.11: Visualization of the context space during the first 3 iterations of the active
learning process. The heatmap represents the entropy of the epistemic uncertainty, yellow
indicating high uncertainty. Demonstrations are shown as grey stars. The context chosen
for the next demonstration is shown as a red star. Transparent ellipses show the marginal
distribution of the ProMP in the context space.

Figure 7.12: Overview of the pouring task with a 7-axis robot.

information-density method to make the requests close to the demonstrations (e.g., by
adding a similarity objective). We verified qualitatively that the learned movement
representation permits to pour successfully for different contexts, which can be seen on
the supplementary video (we tested it on 9 different contexts, taken from a 3×3 grid in
the context space).

7.5 Conclusion

This chapter presented a novel active learning framework allowing a robot to ask for
informative new demonstrations. The presented framework is based on an information-
density cost built from a representation of the epistemic uncertainties of a BGMM model
defined at a action-state level and trajectory level. A closed-form cost solution for GMMs
can be obtained thanks to the properties of the quadratic Rényi entropy. New query
points can then be efficiently obtained by maximizing a GMM approximation of the
proposed active learning cost. Our experiments showcase that our approach allows a
robot to improve its representation of a task, as well as its corresponding generalization
capabilities.

112

7.5 Conclusion

Future work consists in extending our results to theoretically determine a threshold to
stop the learning process, which in turn would be useful for determining a sufficient
number of demonstrations so that the model can generalize the fastest in the desired space.
We believe that the framework can then be used to answer two of the main questions of
LfD, which are i) Where to give demonstrations? and i) How many demonstrations are
required?.

113

8 Discussion & Future Work

In this section, we present a discussion on the limitations and the future work on a
selection of topics covered in this thesis. In Section 8.1,

8.1 Projection-based optimization for robotics

In robotics, we use geometric constraints in tasks more often than we realize. In collabo-
rative manipulation tasks such as teleoperation, virtual fixtures or active constraints are
used to define a virtual geometric constraint to limit the motion of the robot. This safety
measure has been applied as a visual or a haptic constraint defined as geometric entities
such as points, hyperplanes, parametric curves, surfaces, or polygonal meshes [143]. In
obstacle avoidance with manipulators, a standard way of defining the environment and
the robot itself is to use geometric or collision primitives as the distance between two
such entities can be efficiently computed [144]. When grasping objects, force closures
are defined with the help of friction cones [145]. All positive semi-definite matrices
(SPD) that we encounter in robotics such as stiffness matrices or manipulability matrices,
all define an ellipsoid in space, and the projection of a matrix onto its closest SPD
manifold admits an efficient solution (by taking the SVD decomposition and using the
box projection to project the singular values to be bigger than 0) [146]. In autonomous
driving and autonomous parking, [147], convex 2D polytopes are widely used to model
the cars and the obstacles around them.

We believe that the work presented in Chapter 3 promotes the use of projections in
constrained optimization problems in robotics, which in turn, hopefully, opens new future
directions for faster and cheap-to-compute projections combined with this type of fast
solvers. For example, for obstacle avoidance problems, as presented in [144], differen-
tiability of the distances between objects and efficient computation of this derivative
is important to achieve real-time tasks. Since the derivative information is either not
available or not smooth enough to be used efficiently by the solvers, we see a trend of

115

Chapter 8. Discussion & Future Work

solving many obstacle avoidance problems with the use of gradient-free sample-based op-
timizers [148]. Projection-based algorithms, on the other hand, do not require derivative
information. The only requirement is a method to compute a manipulator configuration
that is closest to a given configuration (which is initially and virtually colliding with an
obstacle) and that is not colliding with the obstacle. A future direction would be to find
computationally efficient fast projection methods as in [62].

8.2 System level synthesis: perspectives on robust optimal
control and inverse optimal control

The system level synthesis (SLS) framework presented in Chapter 4 has been used in
distributed control architectures and extended with convex robust optimal control algo-
rithms [85]. The parametrization in SLS allows one to construct convex representations
of robust optimal control which would be otherwise not tractable. Robust optimal control
formulation when the dynamics model is stochastic is given in [21]. Here, we would like
to give future directions on how to apply similar ideas discussed in the robust inverse
kinematics experiment in Section 3.5. There, we showed that a hyperplane constraint
can be transformed into a second-order cone constraint when the slope of the hyperplane
is a random variable following a Gaussian distribution.

We start by letting Ψu =
[
d⊤

u Φ⊤
u

]⊤
, Ψx =

[
d⊤

x Φ⊤
x

]⊤
and v =

[
1 w⊤

]⊤
, such that

Ψx = S̃x + SuΨu, where S̃x=
[
0⊤ S⊤

x

]⊤
. In the case of control bounds, we have

bu ≤ u ≤ cu,

bu ≤ Ψuv ≤ cu,

bi
u ≤ v⊤Ψi

u ≤ ci
u, ∀i

where Ψi
u is the ith row of Ψu. This inequality describes the projection of the rows of

Ψu independently, hence this can be solved analytically in parallel for each Ψi
u. As v is

a random variable with v∼N (µv,Σv), where µv = [1,µw] and Σv = blkdiag(0,Σw), we
have two options: 1) expected constraints, and 2) robust constraints.

Expected constraints: the inequality constraint becomes

bi
u ≤ v⊤Ψi

u ≤ ci
u, ∀i, (8.1)

=⇒ bi
u ≤ Ev[v⊤Ψi

u] ≤ ci
u, ∀i, (8.2)

=⇒ bi
u ≤ µ⊤

v Ψi
u ≤ ci

u, ∀i, (8.3)

The result of the projection depends on µv. If we assume standard noise with zero mean,
then the result coincides with constrained LQT.

116

8.2 System level synthesis: perspectives on robust optimal control and
inverse optimal control

Robust inequalities: We will first solve the upper bound inequality for simplicity, then
generalize to the lower bound as well. require that P(v⊤Ψi

u≤ci
u)≥η with η≥0.5. We

let z=v⊤Ψi
u so that µz=Ev[z]=µ⊤

v Ψi
u and σ2

z=Varv[z]=Ψi
u

⊤ΣvΨi
u and normalize the

variable z and rewrite the equation as in

P(v⊤Ψi
u ≤ ci

u) ≥ η, ∀i ∈ dim(bu),
⇐⇒ P(z ≤ ci

u) ≥ η,

⇐⇒ P(z − µz

σz
≤ ci

u − µz

σz
) ≥ η,

⇐⇒ Ψ(ci
u − µz

σz
) ≥ η,

⇐⇒ ci
u − µz

σz
≥ Ψ−1(η),

⇐⇒ µz + Ψ−1(η)σz ≤ ci
u,

⇐⇒ µ⊤
v Ψi

u + Ψ−1(η)∥Σ1/2
v Ψi

u∥2 ≤ ci
u, (8.4)

where Ψ(·) is the cumulative distribution function of zero mean unit variance Gaussian
variable. We remark that this constraint is convex since Ψ−1(η)≥0 as we assumed that
η≥0.5. Note that the constraint for the lower bound case can be found with the same
method and here we give only the result which also turns out to be convex:

P(bi
u ≤ v⊤Ψi

u) ≥ η, ∀i ∈ dim(bu),
⇐⇒ bi

u ≤ µ⊤
v Ψi

u − Ψ−1(η)∥Σ1/2
v Ψi

u∥2. (8.5)

The combination of Equation (8.4) and Equation (8.5) implies that each Ψi
u needs to be

projected onto the convex set formed by two second-order cones. In the case of state
bounds, we have bu ≤ Ψxv ≤ cu. We can use the same methods described for the control
bounds.

As a proof-of-concept, we used the constrained optimization method in [10] as it gives
an efficient way of finding feedback controllers in the case of constrained optimization.
The method is based on the Alternating Direction Method of Multipliers (ADMM)
and can also be considered a projection-based algorithm. We optimized an objective
function of reaching a goal position of 0.5 with zero velocity with a 1D double integrator
system. The control bounds are between -3 and 3. We solved this problem with LQT-
ADMM with non-robust constraints and with SLS-ADMM with robust constraints with
a safety guarantee of 80%. We then executed the feedback controllers starting from 1000
different initial positions to test the robustness of the algorithm. Indeed, LQT-ADMM
controllers achieve half of the tasks, while SLS-ADMM success rate is around 80%, for
the constraint satisfaction. The results are shown in Figure 8.1 for 5 randomly selected
initial configurations.

117

Chapter 8. Discussion & Future Work

Figure 8.1: Non-robust linear quadratic tracking controller (LQT-ADMM) and robust
system level synthesis controller (SLS-ADMM) executed from 5 different initial positions.
SLS-ADMM is optimized to be robust with respect to the control bounds.

The SLS-based representation used in our work can facilitate the bridging between
learning, planning, and feedback control, especially when we do not know the cost
function and/or we do not have prior knowledge on which past states should be correlated
with the remaining part of the motion. This provides a very general formulation for
robot skill representations. Future work will study which past states are correlated by
setting the problem as inverse optimal control. We believe that learning such correlations
from demonstrations/experiences will be useful to lead the way to the development of
smarter feedback controllers which can act on the memory of the states.

8.3 Combining learning and optimization of controllers

The control methods in robotics have seen their ways merge with the data-driven
methods of machine learning thanks to the recent advances in artificial intelligence and
computational power. As collecting data in robotics may become quite time-consuming,
especially when the dimensionality of the problem increases, learning from demonstration
methods have gained popularity. Generalizable movement primitives models are then
seen as reference trajectory generators for a stable controller that is designed separately
[16]. In [33], Gaussian mixture models (GMMs) are used to define a trajectory model,
which is then approximated by a single Gaussian distribution whose mean and precision
(inverse of covariance) are used as tracking reference trajectory and tracking precisions.
Indeed, such combinations of learning movements and designing controllers have been
studied in many works. The disadvantage of such learning methods is that the data
gathering and learning processes are completely independent of the controller that is
going to be used. In Section 6.2, we showed that for simple tasks with simple dynamics,
we can design impedance controllers that can imitate the generalization capabilities of
the learned controller. In Section 6.1, we showed how to combine demonstration data in
an optimal control problem to warm-start and guide the optimization.

118

8.3 Combining learning and optimization of controllers

A future direction should be developing learning from demonstration methods that are
aware of the controller that they are going to be combined with, if not learning controllers
directly. For example, learning feedback controllers in eSLS can be designed as an
optimization problem where the decision variable is a distribution of feedback controllers
(in the form of tensor-variate Gaussian distributions [149]) that minimizes an objective
of matching trajectories found by such a controller to the demonstrated ones. Such an
idea has been studied in [47], however, with the drawback that such models are usually
not directly generalizable.

Data-driven learning is not restricted to learning motion models. Unmodeled nonlinear-
ities in the dynamics model of collaborative industrial robots renders the control less
precise and highly unpredictable [150]. Learning dynamics model of the system provides
a way to overcome these problems. Learning the dynamical system from data, however,
is not a straightforward problem and there are many solutions proposed in the literature
[151, 152, 153, 154, 155]. For example, a nonlinear neural network-based dynamics
model would not be suitable for standard and powerful second-order optimal control
algorithms such as DDP. A future direction should be to design dynamics models or even
improve the existing ones with data-driven approaches such that they are compatible
with optimal control. With such a dynamics model of the task at hand, one can design
objective functions to achieve many tasks. Such ideas could be exploited in the recent and
promising approach to learning Koopman operators [156] from data. Koopman operators
are linear operators in high-dimensional states. If one could learn linear dynamics models
of a nonlinear model in high dimensional states, it would mean guaranteed stable and
efficient control. However, learning such linear dynamics is often very difficult, if not
impossible. Yet, there are still promising approximations that are working very well in
practice [157, 158, 52]. We believe that the ideas in Koopman operators could be powerful
competition to the current state-of-the-art learning methods of dynamics models.

119

9 Conclusion

In conclusion, this thesis presented a comprehensive study of the challenges in designing
adaptive and anticipatory feedback controllers in robot manipulation tasks, by exploring
both optimization and learning approaches.

The first part of the thesis focused on optimization methods and aimed to exploit the
information contained in the feedback controllers obtained from optimal control. The
results showed that exploiting the geometry of the constraints in the optimization process
can significantly improve the performance of the solver. Furthermore, the concept of
anticipatory memory behavior was introduced via the system level synthesis framework
and demonstrated to be a valuable tool for adaptive feedback controllers with changing
task parameters. A hierarchical optimal control problem definition was introduced and
analytical solutions for linear quadratic cases were obtained.

The second part of the thesis focused on learning from demonstration (LfD) methods,
addressing several open questions in the field such as what to model, how to execute
the models, how to demonstrate, and how many times to demonstrate. The results
showed that the information contained in demonstrations can be leveraged to guide
optimal control problems and to design adaptive impedance controllers that mimic the
generalization and multimodality capabilities of a learned trajectory policy. We also
proposed an active learning framework to iteratively refine trajectory and control policies.
We showed that the proposed method reduces the number of demonstrations required to
learn a generalizable model.

Overall, the results of this thesis demonstrate the importance of exploiting the structures
of the models in both optimization and learning, in order to design adaptive and
anticipatory feedback controllers that perform well in real-world scenarios. The new
skills discovered, such as anticipatory memory behaviors, adaptability, hierarchy, and
robustness, open up exciting avenues for future research and development in the field of
robot manipulation.

121

A Appendix

A.1 Planar Push Dynamics

Table A.1: Constraints of different interaction modes

Sticking Sliding Up Sliding Down Separation

{vf ∈ Ω} ∩ {qp ∈ ψ} {Ω < vf < ϕ} ∩ {qp ∈ ψ} {ϕ < vf < Ω} ∩ {qp ∈ ψ}{vf /∈ ϕ} ∪ {qp /∈ ψ}

vtf

vnf
≤ γup,

vtf

vnf
≥ γdn, vnf > 0,

|px| = rs + rp, |py| ≤ rs.

vtf

vnf
> γup, vnf > 0,

|px| = rs + rp, |py| ≤ rs.

vtf

vnf
< γdn, vnf > 0,

|px| = rs + rp, |py| ≤ rs.

∨ vnf < 0,
∨ |px| > rs + rp,

∨ |py| > rs.

A.1.1 Kinematics

Fig. A.1 shows the kinematics of the pusher-slider system. The red and blue circles
represent the pusher at the initial face and the face after contact switching. The pose
of the slider is defined as qs = [x y θ]⊤ w.r.t. the global frame Fg, where x and y are
the Cartesian coordinates of the center of mass, and θ is the rotation angle around the
vertical axis. The contact position between the pusher and the slider is described as
qp = [px py]⊤ w.r.t. the current slider frame Ff after face switching, while qf = Rθf

qp

is the expression of qp in the initial slider frame Fs, and θf is the rotation angle from
Fs to Ff . The input of this system is the acceleration of the pusher u = [v̇n v̇t]⊤, which
is resolved in Fs, while v = [vn vt]⊤ is the pusher velocity defined in frame Fs, and
vf = R⊤

θf
v = [vnf vtf]⊤ is the expression of v in Ff .

A.1.2 Generalized Motion Cone

Based on the quasi-static approximation and ellipsoidal limit surface assumption, a
motion cone is introduced to determine the contact mode given by the current pusher
velocity and contact position. The two boundaries of the motion cone are given as

123

Appendix A. Appendix

Figure A.1: Kinematics of pusher-slider system allowing face switching.

vup = 1fx + γupfy and vdn = 1fx + γdnfy, resolved in the current slider frame Ff , with

γup = µpc
2 − pxpy + µppx

2

c2 + py
2 − µppxpy

, (A.1)

γdn = −µpc
2 − pxpy − µppx

2

c2 + py
2 + µppxpy

, (A.2)

where µp is the friction coefficient between the pusher and the slider, and c is the
parameter connecting applied force and the resulting velocity.

In the previous, the pusher is assumed to remain on one face selected before and not
change during the execution. We would like to enable more complex pushing that involves
face switching. For that, we introduce another interaction mode, which we call separation
mode. Table A.1 lists the relationship between state constraints and interaction modes,
where Ω is the set within the boundaries of the motion cone, ϕ is the space where the
pusher goes towards the slider, and ψ is the set where the pusher keeps touching with the
slider. rs and rp are the half length of the slider and the radius of pusher, respectively.

A.1.3 Generalized Motion Equation

We build the generalized motion equation by including separation mode and contact face
switching, namely

ẋ =



g1(x,u), if Sticking,
g2(x,u), if Sliding Up,
g3(x,u), if Sliding Down,
g4(x,u), if Separation,

(A.3)

124

A.2 Mathematical background

where x = [q⊤
s q⊤

f v⊤]⊤, and

gj(x,u) =


 Rθf

RθQPj

bj

Rθf
[dj cj]⊤

R⊤
θf

v

u

 , Rθ =
[
cos θ − sin θ
sin θ cos θ

]
,

Q = 1
c2 + p2

x + p2
y

[
c2 + px

2 pxpy

pxpy c2 + p2
y

]
,

b1 =
[

−py

c2 + p2
x + p2

y

px

c2 + p2
x + p2

y

]
, b2 =

[
−py + γuppx

c2 + p2
x + p2

y

0
]
,

b3 =
[

−py + γdnpx

c2 + p2
x + p2

y

0
]
, b4 = [0 0],

c1 = [0 0], c2 = [−γup 1], c3 = [−γdn 1], c4 = [0 1],

d1 = [0 0], d2 = [0 0], d3 = [0 0], d4 = [1 0],

P1 = I2×2, P2 =
[

1 0
γup 0

]
,P3 =

[
1 0
γdn 0

]
, P4 = 02×2.

where j = 1, 2, 3, 4 corresponds to sticking, sliding up, sliding down, and separation mode,
respectively.

A.2 Mathematical background

A.2.1 Pseudo-inverse and nullspace of a row matrix

Let J ∈ Rm×n be a matrix with rank r, i.e., rank(J) = r ≤ min(m,n). Let J=UΣV ⊤

be the SVD decomposition of J which can be expressed with partial matrices separated
according to the zero singular values as

J =
[
U1 U2

] [Σ1 0
0 0

] [
V ⊤

1
V ⊤

2

]
, (A.4)

for any J ∈ Rm×n. Here U1 ∈ Rm×r, U2 ∈ Rm×m−r, V ⊤
1 ∈ Rr×n, V ⊤

2 ∈ Rn−r×n and
Σ⊤

1 ∈ Rr×r, where Σ1 is the diagonal matrix of non-zero singular values of J . Then we
can define the pseudoinverse and the nullspace matrix as

J† = V1Σ−1
1 U ⊤

1 , (A.5)
N = V2V ⊤

2 . (A.6)

Using these notations, one can notice that the only time the nullspace matrix does not
exist, is when r = n since V2 does not exist (see the dimensions). The right inverse
and the left inverse of a matrix are special cases of full row rank and full column rank,

125

Appendix A. Appendix

respectively. Instead, we use the general SVD decomposition procedure to compute
pseudoinverses and nullspace matrices.

A regularized pseudoinverse matrix and the corresponding nullspace matrix can be written
as

J‡ = V1Σ‡
1U ⊤

1 , (A.7)
N = V2V ⊤

2 + V1(I − Σ‡
1Σ1)V ⊤

1 , (A.8)

where Σ‡
1 = Σ1(Σ2

1 +λI)−1. Notice that in the case of r = n, the nullspace (that did not
exist before) has now some value because even though V2 does not exist, the second term
in (A.8) is not null and can be denoted as an error term in the calculation of nullspace
matrix when we use regularization.

A useful property to note is
(J⊤J)†J⊤ = J†. (A.9)

which can be proved easily using the SVD decomposition of J .

A.2.2 Properties of the nullspace matrix

A nullspace matrix N is an orthogonal projection matrix with the following properties:

1. N is a symmetric and idempotent matrix with N = N2 = N ⊤ = N †

2. Its eigenvalues are either 0 and 1, showing that it is also a positive semi-definite
matrix.

3. For any matrix B, it satisfies N(BN)† = (BN)† and (NB)†N = (NB)†.

4. N(A) = N(A⊤A).

A.2.3 Separable costs and constraints

Let A ∈ Rm×n be a lower triangular matrix, M ∈ Rm×m be a matrix and N ∈ Rn×n be
a diagonal positive definite matrix. Let the superscript i of a matrix denote its column
vector (e.g. the vector Ai ∈ Rm is the ith column of A) and the superscript j of a matrix
denote its row vector (e.g. the vector Aj ∈ Rn is the jth row of A). We first observe
that (AN)i=AN i=AiN ii as N is a diagonal matrix, and (MA)i=MAi=M i:Ai as A

is a lower triangular matrix, where M i: is the submatrix obtained by removing all the

126

A.2 Mathematical background

rows and columns before the index i. Then, we can obtain the following identities:

∥A∥2
F =

∑
i

∑
j

Aij =
∑

i

∥Ai∥2
2 =

∑
j

∥Aj∥2
2, (A.10)

∥AN∥2
F =

∑
i

∥(AN)i∥2
2 =

∑
i

∥AiN ii∥2
2, (A.11)

∥MA∥2
F =

∑
i

∥(MA)i∥2
2 =

∑
i

∥M i:Ai∥2
2, (A.12)

⇐⇒ ∥MAN∥2
F =

∑
i

∥M i:AiN ii∥2
2 (A.13)

Let P ∈ Rn×n, B ∈ Rn×n and R ∈ Rn×m be lower triangular matrices. Then, the
equality B=P + RA can be column-wise separated as Bi=P i + Ri:Ai.

A.2.4 Expectation of some linear and quadratic forms

Let x∼N (µ,Σ), then

Ex[Ax + a] = Aµ + a, (A.14)

Ex[∥Ax + a∥2
2] = ∥AΣ

1
2 ∥2

F + ∥a∥2
2, (A.15)

Ex[∥Ax + a∥2
Q] = ∥AΣ

1
2 ∥2

Q + ∥a∥2
Q, (A.16)

Ex[(Ax + a)⊤(Bx + b)] = Tr[AΣB] + a⊤b (A.17)

A.2.5 Probabilistic inequalities

Assuming z ∼ N (µz, σz), if we would like to achieve the inequality z ≤ c with a probability
of η ≥ 0.5, we write

P(z ≤ c) ≥ η,

⇐⇒ P(z − µz

σz
≤ c− µz

σz
) ≥ η,

⇐⇒ Ψ(c− µz

σz
) ≥ η,

⇐⇒ c− µz

σz
≥ Ψ−1(η),

⇐⇒ µz + Ψ−1(η)σz ≤ c, (A.18)

where Ψ(·) is the cumulative distribution function of zero mean unit variance Gaussian
variable. Assuming z = a⊤x, where x is the decision variable of an optimization
problem and a ∼ N (µ,Σ), we can write µz = µ⊤x and σz = ∥Σ

1
2 x∥2. The constraint

of achieving the inequality a⊤x ≤ c with a probability of η ≥ 0.5 can be expressed
as P(a⊤x ≤ c) ≥ η ⇐⇒ µ⊤x + Ψ−1(η)∥Σ

1
2 x∥2 ≤ c, which is a second-order cone

127

Appendix A. Appendix

constraint.

A.2.6 Projection onto sublevel set of a convex function

Theorem: Solutions to the optimization problems in the form minx∥x−z∥ s.t. f(x)≤t
is called a projection onto the sublevel set of a convex function and denoted as ΠC(z) with
the convex set C={x|f(x) − t ≤ 0}. This projection is given by ΠC(z)=(I + µ∂f)−1(z),
where µ is an arbitrary solution of f(ΠC(z))=t.

Affine projections: If we let f(x)=a⊤x with C={x|a⊤x≤u}, then ∂f=a, hence

(I + µ∂f)(ΠC(z)) = z,

ΠC(z) + µa = z,

ΠC(z) = z − µa

Then, we find an arbitrary solution for µ from f(ΠC(z))=u as

f(z − µa) = u,

a⊤(z − µa) = u,

µ = (a⊤z − u)/∥a∥2
2.

One can find the projection onto C={x|l≤a⊤x} by letting f(x)= − a⊤x and replacing u
by −l.

Note that if we take x to be one-dimensional and a=1, then the problem becomes
the projection onto bounds C={x|x≤u} which can be solved with the "clipping" op-
erator defined by ΠC(z)= min(z, u). This can be extended to lower bounds with
ΠC(z)= max(min(z, u), l).

Quadratic projections: If we let f(x)=1
2x⊤x with C={x|1

2x⊤x≤u}, then, ∂f=x,
hence

(I + µ∂f)(ΠC(z)) = z,

ΠC(z) + µPC(z) = z,

ΠC(z) = (1 + µ)−1z

128

A.3 Controller derivation

Then, we find an arbitrary solution for µ from f(ΠC(z))=u from

f((1 + µ)−1z) = u,

1
2(1 + µ)−2z⊤z = u,

(1 + µ)2 = ∥z∥2

2u ,

µ = −1 ± ∥z∥√
2u
.

One can find the projection onto C={x|l≤1
2x⊤x} by letting f(x)= − 1

2x⊤x and replacing
u with −l.

Second-order cone projections: Let C be the standard second-order cone C={(z, t) ∈
Z × R|∥z∥2 ≤ t}. Then the projection of a point (z, t) onto C is given by

ΠC(z, t) =


(z, t), if ∥z∥ ≤ t

(0, 0), if ∥z∥ ≤ −t
∥z∥+t

2 (z
∥z∥ , 1) otherwise

Square projections: If we let f(x)=∥x∥∞ with C={x|∥x∥∞≤u}, then C defines a
square region centered at 0 with side length of 2u.

A.3 Controller derivation

A.3.1 eSLS closed-loop map

For w∼N (0,Σw), where Σw is a diagonal matrix with diagonal entries denoted as σi,
taking the expectation of the SLS cost defined in (4.6), we obtain

JSLS = Ew[∥Φxw∥2
Q + ∥Φuw∥2

R],

= ∥ΦxΣ
1
2
w∥2

Q + ∥ΦuΣ
1
2
w∥2

R, (A.19)

=
T∑

i=1
∥Φi

xσi
w∥2

Qi: + ∥Φi
uσi

w∥2
Ri:︸ ︷︷ ︸

Ji
SLS(Φi

x,Φi
u)

, (A.20)

which shows that the cost function can be separated into T terms each (i) depending
on only on the ith block-column of Φx and Φu. We can separate column-wise also the
dynamics constraint Φx = Sx + SuΦu as in Φi

x = Si
x + Si:

uΦi
u and set up the SLS

129

Appendix A. Appendix

optimization subproblem i as

min
Φi

x,Φi
u

∑T
i=1 J

i
SLS(Φi

x,Φi
u)

s.t. Φi
x = Si

x + Si:
uΦi

u,
(A.21)

The solution to (A.21) for each i ∈ [1, · · · , T] can be found analytically. By inserting the
linear constraint inside the cost function, we convert (A.21) to a least-square problem
by Φi∗

u = arg minΦi
u
J i

SLS(Φi
u) = ∥(Si

x + Si:
uΦi

u)σi
w∥2

Qi: + ∥Φi
uσi

w∥2
Ri: which admits the

following analytical solution:

Φi∗
u = −(Si:⊤

u Qi:Si:
u + Ri:)−1Si:⊤

u Qi:Si
x, (A.22)

Φi∗
x = Si

x + Si:
uΦi∗

u . (A.23)

The eSLS cost can be expressed as

JeSLS = Ew[∥Φxw + dx − µx∥2
Q + ∥Φuw + du − µu∥2

R],

= ∥ΦxΣ
1
2
w∥2

Q + ∥dx − µx∥2
Q + ∥ΦuΣ

1
2
w∥2

R + ∥du − µu∥2
R,

= J(dx,du) +
T∑

i=1
J i

SLS(Φi
x,Φi

u) (A.24)

which shows that the cost function can be decomposed into a part J(dx,du) = ∥dx −
µx∥2

Q + ∥du − µu∥2
R that optimizes separately the feedforward pair {dx,du} and a part

J i
SLS(Φi

x,Φi
u) that optimizes the feedback pair {Φi

x,Φi
u}. The solution to the feedback

pair is given by (A.23) and the solution to the feedforward pair can be determined solving
the following optimization problem:

min
dx,du

J(dx,du)

s.t. dx = Sudu

(A.25)

The solution to (A.25) can be found analytically. By inserting the linear equality
constraint inside the cost function, we convert (A.25) to a least-square problem by
d∗

u = arg mindu
∥Sudu − µx∥2

Q + ∥du − µu∥2
R which admits the following analytical

solution:

d∗
u = (S⊤

u QSu + R)−1(S⊤
u Qµx + Rµu), (A.26)

d∗
x = Sud∗

u (A.27)

130

A.4 Nullspace in inverse kinematics and optimal control

A.4 Nullspace in inverse kinematics and optimal control

A.4.1 Nullspace method for linear equality constrained QP

A linear equality constrained quadratic program is defined as

min
q

∥A2q − b2∥2
2

s.t. A1q − b1 = 0,
(A.28)

which can be solved by nullspace methods assuming Ai ∈ Rm×n are matrices with rank
r such that r ≤ min(m < n)) as follows. First, the solution to the linear constraint
A1q − b1 = 0 can be written as q = A†

1b1 + N1y, with an arbitrary y. Plugging this
into Equation (A.28) results in the following unconstrained optimization problem in y:

min
y

∥A2(A†
1b1 + N1y) − b2∥2

2 (A.29)

which admits the analytical solution

y∗ = (A2N1)†(b2 − A2A†
1b1), (A.30)

A.4.2 Bilevel optimization

A bilevel optimization problem in its simplest form is described as

min
q

1
2∥f2(q)∥2

2

s.t. 1
2∥f1(q)∥2

2 is minimum,
(A.31)

The optimality conditions (can be extended to KKT condition in its constrained versions)
for the lower level problem are J1(q)⊤f1(q) = 0, where J1(q) = ∇uf1(q) ∈ Rm×n are
matrices with rank r such that r ≤ min(m < n). Note that in this setting, the only time
we do not have a nullspace matrix is when r = n. Using the optimality conditions, we
transform (A.31) into a single level optimization problem as

min
q

1
2∥f2(q)∥2

2

s.t. J1(q)⊤f1(q) = 0
(A.32)

which can be solved by constrained Gauss-Newton method. First, we linearize the
constraints around a point qk as

J1(q)⊤f1(q) ≈J1(qk)⊤f1(qk) + J1(qk)⊤J1(qk)δq = 0, (A.33)

=⇒ δq = −
(
J1(qk)⊤J1(qk)

)−1
J1(qk)⊤f1(qk) + N1(qk)y, (A.34)

=⇒ δq = −J1(qk)†f1(qk) + N1(qk)y, , (A.35)

131

Appendix A. Appendix

where y is arbitrary, and the last equality is found by using the pseudoinverse property
Equation (A.9) and the nullspace property in Appendix A.2.2.

Linearizing the objective function, we obtain the following subproblem

min
y

∥J2(qk)
(

− J1(qk)†f1(qk) + N1(qk)y
)

+ f2(qk)∥2
2 (A.36)

which is a linearly constrained QP that can be solved by the method in Appendix A.4.1.
The solution can be directly obtained as

y∗ =
(
J2(qk)N1(qk)

)†(
− f2(qk) + J2(qk)J1(qk)†f1(qk)

)
(A.37)

132

Bibliography

[1] G. Antonelli, “Stability analysis for prioritized closed-loop inverse kinematic algo-
rithms for redundant robotic systems,” IEEE Transactions on Robotics, vol. 25,
no. 5, pp. 985–994, Oct 2009.

[2] W. Li and E. Todorov, “Iterative linear quadratic regulator design for nonlinear bi-
ological movement systems.” in International Conference on Informatics in Control,
Automation and Robotics, 2004, pp. 222–229.

[3] D. Mayne, “A second-order gradient method for determining optimal trajectories
of non-linear discrete-time systems,” International Journal of Control, vol. 3, no. 1,
pp. 85–95, 1966.

[4] S. Kleff, A. Meduri, R. Budhiraja, N. Mansard, and L. Righetti, “High-frequency
nonlinear model predictive control of a manipulator,” in Proc. IEEE Intl Conf. on
Robotics and Automation (ICRA), 2021, pp. 7330–7336.

[5] P. E. Gill, W. Murray, and M. A. Saunders, “Snopt: An sqp algorithm for large-
scale constrained optimization.” SIAM J. Optimization, vol. 12, no. 4, pp. 979–1006,
2002.

[6] D. Kraft, “A software package for sequential quadratic programming,”
Forschungsbericht- Deutsche Forschungs- und Versuchsanstalt fur Luft- und Raum-
fahrt, 1988.

[7] A. R. Conn, N. I. M. Gould, and Ph. L. Toint, LANCELOT: a Fortran package
for large-scale nonlinear optimization (Release A). Heidelberg, Berlin, New-York:
Springer-Verlag, 1992.

[8] A. Wachter, “An interior point algorithm for large-scale nonlinear optimization
with applications in process engineering,” Ph.D. dissertation, Carnegie Mellon
University, 2002.

[9] Y. Aoyama, G. Boutselis, A. Patel, and E. A. Theodorou, “Constrained differen-
tial dynamic programming revisited,” in Proc. IEEE Intl Conf. on Robotics and
Automation (ICRA), 2021, pp. 9738–9744.

133

Bibliography

[10] V. Sindhwani, R. Roelofs, and M. Kalakrishnan, “Sequential operator splitting for
constrained nonlinear optimal control,” in American Control Conference (ACC),
2017, pp. 4864–4871.

[11] T. A. Howell, B. E. Jackson, and Z. Manchester, “Altro: A fast solver for constrained
trajectory optimization,” in Proc. IEEE/RSJ Intl Conf. on Intelligent Robots and
Systems (IROS), 2019, pp. 7674–7679.

[12] J. Schulman, J. Ho, A. X. Lee, I. Awwal, H. Bradlow, and P. Abbeel, “Finding
locally optimal, collision-free trajectories with sequential convex optimization.” in
Proc. Robotics: Science and Systems (RSS), vol. 9, no. 1, 2013, pp. 1–10.

[13] N. Ratliff, M. Zucker, J. A. Bagnell, and S. Srinivasa, “Chomp: Gradient opti-
mization techniques for efficient motion planning,” in Proc. IEEE Intl Conf. on
Robotics and Automation (ICRA), 2009, pp. 489–494.

[14] E. G. Birgin, J. M. Martínez, and M. Raydan, “Spectral projected gradient methods:
review and perspectives,” Journal of Statistical Software, vol. 60, pp. 1–21, 2014.

[15] E. Pignat, “Product of experts for robot learning from demonstration,” Ph.D.
dissertation, EPFL, Lausanne, 2021.

[16] S. Calinon and D. Lee, “Learning control,” in Humanoid Robotics: a Reference,
P. Vadakkepat and A. Goswami, Eds. Springer, 2019, pp. 1261–1312.

[17] B. Settles, “Active learning,” Synthesis Lectures on Artificial Intelligence and
Machine Learning, vol. 6, no. 1, pp. 1–114, 2012.

[18] G. Maeda, M. Ewerton, T. Osa, B. Busch, and J. Peters, “Active incremental
learning of robot movement primitives,” in Conference on Robot Learning (CoRL),
vol. 78, 2017, pp. 37–46.

[19] A. Conkey and T. Hermans, “Active learning of probabilistic movement primitives,”
in Proc. IEEE Intl Conf. on Humanoid Robots (Humanoids), 2019, pp. 1–8.

[20] T. S. Lembono and S. Calinon, “Probabilistic iterative lqr for short time horizon
mpc,” in Proc. IEEE/RSJ Intl Conf. on Intelligent Robots and Systems (IROS),
2021, pp. 579–585.

[21] J. Anderson, J. C. Doyle, S. H. Low, and N. Matni, “System level synthesis,”
Annual Reviews in Control, vol. 47, pp. 364–393, 2019.

[22] O. Kroemer, C. Daniel, G. Neumann, H. Van Hoof, and J. Peters, “Towards
learning hierarchical skills for multi-phase manipulation tasks,” in Proc. IEEE Intl
Conf. on Robotics and Automation (ICRA), 2015, pp. 1503–1510.

134

Bibliography

[23] B. D. Argall, S. Chernova, M. Veloso, and B. Browning, “A survey of robot learning
from demonstration,” Robotics and Autonomous Systems, vol. 57, no. 5, pp. 469 –
483, 2009.

[24] T. Osa, J. Pajarinen, and G. Neumann, An Algorithmic Perspective on Imitation
Learning. Hanover, MA, USA: Now Publishers Inc., 2018.

[25] B. D. Ziebart, “Modeling purposeful adaptive behavior with the principle of
maximum causal entropy,” Ph.D. dissertation, Machine Learning Department,
Carnegie Mellon University, Dec 2010.

[26] B. Akgun and A. Thomaz, “Simultaneously learning actions and goals from demon-
stration,” Autonomous Robots, vol. 40, no. 2, pp. 211–227, Feb 2016.

[27] P. Englert, N. A. Vien, and M. Toussaint, “Inverse KKT: Learning cost functions
of manipulation tasks from demonstrations,” The International Journal of Robotics
Research, vol. 36, no. 13-14, pp. 1474–1488, 2017.

[28] C. Finn, S. Levine, and P. Abbeel, “Guided cost learning: Deep inverse optimal
control via policy optimization,” in Conference on Robot Learning (CoRL), 2016,
pp. 49–58.

[29] J. Ho and S. Ermon, “Generative adversarial imitation learning,” in Advances in
Neural Information Processing Systems (NIPS), 2016, pp. 4565–4573.

[30] C. G. Atkeson, A. W. Moore, and S. Schaal, “Locally weighted learning for control,”
in Lazy learning. Springer, 1997, pp. 75–113.

[31] A. J. Ijspeert, J. Nakanishi, and S. Schaal, “Learning attractor landscapes for
learning motor primitives,” in Advances in Neural Information Processing Systems
(NIPS), 2002, pp. 1547–1554.

[32] A. Paraschos, C. Daniel, J. Peters, and G. Neumann, “Probabilistic movement
primitives,” in Advances in Neural Information Processing Systems (NIPS), C. J. C.
Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Q. Weinberger, Eds. USA:
Curran Associates, Inc., 2013, pp. 2616–2624.

[33] S. Calinon, F. Guenter, and A. G. Billard, “On learning, representing and general-
izing a task in a humanoid robot,” IEEE Trans. on Systems, Man and Cybernetics,
Part B, vol. 37, no. 2, pp. 286–298, 2007.

[34] T. Cederborg, L. Ming, A. Baranes, and P.-Y. Oudeyer, “Incremental local online
Gaussian mixture regression for imitation learning of multiple tasks,” in Proc.
IEEE/RSJ Intl Conf. on Intelligent Robots and Systems (IROS), Taipei, Taiwan,
2010.

135

Bibliography

[35] S. M. Khansari-Zadeh and A. Billard, “Learning stable non-linear dynamical
systems with Gaussian mixture models,” IEEE Trans. on Robotics, vol. 27, no. 5,
pp. 943–957, 2011.

[36] S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-end training of deep
visuomotor policies,” The Journal of Machine Learning Research, vol. 17, no. 1,
pp. 1334–1373, 2016.

[37] E. Pignat and S. Calinon, “Bayesian gaussian mixture model for robotic policy
imitation,” IEEE Robotics and Automation Letters, Oct 2019.

[38] E. Pignat, T. Lembono, and S. Calinon, “Variational inference with mixture model
approximation: Robotic applications,” 2019.

[39] O. Kroemer, S. Niekum, and G. D. Konidaris, “A review of robot learning for
manipulation: Challenges, representations, and algorithms,” J. Mach. Learn. Res.,
vol. 22, pp. 30:1–30:82, 2019.

[40] J. van den Berg, S. Miller, D. Duckworth, H. Hu, A. Wan, X.-Y. Fu, K. Goldberg,
and P. Abbeel, “Superhuman performance of surgical tasks by robots using iterative
learning from human-guided demonstrations,” in Proc. IEEE Intl Conf. on Robotics
and Automation (ICRA), 2010, pp. 2074–2081.

[41] P. Englert, A. Paraschos, M. P. Deisenroth, and J. Peters, “Probabilistic model-
based imitation learning,” Adaptive Behavior, vol. 21, no. 5, pp. 388–403, 2013.

[42] F. Torabi, G. Warnell, and P. Stone, “Recent advances in imitation learning
from observation,” in International Joint Conferences on Artificial Intelligence
Organization, 7 2019, pp. 6325–6331.

[43] ——, “Behavioral cloning from observation,” in Proceedings of the Twenty-Seventh
International Joint Conference on Artificial Intelligence, IJCAI-18. International
Joint Conferences on Artificial Intelligence Organization, 7 2018, pp. 4950–4957.

[44] S. Calinon, Robot Learning with Task-Parameterized Generative Models. Springer
International Publishing, 2018, vol. 3, pp. 111–126.

[45] H. Girgin and E. Ugur, “Associative skill memory models,” in Proc. IEEE/RSJ
Intl Conf. on Intelligent Robots and Systems (IROS), 2018, pp. 6043–6048.

[46] K. Chatzilygeroudis, V. Vassiliades, F. Stulp, S. Calinon, and J.-B. Mouret, “A
survey on policy search algorithms for learning robot controllers in a handful of
trials,” IEEE Transactions on Robotics, vol. 36, pp. 328–347, 2018.

[47] E. Pignat, H. Girgin, and S. Calinon, “Generative adversarial training of product
of policies for robust and adaptive movement primitives,” in Conference on Robot
Learning. PMLR, 2021, pp. 1456–1470.

136

Bibliography

[48] J. Kober, J. A. Bagnell, and J. Peters, “Reinforcement learning in robotics: A
survey,” The International Journal of Robotics Research, vol. 32, no. 11, pp. 1238–
1274, 2013.

[49] M. P. Deisenroth, G. Neumann, and J. Peters, “A survey on policy search for
robotics,” Found. Trends Robot, vol. 2, pp. 1–142, Aug. 2013.

[50] D. A. Bristow, M. Tharayil, and A. G. Alleyne, “A survey of iterative learning
control,” IEEE control systems magazine, vol. 26, no. 3, pp. 96–114, 2006.

[51] O. Kroemer, R. Detry, J. Piater, and J. Peters, “Combining active learning and
reactive control for robot grasping,” Robotics and Autonomous systems, vol. 58,
no. 9, pp. 1105–1116, 2010.

[52] I. Abraham and T. D. Murphey, “Active learning of dynamics for data-driven
control using koopman operators,” IEEE Transactions on Robotics, vol. 35, no. 5,
pp. 1071–1083, 2019.

[53] S. Calinon, “Stochastic learning and control in multiple coordinate systems,” in
Intl Workshop on Human-Friendly Robotics, Genova, Italy, 2016, pp. 1–5.

[54] K. Zhou, J. C. Doyle, K. Glover, et al., Robust and optimal control. Prentice hall
New Jersey, 1996, vol. 40.

[55] E. G. Birgin, J. Martinez, and M. Raydan, “Spectral projected gradient methods,”
Encyclopedia of Optimization, vol. 2, 2009.

[56] R. Andreani, E. G. Birgin, J. M. Martínez, and M. L. Schuverdt, “On augmented
lagrangian methods with general lower-level constraints,” SIAM Journal on Opti-
mization, vol. 18, no. 4, pp. 1286–1309, 2008.

[57] E. G. Birgin and J. M. Martínez, Practical augmented Lagrangian methods for
constrained optimization. SIAM, 2014.

[58] X. Jia, C. Kanzow, P. Mehlitz, and G. Wachsmuth, “An augmented lagrangian
method for optimization problems with structured geometric constraints,” Mathe-
matical Programming, pp. 1–51, 2022.

[59] M. Schmidt, E. Berg, M. Friedlander, and K. Murphy, “Optimizing costly functions
with simple constraints: A limited-memory projected quasi-newton algorithm,” in
Artificial intelligence and statistics. PMLR, 2009, pp. 456–463.

[60] H. H. Bauschke, “Projection algorithms and monotone operators,” Ph.D. disserta-
tion, Simon Fraser University, 1996.

[61] H. H. Bauschke and P. L. Combettes, “Convex analysis and monotone operator
theory in Hilbert spaces,” in CMS Books in Mathematics, 2011.

137

Bibliography

[62] I. Usmanova, M. Kamgarpour, A. Krause, and K. Levy, “Fast projection onto
convex smooth constraints,” in International Conference on Machine Learning.
PMLR, 2021, pp. 10 476–10 486.

[63] H. H. Bauschke and V. R. Koch, “Projection methods: Swiss army knives for
solving feasibility and best approximation problems with halfspaces,” Contemporary
Mathematics, vol. 636, pp. 1–40, 2015.

[64] J. P. Boyle and R. L. Dykstra, “A method for finding projections onto the intersec-
tion of convex sets in Hilbert spaces,” in Advances in order restricted statistical
inference. Springer, 1986, pp. 28–47.

[65] G. Torrisi, S. Grammatico, R. S. Smith, and M. Morari, “A projected gradient
and constraint linearization method for nonlinear model predictive control,” SIAM
Journal on Control and Optimization, vol. 56, no. 3, pp. 1968–1999, 2018.

[66] M. Giftthaler and J. Buchli, “A projection approach to equality constrained iterative
linear quadratic optimal control,” in IEEE-RAS 17th International Conference on
Humanoid Robotics (Humanoids), 2017, pp. 61–66.

[67] M. I. Kamien and N. L. Schwartz, Dynamic optimization: the calculus of variations
and optimal control in economics and management. Courier Corporation, 2012.

[68] F. D. Bianchi, H. De Battista, and R. J. Mantz, Wind turbine control systems:
principles, modelling and gain scheduling design. Springer, 2007, vol. 19.

[69] M. Diehl, H. Bock, H. Diedam, and P.-B. Wieber, Fast Direct Multiple Shooting
Algorithms for Optimal Robot Control. Springer Berlin Heidelberg, 2006, pp.
65–93.

[70] V. Duchaine, S. Bouchard, and C. M. Gosselin, “Computationally efficient predictive
robot control,” IEEE/ASME Transactions on Mechatronics, vol. 12, no. 5, pp.
570–578, 2007.

[71] S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi, and
H. Hirukawa, “Biped walking pattern generation by using preview control of zero-
moment point,” in Proc. IEEE Intl Conf. on Robotics and Automation (ICRA),
vol. 2, 2003, pp. 1620–1626.

[72] S. Caron and A. Kheddar, “Multi-contact walking pattern generation based on
model preview control of 3d com accelerations,” in Proc. IEEE Intl Conf. on
Humanoid Robots (Humanoids), 2016, pp. 550–557.

[73] B. Ponton, A. Herzog, A. Del Prete, S. Schaal, and L. Righetti, “On time optimiza-
tion of centroidal momentum dynamics,” in Proc. IEEE Intl Conf. on Robotics and
Automation (ICRA), 2018, pp. 1–7.

138

Bibliography

[74] A. W. Winkler, C. D. Bellicoso, M. Hutter, and J. Buchli, “Gait and trajectory
optimization for legged systems through phase-based end-effector parameterization,”
IEEE Robotics and Automation Letters (RA-L), vol. 3, no. 3, pp. 1560–1567, 2018.

[75] R. Budhiraja, J. Carpentier, C. Mastalli, and N. Mansard, “Differential dynamic
programming for multi-phase rigid contact dynamics,” in Proc. IEEE Intl Conf.
on Humanoid Robots (Humanoids), 2018, pp. 1–9.

[76] D. Mayne, “Model predictive control: Recent developments and future promise,”
Automatica, vol. 50, no. 12, pp. 2967–2986, 2014.

[77] J. Koenemann, A. Del Prete, Y. Tassa, E. Todorov, O. Stasse, M. Bennewitz, and
N. Mansard, “Whole-body model-predictive control applied to the hrp-2 humanoid,”
in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
2015, pp. 3346–3351.

[78] N. Wintz and M. Bohner, “Linear quadratic tracker on time scales,” International
Journal of Dynamical Systems and Differential Equations, vol. 3, pp. 423–447,
2011.

[79] M. Neunert, F. Farshidian, A. W. Winkler, and J. Buchli, “Trajectory optimization
through contacts and automatic gait discovery for quadrupeds,” IEEE Robotics
and Automation Letters, vol. 2, no. 3, pp. 1502–1509, 2017.

[80] R. Grandia, F. Farshidian, R. Ranftl, and M. Hutter, “Feedback mpc for torque-
controlled legged robots,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2019, pp. 4730–4737.

[81] M. P. Deisenroth, G. Neumann, and J. Peters, “A survey on policy search for
robotics,” Found. Trends Robot, vol. 2, no. 1–2, p. 1–142, 2013.

[82] J. Siekmann, S. Valluri, J. Dao, F. Bermillo, H. Duan, A. Fern, and J. Hurst,
“Learning memory-based control for human-scale bipedal locomotion,” in Proc.
Robotics: Science and Systems (RSS), 2020.

[83] M. Zhang, Z. McCarthy, C. Finn, S. Levine, and P. Abbeel, “Learning deep neural
network policies with continuous memory states,” IEEE International Conference
on Robotics and Automation (ICRA), pp. 520–527, 2016.

[84] S. Dean, S. Tu, N. Matni, and B. Recht, “Safely learning to control the constrained
linear quadratic regulator,” in American Control Conference (ACC), 2019, pp.
5582–5588.

[85] S. Dean, N. Matni, B. Recht, and V. Ye, “Robust guarantees for perception-based
control,” in Proceedings of the 2nd Conference on Learning for Dynamics and
Control, ser. Proceedings of Machine Learning Research, vol. 120. PMLR, 2020,
pp. 350–360.

139

Bibliography

[86] L. Jarin-Lipschitz, R. Li, T. Nguyen, V. Kumar, and N. Matni, “Robust, percep-
tion based control with quadrotors,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2020, pp. 7737–7743.

[87] D. Ho, “A system level approach to discrete-time nonlinear systems,” in American
Control Conference (ACC), 2020, pp. 1625–1630.

[88] J. Yu and D. Ho, “Achieving performance and safety in large scale systems with
saturation using a nonlinear system level synthesis approach,” in 2020 American
Control Conference (ACC), 2020, pp. 968–973.

[89] S. Calinon, “Gaussians on riemannian manifolds : Applications for robot learning
and adaptive control,” IEEE Robotics and Automation Magazine, vol. 27, no. 2,
pp. 33–45, 2020.

[90] T. A. Howell, S. L. Cleac’h, S. Singh, P. Florence, Z. Manchester, and V. Sind-
hwani, “Trajectory optimization with optimization-based dynamics,” arXiv preprint
arXiv:2109.04928, 2021.

[91] E. Todorov and M. I. Jordan, “Optimal feedback control as a theory of motor
coordination,” Nature Neuroscience, vol. 5, pp. 1226–1235, 2002.

[92] D. M. Wolpert, J. Diedrichsen, and J. R. Flanagan, “Principles of sensorimotor
learning,” Nature Reviews, vol. 12, pp. 739–751, 2011.

[93] D. Sternad, S.-W. Park, H. Mueller, and N. Hogan, “Coordinate dependence of
variability analysis,” PLoS Comput. Biol., vol. 6, no. 4, pp. 1–16, 04 2010.

[94] G. Ganesh and E. Burdet, “Motor planning explains human behaviour in tasks
with multiple solutions,” Robotics and Autonomous Systems, vol. 61, no. 4, pp.
362–368, 2013.

[95] I. D. Walker and S. I. Marcus, “Subtask performance by redundancy resolution for
redundant robot manipulators,” IEEE Journal on Robotics and Automation, vol. 4,
no. 3, pp. 350–354, 1988.

[96] D. R. Baker and C. W. Wampler, “On the inverse kinematics of redundant manip-
ulators,” The International Journal of Robotics Research, vol. 7, no. 2, pp. 3–21,
1988.

[97] B. Siciliano, “Kinematic control of redundant robot manipulators: A tutorial,”
Journal of intelligent and robotic systems, vol. 3, no. 3, pp. 201–212, 1990.

[98] S. Chiaverini, “Kinematically redundant manipulators,” Handbook of Robotics, pp.
245–268, 2008.

140

Bibliography

[99] S. Calinon, I. Sardellitti, and D. G. Caldwell, “Learning-based control strategy
for safe human-robot interaction exploiting task and robot redundancies,” in Proc.
IEEE/RSJ Intl Conf. on Intelligent Robots and Systems (IROS), 2010, pp. 249–254.

[100] F. Messerer, K. Baumgärtner, and M. Diehl, “Survey of sequential convex program-
ming and generalized gauss-newton methods,” ESAIM. Proceedings and Surveys,
vol. 71, p. 64, 2021.

[101] H. Hanafusa, T. Yoshikawa, and Y. Nakamura, “Analysis and control of articulated
robot arms with redundancy,” IFAC Proceedings Volumes, vol. 14, no. 2, pp. 1927 –
1932, 1981, 8th IFAC World Congress on Control Science and Technology for the
Progress of Society, Kyoto, Japan, 24-28 August 1981.

[102] B. Siciliano and J. . E. Slotine, “A general framework for managing multiple tasks in
highly redundant robotic systems,” in Fifth International Conference on Advanced
Robotics ’Robots in Unstructured Environments, June 1991, pp. 1211–1216 vol.2.

[103] P. Baerlocher and R. Boulic, “Task-priority formulations for the kinematic control
of highly redundant articulated structures,” in Proc. IEEE/RSJ Intl Conf. on
Intelligent Robots and Systems (IROS), vol. 1, Oct 1998, pp. 323–329 vol.1.

[104] J. Nocedal and S. J. Wright, Numerical Optimization, 2nd ed. New York, NY,
USA: Springer, 2006.

[105] S. Chiaverini, “Singularity-robust task-priority redundancy resolution for real-time
kinematic control of robot manipulators,” IEEE Robotics and Automation Letters,
vol. 13, pp. 398 – 410, 07 1997.

[106] A. D. Prete, F. Romano, L. Natale, G. Metta, G. Sandini, and F. Nori, “Prioritized
optimal control,” Proc. IEEE Intl Conf. on Robotics and Automation (ICRA), pp.
2540–2545, 2014.

[107] F. R. Hogan and A. Rodriguez, “Feedback control of the pusher-slider sys-
tem: A story of hybrid and underactuated contact dynamics,” arXiv preprint
arXiv:1611.08268, 2016.

[108] J. P. De Moura, T. Stouraitis, and S. Vijayakumar, “Non-prehensile planar ma-
nipulation via trajectory optimization with complementarity constraints,” in Proc.
IEEE Intl Conf. on Robotics and Automation (ICRA), 2022.

[109] D. Mayne, “A second-order gradient method for determining optimal trajectories
of non-linear discrete-time systems,” International Journal of Control, vol. 3, no. 1,
pp. 85–95, 1966.

[110] N. Doshi, F. R. Hogan, and A. Rodriguez, “Hybrid differential dynamic program-
ming for planar manipulation primitives,” in Proc. IEEE Intl Conf. on Robotics
and Automation (ICRA), 2020, pp. 6759–6765.

141

Bibliography

[111] Y. Tassa, N. Mansard, and E. Todorov, “Control-limited differential dynamic
programming,” in Proc. IEEE Intl Conf. on Robotics and Automation (ICRA),
2014, pp. 1168–1175.

[112] H. Girgin, J. Jankowski, and S. Calinon, “Reactive anticipatory robot skills with
memory,” in International Symposium on Robotics Research (ISRR), 2022.

[113] T. S. Lembono, A. Paolillo, E. Pignat, and S. Calinon, “Memory of motion for
warm-starting trajectory optimization,” IEEE Robotics and Automation Letters
(RA-L), vol. 5, no. 2, pp. 2594–2601, 2020.

[114] F. R. Hogan, E. R. Grau, and A. Rodriguez, “Reactive planar manipulation with
convex hybrid mpc,” in Proc. IEEE Intl Conf. on Robotics and Automation (ICRA),
2018, pp. 247–253.

[115] J. A. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl, “Casadi: a
software framework for nonlinear optimization and optimal control,” Mathematical
Programming Computation, vol. 11, no. 1, pp. 1–36, 2019.

[116] P. Bonami, M. Kilinç, and J. Linderoth, “Algorithms and software for convex mixed
integer nonlinear programs,” in Mixed integer nonlinear programming. Springer,
2012, pp. 1–39.

[117] C. Mastalli, R. Budhiraja, W. Merkt, G. Saurel, B. Hammoud, M. Naveau, J. Car-
pentier, L. Righetti, S. Vijayakumar, and N. Mansard, “Crocoddyl: An efficient
and versatile framework for multi-contact optimal control,” in Proc. IEEE Intl
Conf. on Robotics and Automation (ICRA), 2020, pp. 2536–2542.

[118] E. Coumans and Y. Bai, “Pybullet, a python module for physics simulation for
games, robotics and machine learning,” http://pybullet.org, 2016–2021.

[119] A. Paraschos, C. Daniel, J. R. Peters, and G. Neumann, “Probabilistic movement
primitives,” in Advances in Neural Information Processing Systems (NIPS), 2013,
pp. 1–9.

[120] A. Paraschos, C. Daniel, J. Peters, and G. Neumann, “Using probabilistic movement
primitives in robotics,” Autonomous Robots, vol. 42, no. 3, pp. 529–551, 2018.

[121] S. Gomez-Gonzalez, G. Neumann, B. Schölkopf, and J. Peters, “Using probabilis-
tic movement primitives for striking movements,” in Proc. IEEE Intl Conf. on
Humanoid Robots (Humanoids), 2016, pp. 502–508.

[122] G. Maeda, G. Neumann, M. Ewerton, R. Lioutikov, O. Kroemer, and J. Pe-
ters, “Probabilistic movement primitives for coordination of multiple human–robot
collaborative tasks,” Autonomous Robots, vol. 41, no. 3, pp. 593–612, 2017.

142

http://pybullet.org

Bibliography

[123] M. Ewerton, G. Maeda, G. Kollegger, J. Wiemeyer, and J. Peters, “Incremental
imitation learning of context-dependent motor skills,” in Proc. IEEE Intl Conf. on
Humanoid Robots (Humanoids), 2016, pp. 351–358.

[124] A. Paraschos, E. Rueckert, J. Peters, and G. Neumann, “Probabilistic movement
primitives under unknown system dynamics,” Advanced Robotics, vol. 32, no. 6, pp.
297–310, 2018.

[125] A. Paraschos, C. Daniel, J. Peters, and G. Neumann, “Using probabilistic movement
primitives in robotics,” Autonomous Robots, vol. 42, no. 3, pp. 529–551, 2018.

[126] E. Pignat and S. Calinon, “Bayesian Gaussian mixture model for robotic policy
imitation,” IEEE Robotics and Automation Letters, vol. 4, no. 4, pp. 4452–4458,
2019.

[127] E. Pignat, J. Silvério, and S. Calinon, “Learning from demonstration using products
of experts: Applications to manipulation and task prioritization,” The International
Journal of Robotics Research, vol. 41, pp. 163 – 188, 2020.

[128] A. Sena, Y. Zhao, and M. Howard, “Teaching human teachers to teach robot
learners.” in Proc. IEEE Intl Conf. on Robotics and Automation (ICRA), 2018, pp.
5675–5681.

[129] A. Sena and M. Howard, “Quantifying teaching behavior in robot learning from
demonstration,” The International Journal of Robotics Research, vol. 39, no. 1, pp.
54–72, 2020.

[130] C. M. Bishop, Pattern Recognition and Machine Learning (Information Science
and Statistics). Berlin, Heidelberg: Springer-Verlag, 2006.

[131] M. Salganicoff, L. Ungar, and R. Bajcsy, “Active learning for vision-based robot
grasping,” Machine Learning, vol. 23, no. 2-3, pp. 251–278, 1996.

[132] S. Ivaldi, N. Lyubova, A. Droniou, D. Gerardeaux-Viret, D. Filliat, V. Padois,
O. Sigaud, P. Oudeyer, et al., “Learning to recognize objects through curiosity-
driven manipulation with the icub humanoid robot,” in Proc. IEEE Intl Conf. on
Development and Learning and Epigenetic Robotics (ICDL), 2013, pp. 1–8.

[133] J. Schmidhuber, “Developmental robotics, optimal artificial curiosity, creativity,
music, and the fine arts,” Connection Science, vol. 18, no. 2, pp. 173–187, 2006.

[134] A. Shon, D. Verma, and R. Rao, “Active imitation learning,” in Proc. AAAI
Conference on Artificial Intelligence, 2007, pp. 1–7.

[135] D. Silver, J. Bagnell, and A. Stentz, “Active learning from demonstration for robust
autonomous navigation,” in Proc. IEEE Intl Conf. on Robotics and Automation
(ICRA), 2012, pp. 200–207.

143

Bibliography

[136] C. Chao, M. Cakmak, and A. Thomaz, “Transparent active learning for robots,”
in Proc. ACM/IEEE Intl Conf. on Human-Robot Interaction (HRI), 2010, pp.
317–324.

[137] S. Chernova and M. Veloso, “Interactive policy learning through confidence-based
autonomy,” Journal of Artificial Intelligence Research, vol. 34, pp. 1–25, 2009.

[138] F. Nielsen, “Closed-form information-theoretic divergences for statistical mix-
tures,” in Proceedings of the 21st International Conference on Pattern Recognition
(ICPR2012). IEEE, 2012, pp. 1723–1726.

[139] C. Shannon, “A mathematical theory of communication,” Bell system technical
journal, vol. 27, no. 3, pp. 379–423, 1948.

[140] A. Kolchinsky and B. Tracey, “Estimating mixture entropy with pairwise distances,”
Entropy, vol. 19, no. 7, p. 361, 2017.

[141] J. S. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl, “Algorithms for hyper-
parameter optimization,” in Advances in neural information processing systems,
2011, pp. 2546–2554.

[142] J. Bergstra, D. Yamins, and D. D. Cox, “Hyperopt: A python library for optimizing
the hyperparameters of machine learning algorithms,” in Proceedings of the 12th
Python in science conference, vol. 13, 2013, p. 20.

[143] S. A. Bowyer, B. L. Davies, and F. Rodriguez y Baena, “Active constraints/virtual
fixtures: A survey,” IEEE Transactions on Robotics, vol. 30, no. 1, pp. 138–157,
2014.

[144] S. Zimmermann, M. Busenhart, S. Huber, R. Poranne, and S. Coros, “Differentiable
collision avoidance using collision primitives,” in Proc. IEEE/RSJ Intl Conf. on
Intelligent Robots and Systems (IROS), 2022, pp. 8086–8093.

[145] K. M. Lynch and F. C. Park, Modern robotics. Cambridge University Press, 2017.

[146] N. Parikh, S. Boyd, et al., “Proximal algorithms,” Foundations and trends® in
Optimization, vol. 1, no. 3, pp. 127–239, 2014.

[147] X. Zhang, A. Liniger, and F. Borrelli, “Optimization-based collision avoidance,”
IEEE Transactions on Control Systems Technology, vol. 29, no. 3, pp. 972–983,
2021.

[148] M. Koptev, N. Figueroa, and A. Billard, “Neural joint space implicit signed distance
functions for reactive robot manipulator control,” IEEE Robotics and Automation
Letters, vol. 8, no. 2, pp. 480–487, 2022.

144

Bibliography

[149] N. Jaquier, R. Haschke, and S. Calinon, “Tensor-variate mixture of experts for
proportional myographic control of a robotic hand,” Robotics and Autonomous
Systems, vol. 142, p. 103812, 2021.

[150] J. Peters and S. Schaal, “Learning to control in operational space,” The Interna-
tional Journal of Robotics Research, vol. 27, no. 2, pp. 197–212, 2008.

[151] B. Boots, G. J. Gordon, and S. M. Siddiqi, “A constraint generation approach
to learning stable linear dynamical systems,” in Advances in Neural Information
Processing Systems (NIPS). Curran Associates, Inc., 2008, pp. 1329–1336.

[152] A. Venkatraman, R. Capobianco, L. Pinto, M. Hebert, D. Nardi, and J. A. Bagnell,
“Improved learning of dynamics models for control,” in International Symposium
on Experimental Robotics. Springer, 2016, pp. 703–713.

[153] M. Deisenroth and C. E. Rasmussen, “Pilco: A model-based and data-efficient
approach to policy search,” in Proc. Intl Conf. on Machine Learning (ICML), 2011,
pp. 465–472.

[154] M. Kopicki, S. Zurek, R. Stolkin, T. Moerwald, and J. L. Wyatt, “Learning
modular and transferable forward models of the motions of push manipulated
objects,” Autonomous Robots, vol. 41, no. 5, pp. 1061–1082, 2017.

[155] E. Fox, E. B. Sudderth, M. I. Jordan, and A. S. Willsky, “Nonparametric Bayesian
learning of switching linear dynamical systems,” in Advances in Neural Information
Processing Systems (NIPS), 2009, pp. 457–464.

[156] B. O. Koopman, “Hamiltonian systems and transformation in Hilbert space,” Proc.
National Academy of Science, vol. 17, no. 5, p. 315, 1931.

[157] E. Kaiser, J. N. Kutz, and S. L. Brunton, “Data-driven approximations of dynamical
systems operators for control,” in The Koopman Operator in Systems and Control.
Springer, 2020, pp. 197–234.

[158] N. Takeishi, Y. Kawahara, Y. Tabei, and T. Yairi, “Bayesian dynamic mode
decomposition,” in International Joint Conference on Artificial Intelligence, 2017.

145

HAKAN GIRGIN
Ó +41 76 506 9890 |� hakan.girgin@epfl.ch |� hgirgin.github.io

� Rue de l’ancien-stand 8, Montreux, Switzerland

PROFILE

I am currently Ph.D. candidate in robotics at Ecole Polytechnique Fédérale de Lausanne (EPFL) and Idiap Research
Institute supervised by Dr. Sylvain Calinon. My research focuses on optimization and active iterative refinement of
feedback and feedforward control policies for acquiring robust and anticipatory robot skills from demonstration.

EDUCATION

Ph.D. | Robotics 2018 – 2023
Ecole Polytechnique Fédérale de Lausanne (EPFL) Lausanne, Switzerland

Bachelor of Science | Mechanical Engineering 2012 – 2017
Bogazici University, Entrance rank: 0.13%, GPA: 3.90/4.0 Istanbul, Turkey

Exchange semester | Mechanical Engineering 2014 – 2015
Ecole Centrale Paris Paris, France

Francophone Highschool 2007 – 2012
Lycée de Galatasaray, Entrance rank: 0.06% GPA: 85.84/100 Istanbul, Turkey

WORK EXPERIENCE

Ph.D. Research Assistant 2018 – 2023
Idiap Research Institute, Robot Learning and Interaction Group Martigny, Switzerland

• Ph.D. research supervised by Dr. Sylvain Calinon
• Worked on EU-Horizon2020 project CoLLaboratE

Teaching Assistant 2020-2022
Robotics Course, AI-Master Programme, Unidistance Martigny, Switzerland

• Preparation of exercises in Jupyter notebooks with ROS and in html formats

Bachelor Research Assistant 2017 – 2018
Bogazici University Cognitive Robotics and Learning Systems Lab (CoLoRs) Istanbul, Turkey

• Assistance to Dr. Emre Ugur in forming CoLoRs lab
• Worked on EU-Horizon 2020 project, IMAGINE

Product Definition Engineering Intern 2015 – 2016
General Electric Aviation Istanbul, Turkey

System Engineering Intern 2016
ALTINAY Aerospace & Advanced Technologies Istanbul, Turkey

SKILLS

Languages: Turkish (Native), English (Proficient), French (Proficient), Japanese (B1), Italian (A1), German (A1)

Programming: Python, Jupyter, MATLAB, Tensorflow, PyTorch, Pyscript

Software: ROS, PyBullet, KDL

147

PUBLICATIONS

Demonstration-guided Optimal Control for Long-term Non-prehensile Planar Manipulation
T. Xue, H. Girgin, T. Lembono, S. Calinon, In Proc. IEEE Intl Conf. on Robotics and Automation ICRA 2023

Reactive Anticipatory Robot Skills with Memory
H. Girgin, J. Jankowski, S. Calinon, International Symposium on Robotics Research ISRR 2022

Optimization of robot configurations for motion planning in industrial riveting
H. Girgin, T. Lembono, R. Cirligeanu, S. Calinon, In Proc. IEEE Intl Conf. on Advanced Robotics ICAR 2021

Active Learning of Bayesian Probabilistic Movement Primitives
T. Kulak, H. Girgin, J.-M. Odobez, S. Calinon, IEEE Robotics and Automation Letters RAL 2021

Probabilistic Adaptive Control for Robust Behavior Imitation
J. Jankowski, H. Girgin, S. Calinon, IEEE Robotics and Automation Letters RAL 2021

Active Improvement of Control Policies with Bayesian Gaussian Mixture Model
H. Girgin, E. Pignat, N. Jaquier, S. Calinon, IEEE Intl. Conf. on Intelligent Robots and Systems IROS 2020

Generative Adversarial Training of Product of Policies for Robust and Adaptive Movement Primitives
E. Pignat, H. Girgin, S. Calinon, In Proc. Conference on Robot Learning CoRL 2020

Compliant Parametric Dynamic Movement Primitives
E. Ugur, H. Girgin, Robotica, 38(3), pp. 457-474 Robotica 2020

Associative Skill Memory Models
H. Girgin, E. Ugur, IEEE Intl. Conf. on Intelligent Robots and Systems IROS 2018

148

	Acknowledgements
	Abstract (English/Français)
	Contents
	Introduction
	Motivation & Challenges
	Organization of the thesis

	Background
	Behavior Primitives
	Learning Primitives from Demonstration
	Learning policies for control
	Improvement of Primitives using Active Learning

	Optimal Control
	Linear quadratic tracking with least-squares
	Batch-LQT

	Robot Dynamics

	I Optimization of Controllers
	Projection-based first-order constrained optimization solver for robotics
	Related work
	Background
	Euclidean projections onto sets
	Projection view of inverse kinematics

	Augmented Lagrangian Spectral Projected Gradient Descent for Robotics
	Spectral projected gradient descent
	Augmented Lagrangian spectral projected gradient descent (ALSPG)
	Handling of inequality constraints
	Optimal Control with ALSPG

	Convex polytope projections and linear transformations
	Convex polytope projections
	Linear transformation of projections

	Experiments
	Constrained inverse kinematics
	Motion planning and MPC on planar push
	Motion planning with obstacle avoidance
	MPC on Franka Emika

	Conclusion

	Robust Anticipatory Robot Skills with Memory
	Related Work
	Background
	Methods
	Extended system level synthesis (eSLS)
	Iterative system level synthesis (iSLS)

	Experiments and Results
	Simulated task
	Pick-and-place task
	Bimanual handover task

	Conclusion

	Nullspace Methods in Planning and Control
	Inverse kinematics with nullspace structure
	Nullspace structure in linear quadratic tracking (LQT)
	Experiments
	Proof-of-concept examples
	Robot Simulation

	Nullspace feedback controller in system level synthesis (SLS)
	Bilevel optimization of hierarchical optimal control
	Experiments
	Viapoint reaching

	Conclusion

	II Learning of Controllers
	Learning robotic skills from demonstrations
	Learning trajectory models to warm-start optimal control
	Problem formulation
	Demonstration-started DDP (DS-DDP)
	Demonstration-constrained DDP (DC-DDP)
	Warm-starting DDP (WS-DDP)
	Adaptation to disturbance
	Experiments
	Conclusion

	Learning trajectory models for adaptive control
	Probabilistic Movement Primitives
	Formulation of the proposed controller
	Single Mode
	Multiple Modes
	Feedback of the Context
	Experimental Validation
	Conclusion

	Active learning of feedback controllers
	Related Work
	Background
	Bayesian Gaussian Mixture Model
	Product of Experts

	Active Learning of Control Policies
	Uncertainty decomposition
	Rényi entropy of the posterior distribution
	Information-density cost for active learning
	Experiments

	Active Learning of Trajectory Policies
	Experiments
	Simulated pouring
	Real robot pouring task

	Conclusion

	Discussion & Future Work
	Projection-based optimization for robotics
	System level synthesis: perspectives on robust optimal control and inverse optimal control
	Combining learning and optimization of controllers

	Conclusion

	Appendix
	Planar Push Dynamics
	Kinematics
	Generalized Motion Cone
	Generalized Motion Equation

	Mathematical background
	Pseudo-inverse and nullspace of a row matrix
	Properties of the nullspace matrix
	Separable costs and constraints
	Expectation of some linear and quadratic forms
	Probabilistic inequalities
	Projection onto sublevel set of a convex function

	Controller derivation
	eSLS closed-loop map

	Nullspace in inverse kinematics and optimal control
	Nullspace method for linear equality constrained QP
	Bilevel optimization

	Bibliography
	Curriculum Vitae

