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Abstract
Predicting where a person is looking is a complex task,

requiring to understand not only the person’s gaze and
scene content, but also the 3D scene structure and the per-
son’s situation (are they manipulating? interacting or ob-
serving others? attentive?) to detect obstructions in the
line of sight or apply attention priors that humans typi-
cally have when observing others. In this paper, we hy-
pothesize that identifying and leveraging such priors can
be better achieved through the exploitation of explicitly de-
rived multimodal cues such as depth and pose. We thus pro-
pose a modular multimodal architecture allowing to com-
bine these cues using an attention mechanism. The archi-
tecture can naturally be exploited in privacy-sensitive sit-
uations such as surveillance and health, where personally
identifiable information cannot be released. We perform
extensive experiments on the GazeFollow and VideoAtten-
tionTarget public datasets, obtaining state-of-the-art per-
formance and demonstrating very competitive results in the
privacy setting case. 1

1. Introduction

As an indicator of attention, gaze is an important cue
which can reveal considerable information about a person’s
behavior or state of mind. In this regard, identifying the
gaze of people in visual data finds applications in many do-
mains, like in the retail industry to understand consumer
behaviour [37], in sociology for assessing social gaze be-
haviours such as shared attention [8], or in human-robot in-
teraction for communication analysis [32].

In recent years, there has been an increased body of work
devoted to gaze analytics. One research direction focuses on
improving the raw gaze prediction, defined as the 3D angu-
lar values representing the 3D line of sight. These methods
typically use the eyes [40] or the face of a person [17] as in-
put. Another research line addresses the identification of the
visual focus of attention (VFOA), i.e. the visual target a per-

1We plan to release the code after clean-up.

Figure 1. Sample images where depth and pose information can
be useful to infer the gaze target. Left: the pose can indicate that
people are interacting, while depth helps to rule out salient objects
in the background. Middle: manipulation activities where knowl-
edge of the hands can be useful. Right: depth allows to filter out
the potential face candidates in the back.

son is looking at [3,26,32]. Such a task is challenging, as it
requires not only to capture the body, head and potentially
the eyes of the person of interest to infer their attention,
but also the understanding and monitoring of the scene con-
taining the gaze targets. Due to this constraint, traditional
methods usually perform the task in fixed environments re-
lying on multi-camera set-ups [3, 26] or prior knowledge of
scene location [32]. This creates challenges for applying
the methods and models to unseen environments.

With a focus on generalization, Recasens et al. [30] pro-
posed to address the VFOA task using a single image, by
formulating it as the prediction of the image 2D location of
the gaze target looked at by a person of interest in the im-
age. They proposed a model that implicitly learns what the
salient elements in a scene are, and how to combine them
with the attention evidence obtained from the gaze informa-
tion inferred from the person’s head crop image. Relying on
a large annotated dataset, good results were obtained, with
the advantage that such an approach can, in theory, be ap-
plied to any arbitrary scene. This work has also been ex-
tended in many ways [6,12,16,18,23,43]. In this paper, we
address this 2D target prediction task and investigate differ-



ent factors which can contribute to the success and under-
standing of the inference process, as motivated below.

Motivations. Several cues modulate gaze following behav-
ior in humans, such as saliency and social context [33].
Transposing this idea to images, we argue that predicting
the gaze target of a person in an image can benefit from
leveraging such information. This includes inferring the
general gaze direction of the person, and identifying the
salient items (potential VFOA targets) located in their field
of view, like objects and faces. To further remove ambigu-
ities, humans usually rely on priors about gaze behaviours,
which depend on understanding the 3D structure of the
scene (to check visibility factors) as well as the current con-
text (task performed, ongoing interactions, intentions, past
actions, . . .). While the information to reach this level of un-
derstanding and apply the right prior for inferring the gaze
is directly available in the image, one may wonder whether
explicitly providing visual cues and modalities would ease
and improve the inference of gaze target.

In this regard, we study the use of explicit depth and pose
information for improving attention inference, as illustrated
in Fig. 1. Indeed, depth information gives the model an idea
about object shapes and the 3D scene structure. It allows for
understanding whether a person is looking to the foreground
or background, and can help resolve ambiguities along the
line of sight when the depth does not match. On the other
hand, pose provides accurate information about the loca-
tions of body parts related to attention such as hands and
faces which are common gaze targets during interactions
and manipulation activities. Pose also provides information
about the physical state and activity of the person(s), which
can help decide which categories of potential gaze targets
the network needs to focus on.

Using images with visible faces can be an issue in
privacy-sensitive scenarios, either when obtaining training
data, or at inference time. Surveillance and health are typ-
ical applications. For instance, it has been shown that re-
duced eye contact and shared attention are early warning
signs for autism in children [44]. However, due to their sen-
sitive nature, raw videos (even with faces blurred since we
are interested in gaze) are not available for public access,
making it difficult to develop and test models. On the other
hand, pose and depth data do not contain identifying infor-
mation, so they can be shared. Hence, we develop models
which use only pose and depth data, and evaluate their per-
formance in this paper.

We also study the benefit of other technical elements.
The first one is resolution. Indeed, gaze target localiza-
tion is a dense prediction task similar to pose landmarks
estimation: our output is a heatmap corresponding to the
probability of a point being the gaze target. Current ap-
proaches [7, 9, 18] typically use ResNet style architectures
where the spatial resolution of features is greatly reduced

before being upsampled again for the final prediction. In-
stead, we adopt a Feature Pyramid Network approach [19]
which includes skip connections during the upsampling
process to preserve spatial information and demonstrate im-
proved results. Secondly, in current methods, gaze informa-
tion is often merged with the input image content to infer the
gaze of a person. This early fusion requires the full image
to be (re)processed for each person. We investigate whether
a late fusion approach can be adopted (fusing gaze informa-
tion with feature maps) and show that it does not achieve
the same level of performance.
Approach and contributions. In summary, we address the
gaze target location prediction task and make the following
contributions:

• we propose a modular multimodal gaze prediction ar-
chitecture with end-to-end training and an attention
scheme to combine the saliency features of image,
pose and depth modalities;

• we investigate the use of only pose and depth infor-
mation in our setting to allow its usage in privacy-
sensitive settings;

• we propose the use of a Feature Pyramid Network re-
gression scheme and show that preserving spatial in-
formation is important due to the nature of the task.

We conduct experiments on the GazeFollow [30] and
VideoAttentionTarget [7] public benchmarks, and show
that we obtain state-of-the-art results using all modalities,
and that competitive results can be obtained using only
depth and pose information which is of interest for privacy-
sensitive applications.

2. Related Work
This paper relates mainly to the problems of gaze tar-

get prediction and, to a minor extent, data anonymization.
Below is a review of works in these topics.

2.1. Gaze Target Prediction

When accurate gaze trackers were not available, VFOA
was often inferred from head pose using behavioral mod-
els [35]. Inference mechanisms like GMM, HMM, or Dy-
namical Bayesian Networks [1, 27] were used to estimate
the VFOA directly from the head pose, and potentially using
other contextual information [10] which can act as priors
on the VFOA like the speaking status, the speech seman-
tic content [26, 32], or modeling interactions and the joint
VFOA of all participants [2, 22]. Nevertheless, with the re-
cent improvement of gaze estimation, even simple frame-
based geometrical models were shown to be effective to es-
timate VFOA [42]. Recent models used deep networks such
as CNNs and RNNs, resulting in further improved perfor-
mance [34]. However all these methods typically rely on
some prior knowledge about the scene structure and hence
can not generalize to arbitrary settings.



To address generalization, Recasens et al. [29] formu-
lated the problem as the inference of the 2D image position
corresponding to the location of the scene target a person (in
the image) is looking at. They proposed a CNN model com-
bining the information from two branches, a saliency branch
which processes the scene and a gaze branch analysing the
head crop of the person of interest. Most models that fol-
lowed relied on a similar two branch architecture. For in-
stance, Chong et al. [6] extended the model to also predict
whether a person is looking inside or outside the frame.
Lian et al. [18] predicted a 2D gaze vector from the gaze
branch and used it to generate explicit gaze cones which
were then concatenated along with the input image for in-
ference. We follow a similar idea to generate a gaze cone
which is concatenated with each modality, and we investi-
gate the privacy-sensitive setting. Drawing inspiration from
works in human pose estimation, Zhao et al. [43] proposed
an interesting method which learned to predict the line of
sight as well as infer the attention ’landmark’, and demon-
strated improved results over the other baselines. Other
works proposed to process multiple people together [16] or
use temporal information [7] using an LSTM module at the
bottleneck, but in the latter case, results were not improved
much compared to the frame-based case.

There has also been some work exploring the use of mul-
timodal information. Guan et al. [12] used the pose of the
person of interest to supplement the gaze branch in cases
where the face is not visible. In the approach of Nan et
al. [23], authors aim to merge (task driven) top-down atten-
tion with bottom-up features (flow and pose) to derive the
gaze target. While they perform a similar late fusion of fea-
tures across modalities, our fusion mechanism operates at
a much higher resolution and relies on an attention mecha-
nism. In addition, their overall method (with top-down fea-
tures) is quite different and was applied in a specific setting.
Fang et al. [9] used depth to potentially disambiguate atten-
tion targets by inferring whether a person is looking toward
their foreground or background, obtaining the best results
reported so far on the GazeFollow and VideoAttentionTar-
get datasets. Recently, Hu et al. [14] used depth informa-
tion to perform gaze target prediction in 3D. As far as we
are aware, ours is the first work to use both pose and depth
information, and to study the privacy preserving situation.

Finally, there are other works addressing tasks related to
gaze following. This includes predicting gaze target objects
[37], detecting whether two people are looking at each other
[21] or recognizing shared attention behavior [8]. However,
due to their aims, these works differ substantially from the
study we conduct here.

2.2. Data Anonymization

The typical approaches for anonymizing face data in-
clude techniques such as blurring and pixelation [5] [11].

However, these methods may not remove privacy-sensitive
information [24, 25] and may instead remove critical infor-
mation for the downstream task. More recent methods use
generative adversarial methods [15] to alter the face. How-
ever, these methods are not suited for our task as changes
to facial features can affect the gaze information. Instead,
we propose the use of pose information (facial landmarks)
to predict the gaze direction. This removes identifying in-
formation while still giving us a good approximation of a
person’s gaze direction. This was recently demonstrated by
Belkada et al. [4], who showed that the head and body pose
alone could be used to predict the ”eye contact” of people
with a camera sensor placed on a car. Our results further
confirm this hypothesis in more general scenes.

3. Model Architecture
3.1. Approach overview

An overview of our system is illustrated in Figure 2. It
takes as input an image or a video frame, a set of derived
modality images, and the head bounding box of a target
person. The output is a gaze heatmap H where the loca-
tion of the maximum value corresponds to the desired gaze
prediction pgaze.

Our network architecture consists of 3 modules. The
first one is a Human-Centric module whose goal is, given
the head crop of a person, to predict a gaze cone represent-
ing their visual field of view, i.e. the set of pixel locations
where the person might be looking. The second one is a
Scene-Centric module which is fed the image, the person’s
location (head mask) and the gaze cone in order to generate
a feature saliency map F highlighting possible gaze target
locations. The last one is a Prediction module comprising
two heads: one for inferring the gaze heatmap, and the sec-
ond one for predicting whether the gaze target is located
within the frame. These components are detailed below.

3.2. Human-Centric Module

In this module, a sub-network G takes the head crop im-
age Ihead of the target person as input and predicts a nor-
malized 2D gaze vector g2D = G(Ihead). This gaze vector
is used by a gaze cone generator to produce a gaze cone im-
age Ico. Finally, the gaze cone image is concatenated with
the binary head mask of the target person Imask and passed
to the Scene-Centric branch for further processing.
Gaze Cone Generator. The gaze cone is a way to modulate
the image information appearing in the gaze direction of the
person. It is encoded as an image in order to be consistent
with the rest of the architecture. The gaze cone generator
produces Ico by drawing a cone from the subject’s eyes lo-
cation peye (i.e. eye mid-point if available from the pose
modality; otherwise, using a prototypal location in the head
bounding box) along the direction of g2D. To account for



Figure 2. Overview of our proposed architecture. Given an input image and a target subject’s head location, we first extract depth and
pose maps from the image using off-the-shelf pre-trained models. Next, the Human-Centric module takes the person’s head crop as input
and predicts a 2D gaze vector which is used to generate a gaze cone image. Then, the Scene-Centric module processes the original image,
the depth image and the pose map in order to produce modality saliency feature maps (using modality-specific encoder-decoder feature
extractors) which are fused by an Attention module. The resulting saliency map is used by the Prediction module to regress a gaze heatmap,
and optionally predict an in-vs-out gaze classification score.

uncertainties in gaze prediction, the cone has an aperture of
αco (set to π in practice), and the intensity decays the far-
ther we are from the gaze direction angle-wise. Specifically,
the value at each pixel location p is scored according to the
cosine similarity between the predicted gaze vector and the
eye-to-target direction. (see example in Fig. 2). Formally:

∀p = (i, j) where (i, j) ∈ [1, w]× [1, h],

Ico(p) = max (0, cos(g2D,p− peye))
(1)

Note that given this definition, the gaze cone generator is
differentiable, allowing to train our architecture end-to-end.

3.3. Scene-Centric Module

In the Scene-Centric module, the input image I is first
transformed using different networks (see implementation
details) into a set of modality images Im, where m ∈
{raw, pose, depth} and Iraw = I by definition. These
modalities are passed through feature extractors to produce
feature maps, which are then fused using an attention mech-
anism to create a single combined feature map.
Feature Extractors. A set of modality-specific feature ex-
tractors Fm are used to compute feature maps Fm to encode
the person-specific salient regions of the scene according to
the input modality. Thus, each feature extractor Fm pro-
cesses its corresponding modality Im concatenated with the
output of the Human-Centric module, so that we have:

Fm = Fm(Im, Ico, Imask) (2)

Note that the concatenation can be seen as an early fusion
scheme, whereas an alternative (so far less successful) ap-
proach consists in fusing the Human-Centric module in-
formation later at the feature level (see late fusion experi-
ments). While multiplication is a more straightforward way
to fuse the modality image and the gaze cone, in practice

it produced worse results, probably because it performs a
hard decision based on potentially inaccurate gaze direction
predictions. This is particularly the case when the subject’s
head is facing backwards and the gaze vector is more dif-
ficult to estimate. Concatenation on the other hand, allows
the model to make that decision later in the processing.

Regarding the network, we used a typical image-to-
image approach, relying on an encoder-decoder architec-
ture. However, in contrast to previous works which simply
upsample the lowest resolution representation produced by
the encoder [7, 18], we used skip connections from differ-
ent intermediate representations (at different resolutions) to
their corresponding decoder representations in the style of
a Feature Pyramid Network [19]. This architectural choice
aims to retain information from higher resolution represen-
tations, which is important in dense prediction tasks, and
further evidenced by our experiments.
Attention Module. Its goal is to perform a soft-selection
of the most appropriate input modality given the scene. It
takes as input the set of feature maps Fm ∈ Rw×h×dm and
produces a single combined feature map F, which we use
to predict the outputs. Concretely, it performs fours steps:

1. Each feature map Fm is passed through a modality-
specific convolution layer to produce a transformed
feature map Tm.

2. Each map Tm is passed through a network Am con-
sisting of three strided convolution layers followed by
a global max pooling to generate an embedding vector
em. All embeddings are then concatenated to form the
global embedding e.

3. The global embedding is passed through a projection
layer P followed by a softmax operation to get the at-
tention weights: {wm} = softmax(P (e)).

4. Finally, the output is computed as the weighted sum of
the transformed feature maps: F =

∑
m wmTm.



This loosely resembles the self-attention mechanism in a
transformer [38]: the transformed feature maps Tm act as
the values, whereas the attention weights wm simulate a dot
product between an implicit query and a set of keys.

In addition, this attention mechanism allows us to use a
variable number of modalities during inference because the
model can simply assign a weight of 0 when a modality is
absent. To encourage this behaviour, we perform modality
dropout during training, i.e. we randomly provide a white
noise image instead of the dropped modality, and use an
attention loss for supervision (see Section 3.5).

3.4. Prediction Module

This module uses the feature map to predict the quantity
of interest: a gaze heatmap H, and a binary In-Out flag o
indicating whether the gaze target is inside or outside the
image. It comprises two parts, which are explained below.
Gaze prediction head. The gaze target heatmap H is re-
gressed from the combined feature map F using a prediction
decoder R that consists of an analytic upsampling followed
by a set of convolution layers:

H = R(F) (3)

The location where the heatmap is maximal is then used as
the gaze target prediction.
In-Out prediction head. In general, we want to predict
whether the person is looking at a scene location which
is visible in the image or not. This is important as we do
not want to use the gaze target prediction when a person is
looking outside the frame. To accomplish this, we attach
an In-Out network prediction head O which takes as input
the feature map F resulting from the attention step as well
as a gaze embedding egaze coming from the human centric
module (see Fig. 2):

o = O(F, egaze) (4)

More precisely: first, the map F is passed through a network
having the same architecture as Am to produce a scene em-
bedding escene which is concatenated with the gaze embed-
ding egaze and fed into an In-Out predictor consisting of 2
linear layers followed by a sigmoid activation.

3.5. Loss

The complete model is trained end-to-end using a com-
bination of four losses:

1. Gaze loss Lgaze. It measures the error in gaze loca-
tion prediction, which is done by computing the pixel-
wise L2 loss between the predicted heatmap Hpred and
the ground truth gaze target heatmap Hgt, defined as a
gaussian blob centered on the ground-truth location.

2. Gaze direction loss Ldir. The goal of this loss is
to better constrain the learning of the Human-Centric

module. This is achieved by maximizing the cosine
of the angle between the predicted 2D gaze vector g2D

and the ground truth vector ggt
2D, which we derive from

the ground-truth gaze point.
3. In-Out loss Lio. We use a standard binary cross en-

tropy loss to measure whether a person is looking in-
side or outside the image frame.

4. Attention loss (modality drop) Latt. This loss aims
to supervise the Attention module (Section 3.3). The
idea is to push the attention weight wm of a dropped
modality m towards 0. Formally, the loss is defined as:
Latt =

∑
m wm.1m∈dropped, where 1 is an indicator

variable and ’dropped’ is the list of dropped modalities.

The final loss is a linear combination of the four losses:
L = λgazeLgaze + λdirLdir + λioLio + λattLatt (5)

3.6. Implementation Details

Modality extraction. The pose maps are extracted using
HRFormer [41], a mix between HRNet [39] and the stan-
dard transformer architecture. On the other hand, the depth
maps are extracted using MiDaS [28], a strong monocular
depth estimator. Pose maps are represented as RGB images
of skeletons of the people in the frame, where different col-
ors denote the different limbs and keypoints.
Feature extraction networks Fm. The feature extractors
in the scene branch use backbones chosen from the Effi-
cientNet family [36] because of their ability to scale ca-
pacity and expressive power without incurring a significant
cost in terms of size. Specifically, the image encoder is
an EfficientNet-B1 (7.8M parameters) while the depth and
pose encoders use an EfficientNet-B0 (5.3M parameters).
Input modalities are resized to 224× 224 and fed to the Ef-
ficientNet backbones which compute different intermediate
feature representations at resolutions between 56 × 56 and
7×7. These are used in the residual connections of the Fea-
ture Pyramid Network decoder to produce the feature maps
Fm at resolution 56× 56.
Gaze subnetwork G. The Human-Centric branch, on the
other hand, uses a ResNet-18 backbone (11M parameters)
[13] equipped with a custom 2D gaze prediction head. This
sub-network operates on the head crop of the target subject,
resized to 224× 224.
Prediction module. Throughout the prediction module (cf.
Figure 2), the feature maps Fm, Tm, and F are maintained
at a resolution of 56 × 56, except in the regression sub-
network, where F is first upsampled to 64 × 64 (which is
also the size of the predicted gaze heatmap) before going
through different convolution layers. The embedding vec-
tors egaze (i.e. from the head crop encoder), em (within the
attention module) and escene (within the In-Out prediction
head) each have a size of 512.



4. Experiments
4.1. Experimental protocol

We use two datasets for our experiments, and rely on
standard metrics and protocols for evaluation.
Datasets. The first dataset is the GazeFollow dataset [29].
It comprises a curated set of images from popular image
datasets. It was initially annotated with the 2D gaze target
location, eye location, and head bounding box for most peo-
ple in the images. Later, Chong et al. [6] extended these la-
bels with indications of whether the gaze target of a person
is located inside or outside the image. Overall, the dataset
contains annotations for around 130k people in 122k im-
ages. The test set consists of 4782 people (all looking inside
the image) whose gaze was annotated by 10 annotators.

The second one is the VideoAttentionTarget dataset [7].
It contains 1331 video clips collected from 50 shows on
YouTube. The annotation comprises head bounding boxes
and either the 2D gaze target location or whether the atten-
tion target is outside the frame. The training and test sets
contain respectively around 131k and 33k bounding boxes.
In general, the VideoAttentionTarget dataset has higher res-
olution frames and more close up and front-facing views of
people compared to GazeFollow.
Training Protocol. To generate the ground-truth gaze
heatmaps Hgt, we place a Gaussian centered on the ground-
truth gaze point and use a σ = 3 standard dev. (at the 64×64
heatmap resolution). In terms of training, the backbone of
the sub-network in the Human-Centric branch is pre-trained
on the Gaze360 dataset [17] to predict a 3D gaze vector,
while the backbones of the feature extractors in the Scene-
Centric branch are pre-trained on ImageNet [31]. To train
the multimodal models, we first train the individual modali-
ties separately (see Sec. 4.2), and initialize their multimodal
counterparts with the learned weights. Further, following
the training protocol of [9], all experiments on VideoAt-
tentionTarget use models initialized with weights learned
from GazeFollow. For VideoAttentionTarget, we subsam-
ple frames during training and use every third frame to avoid
redundancy. All models are trained end-to-end using the
AdamW optimizer [20] with a learning rate of 1e-4 for our
experiments on GazeFollow, and a learning rate of 1e-5 for
our experiments on VideoAttentionTarget. The loss coeffi-
cients are set to 100 for λgaze, 0.1 for λdir, and 1 for λio and
λatt. We train for 35 epochs on GazeFollow, and 20 epochs
(40 for the Multimodal model) on VideoAttentionTarget.
Performance Metrics. The typical metrics used to evaluate
gaze target prediction are:

• AUC: The predicted gaze target heatmap is compared
against a binarized version of the ground truth gaze tar-
get heatmap. This is used to plot a curve for the True
Positive Rate vs the False Positive Rate. The AUC is
the area under this curve, where 1 is perfect perfor-

mance and 0.5 is random behavior.
• Distance: The predicted gaze location is compared

against the ground truth location using an L2 distance.
We assume that each image is of size 1× 1 when com-
puting the L2 distances. Hence, distance values range
from 0 to

√
2, where a lower value is better. When

multiple annotations are available for the gaze location
(GazeFollow), we compute the minimum and average
distances to aggregate across all ground-truth labels.

• Average Precision (AP) is used to evaluate classifica-
tion performance for the in vs out of frame prediction.

The AP is computed across the entire test set, and the dis-
tance and AUC on the subset of images with a ground-truth
gaze target located inside the frame.

4.2. Tested models

Individual modalities. To evaluate the strength of each
modality, we tested the model by relying on a single modal-
ity as input. In this case, the scene module does not include
the fusion mechanism, and the feature map F of that modal-
ity is used directly as input to the Prediction module.
Privacy approach. In this approach, the goal is to rely only
on processed and anonymized input data. Concretely, the
Human-Centric module takes as input the crop of the sub-
ject’s head from the pose image rather than the input im-
age. The head skeleton is treated as an RGB input, and no
changes are made to the architecture or training protocol.
Late fusion. We also evaluate a late fusion scheme where
the gaze cone image gcone and the binary head mask hloc

are fused with the Scene-Centric stream later in the architec-
ture. Specifically, the two images are first downsampled be-
fore being concatenated together with the feature map Fm

of each modality separately. This is represented by the blue
dashed line in Figure 2.
Skip connections. To evaluate the importance of retaining
information from higher resolutions during the upsampling
process in the decoder of the Scene-Centric branch, we train
a model on the image alone, without skip connections.
Modality Dropout. To evaluate the importance of modal-
ity dropout during training, we train a multimodal model
without modality dropout.
State-of-the-art. We compare the performance of our ap-
proach to different state-of-the-art methods for this task.
Specifically, we include models from Chong et al. [7], Lian
et al. [18], Jin et al. [16] and Fang et al. [9]. Given that some
works use a temporal variant of their model on VideoAt-
tentionTarget, we include their static variant as well for the
sake of fairness when comparing the results.

4.3. Results

Our results on the GazeFollow and VideoAttentionTarget
datasets are summarized in Table 1 and Table 2.



Model AUC↑ AvgDist↓ MinDist↓
Lian [18] 0.906 0.145 0.081
Chong [7] 0.921 0.137 0.077
Jin [16] 0.919 0.126 0.076
Fang [9] 0.922 0.124 0.067
Image 0.933 0.134 0.071
Depth 0.921 0.141 0.080
Pose 0.902 0.164 0.100
Multimodal 0.943 0.114 0.056
Depth-privacy 0.920 0.152 0.088
Pose-privacy 0.893 0.175 0.109
Multimodal-privacy 0.928 0.136 0.075
Image-NoSkip 0.932 0.133 0.073
Multimodal-NoMoDrop 0.941 0.115 0.057
Multimodal-Late 0.931 0.128 0.068

Table 1. Results for our models on the GazeFollow dataset. Best
scores are given in red and second best scores are given in blue.

Model AUC ↑ Dist ↓ AP ↑
Chong [7]-static 0.854 0.147 0.848
Chong [7] 0.860 0.134 0.853
Jin [16] 0.870 0.127 0.882
Fang [9] 0.905 0.108 0.896
Image 0.918 0.122 0.864
Depth 0.899 0.134 0.852
Pose 0.904 0.131 0.866
Multimodal 0.913 0.110 0.879
Depth-privacy 0.891 0.156 0.831
Pose-privacy 0.881 0.150 0.823
Multimodal-privacy 0.895 0.140 0.826
Image-NoSkip 0.906 0.133 0.857
Multimodal-NoMoDrop 0.905 0.118 0.874
Multimodal-Late 0.905 0.113 0.863

Table 2. Results on the VideoAttentionTarget dataset. Best scores
are given in red and second best scores are given in blue.

Individual Modalities. As the image contains the most
complete information, it logically has the best performance
on both datasets. Surprisingly, the performance of the depth
and pose modalities are not very far, esp. when compared to
state-of-the-art methods. In general, pose might be more ac-
curate than depth when gaze is on faces or hands, but much
worse when gaze is on scene objects since pose images con-
tain absolutely no scene information. We observe that ac-
cording to all metrics, depth is better than pose on GazeFol-
low, while it is around the same on VideoAttentionTarget.
This can be explained by the fact that VideoAttentionTarget
has more gaze points on faces compared to GazeFollow.
Multiple Modalities. Our Multimodal model gives better
results compared to using the image alone on both datasets.

The improvements are mainly visible on the distance met-
rics, where error reductions of 10% to 21% (the MinDist on
GazeFollow) are achieved, which might be explained by the
improved localization accuracy due to the pose cue, as well
as disambiguation from the depth cue.

Compared to the state-of-the-art, we can see that our ap-
proach performs better than existing methods on GazeFol-
low for all metrics (e.g. reduction of more than 10% on
distance metrics compared to [9]). On VideoAttentionTar-
get, our results are in par with those of Fang et al. [9]. As
Fang et al. [9] process the eye regions to infer the gaze di-
rection (which we do not), and eyes are more clearly visible
in the VideoAttentionTarget dataset (it contains higher res-
olution front facing faces), we hypothesize that adding such
information in our model would further improve our results.
Qualitative examples and attention scores. Qualitative
examples are provided in Figure 3, where the outputs of the
single and multimodal models are displayed. The attention
scores predicted in the multimodal case are also indicated
on each image modality for the given example. As can be
seen, these scores reflect somehow the reliability associated
with each cue. More generally, on GazeFollow, the average
attention scores are 0.41, 0.36, 0.23 for the image, depth
and pose modality, and 0.37, 0.31 and 0.32 on VideoAtten-
tionTarget, reflecting the higher importance (and accuracy)
of pose in this dataset as described earlier.
Privacy setting. On GazeFollow, the depth and pose mod-
els have similar performance to their counterparts where the
gaze direction is inferred from a head crop of the image
rather than from the pose image. However, on VideoAtten-
tionTarget, there is a drop of performance. We believe this
is because in GazeFollow, eyes are less visible and there
are many instances where the face is not visible (hence, the
head pose is the only available cue). In contrast, VideoAt-
tentionTarget contains higher resolution front-facing faces
where eyes can bring additional gaze information. The
multimodal version (using depth and pose) improves per-
formance (esp. on distance metrics) compared to the single
modalities, obtaining similar performance to the image only
model on GazeFollow and comparable performance to most
state-of-the-art baselines on VideoAttentionTarget.
Skip-connections. We believe that one reason for the su-
perior performance of our models compared to the state-of-
the-art is the use of skip connections during the upsampling
process. Without this feature (NoSkip model in result ta-
bles), we observe that while the performance is unchanged
on GazeFollow, there is a performance drop on VideoAt-
tentionTarget, esp. on the distance metrics. This may be
because the higher resolution images of VideoAttentionTar-
get contain higher details about the face (eyes, nose) or ob-
jects, and can thus benefit more from the skip connections
to precisely regress the target gaze locations.
Late fusion. The late fusion of the gaze information (gaze



Figure 3. Qualitative results of our models (from top to bottom: multimodal, image, depth and pose). The image (or modality) is
superimposed with the predicted gaze cone, the predicted gaze target (in green) and the ground truth target (in red). We observe that the
attention scores reflect the reliability of the respective modalities for a particular sample (pose in 2nd and 3rd column; depth in 4th column),
and that the fusion is able to ignore wrong information (pose in 1st and 4th columns; depth in 3rd column), and improve predictions of the
image modality (4th and 5th column).

cone) with the feature maps rather than with the input im-
ages in our multimodal model improves performance com-
pared to the models trained on a single modality (with early
fusion), but has lower performance compared to the early
fusion strategy in the multimodal case. We believe this is
because introducing the person-specific gaze information
early results in more capacity to identify the potential gaze
target for that person. With the late fusion, the model has
to identify potential gaze targets for all people in the scene
(and at any place in the image).

Modality dropout. We analyze the importance of modal-
ity dropout during training. Without this feature, the mul-
timodal model (NoMoDrop in the results tables) achieves a
similar performance on GazeFollow, but obtains worse re-
sults on VideoAttentionTarget.

In the case of VideoAttentionTarget the average atten-
tion weights for image, depth and pose without modality
dropout are 0.32, 0.29, 0.39, and the average weights with
modality dropout are 0.37, 0.31, 0.32. Hence, modality
dropout helps to learn a distribution of attention weights
which better reflects the importance of the modalities. This
may in turn help the model make better gaze target predic-
tions.

5. Conclusion

In this paper, we proposed a modular multimodal archi-
tecture to explicitly leverage pose and depth information in
order to improve the predicted gaze location and improve
the state-of-the-art performance on two public benchmarks.

We also investigated a late fusion scheme which allows us
to first parse the scene in a person-agnostic manner, be-
fore introducing the subject’s information. We showed that
our model can also benefit privacy-sensitive applications
in which personally identifiable information cannot be ex-
posed. In this case, our model operates on head skeletons
together with the pose and depth maps, achieving competi-
tive performance.

Our architecture is modular and can naturally be ex-
tended to include other modalities, like optical flow (for
videos), which we believe can further improve predictions.
Alternatively, we can extend our model to inherently incor-
porate temporal information. Secondly, it is not clear at this
point whether the depth cue is used as a way to verify the
depth compatibility of the inferred gaze target with respect
to the head position and gaze. Further study is needed to
evaluate this. Finally, our current attention mechanism im-
plies that one modality should be chosen to predict gaze.
Conceptually, this formulation assumes the different modal-
ities are equivalent, which is not necessarily the case. Thus,
another future direction could investigate how to better fuse
information across modalities.
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Meriçli, Roberto Valenti, and Theo Gevers. Joint attention
by gaze interpolation and saliency. IEEE Transactions on
cybernetics, 43(3):829–842, 2013. 2

[43] Hao Zhao, Ming Lu, Anbang Yao, Yurong Chen, and Li
Zhang. Learning to draw sight lines. International Journal
of Computer Vision, 128(5):1076–1100, 2020. 1, 3

[44] Lonnie Zwaigenbaum, Jessica A Brian, and Angie Ip. Early
detection for autism spectrum disorder in young children.
Paediatrics & Child Health, 24(7):424–432, 2019. 2


	. Introduction
	. Related Work
	. Gaze Target Prediction
	. Data Anonymization

	. Model Architecture
	. Approach overview
	. Human-Centric Module
	. Scene-Centric Module
	. Prediction Module
	. Loss
	. Implementation Details

	. Experiments
	. Experimental protocol
	. Tested models
	. Results

	. Conclusion

