IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED OCTOBER, 2023 1

Coordinated Multi-Robot Shared Autonomy Based
on Scheduling and Demonstrations

Michael Hagenow,! Emmanuel Senft,2

Nitzan Orr,3 Robert Radwin,4

Michael Gleicher,? Bilge Mutlu,3 Dylan P. Losey,5 Michael Zinn!

Abstract—Shared autonomy methods, where a human operator
and a robot arm work together, have enabled robots to complete
a range of complex and highly variable tasks. Existing work
primarily focuses on one human sharing autonomy with a single
robot. By contrast, in this paper we present an approach for
multi-robot shared autonomy that enables one operator to provide
real-time corrections across two coordinated robots completing
the same task in parallel. Sharing autonomy with multiple robots
presents fundamental challenges. The human can only correct
one robot at a time, and without coordination, the human may
be left idle for long periods of time. Accordingly, we develop an
approach that aligns the robot’s learned motions to best utilize
the human’s expertise. Qur key idea is to leverage Learning
Jrom Demonstration (LfD) and time warping to schedule the
motions of the robots based on when they may require assistance.
Our method uses variability in operator demonstrations to
identify the types of corrections an operator might apply during
shared autonomy, leverages flexibility in how quickly the task
was performed in demonstrations to aid in scheduling, and
iteratively estimates the likelihood of when corrections may be
needed to ensure that only one robot is completing an action
requiring assistance. Through a preliminary study, we show that
our method can decrease the scheduled time spent sanding by
iteratively estimating the times when each robot could need
assistance and generating an optimized schedule that allows the
operator to provide corrections to each robot during these times.

Index Terms—Human-Robot Teaming, Multi-Robot Systems,
Learning from Demonstration.

I. INTRODUCTION

UMAN-robot teaming is a promising alternative for
tasks where robust automation is infeasible due to high

Manuscript received: March, 25, 2023; Revised July, 31, 2023; Accepted
October, 11, 2023.

This paper was recommended for publication by Editor M. Ani Hsieh upon
evaluation of the Associate Editor and Reviewers’ comments.

This work was supported in part by the Grainger Wisconsin Distinguished
Graduate Fellowship (WDGF) and in part by a NASA University Leadership
Initiative (ULI) grant awarded to the UW-Madison and The Boeing Company
(Cooperative Agreement # 8ONSSC19MO0124).

'Michael Hagenow and Michael Zinn are with the Department of Mechan-
ical Engineering, University of Wisconsin-Madison, Madison 53706, USA
[mhagenow|mzinn] @wisc.edu

2Emmanuel Senft is a Research Scientist at the Idiap Research Institute,
Martigny, Switzerland esenft@idiap.ch

3Nitzan Orr, Michael Gleicher, and Bilge Mutlu are with the Department of
Computer Sciences, University of Wisconsin—-Madison, Madison 53706, USA
[nitzan|gleicher|bilge]@cs.wisc.edu

4Robert Radwin is with the Department of Industrial and Systems
Engineering, University of Wisconsin—-Madison, Madison 53706, USA
rradwin@wisc.edu

SDylan P. Losey is with the Department of Mechanical Engineering,
Virginia Tech, Blacksburg 24061, USA losey(@vt.edu

Digital Object Identifier (DOI): |10.1109/LRA.2023.3327625|

Expert Demonstrations
(1) expert demonstrations are used to
extract the task model, types of operator
instrumented corrections, and timing flexibility

tool ‘ (2) confidence is estimated and used to

schedule the robots around times
they may need corrections
S~ (i.e., low-confidence times)

Multi-Robot Shared Autonomy

(3) both robots execute and
the operator provides
corrections to the
low-confidence robot

1

1
\
\
\

handheld input for corrections
// (e.g., sand harder)

high-confidence low-confidence
/ robot

robot I\ /
\ ‘ 0 -

\ =11

Fig. 1. Our method enables multi-robot shared autonomy by leveraging expert
demonstrations and coordinating robots around times where they may need
assistance from the operator. Top: An operator (task expert) provides a set of
demonstrations to inform the robot task model, task variability, and flexibility
in scheduling. Bottom: The operator provides corrections across two robots
completing the same task. The robots are scheduled such that only one robot
(e.g., the robot with the red indicator) could require corrections at any given
time (i.e., the other robot has high confidence in its action). The confidence
is estimated from demonstration variability and empirical correction data.

complexity and variability. In many cases, human-robot team-
ing is achieved through shared autonomy, where a human
operator and a robot policy share command over the physical
robot platform and leverage their respective strengths [16} [13].
For example, the expert operator can offload a task’s physical
burden to the robot and use their own task knowledge and
superior sensing to make corrections to the robot’s behavior.
However, many tasks do not require input from the operator
during the entire execution but only during regions of task
variability. For example, during a fastener insertion task, the
robot may only need help from the human to fix alignment er-
ror when inserting fasteners but not while fetching or prepping
the fasteners. When the regions of variability make up a small
part of the overall task the worker is poorly utilized. While the
worker may perform secondary tasks during idle time, there
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are advantages to the operator working with multiple robots
engaging in the same task, such as reducing context switching.
In this work, we propose a method for multi-robot shared
autonomy that sequences the execution of two robots based
on regions where they may require assistance.

Previous work includes investigations of elements of multi-
robot shared autonomy, such as interfaces for operator at-
tention management [6], supervisor allocation across a fleet
of agents (e.g., mobile robots) [3| [15, 4, [17, 11, 12], and
scheduling of agent subtasks and supervision [19, 7, [1} 20].
However, the allocation methods focus on enabling an operator
to temporarily teleoperate an agent needing assistance and in
scheduling, little to no work focuses on coordinating agents
around operator intervention. As illustrated in Figure[I] we are
interested in coordinated shared autonomy where the robots
operate at a high level of autonomy. In this paradigm, the
robots sequence their behaviors such that only one robot could
require assistance at any point, and the operator provides
targeted corrections to the low-confidence robot if its action
is incorrect. The major challenges in coordinated shared
autonomy are determining what interventions the operator
may want to provide and when they may occur during the
task. Addressing these challenges requires models of the task,
the types of corrections the operator may desire, and when
corrections might be needed. Scheduling coordinated shared
autonomy also introduces new challenges addressed in this
work, such as how to compensate for changes to the timing
of the robot’s execution that result from operator corrections.

In this paper, we propose a method for multi-robot shared
autonomy based on operator corrections [9], multi-agent
scheduling, and Learning from Demonstration (LfD) [14]].
Our method schedules two robots such that one operator can
provide real-time corrections at times when they are needed
by both robots. The task model, corrections an operator can
make, and sequencing of agents are inferred from expert
demonstrations and past shared autonomy executions. The
main contributions of this paper include (1) an optimization-
based method to schedule corrections-based shared autonomy
of multiple agents by leveraging variability in demonstrations;
(2) a technique for inferring when corrections are needed based
on task variability and Bayesian inference; and (3) a real-
time adaptation strategy to update the timing of robots when
operator corrections cause deviations from the schedule.

II. OPTIMIZING FOR MULTI-ROBOT CORRECTIONS

Our method is formulated as an optimization problem and
enables one human operator to provide real-time corrections
to two robots completing different instances of the same task.

A. Problem Setting and Assumptions

We explore settings where there are variable aspects of the
task that the robots cannot learn due to sensor limitations. For
example, an expert sander may at times use subtle cues (e.g.,
watching material build up on the side of the tool, changing
views of the surface) to choose an appropriate action. We
consider settings with two robots and one skilled operator
completing a high-volume (i.e., repetitive) task where the types

of variability encountered do not change over time. There are
many industrial tasks that meet this requirement. For example,
in many sanding applications, there are small regions of the
workpiece that will have defects from upstream manufacturing
processes which will cause each piece to have different sand-
ing needs. To encode the robot behaviors, we assume access
to a set, D, of n; varying-length expert demonstrations.

D={Xy,.Xp}

vX; € D, X; € R™*Ti
where X; is the demonstration state data (e.g., motions,
forces, tool state) with m state variables and 7; is the length
of the demonstration. For brevity, we will use subscripts on
the demonstration set to refer to the data of an individual
demonstration (i.e., D; = X;) and refer to interpolated val-
ues of the demonstration data using function notation (i.e.,
x;(?)). To enable time warping and regression across multiple
demonstrations, we assume the demonstrations are performed
using similar trajectories (e.g., always going left to right when
sanding). We also require that the robots must execute the
task as shown in the demonstrations to satisfy any sequential
constraints of the task. In other words, the execution cannot
be broken up or reordered. Finally, we assume the robots
must operate within the demonstration execution rates (i.e.,
velocities). While in some tasks it may be possible for the
robots to stop at times when they need help, there are many
examples where this is not possible. For example, a robot that
needs help with part of a sanding pass cannot stop mid-pass

without impacting the continuity of the sanding.

)

B. Proposed Approach

Our approach centralizes around scheduling the two robot
executions. Our high-level method is illustrated in Figure [2]
We start with a set of expert demonstrations to expose the
task variability, including differences in how quickly the task
was executed (i.e., the execution rate), and encode the robot
behavior. To schedule the robots around operator corrections,
we need to know what types of corrections the operator
wishes to provide and when they may be needed. Following
previous work [[10], we assume that the demonstration variance
indicates the corrections that may be necessary (e.g., variance
in force indicates potential force corrections) and allow oper-
ators to provide these differential corrections by mapping the
variance to a low degree-of-freedom input (e.g., joystick).

We determine when the corrections may be needed by esti-
mating the robot confidence throughout the task. Specifically,
we identify times in the robot behavior that might require
corrections (i.e., low-confidence times) and times where cor-
rections are unlikely (i.e., high-confidence times). The two
robot behaviors are scheduled such that the low-confidence
actions do not occur at the same time. The robot confidence
is estimated iteratively. As the operator uses the system, it col-
lects empirical data of when the operator provides corrections
and refines its confidence estimates. Each time the system is
used, we update the confidence and re-optimize the schedule
based on the new confidence estimates. As the amount of high-
confidence times increases, the scheduling method finds more
efficient schedules by shortening and overlapping the robot
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Fig. 2.

High-level overview of the proposed method. The numbers correspond to the subsection of where the technical details are described. Blue

arrows indicate the flow of information at every iteration. Gray arrows indicate information that is only processed once.

executions. Our scheduling method leverages flexibility in the
execution rate during high-confidence times to aid in finding
an optimized schedule. As operator corrections can impact the
timing of the robots, we also ensure the scheduling solution is
robust to timing deviations from the corrections. The following
subsections describe our method’s technical details.

1) Regression and Time Warping of Demonstrations: To
encode the desired robot skill and to uncover time flexibility
in the demonstrations, we take advantage of time warping [21]].
A time warp, 9, is a nonlinear and monotonically increasing
function that maps a time between two sets of data:

Yp, -, [0, T1] = [0,T3] 2

This is accomplished by minimizing a loss between the

data of the two time series. We consider a weighted metric

that accounts for state variables with varying units. The time
warping optimization can be summarized as:

T
min [ L0, p,(0) - X1 (0)dr
YD, =D, JO

L(ey) = eLWew

where e, is the error between the vectors of the two
states and W € R"™*™ jg a diagonal weighting matrix with
nonnegative weights that is set based on variance or domain
knowledge. We solve Equation [3using a parametric optimizer
[S]. We align all demonstrations to the first demonstration
as a common reference and thus truncate the warp notation
going forward by dropping the reference demonstration (e.g.,
Yp, = Yp,p,). Given that we will optimize new warps
for each robot execution, the choice of reference is mostly
arbitrary. Going forward, we mainly focus on the gradients of
the warps. Working with the gradient allows us to assess the
rate at which the robot can execute the task at any given time
and allows us to easily enforce that warps are monotonically
increasing.

Using the time warps, we align the demonstration data
to determine the robot behavior. There are many possible
methods for cloning the demonstration data. In this work, we
use a simple regression that estimates of the mean behavior
of the aligned demonstrations, which we denote as fu(f).

2) Process Variability and Operator Corrections: During a
robot’s execution, the operator can provide real-time correc-
tions to a robot’s behavior. We provide a simplified control
to the operator by extracting the likely types of corrections
from the variability in the expert demonstrations. We leverage
our previous method [10] to determine admissible corrections,

including coordinations of robot state variables (e.g., pitch,
force, and speed to modulate abrasiveness). The remainder of
this subsection provides a brief review of the previous method
for completeness.

The differential corrections are provided through an input
device that functions like a joystick. Given that the corrections
can affect the execution rate, we consider an augmented robot
state that includes the warp gradient.

X (1) = [x] (0, Yp, (O] “)

where the superscript + refers to the augmented state. The

augmented mean behavior is also defined by concatenating the
mean warp gradient of the demonstrations.

. "d .
Up0) =Y dp,(Ding -

B0 =[BT (@0, YpO]T
where p(f) is the mean warp gradient and f*(f) is
the augmented mean behavior. The mean-removed data and
demonstration variability can subsequently be calculated:

e/ (1) =x{ (Vp,(0) -+ ()

1

o3 (t) = py——" z,: (eF ()T W (ef (1)) (6)

where e;f(t) is the mean-removed data, azp(t) is the magni-
tude of the demonstration variance, and W+ € Rm+DX(m+1)
is the expanded diagonal weighting matrix that adds a weight
for the warp gradient variable. The final operator correction,
0x*(u, 1), is based on the principal components at a given time
(using principal component analysis) and the user input, u#. The
maximum magnitude of the correction is scaled such that the
corrections do not exceed the permissible warp gradients from
the demonstrations. The final robot command is arbitrated as
the sum of the mean state and differential operator correction.

(N
where xf is the final robot state. The correction also
determines the next robot time based on the warp gradient. The
timing of the robots is discussed in detail in a later section.
3) Assessing Robot Confidence: Intuitively, we want the
robots to overlap at times when at least one robot is con-
fident and not to overlap when they are both unsure. This
scheduling requires determining the times of the execution
where the robot may require corrections (i.e., the robot has
low confidence in its action). Let p|; be the probability of the
expert giving a correction to a robot at a given time. We desire

X}"(u, D=t +0x (u, 1)
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to estimate p., and then threshold the value to determine
whether a robot is low or high confidence. While variability in
the demonstrations serves as an indicator of what corrections
an operator may provide, this estimate is too conservative for
estimating p.|, given the multiple sources of demonstration
variability [18]]. In some cases, the variability is from task
uncertainty (e.g., different forces depending on paint when
sanding). However, there are also cases when demonstration
variability is non-critical. For example, an operator’s tool
path when moving between sanding passes is non-critical and
underconstrained, and thus may be variable.

Our solution leverages the demonstration variability and
empirical correction data from past executions of the system
to iteratively estimate the probability of corrections at every
time step. Initially, the system will only be high-confidence
for times where there was negligible variability in the human
demonstrations. However, as the system collects empirical data
from the n, previous executions of whether corrections are pro-
vided, the system will infer additional high-confidence times
and can schedule shorter, more parallel solutions to reduce
the overall time on task. The empirical data, z; € B", is a set
for each time step (defined in the reference demonstration) of
whether corrections were given during each robot execution.
With this empirical data, we use Bayesian inference to estimate
the probability distribution that a correction is needed.

PO | ) = P(z; |pc\t)P(pc|t)
ele = P(z)

Given the empirical data is Boolean and assuming the events
(i.e., executions) are independent, this inference problem can
be modeled using a Beta distribution [8]]. The Bayesian pos-
terior can be inferred based on a prior and the empirical data:

Py | 2) = beta(og, + > 2. fos+ne— z) (9

(®)

where beta is the Beta distribution and o, and 3y, define
the Beta distribution prior. We here model the prior in terms
of the mean (y;) and variance (Ut) of the distribution:

(= )
Qo =pe\ —> — ~ 1

0t
1-

[30t = (=) (ﬂt( ft) 1)
Ut

Our Beta prior is a heuristic that reflects the intuition that the
confidence should be high for times with near-zero variability
(i.e., no corrections) and uncertain otherwise (i.e., Pelt %):

1 2
Ly = 3 (1 —_e W (o (D+e) )
(1 _e W (0% (t)+e) )

where v, and crﬁ/I Ax are scaling parameters for the prior
and € is a small constant to make the prior well posed.
For scheduling, we determine whether the robot is confident,
conf(r) € B (i.e., the robot is low or high confidence), from
the Beta cumulative distribution function (CDF):

conf(t) = p(pej; < e | 26,1) > Ve (12)

where . is the probability of corrections where it is
acceptable for the robot to execute without supervision and
vc is the corresponding confidence interval of the distribution.

(10)

(1)

2_ 2
0r = OMAX

4) Scheduling Around Confidence: The full scheduling
problem consists of determining a task execution (i.e., time
warp), 1g,, for each robot and a start offset for the second
robot, 7. Each execution warp, g, is defined relative to
the reference demonstration (similar to the demonstrations)
and scheduled by choosing permissible values of the warp
gradient. We desire to schedule the execution warps and offset
to avoid overlapping low-confidence actions and to minimize
the expected total time, Ty, for both robots to finish the task.

Ttotal =max{\1/)gl|,7'+ |w€2‘} (13)

where [¢¢,| denotes the length of the execution warp (i.e.,
the duration of the behavior). For each robot, we determine a
warped execution from the mean warp gradient, v(¢), and the
minimum and maximum demonstration warp gradients.

M0@0) = min{p, (0, .., ¥, (O}
X (@0) = max{p, (1), ..., dp, (O}

where ™" (r) and ¥™*(¢) are the minimum and maximum
warp gradients respectively.

When the robot is executing a low-confidence action with
operator corrections, the warps should follow the mean warp
gradient and mean behavior. When the robot is executing
a high-confidence action, we have the flexibility to warp
the timing within the demonstration bounds to increase the
likelihood of finding a non-overlapping scheduling solution.
While it may be possible in some tasks to warp the executions
beyond what was seen in the demonstrations (e.g., stop certain
robots, replan between critical regions), we choose to respect
the demonstration bounds to limit violating any latent task
constraints (e.g., time required to start a tool before beginning
a critical region, maximum time before a sealant dries).

To this point, we have discussed timing in the context of the
reference demonstration. Our formulation ultimately creates
new behavior warps and schedules them in a coordinated
global fashion. To simplify the notation in our formulation,
we introduce a global scheduling notation to convert between
times in the overall execution (i.e., both robots) and the
corresponding time in a robot’s reference behavior.

0 t< T
%/Jéil(f—ﬂ) T <t < T+ |Yg]
Ve (e ) else

where wg is the inverse warp that goes from the execution
to the reference demonstration and T is a vector of offsets with
the first offset set to zero (i.e., 7 = [0, 7]). With this global
reference time, it is possible to assess the confidence of each
robot at any time (set to one when not running) or both robots.

(14)

te. () = (15)

confy(7) = { ?onf(tgi(t)) TiSis i+ Vg

conf(¢) = [conf}(¢), confy ()]

5) Real-time Adaptation to Operator Corrections: One of
the major challenges with scheduling in the shared autonomy
setting is that operator corrections can affect the timing of the
robots. Given that we know the bounds of operator corrections
and the corresponding impacts on timing, we desire to find

(16)
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a scheduling solution that avoids overlapping low-confidence
regions under any permissible operator correction.

The simplest way to ensure robustness would be to show
that both robots can instantaneously accommodate any timing
changes from the corrections (i.e., if one robot slows down or
speeds up, the other robot can also slow down or speed up).
However, one robot may be completing an action that cannot
accommodate the change in real time (e.g., a low-variability
sanding pass where there is no flexibility in the speed). In this
case, we must show the robots can make up the timing change
before the next low-confidence region.

Our strategy uses the execution gradient to determine how
much faster or slower the robot can execute the task to make
up timing changes. One important point is that the minimum
gradient refers to speeding up a behavior and the maximum
gradient refers to slowing down the behavior. For example, if
1/')‘{}?“ = (.5, the behavior could run in half as many samples
or equivalently could run twice as fast. Thus, to calculate how
much faster or slower a robot can go (F and S respectively),
we divide the scheduled gradient by the demonstration limits.

G (1) = Vg (te,(0) 1 Y™™ (16,(1)
U (0) = g, g, (D) 1 ™ (15,(1)

For example, if zﬁgi = 3 and ¢™" = 0.5 at a given
time, the robot was scheduled at one third of the reference
demonstration speed and could go six times as fast (i.e.,
u}g =3/0.5=6).

For the real-time strategy, we consider each robot’s strategy
at discrete time steps, #,. We assume that the robots are
commanded at a fixed sample rate, Af;. During execution,
corrections will cause the robots to deviate from the original
schedule. Thus, we separately track and increment the time of
each robot by d¢; based on the execution rate selected by the
robot strategy (i.e., t; < t; + dt;). The goal of the two robots
is to minimize the relative change in timing between the two
executions (e.g., AT} = t; — tp). For brevity, we use a dot
within functions (i.e., f(+)) to indicate that there are additional
previously defined quantities used within the equation. The
real-time strategy of the robots can be summarized as follows:

a7

o If a robot is executing a low-confidence action, its time
increment is determined by the operator’s correction, dt'.
The other robot chooses its response, 5t§esP , based on the

Algorithm 1 Strategy For Two High-Confidence Robots
1: a < ahead robot (or either if no deviation)
: b < behind robot
: function HIGH-CONF(2,, tp, ig, ip, -)
ATy, <ty -1ty
if 1/}{;: (tp)Ats > ¥F (t5) Atg + AT, then
> behind robot can overtake the ahead robot
5tb = d’i(tu)Ats + ATab
0ty = wg(ta)Ats
> behind robot cannot overtake ahead robot
oty = wlF(tb)Ats
10: Stg = 01, P (AT ap, = 6t ta)
11: return 0t,, 0t

else

R e

robot 1 could be
ahead from low,

current (c)

Robot 1: low available margin low
g (i.e., high mnﬁa‘mg’} ‘ 2
. | I robot 2 could be
Robot 2: previous (p) IOW1 ’ behind from low,
time To Tc
Fig. 3. [Illustrating the required margin (i.e., high-confidence time) between

a previous low-confidence region (low;) and current low-confidence region
(low,) for a scheduling solution. The worst-case scenario from operator
corrections occurs when Robot 1 takes shorter than scheduled on lowy and
Robot 2 takes longer than scheduled on low;.

current deviation from the other robot and the bounds of
how much it can slow down or speed up. If the responding
robot is ahead, it simply goes as slow as possible. If the
responding robot is behind, it chooses the move within its
limits that minimizes the deviation between the two robots.
The full response strategy can be summarized as:

‘ —AT; —AT; > 45 (1)) Aty and
6tlrebP(ATn tl) = ! = ’(/)%( l) s an
‘ —AT; < g (1) At
PE)AL  else

(18)

e When both robots are high-confidence, the robots can plan
the fastest move possible while reducing any deviation
between the two executions, as described in Algorithm m
The goal of the robot that is running behind is to go as fast
as possible without surpassing the robot that is ahead.

o If the first robot induces a change to timing while the second
robot hasn’t yet started, the second robot can simply shift its
start time (i.e., increment by the same step). Similarly, if one
robot induces a change when the other robot has finished
its behavior, there is no need for adaptation.

With this real-time adaptation strategy, we propose to show
that even in the worst case deviation between the two robots,
there will still be no overlapping low-confidence regions. Con-
sider the example in Figure [3] The worst case scenario occurs
when the second robot is running behind and the first robot
is running ahead (i.e., both behaviors trend toward causing
overlap). For each set of adjacent low-confidence regions, we
can check if the worst-case behavior leads to the current low-
confidence region starting before the previous one ends. The
full margin-checking procedure, SUFFICIENT _MARGINS(-), is
described in Algorithm [2] It is important to note that the
implementation details, such as a small sample rate in the
discretization, impact the validity of the margin calculation.

6) Optimization: Given the required solution properties, we
can summarize the multi-robot shared autonomy optimization
and solve for the robot execution warps, ¢ = {g, Vg, },
and offset, 7. The execution warps are chosen based on the
permissible warp gradients and defined as an array with the
same length as the reference demonstration. To simplify the
optimization notation, we define the set of time steps from the
reference demonstration and the times in the global notation
where a robot is executing a low-confidence action.

Trer = {tn € 10, [¢p, |1}

19
770 = {tn € [0, Tiotall | min (conf(z,)) = 0} >
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In our scheduling optimization, the constraints represent
strict requirements of the scheduling solution and the min-
imization quantity expresses additional desiderata for the
scheduling solution. The optimization is summarized as:

argmin = w'g(-)
Ye.T

ste Ytna ) € Trp X e Y™ 0(ty) < (tn) < Y™ (1)
0<7<|gl
Vit € [0, Tiotar] : max(conf(z,)) = 1
Y(tn, w) € 776 X 11’8 : w(tn) = "ZD(tn)
SUFFICIENT_MARGINS(-) = True

(20)

where ¢ are the costs to minimize and w are the corresponding
weights. The constraints enforce that (1) all warps are within
the demonstration limits; (2) that the second execution is
offset appropriately relative to the first execution; (3) that
no unsupervised robot is performing a low-confidence action
(i.e., that one of the robots is high-confidence); (4) that the
low-confidence robot follows the mean time warping; and (5)
that the scheduling solution accommodates variations in timing
from corrections. For solutions satisfying the constraints, we
can also specify features that differentiate the quality of
solutions. In this work, we start with one feature minimizing
the total time on task (e.g., ¢(-) = [Tiotarl)- In the future,
we will expand the minimization quantity to focus on aspects
that improve human factors (e.g., minimizing switching or
factoring in switching time for situational awareness) [2].

C. Implementation of Scheduling

We solve the scheduling optimization offline prior to each
use of the system based on the current confidence estimates of
the robot behavior. Given the non-convexity of our scheduling
problem and dependencies between our optimization variables,
we use the anytime sampling approach described below. Dur-
ing each iteration, we sample the offset based on the length of
the first execution and sample the warps from the permissible
bounds during high-confidence actions. The warps follow the
mean demonstration warp during low-confidence times. The
solution that minimizes the total time while meeting the
constraints is kept. If no satisfying solution is found, we can
fall back the fastest serial execution or the previous scheduling
solution. As high-confidence time steps cannot transition back
to low-confidence time steps (i.e., cannot be given corrections),
the previous scheduling solution will always remain valid.

After each iteration of running the two-robot system, we
acquire two task demonstrations and two Boolean arrays of
whether corrections were given during low-confidence sam-
ples. With these new data, we can shift the mean behavior
and append our correction observations.

ther+l « piter 4 {Xllter+1’X12ter+l}
ﬂiter+1 (1) + f(DiterH)

Vit z;’ter+l . z;'ter + {ZZTHI’ZZSHI}
The updated correction observations can be used to update
the confidence. In practice, the corrections to each robot occur
to fractional samples of the reference robot behavior, thus we

interpolate when determining the empirical corrections.

2n

Algorithm 2 Margin Between Low Confidence (LC) Regions
1: function SUFFICIENT_MARGINS(+)
2 ip Ty iy — D,0,0

3 for t, € [0, Tiorar] do

4: start_LC <! min(conf(z,)) & min(conf(z,_;))
5: end_LC <« min(conf(t,)) & !min(conf(z,_;))
6

7

8

9

> no previous yet

if start_LLC then

i < arg min(conf(z,))
T, t,
: if i, then

10: ok <= CHECK_MARGIN(ip, Tp, ic, T¢, *)
11: if !ok then
12: L | return False
13: if end_LC then
14: ip + argmin(conf(z,_1))
15: Tty
16: b Iy
17: | return True
18: function CHECK_MARGIN(ip, T, ic, T¢, )
19: if i, = i then > same robot, no issue
20 _ return True
21: done +False
22: Ip,tc < T > only times when both robots are running
23: while !done do
24: if conf; (t.) =0 or confj (1) = 0 then
25: if ! conf; (z.) then > worst case is faster
26: te < te+F (te) Aty
27: tp < tp + 01 (tp ~Ic, Tp)
28: else > worst case is slower
29: tp 4 tp + 13 (tp) Aty
30: e 4= te + 08, P (te — 1, 1)
31: else
32: if (t. —1,) > 0 then > previous is behind
33: \ Ote, 0ty < HIGH-CONF(t¢, tp, ic, ip, *)
34: else > current is behind or the two are equal
35:  0ty, 8t + HIGH-CONE(lp, I¢, ip, ic, )
36: Ip < 1y + 01y
37: I AR O Y
38: if t. > T, then
39: | return False > possible overlap
40: if #, > T, then
41: | done + True > no overlap
42: | return True

III. PRELIMINARY EVALUATION

As a preliminary assessment of our method, we designed
an experimental task, collected demonstrations, and ran a
simulated experiment to assess how our scheduling solution
adapts with use of the shared autonomy system. The exper-
imental task was inspired by industrial sanding applications
(e.g., aircraft and automotive manufacturing) where portions
of the task have variable sanding needs. The task consisted
of four sanding passes of gray spray paint on a piece of
white acrylic, as shown in Figure [ (top-right). The first
three passes were variable, where 50% of the piece was
painted in randomly chosen sections. The fourth pass was
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LfD Tool

Experimental Task

ﬁrst three passes / fourth pass
are 50 percent is consistent
painted (randomly) (doesn't require

corrections)

Prototype System
joypad for corrections
high-confidence robot
low-confidence robot

Fig. 4. Instrumented LfD tool, experiment task, and prototype system.
consistently painted (i.e., did not require corrections). During
demonstrations, the operator applied more force and moved
the tool more slowly over the painted sections and applied
very little force and moved quickly when there was no paint.
As a result, the learned nominal program lightly sanded the
first three passes and required corrections by the operator to
adjust the abrasiveness. During each demonstration, the tool
was moved slowly between passes as a simple way to ensure
the task was amenable to a highly-parallel execution (i.e.,
one robot sanding while the other moved between passes). In
practice, other high-confidence actions between passes could
enable parallel scheduling, such as changing sanding discs.
The authors collected a total of six sanding demonstrations
using the instrumented sanding tool shown in Figure [] (top-
left). We collected the pose of the tool, the applied force, and
the state of the tool (i.e., on/off) during each demonstration.

The simulated experiment consisted of five trials with 300
simulated executions (in pairs of two) of the system with
operator corrections. Consistent with the task, corrections were
given 50% of the time on samples during the first three passes.
While in the future, we would like to estimate human error
rates during corrections to set appropriate confidence bounds,
the simulation used a fixed one percent error rate (i.e., the
human failed to provide needed corrections 1% of the time
and provided unneeded corrections 1% percent of the time).
After each pair of executions, the confidence was updated and
the schedule was resampled with 5000 iterations. For our task,
the schedule sampling took 3 minutes (i5-10400F, 10 threads).
The results, shown in Figure E[, demonstrate that as the robots
receive corrections, the system can refine and leverage its
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Fig. 5. Scheduling solution evolution. Top: The task length decreases over

repeated interactions. The dark blue line shows the mean task length (with
shading for the standard deviation). For each iteration, we show an example
schedule where blue means the first robot is low confidence, red means
the second robot is low confidence, and gray means neither robot is low
confidence. Initially, the robots are mostly low confidence and execute the
task one at a time. Eventually the robots alternate executing low-confidence
actions. Bottom: Percent of high-confidence samples. The gray dotted line is
the ground-truth percentage.

confidence to optimize the task scheduling.

We also developed a prototype system (with an early version
of the real-time adaptation), shown in Figure EL to conduct
a pilot study involving ten participants (3M, 5F, 2 non-
binary), aged 18-24 (M = 20.5, SD = 1.8), recruited from
the UW—Madison campus, under an approved protocol from
the university Institutional Review Board (IRB). Participants
interacted with the robots serially (one at a time) as a
baseline condition and with the final parallel solution found
by the scheduler. Primary measures included total task time
and paint removal performance, calculated through automated
imaging. Results indicate that participants could complete
the task with the parallel robots with shorter time on task
#9) = 2575, p < 0.001) and increased idle time (#(9) =
7.30, p < 0.001) without significant impact on paint removal
performance (F(1,9) 2.18, p = 0.17). These findings
provide a preliminary demonstration of the promise of our
approach and a basis for a comprehensive future evaluation.

IV. DISCUSSION

Our preliminary findings suggest that our proposed method
can enable users to efficiently share autonomy with multiple
robots, though future studies with the prototype system are
needed to confirm the benefits. We demonstrated how the
scheduling algorithm reduces the time to complete a sanding
task as new high-confidence times are identified. As the high-
confidence samples approached the ground-truth percentage,
our example found a schedule with alternating sanding passes.
Generally, our scheduler finds solutions that respect the op-
timization constraints (e.g., no overlapping, low-confidence
actions) and reduces the total time by either speeding up high-
confidence actions or overlapping executions when possible.

A. Limitations & Future Work

Our method inherits limitations from LfD and time warping,
which requires similar demonstrations. To avoid these assump-
tions, we are interested in exploring a reward-based structure
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that can better generalize to heterogeneous demonstrations. We
also desire to scale our technical methods to larger robot fleets,
which requires a modified approach to the margin-checking
algorithm presented in Algorithm 2] and explore the practical
considerations of shared autonomy with larger numbers of
agents [2]]. Finally, our preliminary evaluation presented only
one example sanding task to highlight the benefits of the
proposed method. In the future, we will conduct user studies
to assess the empirical human error correction rates and the
performance (i.e., accuracy and generalization) of our method
across a range of tasks, including different tasks for each robot.
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