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Abstract
Speakers with dysarthria could particularly benefit from

assistive speech technology, but are underserved by current au-
tomatic speech recognition (ASR) systems. The differences
of dysarthric speech pose challenges, while recording large
amounts of training data can be exhausting for patients. In
this paper, we synthesise dysarthric speech with a FastSpeech 2-
based multi-speaker text-to-speech (TTS) system for ASR data
augmentation. We evaluate its few-shot capability by generat-
ing dysarthric speech with as few as 5 words from an unseen
target speaker and then using it to train speaker-dependent ASR
systems. The results indicated that, while the TTS output is not
yet of sufficient quality, this could allow easy development of
personalised acoustic models for new dysarthric speakers and
domains in the future.
Index Terms: automatic speech recognition, dysarthric speech,
text-to-speech, few-shot learning

1. Introduction
Dysarthria is a motor speech disorder caused by conditions
like Parkinson’s disease or amyotrophic lateral sclerosis (ALS).
These patients could especially benefit from assistive voice tech-
nology, but current ASR systems perform poorly on dysarthric
speech due to the differences to typical speech and a scarcity of
training data.

Recording large amounts of data can be exhausting for speak-
ers with dysarthria. Few-shot learning approaches, where an
acoustic model can be trained with only very little data from a
target speaker, are therefore of particular interest.

Few-shot and even zero-shot approaches to pathological
speech recognition can be successful [1, 2, 3]. Out of the box,
a very large acoustic model with up to 10 billion parameters
trained on 4.5 million hours of speech [1] reaches state-of-the-art
performance on AphasiaBank [4], a database of aphasic speech.
Fine-tuning on this data gives a further 50% relative improve-
ment. However, such amounts of training data are only available
to a few private companies. Even fine-tuning and applying a
pretrained model with so many parameters is challenging and
storing personalised models for each speaker is costly [5]. It
is therefore desirable to also investigate more moderately sized
models and alternative few-shot approaches.

Voice conversion (VC) is increasingly used as data augmen-
tation for dysarthric speech recognition [6]. A mapping from
unimpaired control to dysarthric speakers or between different
dysarthric speakers is learned, so that additional speech for ASR
training can be generated. This requires that recordings of the tar-
get utterances are available. Existing applications to dysarthric
ASR have also largely been restricted to VC models that con-
vert only between single pairs of speakers, although in general

many-to-many VC approaches also exist [7].

Data augmentation with TTS is an alternative to VC. It
allows to synthesise speech for arbitrary sentences and therefore
to quickly adapt an ASR system to new commands and domains
and a single model can handle any number of speakers. TTS-
based data augmentation has already been applied to ASR for
low-resource languages and children’s speech [8]. ASR and TTS
are also naturally linked, corresponding to speech perception
and speech production, and joint training in a speech chain has
been proposed [9].

In this paper we build upon previous work on TTS for
dysarthric speech [10]. They introduced a dysarthria embedding
for the FastSpeech 2 TTS system [11] that allows to explicitly
model and generate speech of different severity levels. We con-
firm their finding that data augmentation with synthetic speech
is beneficial for dysarthric ASR on a different corpus. We then
ask whether dysarthric TTS could also be used to generate ASR
training data for a new speaker based on just a small number of
recordings. While we find that the synthetic speech on its own is
not of sufficient quality to train an ASR system – regardless of
whether the speaker has been seen before or not – together with
typical speech it works better than typical speech by itself.

2. Methods

In this section we describe the works on which our dysarthric
TTS pipeline is based and any modifications we have made.

2.1. Controllable TTS

FastSpeech 2 [11] is a transformer-based non-autoregressive
TTS system that allows for fast training and inference. Fig-
ure 1 illustrates the model architecture. It consists of a phoneme
encoder and a Mel-spectrogram decoder. In between, it has a
variance adaptor block to model different sources of variance in
the speech signal and to control the TTS output. The variance
adaptor contains multiple variance predictors. These are small
neural networks that are trained to predict attributes like pitch,
energy and phoneme duration. A length regulator expands the
encoded input from phoneme- to frame-level based on the dura-
tions, while embeddings from the other predictors are added to
the input. At training time, ground-truth values are used instead
of the predictions.

The original FastSpeech 2 [11] predicts pitch spectrograms
obtained from the continuous wavelet transform, but we use an
implementation that directly predicts pitch values [12]. We also
follow their approach of placing the length regulator after all
other variance predictors.
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Figure 1: Our FastSpeech 2 architecture (figure adapted from [11]). LR in subfigure (b) denotes the FastSpeech 2 length regulator and
LN in subfigure (c) denotes layer normalisation. Speaker embeddings are obtained from a pretrained model and remain fixed.

2.2. Multi-speaker TTS

FastSpeech 2 has been extended to multiple speakers by adding
a speaker embedding to the encoded input [12]. The following
variance predictors are thus conditioned on the speaker identity.
The authors found that speaker embeddings from a generative
VC system performed better than jointly trained ones or embed-
dings trained on a discriminative speaker classification task like
x-vectors [13]. They chose embeddings from the AdaIN-VC sys-
tem for one-shot voice conversion [14], so that the TTS would
also support speakers not seen during training.

AdaIN-VC [14] is able to convert an utterance to an unseen
speaker’s voice from a single sample by separately encoding
speaker and content. Speaker labels are not required for training,
the speaker identity is assumed to be in the constant informa-
tion throughout an utterance, while the content information is
changing. An adaptive instance normalisation (AdaIN) [15]
layer means that no parameters have to be learned for a new
speaker.

2.3. Dysarthric TTS

Soleymanpour et al. [10] added a dysarthria severity predictor
before the other variance predictors, so that their embeddings
are conditioned on the severity of dysarthria of the speaker. Due
to the controllable nature of FastSpeech 2, speech of different
severity levels can then be generated, which they used for data
augmentation in a dysarthric ASR system. As severity depends
only on the speaker and cannot be predicted from text, we just
use a severity embedding and train it with the rest of the model
instead of a separate predictor network. We group the speakers
into the same 3 groups with their own embedding: unimpaired
control speech, mild to moderate dysarthria, severe dysarthria.

They trained speaker embeddings jointly with the Fast-
Speech 2 model, limiting the set of speakers for which speech
can be synthesised to those present in the training data. In this
work, we have no such restriction because of the one-shot capa-
ble AdaIN-VC speaker embeddings and we investigate how little
data is required from a target speaker to synthesise dysarthric
speech and build a speaker-dependent ASR system for them. We
do not follow their approach of adding heuristics to insert pauses
into the synthetic dysarthric speech as we only generate isolated
words in this work.

3. Experimental setup
3.1. Datasets

We conducted our study on the UA-Speech [16] database of
dysarthric speech. It contains only isolated words, split into
3 blocks, recorded with a 7-microphone array from 15 dysarthric
and 13 control speakers without any speech impairment. We
use the segmentation of Xiong et al. [17] that removes some
excessive silence portions based on forced alignment with a
Gaussian mixture model (GMM) ASR system. The dysarthric
speech from block 2 of UA-Speech is our test set, which is the
standard protocol.

The audio files have a sampling rate of 16 kHz. For compat-
ibility with existing code and pretrained models, we upsample
the data to 22050 Hz in the TTS pipeline, while all ASR models
are trained on 16 kHz.

3.2. TTS

We use synthetic speech for data augmentation, where we assume
that training data for a target speaker is available, and in a few-
shot setting, where we apply a trained TTS model on unseen
speakers.

For data augmentation, we train one TTS model on all the
training data from UA-Speech. For the few-shot experiments,
we train 15 different models in a leave-one-speaker-out setup, i.e.
on all control and the 14 other dysarthric speakers. We then use
different amounts of dysarthric speech from blocks 1 and 3 of
UA-Speech to obtain the speaker embeddings and as additional
sources of ASR training data.

In each case, we train a phoneme-based FastSpeech 2 TTS
model1 with a batch size of 16 for 500k iterations in the default
configuration. The input features are 80-dimensional Mel spec-
trograms. We obtain ground-truth phoneme durations for the du-
ration predictor from forced alignment with a Kaldi [18] GMM
ASR system trained on the same data. Speaker embeddings are
from the AdaIN-VC model described in the next section.

For vocoding, we use the pretrained universal HiFi-
GAN [19] model2. We experimented with fine-tuning the
vocoder on UA-Speech, but did not observe consistent bene-
fits. We downsample its 22050 Hz output to 16 kHz for ASR
training.

1https://github.com/ming024/FastSpeech2
2https://github.com/jik876/hifi-gan
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3.3. Speaker embeddings

We train AdaIN-VC models3 on the same data as the TTS models
with a batch size of 128 for 200k iterations using the default
configuration, also with a leave-one-speaker-out setup. We train
on the same Mel spectrograms as for FastSpeech 2 training as
in [14]. We take the 128-dimensional output of the speaker
encoder as embeddings for FastSpeech 2 training and inference.
We do not fine-tune these embeddings during TTS training.

For the few-shot experiments, we select subsets of 5 and
100 words from the UA-Speech training blocks 1 and 3. We
do not sample randomly, but instead choose words that offer
the broadest phoneme coverage, emulating a scenario where
target speakers are asked to record a small list of words with the
biggest performance benefit. For each speaker, we pick a random
utterance of each word, extract the AdaIN-VC embedding for
it and take their average as the speaker embedding for speech
synthesis, following Chou et al. [14]. The TTS model is not
trained or fine-tuned on these few-shot utterances, although fine-
tuning could be explored in the future.

3.4. ASR

All our ASR models are trained with Kaldi [18]. The UA-
Speech recipe is adapted from Xiong et al. [17]4. We train
speaker-dependent acoustic models on only the data of the
target dysarthric speaker, possibly augmented with synthetic
speech. First, a GMM is trained, which serves as a basis for
sequence-discriminative lattice-free maximum mutual informa-
tion (LF-MMI) [20] training of a factorised time-delay neural
network (TDNN) [21] acoustic model with 40-dimensional Mel-
frequency cepstral coefficients (MFCCs) as input features. Al-
though it is commonly done in LF-MMI training, we do not
apply speed perturbation [22] in Kaldi because we can already
manipulate the speed during TTS data augmentation.

We decode with a unigram grammar containing only the
words from block 2 of UA-Speech as in previous works [17, 23].
In line with those, we group the speakers by severity based
on subjective intelligibility ratings included with the corpus as
shown in Table 1 and report the word error rate (WER) of each
group and the overall WER.

Table 1: Severity of UA-Speech dysarthric speakers, based on
subjective intelligibility ratings (in parentheses).

Severity Speakers

Severe (0–25%) M04, F03, M12, M01
Moderate-severe (26–50%) M07, F02, M16
Moderate (51–75%) M05, M11, F04
Mild (76–100%) M09, M14, M10, M08, F05

4. Results
We do not directly evaluate the quality of the synthetic dysarthric
speech as we are only interested in its contributions to ASR
performance. In the future, it would be worthwhile to apply the
objective evaluation measures proposed by Halpern et al. [24].
However, we find that the dysarthria embedding learns to cor-
rectly influence the length regulator, with average utterance du-
rations of 1.2s for control, 1.9s for mildly dysarthric and 2.6s for

3https://github.com/cyhuang-tw/AdaIN-VC
4https://github.com/ffxiong/uaspeech

Table 2: Word error rates (WER) for each group of dysarthric
speakers. For clarity, we also indicate whether the target speaker
was seen during TTS training or not, where applicable.

Systems Seen Sev. Mod.-sev. Mod. Mild Total

Baselines
CTL - 96.2 74.5 55.1 23.2 56.9
Top-line - 70.3 42.7 38.2 24.0 41.3

+ CTL - 65.8 34.3 25.3 15.4 32.8

Data augmentation
TTS-aug ✓ 70.8 38.7 33.6 18.5 37.6
TTS-aug4 ✓ 68.5 36.9 32.4 19.2 36.7

Few-shot
F5-ctl ✗ 99.6 99.1 98.1 92.0 96.5

+ CTL ✗ 94.9 75.9 55.8 22.3 56.7
F100-ctl ✗ 98.8 99.0 92.5 83.3 91.7

+ CTL ✗ 93.8 75.6 51.7 21.8 55.4
F5-dys ✗ 99.4 99.6 98.5 95.4 97.8

+ CTL ✗ 94.4 76.1 53.9 22.5 56.8
F100-dys ✗ 99.3 99.2 95.6 91.3 95.6

+ CTL ✗ 94.5 72.7 52.4 20.6 54.6
F5-mix ✗ 99.3 99.1 98.3 92.1 96.5

+ CTL ✗ 94.7 75.8 55.6 21.4 56.3
F100-mix ✗ 98.6 97.1 92.7 82.6 91.3

+ CTL ✗ 93.7 72.7 50.7 20.9 54.2

TTS-only ✓ 98.2 93.9 87.8 85.1 90.5
TTS-only4 ✓ 98.0 92.6 86.5 79.7 87.9

severely dysarthric synthesised speech.
For reference, we show the performance of an ASR system

trained only on the control speech (CTL) from UA-Speech, see
the first row in Table 2. We then train top-line speaker-dependent
(SD) systems with all the available dysarthric speech from UA-
Speech training blocks 1 and 3. This represents the theoretical
upper limit we can reach through data augmentation from a
subset of that data. For comparison, we also train SD models
that additionally include all control speech (+CTL). We note
that because we do not use speed perturbation, this top-line does
not match the speaker-dependent results of the otherwise similar
recipe from Xiong et al. [25].

First, we confirm the findings of Soleymanpour et al. [10]
that augmenting the training data with synthetic dysarthric
speech (TTS-aug) improves speech recognition. We also confirm
that adding four times as much synthetic speech further lowers
the WER (TTS-aug4).

We compare estimating the speaker embedding from 5 (F5)
and 100 (F100) single-word utterances of the target speaker.
These utterances are then also included for the training of the
acoustic model. In either case, the total number of ASR training
utterances is matched with the baseline. All of these models
perform poorly with average WERs in the nineties, not even
coming close to the control speech model. Nevertheless, we can
observe certain patterns, e.g. estimating the speaker embedding
from more utterances improves results.

We either set the dysarthria embedding to generate control
speech (F5/100-ctl), speech of the same severity as the target
speaker (F5/100-dys) or a mix of control, mild, and severely
dysarthric speech (F5/100-mix). Curiously, we find that this mix
or generating only control speech works better than matching
the target severity. This could be because synthesising dysarthric
speech introduces some dysarthria-like characteristics that are
nonetheless not representative of the target speaker and more
detrimental for ASR because the speaker embedding is only
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Figure 2: Relationship between the median KL divergence of acoustic units and subjective intelligibility ratings of (a) synthetic
dysarthric speech used for data augmentation (Pearson’s r = 0.85) and of the original dysarthric speech (r = 0.90). (b) shows the same
relationship for speech synthesised with the dysarthria embedding set to control, mild, or severe. (c) shows the same relationship for
synthetic dysarthric speech used for the few-shot experiments with the dysarthria embedding set to control, mild, or severe. The speaker
embeddings are estimated from 5 utterances from the target speaker, but their speech is not included during TTS training.

designed to capture general speaker information.
We also see slight improvements when combining the F100

data with control speech (+CTL). This indicates that while the
synthetic speech on its own is not yet of sufficient quality, it can
still yield benefits in combination with other data. To further
evaluate this, we train another set of SD models on only the
synthesised portion of the data used in the TTS-aug experiments,
where the target speakers were already seen during TTS training
(TTS-only). Indeed, even these results are very poor although the
speakers were seen and the TTS output was beneficial for ASR
data augmentation. This suggests that no significant improve-
ments can be expected in the few-shot setting before the TTS
quality in general is not further increased.

5. Analysis
We evaluate the quality of the synthetic dysarthric speech
by analysing its acoustic discriminability as proposed in [23].
This approach measures acoustic discriminability by comput-
ing Kullback-Leibler (KL) divergences between Gaussian dis-
tributions estimated for each acoustic unit (clustered context-
dependent triphones) of the ASR system.

Figure 2a shows the relationship between median KL diver-
gences of the synthetic speech used in the data augmentation
experiments for each dysarthric speaker and their subjective
intelligibility ratings (Pearson’s r = 0.85), compared with the
original dysarthric speech (r = 0.90). In terms of acoustic space
discriminability, the synthetic speech is correctly showing the
same patterns as the original dysarthric speech.

For data augmentation, we synthesised speech with the
dysarthria embedding set to a different random value for each
utterance. But how does the TTS output change when we set
the dysarthria embedding to generate control, mild, or severely
dysarthric speech? For each embedding value, we synthesise
one utterance for each word in the UA-Speech training data.
We find that the dysarthria embedding learns to correctly influ-
ence the length regulator, with average utterance durations of
1.2s for control, 1.9s for mildly dysarthric and 2.6s for severely
dysarthric synthesised speech. Figure 2b shows the relationship
between median KL divergences of these three sets of synthe-
sised speech and the subjective intelligibility ratings of each

dysarthric speaker. Indeed, the median KL divergences decrease
for mild and severely dysarthric synthesised speech, indicating
reduced discriminability. We note that when synthesising with
the dysarthria embedding set to control, there is still a correlation
between median KL divergences and subjective intelligibility
ratings. This is due to the speaker embedding that inevitably
also captures dysarthria characteristics of the speaker, so it is
not expected that this synthesised control speech sounds like a
control speaker without dysarthria.

However, in the few-shot experiments we synthesised speech
for new speakers that were not seen during TTS training. We
again generate a set of control, mild, and severely dysarthric
speech by setting the dysarthria embedding accordingly with the
few-shot model for each unseen speaker. Figure 2c shows that
there are meaningful differences in the acoustic space between
the three severity levels for these unseen speakers as well.

6. Conclusion
In this paper we confirmed that TTS can be successfully used for
data augmentation in dysarthric ASR. However, we found that
this method cannot be applied to unseen speakers because the
synthetic speech on its own is not of sufficient quality. Possibly,
the low number of dysarthric speakers in the training data is not
enough to model the significant variability of dysarthric speech.
However, we found that the TTS learns to model dysarthric
speech characteristics and reproduces differences in acoustic
space discriminability between speakers of different severity that
are observed in the original dysarthric speech.

In the future, we would like to include a larger set of
dysarthric speakers in TTS training to better model their di-
versity. Similarly, another promising direction would be to train
an end-to-end ASR model on multiple dysarthric speakers and
then only fine-tune it on the augmented data for a target speaker.
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