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Abstract
Many pathologies cause impairments in the speech production mechanism resulting in

reduced speech intelligibility and communicative ability. To assist the clinical diagnosis, treat-

ment and management of speech disorders, automatic pathological speech assessments are in-

dispensable. Such automatic assessments provide reliable, objective, and cost-effective assess-

ment in contrast to subjective and time-consuming auditory-perceptual analyses performed

by clinicians. Among crucial automatic analyses for developing potential computer-aided

tools are speech pathology detection, i.e., discriminating between normal and pathological

speech, and speech intelligibility assessment, i.e., predicting an intelligibility index correlated

with the percentage of words correctly understood by human listeners. The goal of this thesis

is to propose novel data-driven approaches to aid the development of a clinical assistive tool

for automatic pathological speech assessment with two purposes, i.e., pathological speech

detection and intelligibility assessment.

First, we focus on the development of novel machine learning approaches to address the

pathological speech detection task. Motivated by the clinical evidence on spectro-temporal

distortions associated with pathological speech, we propose a subspace-based speech pathol-

ogy detection approach that relies on analyzing subspaces spanned by the dominant spectral

or temporal patterns of speech. Although the temporal subspace-based approach yields a

high performance, it requires time-alignment and having access to phonetically-balanced

utterances from all speakers. To avoid the time-alignment and also to assess the efficacy of

deep learning approaches for such a task, we propose analyzing pairwise distance matrices

computed from speech representations using convolutional neural networks. Furthermore, to

be able to achieve pathological speech detection without requiring constraints on the phonetic

content, we propose different supervised representation learning approaches using convolu-

tional neural networks to learn robust and relevant feature representations. We demonstrate

the effectiveness of the proposed approaches through different experiments across different

databases.

Second, we focus on developing reliable automatic pathological speech intelligibility measures

overcoming several drawbacks of the state-of-the-art measures while outperforming them. We

first propose a measure based on short-time objective intelligibility assessment. Further, we

provide a solution to ensure its applicability across scenarios with different phonetic content

across speakers. We also propose intelligibility measures based on analyzing speech sub-

spaces. The subspace-based intelligibility measures are applicable to different scenarios while

overcoming the drawbacks of the previously described measure. We validate the performance
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Abstract

of the proposed measures across languages and diseases.

Finally, insights are provided on a potential clinical assistive tool for pathological speech

detection and intelligibility assessment. To this end, we jointly validate the applicability of

two of the previously described approaches, i.e., temporal subspace-based speech pathology

detection and short-time objective intelligibility assessment. As our approaches for both

tasks achieve a high performance independently of the language and disease, we confirm the

possibility of developing such a multi-purpose clinical assistive tool.

Keywords: pathological speech intelligibility, pathological speech detection, ESTOI, convolu-

tional neural network, subspace-based learning, supervised speech representation learning,

feature separation, dysarthria, Parkinson’s disease, Cerebral Palsy, Amyotrophic Lateral Sclero-

sis, hearing impairment
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Résumé
De nombreuses pathologies causent des troubles dans le mécanisme de production de la

parole qui résultent en une réduction de l’intelligibilité vocale et de la capacité à communi-

quer. Afin d’aider au diagnostic clinique, au traitement et à la prise en charge des troubles du

langage, les évaluations automatiques de la parole pathologique sont indispensables. De telles

analyses automatiques offrent une évaluation fiable, objective et rentable, en contraste avec

des analyses audio-perceptives subjectives et longues réalisées par des médecins. Parmi les

évaluations automatiques principales pour le développement de potentiels outils aidés par

ordinateur se trouvent les approches de détection de pathologies de la parole, i.e. distinguer la

parole normale de la parole pathologique, et les approches d’évaluation de l’intelligibilité de la

parole, i.e. prédire un indice d’intelligibilité corrélé avec le pourcentage de mots correctement

compris par des auditeurs humains. L’objectif de cette thèse est de proposer des approches

novatrices basées sur les données pour aider au développement d’un outil clinique d’assis-

tance à l’évaluation automatique de la parole pathologique avec deux buts : la détection de la

parole pathologique, et l’évaluation de l’intelligibilité de la parole pathologique.

En premier lieu, nous nous concentrons sur le développement de nouvelles approches d’ap-

prentissage machine pour résoudre la tâche de détection de la parole pathologique. Motivés

par des preuves cliniques de distorsions spectro-temporelles associées à la parole patholo-

gique, nous proposons une approche subspatiale de détection de la parole pathologique qui

repose sur l’analyse de sous-espaces couverts par les motifs spectraux ou temporels domi-

nants de la parole. Malgré que l’approche basée sur les sous-espaces temporels obtient une

haute performance, elle nécessite un alignement temporel ainsi que l’accès à des échantillons

phonétiquement équilibrés de tous les sujets d’étude. Pour éviter l’alignement temporel et

aussi évaluer l’efficacité de l’apprentissage profond pour une telle tâche, nous proposons

une approche basée sur l’analyse de matrices de distances paire-à-paire calculées à partir

de représentations de la parole utilisant des réseaux de neurones convolutionnels. De plus,

afin de pouvoir réaliser la détection de la parole pathologique sans nécessiter de contraintes

sur le contenu phonétique, nous proposons différentes approches d’apprentissage supervisé

utilisant des réseaux de neurones convolutionnels pour apprendre des représentations des

données robustes et pertinentes pour la détection de la parole pathologique. Nous démon-

trons l’efficacité des approches proposées par différentes expériences sur différentes bases de

données.

En second lieu, nous nous concentrons sur le développement de mesures automatiques fiables

de l’intelligibilité de la parole pathologique surmontant plusieurs inconvénients des méthodes
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Résumé

de pointe tout en surpassant leurs performances. Nous proposons d’abord une mesure basée

sur une évaluation objective à court terme de l’intelligibilité. Ensuite, nous fournissons une

méthode pour assurer son applicabilité à de multiples scénarios avec des contenus phoné-

tiques différents parmi les sujets. Nous proposons aussi des mesures d’intelligibilité basées sur

l’analyse de sous-espaces de la parole. Les mesures d’intelligibilité basées sur les sous-espaces

sont applicables dans différents scénarios tout en résolvant les inconvénients de la méthode

décrite précédemment. Nous validons la performance et la capacité de généralisation des

mesures proposées sur diverses langues et pathologies.

Finalement, nous fournissons des perspectives pour un potentiel outil clinique d’assistance

à la détection de la parole pathologique et à l’évaluation de l’intelligibilité. À cette fin, nous

validons conjointement l’applicabilité de deux des approches décrites précédemment, i.e. la

détection de pathologies de la parole basée sur les sous-espaces temporels et l’évaluation

objective à court terme de l’intelligibilité. Au vu de la performance élevée obtenue par nos mé-

thodes sur ces deux tâches indépendamment de la langue et de la pathologie, nous confirmons

la possibilité de développer un tel outil d’assistance clinique polyvalent.

Mots-clés : intelligibilité de la parole pathologique, détection de la parole pathologique, in-

telligibilité objective à court terme, réseaux de neurones convolutionnels, apprentissage sur

sous-espaces, représentation supervisée de la parole, séparation des caractéristiques, dys-

arthrie, maladie de Parkinson, infirmité motrice cérébrale, sclérose latérale amyotrophique,

déficience auditive
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1 Introduction

Speech is a very complex activity which requires the synchronous contraction of many muscle

groups associated with respiration, laryngeal function, airflow direction, and articulation. As

a result, speech can be impaired in different ways because of different pathologies caused

by genetic influences, physical deformities, hearing loss, or neurological malfunctions. For

example, dysarthria of speech is a common neurological speech impairment known as motor

speech disorder which results from disturbances of the muscular control on the movement

mechanism necessary for the execution of speech (Duffy, 2000). Dysarthria arises in several

neurological etiologies, e.g., stroke, Cerebral Palsy (CP), Amyotrophic Lateral Sclerosis (ALS),

and Parkinson’s Disease (PD) (Darley et al., 1969; Flipsen and Parker, 2008). Depending on the

origin and the severity of the speech impairment, several components of the speech produc-

tion mechanism can be affected such as respiration, phonation, resonance, and articulation,

yielding an abnormal quality of speech as well as reduced intelligibility and communicative

ability (Enderby, 2013).

Monitoring changes in speech is crucial for providing an accuracte clinical diagnosis of speech

pathologies and therapeutic feedback, since speech changes reveal important information

about the pathology and its severity. In addition, in case of progressive neurologic conditions,

speech analysis can provide an early evidence of the neurological disease evolution (Duffy,

2000). To monitor speech changes, speech pathologists use auditory-perceptual evaluation in

a range of speech tasks and listening paradigms. One component of the auditory-perceptual

assessment is the evaluation of specific perceptual cues associated with speech traits distorted

by pathologies, such as roughness, breathiness, or nasality (Sussman and Tjaden, 2012). These

evaluations are then used for pathology detection, i.e., discrimination between normal and

pathological speech. Such clinical assessments for pathological speech diagnosis are time-

consuming and expensive for screening a large number of subjects, and the results of these

analyses may be inconsistent due to many factors such as different subjective opinions be-

tween clinicians depending on the clinicians’ experience, different types of rating scales, and

different speech tasks under study (Oates, 2009; Baghai-Ravary and Beet, 2012). Furthermore,

such clinical perceptual assessments might not be able to detect a pathological condition at an
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early stage (Gavidia-Ceballos and Hansen, 1996). After establishing the acoustic pathological

characteristics elicited from the speech of the patients, another component of the clinical

auditory-perceptual evaluation is required to determine the overall functional oral commu-

nicative performance, i.e., speech intelligibility assessment, which helps to characterize the

severity of the speech pathology (Sussman and Tjaden, 2012). Impaired speech intelligibility

can be a barrier to social engagement and education, which can affect the self-esteem and the

quality of life for a patient. Therefore, intelligibility assessment guides speech therapy inter-

ventions aiming at improving speech intelligibility. The gold standard pathological speech

intelligibility measure is based on subjective listening tests evaluating the percentage of words

correctly understood by human listeners (Sussman and Tjaden, 2012; Landa et al., 2014). Such

subjective assessments of intelligibility are labor-intensive, costly, and are also affected by the

listener’s familiarity with the patient’s speech pathology and by the contextual/linguistic cues

available in connected speech (Landa et al., 2014).

To assist the clinical diagnosis of speech pathologies and to avoid the drawbacks associated

with clinical assessments, automatic pathological speech detection methods based on ma-

chine learning and signal processing can be used (Baghai-Ravary and Beet, 2012). Furthermore,

as an efficient and economical substitute to subjective intelligibility assessment, automatic

pathological speech intelligibility measures have been proposed (Maier et al., 2009; Middag

et al., 2010; Bocklet et al., 2012; Martínez et al., 2015; Imed et al., 2017; Kalita et al., 2018). In

contrast to the auditory-perceptual evaluation performed by clinicians, such automatic patho-

logical speech analyses aiming at pathological speech detection and intelligibility assessment

offer frequent, efficient, economical, and objective assessment tools. These techniques not

only pave the way for more reliable and repeatable pathological speech analysis to be used

for early diagnosis and disease management, but can also be used in speech therapy with the

capability of being performed remotely (Wallen and Hansen, 1996; Baghai-Ravary and Beet,

2012).

Machine learning and signal processing techniques as a cross-disciplinary approach to assess

pathological speech face several challenges. The performance of these techniques is affected

by factors such as a) the broad range of pathologies causing speech impairments, b) the

broad spectrum of impairments within a single pathological condition based on the disease

severity, and c) several sources of noise which can be categorized into 3 subgroups i.e., c-1)

inter-speaker variability referring to variabilities such as speaker-specific traits (e.g., speaker

identity), language, or accent, c-2) intra-speaker variability such as fatigue, and c-3) variable

recording conditions. Hence, developing a system which accurately models each paralinguistic

aspect of speech is difficult and, due to the scarcity of sufficiently comprehensive databases,

remains one of the most challenging tasks to date (Baghai-Ravary and Beet, 2012; Gupta et al.,

2016).

This thesis presents approaches toward a clinical automated tool for pathological speech,

aiming at simultaneous pathological speech detection and pathological speech intelligibility

assessment. Such a clinical tool should ideally have a high agreement with human decisions
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regarding diagnosis and intelligibility assessment, while offering objective and cost-effective

acoustic analysis to further assist the clinical monitoring and management of speech disorders.

Without limiting the conducted speech assessment in this thesis to a specific disease, we aim

to develop approaches applicable to different atypicalities in speech. The pathological condi-

tions we focus on are ALS, PD, CP, and speech disorders caused by hearing impairment (HI).

At first, we focus on each component of the clinical tool separately and consider pathological

speech detection and intelligibility assessment as two different tasks. Automatic intelligibility

assessment mainly deals with quantifying acoustic characteristics associated with speech

perception while pathology detection can not only rely on impaired perceptible dimensions

of speech, especially for mild or early-stage pathological conditions. Considering the first

component of the clinical tool, we propose novel approaches for automatic pathological

speech detection which overcome many drawbacks of state-of-the-art methods and are gen-

eralisable across languages and diseases. Considering the second component of the clinical

tool, we also propose reliable objective pathological speech intelligibility measures which

are applicable to different scenarios and outperform current state-of-the-art intelligibility

measures. Finally, by selecting advantageous methods among our proposed approaches for

each task, we investigate the possibility of developing an automated tool for jointly evaluating

both pathological speech assessment aspects to assist clinical speech screenings.

1.1 Motivations and contributions

The high-level objective of this thesis is to devise novel approaches to be used in an automatic

pathological speech assessment tool for speech pathology detection and speech intelligibility

assessment. More specifically, the main motivations and contributions of this thesis can be

summarized as follows:

1. Current approaches aimed at automatic speech pathology detection are largely dom-

inated by assessing the voice quality dimension of speech which is prominent in dis-

orders associated with abnormal vocal fold function. Therefore, such approaches rely

on the availability of controlled and somewhat less natural sustained phonation data.

However, impairments such as dysarthria significantly affect other dimensions of speech

as well, e.g., articulation dynamics which can be elicited from connected speech repre-

sentative of daily voice. Automatic approaches exploiting connected speech analysis

rely on classical machine learning approaches requiring handcrafting large-scale brute-

forced acoustic feature sets, voice/unvoiced speech segmentation that is not robust

when analyzing pathological speech, and acoustic modeling derived from other speech

applications without being fully optimized for the speech pathology detection task.

In addition, recently there has been a growing interest in the research community

to leverage pure data-driven deep learning approaches. However, such approaches

face challenges due to typically limited pathological training data. Therefore, the per-

formance of many state-of-the-art approaches and also their generalizability across
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languages and pathologies can be limited. In this thesis, we propose novel machine

learning and deep learning approaches to tackle such drawbacks in analyzing connected

speech using minimal prior knowledge, and we demonstrate their effectiveness across

languages and diseases. First, motivated by the clinical evidence on spectro-temporal

distortions associated with pathological speech, we propose a novel approach based on

analyzing the dominant spectro-temporal patterns of healthy and pathological speech

using a subspace-based learning technique. Then, by focusing on under-explored

deep learning frameworks in this field, we propose a pairwise distance-based convo-

lutional neural network which is motivated by advantages of pairwise training when

limited training data is available. Further, motivated by the fact that the presence of

non-relevant speaker variabilities in feature representations, e.g., speaker identity cues,

can degrade the performance of pathological speech detection systems while learning

optimal abstract features specific to the task can improve the performance, we propose

methods to supervise convolutional neural networks training to learn more robust and

relevant abstract acoustic cues for this task. The superiority of the proposed frameworks

is then demonstrated by outperforming their counterpart baseline systems.

2. Among many approaches that have been proposed for automatic pathological speech in-

telligibility assessment, approaches exploiting healthy (i.e., perfectly intelligible) speech

signals as references have shown superior performance. However, they are usually

complex and require a large number of healthy speech recordings for training which

limits their application for low-resource languages. In this thesis, we propose a reli-

able, robust, and simple objective intelligibility measure outperforming state-of-the-art

measures. Developing intelligibility measures applicable to scenarios with fewer or

no constraints on the phonetic content of speech used for training or evaluation is an

under-explored topic in the field. Hence, aiming at extending the applicability of the

intelligibility measure for different scenarios with variable constraints on the phonetic

content of speech, we further propose more flexible intelligibility measures and demon-

strate their generalisability across languages and diseases. All our measures are based

on developing a single feature correlated with subjective intelligibility ratings, hence it

is advantageous over methods that require many acoustic features (since training, and

hence, overfitting is avoided).

3. By selecting the best performing and robust techniques among our proposed ap-

proaches for speech pathology detection and intelligibility assessment, we jointly evalu-

ate the two tasks as a step toward a multi-purpose clinical tool for automatic pathological

speech assessment.

1.2 Thesis outline

A schematic overview of the thesis is presented in Fig 1.1. The thesis is organized as follows.

Chapter 2 provides a general overview of the state-of-the-art automatic pathological speech
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Part I
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Chapter 5
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Subspace-based

intelligibility measures

Chapter 6
Short-time objective

intelligibility measures

Chapter 8
Toward developing a

multi-purpose clinical tool

Chapter 9
Conclusion and
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Figure 1.1 – Schematic overview of the thesis.

detection approaches. In addition, an overview of the data set information and protocols used

in our thesis for pathological speech detection task is provided.

Chapter 3 presents a general overview of the state-of-the-art automatic pathological speech

intelligibility measures. In addition, an overview of the data set information and protocols

used in our thesis for intelligibility assessment is provided.

Chapter 4 proposes to automatically discriminate between pathological and typical healthy

speech by analyzing spectro-temporal subspaces of speech by applying a subspace-based

discriminant analysis on the extracted subspaces.

Chapter 5 proposes two deep learning frameworks aiming at pathological speech detection. In

the first approach, frame-level distance patterns between phonetically-balanced articulatory

feature representations from healthy and test speakers are analyzed and classified using a

neural network. Feature extraction, distance matrix computation, and classification are jointly

optimized in an end-to-end framework. In the second approach, supervised representation

learning frameworks with two auxiliary tasks are explored. To obtain a speaker identity-

invariant representation, an adversarial auxiliary speaker identification task is used, while to

obtain a discriminative representation for the speech pathology detection task, an auxiliary

pathological speech classifier is used. Due to the challenges of adversarial training, a feature

separation framework is also proposed where a speaker identity-invariant representation can
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be obtained without using any adversarial training.

Chapter 6 proposes a short-time objective intelligibility measure to automatically assess

the intelligibility of pathological speech by comparing the test speech representations to an

intelligible reference model created from fully intelligible speech signals. To increase the

applicability of the measure for different scenarios, the feasibility of creating the reference

model from synthetic speech signals is also explored.

Chapter 7 proposes to use subspace-based analysis to develop a pathological speech intel-

ligibility measure. Our proposed subspace-based intelligibility measure is based on a sub-

Grassmannian subspace distance measure between subspaces spanning the fully-intelligible

and pathological speech representations. Further in the same chapter, it is shown that the pro-

posed measure is applicable to different scenarios and can also capture the effects of spectral

modulation degradation that are important to the perceived speech intelligibility. In addition,

two variants of the subspace-based intelligibility measures are explored by incorporating

short-time temporal information.

Chapter 8 presents the joint experimental analyses regarding pathological speech detection

and intelligibility assessment as a step toward developing an automated clinical tool.

Chapter 9 concludes the thesis along with suggesting directions for future research.

Publications based on this thesis work

Chapter 4:

• Janbakhshi, P., Kodrasi, I., and Bourlard, H. (2020b). Subspace-based learning for

automatic dysarthric speech detection. IEEE Signal Processing Letters, 28(1):96–100

Chapter 5:

• Janbakhshi, P., Kodrasi, I., and Bourlard, H. (2021). Automatic dysarthric speech de-

tection exploiting pairwise distance-based convolutional neural networks. In Proc.

46th IEEE International Conference on Acoustics, Speech, and Signal Processing, pages

7328–7332, Virtual Conference

• Janbakhshi, P. and Kodrasi, I. (2021). Supervised speech representation learning for

Parkinson’s disease classification. In Proc. 14th ITG Conference on speech communication,

pages 1–5, Virtual Conference

Chapter 6:

• Janbakhshi, P., Kodrasi, I., and Bourlard, H. (2019a). Pathological speech intelligibility

assessment based on the short-time objective intelligibility measure. In Proc. 44th IEEE
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International Conference on Acoustics, Speech, and Signal Processing, pages 6405–6409,

Brighton, UK

• Janbakhshi, P., Kodrasi, I., and Bourlard, H. (2020c). Synthetic speech references for

automatic pathological speech intelligibility assessment. In Proc. 45th IEEE Interna-

tional Conference on Acoustics, Speech and Signal Processing, pages 6099–6103, Virtual

Conference

Chapter 7:

• Janbakhshi, P., Kodrasi, I., and Bourlard, H. (2019b). Spectral subspace analysis for auto-

matic assessment of pathological speech intelligibility. In Proc. 20th Annual Conference

of the International Speech Communication Association, pages 3038–3042, Graz, Austria

• Janbakhshi, P., Kodrasi, I., and Bourlard, H. (2020a). Automatic pathological speech

intelligibility assessment exploiting subspace-based analyses. IEEE/ACM Transactions

on Audio, Speech, and Language Processing, 28(1):1717–1728
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2 Background on automatic pathologi-
cal speech detection

In this chapter, we provide an overview of state-of-the-art automatic pathological speech

detection approaches and establish the experimental frameworks and settings for the patho-

logical speech detection approaches proposed in this thesis. We summarize several techniques

proposed in the literature in Section 2.1. Then, we describe different databases, the required

preprocessing steps, and validation strategies used to train and evaluate our proposed patho-

logical speech detection approaches in Section 2.2. The evaluation metrics are summarized

in Section 2.3. The details of different acoustic speech representations used to represent the

speech signals for our proposed detection approaches are provided in Section 2.4. Finally, a

summary of the chapter is presented in Section 2.5.

2.1 Literature overview

Research on automatic pathological speech detection over the last decades can be divided into

two broad categories. One line of research is based on classical machine learning approaches

where first acoustic features characterizing different impaired speech dimensions are hand-

crafted, and then classical classifiers using these handcrafted acoustic features are trained to

discriminate between pathological and healthy speech. The used acoustic features can be

either knowledge-driven features related to distorted speech dimensions or can be data-driven

features resulting from modeling the short-time feature representations (at the utterance or

speaker level) by different techniques (Hegde et al., 2019; Gómez-García et al., 2019). The

other line of research focuses on pure data-driven deep learning approaches by seeking to

exploit high-level abstract representations for automatic speech pathology detection. The

feature design and the choice of data-driven approaches depend on the pathological speech

task under study. Hence, in the following, we first introduce two popular speech tasks that

have been commonly used for automatic pathological speech detection.
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2.1.1 Speech tasks in pathological speech analysis

Most studies have focused on analyzing abnormal vocal fold function in pathologies such

as laryngeal diseases (Dejonckere and Lebacq, 1996; Michaelis et al., 1998; A. Dibazar et al.,

2002; Godino-Llorente and Gomez-Vilda, 2004; Dibazar et al., 2006; Arias-Londoño et al., 2010;

Arjmandi and Pooyan, 2012; Ali et al., 2016; Travieso et al., 2017). For this reason, majority of the

related studies are based on analyzing sustained vowels (sustained phonation) data. Sustained

phonation tests in analyzing such pathologies are popular because they are independent of

the language, speaking rate, and complicated articulatory behaviour (Parsa and Jamieson,

2001). These tests can elicit abnormal voice production symptoms which are also common

distortions in dysarthria of speech, therefore sustained vowel analysis has been also used

for detecting speech disorders such as PD (Little et al., 2009; Travieso et al., 2017; Almeida

et al., 2019; Karan et al., 2020c, 2021). Although phonation analysis in the above state-of-

the-art literature achieved acceptable performance, dysarthria affects several components

of the speech production mechanism. Therefore, analyzing only sustained vowels might

not be enough for characterizing dysarthric speech due to different diseases. On the other

hand, analyzing connected speech (i.e., sentences and isolated words) can be expected to

characterize many impaired dimensions of the overall speech production system in such

disorders (Enderby, 2013; Godino-Llorente et al., 2017a).

Unlike sustained vowels, analysis of connected speech characterizing important dynamic

aspects of vocal function faces several challenges. First, connected speech analyses are not

as controlled as sustained phonation analyses due to many non-stationary vocal variations.

Second, segmentation of voiced/unvoiced and silent regions of speech is often needed for such

analysis. These segmentations should be performed with caution because accurate voicing

detection can be difficult due to the inherent low quality of severe pathological speech (Duffy,

2000; Parsa and Jamieson, 2001; Little et al., 2009). Finally, inter-speaker variabilities such

as language, accent, and habitual speaking rate are more likely to affect the performance of

automatic systems based on connected speech analyses.

In this thesis, we focus on developing approaches applicable to connected speech. Hence, in

the following section, an overview of state-of-the-art approaches using connected speech for

assessing speech disorders is provided.

2.1.2 Machine learning-based approaches

As mentioned before, typical automatic pathological speech detection techniques are based on

classical machine learning approaches operating on acoustic features which are handcrafted

to reflect different impaired speech dimensions. In the following, we give an overview of

commonly used acoustic features followed by classification techniques for pathological speech

detection.
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Feature design

Motivated by quantifying impacted phonation and voice quality degradation, many classical

acoustic features have been designed. To characterize the perceptual roughness of voiced

speech which is associated with irregularity or aperiodicity in the vocal cord vibration, funda-

mental frequency f0 and short-term variations of the fundamental frequency (jitter) and of

the cycle-to-cycle peak amplitude (shimmer) have been used. To characterize the perceptual

breathiness of speech caused by glottal air leakage, features such as harmonics-to-noise ratio

(HNR), normalized noise energy, and low-to-high energy ratio measures have also been used

for automatic pathological speech detection (Dejonckere and Lebacq, 1996; Michaelis et al.,

1998; Little et al., 2009; Tsanas et al., 2012; Bocklet et al., 2013; Wang et al., 2016; Orozco-

Arroyave et al., 2016a; Gillespie et al., 2017; Berus et al., 2019; Karan et al., 2020a). For analyzing

connected speech, extracting the above-mentioned features requires voice/unvoiced seg-

mentation of the speech signal (Wang et al., 2016; Orozco-Arroyave et al., 2016a; Berus et al.,

2019). Therefore, computing such features can be unreliable due to the difficulty in accurately

estimating the pitch period in pathological speech.

In addition, to characterize impacted articulation, features classically used in speech recog-

nition have been popular for pathological speech detection, i.e., Mel frequency Cepstral

coefficients and linear prediction coefficients (A. Dibazar et al., 2002; Godino-Llorente and

Gomez-Vilda, 2004; Orozco-Arroyave et al., 2014b, 2015b,a; Wang et al., 2016; Gillespie et al.,

2017; Illa et al., 2018; Karan et al., 2020a).

To jointly quantify impacted phonation and articulation, the sparsity of speech characterized

through the shape parameter of the distribution of speech spectral coefficients has been used

for pathological speech detection (Kodrasi and Bourlard, 2019, 2020).

Aiming to capture as many impaired dimensions as possible, large-scale feature sets such as

openSMILE have also been used in the literature for pathological speech detection (Bocklet

et al., 2013; Wang et al., 2016; Vaiciukynas et al., 2017b; Norel et al., 2018; Berus et al., 2019). For

example, openSMILE brute-forced acoustic feature set containing 6373 features resulting from

the computation of statistics over low-level descriptor contours is introduced as a baseline

feature set for 2013 Interspeech Computational Paralinguistics Challenge (ComParE) targeting

many paralinguistic tasks, e.g., emotion and autism classification from speech (Eyben et al.,

2013; Schuller et al., 2013).

Classification approaches

Automatic speech pathology detection is a binary classification problem. The classification

approaches to detect pathological speech range from simple classifiers such as k-nearest

neighbors (Arjmandi and Pooyan, 2012), Gaussian mixture models (GMMs) (A. Dibazar et al.,

2002; Ali et al., 2016; Godino-Llorente et al., 2017b) to more complex ones such as artificial

neural networks (ANNs) and hidden Markov models (HMMs) (A. Dibazar et al., 2002; Dibazar
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et al., 2006; Arias-Londoño et al., 2010; Travieso et al., 2017; Illa et al., 2018; Berus et al., 2019).

One of the most popular classifiers in the literature for this task is kernel support vector

machines (SVMs) (Karan et al., 2020c; Arjmandi and Pooyan, 2012; Bocklet et al., 2013; Orozco-

Arroyave et al., 2014b, 2016b; Wang et al., 2016; Travieso et al., 2017; Illa et al., 2018; Norel et al.,

2018; Kodrasi and Bourlard, 2020).

Since most acoustic features are designed to parametrize short segments (i.e., frames) of

speech (referred to as short-time features), depending on the type of the classifier, short-time

feature representations need to be aggregated at the utterance or speaker level before feeding

the input to the classifier. A common feature aggregation method is computing statistical

functions such as the mean, standard deviation, skewness, and kurtosis of the short-time

features across the utterance length to obtain a fixed-length feature vector for each utter-

ance (Bocklet et al., 2013; Orozco-Arroyave et al., 2014b, 2016b; Wang et al., 2016; Vaiciukynas

et al., 2017b; Norel et al., 2018; Berus et al., 2019). Even after such feature aggregation, a large

number of features can remain, which increases the risk of over-fitting due to the scarcity

of pathological speech training data. Therefore feature selection and feature dimensionality

reduction methods are often used prior to training the classifiers, e.g., correlation filtering,

linear discriminant analysis (LDA), and principal component analysis (PCA) (Little et al., 2009;

Arjmandi and Pooyan, 2012; Tsanas et al., 2012; Wang et al., 2016; Norel et al., 2018; Berus

et al., 2019). Furthermore, inspired by the speaker recognition techniques, short-time feature

aggregation (with the possibility of being unified with the classification step) is also achieved

by GMM-universal background models (GMM-UBM) and iVector-based modeling (García

et al., 2017; Godino-Llorente et al., 2017b; Moro-Velázquez et al., 2018). GMM modeling

followed by Fisher vector encoding is also exploited in Egas-López et al. (2019) for this task.

2.1.3 Deep learning-based approaches

As mentioned in the previous section, typical contributions for automatic pathological speech

detection are based on handcrafting acoustic features. Such features may fail to adequately

capture pathological speech characteristics. Further, since handcrafted features are based

on clinicians’ knowledge, they may also fail to characterize abstract but important acoustic

cues present in pathological speech. As an alternative to using handcrafted acoustic features,

high-level abstract representations of speech can be extracted using data-driven deep learning

approaches (Vasquez et al., 2017; Vaiciukynas et al., 2017a; Cummins et al., 2018; An et al., 2018;

Bhati et al., 2019; Mallela et al., 2020; Vasquez-Correa et al., 2020; Karan et al., 2020b). Although

deep learning has improved performance over conventional machine learning methods in

many speech applications, they have not yet had the expected dominating influence in the

pathological speech assessment field. The latter can be explained by the relatively small size of

pathological speech databases compared to the databases used for other speech tasks (Cum-

mins et al., 2018). Therefore, the main challenge in successfully exploiting deep learning

approaches in pathological speech assessment is alleviating overfitting issues associated with

the typically limited training data that is available. To increase the number of training samples,
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speech signals are split into short segments (e.g., 160 ms), each segment is labeled as healthy

or pathological depending on the label of the complete signal, and convolutional neural

networks (CNNs) are trained on these segments for pathological speech detection (Vasquez

et al., 2017; Vaiciukynas et al., 2017a; An et al., 2018). A similar approach is also used in Mallela

et al. (2020) where cascaded CNN and long short-term memory (LSTM) layers are exploited to

classify the speech segments. In Bhati et al. (2019), LSTM Siamese networks are used for patho-

logical speech detection, where networks with Siamese architectures are trained on pairs of

input data with the same phonetic content. Pairwise training in such networks helps to extract

features that are discriminative of pathological speech while being robust to non-relevant

information in the limited resource scenario. However, since input data needs to have the

same phonetic content, different LSTM networks need to be trained for different utterances.

In addition, unsupervised representation learning is also exploited to extract features from

short (phonetically unmatched) segments of speech representations for pathological speech

detection. Feature representations are first learned using CNN auto-encoders trained with a

large amount of healthy speech data. These representations are then extracted for training

a separate pathological speech classifier (Vasquez-Correa et al., 2020). A similar approach

is also used in Karan et al. (2020b) where instead of typical auto-encoders, stacked auto-

encoders are exploited. Using unsupervised representation learning approaches, there is

no guarantee that the extracted representations are discriminative enough for pathology

detection. In Korzekwa et al. (2019), a supervised representation learning framework is used

where two encoders, i.e., an audio and a text encoder are exploited to generate representations

that not only can reconstruct the input segments but also have discriminative information

regarding pathological speech. However, such an approach requires text transcriptions for

training, which can limit its applicability for scenarios where the speech transcription is not

available.

2.2 Databases and protocols

Despite the quantity and quality of the state-of-the-art approaches for pathological speech

detection, their performance evaluation is typically limited to one database, i.e., speech data

with one language or impaired speech data resulted from one speech disorder, therefore,

their generalization can be limited. In addition, evaluation protocols used in state-of-the-art

approaches largely vary causing the difficulty of a fair comparison of different approaches;

while each approach may have revealed promising conclusions based on their used private

database or evaluation strategy. This can be explained by the lack of standard and open-access

pathological speech databases and their corresponding established evaluation protocols.

In this thesis, for evaluation of pathological speech detection approaches and assessing their

generalisability, we use two databases with different languages. By unifying our evaluation

protocols and the pre-processed databases, we aim to achieve a fair evaluation of different

pathological speech detection approaches. In the following, the data sets and protocols used
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for the pathological speech detection task in this thesis are provided.

2.2.1 PC-GITA database

The PC-GITA database (Orozco-Arroyave et al., 2014a) consists of recordings from 50 PD

patients (25 males, 25 females) and 50 healthy speakers (25 males, 25 females). All speakers are

adults and Colombian Spanish native speakers. The recordings were captured in a soundproof

booth. All of the patients were diagnosed by neurologists and they were recorded with the

patients in ON-state, i.e. no more than 3 hours after the morning medication. None of the

healthy controls had symptoms associated with any neurological diseases. Each speaker utters

24 isolated words, 6 sentences, 4 sentences with additional emphasis on particular words, and

1 text, with all utterances being recorded at a sampling frequency of 44.1 kHz.

Preprocessing

All recordings are down-sampled to 16 kHz, and speech-only segments are extracted using an

energy-based voice activity detector (Boersma, 2002) for all recordings except for words. For

recordings of words in this database, speech-only segments were already manually extracted.

Concatenating speech-only segments from all recordings for each speaker yields an average of

61.07 seconds long speech signal for the healthy speakers and an average of 59.93 seconds

long speech signal for the patients.

Performance evaluation

To evaluate the performance of pathological speech detection approaches on this database,

we use a stratified speaker-independent 10-fold cross-validation ensuring that each fold has

the same number of healthy and pathological speakers and that there is no overlap between

speakers across folds used for training and evaluation. However, in one of our approaches,

i.e., the temporal subspace-based approach in Chapter 4, several healthy speakers should be

used as references required for the time-alignment step. For a fair evaluation, we exclude the

reference speakers from our final pathological speech detection evaluation. After excluding 5

randomly selected reference healthy speakers, we also exclude 5 randomly selected patients to

keep the balance between the number of speakers in the two groups. To evaluate this approach,

considering overall 45 PD patients (22 males, 23 females) and 45 healthy speakers (22 males,

23 females), we use a stratified speaker-independent 9-fold cross-validation framework.

2.2.2 MoSpeeDi database

The MoSpeeDi database consists of recordings from French-speaking adults including 20 PD

and ALS patients (14 males, 6 females) and 30 healthy speakers (11 males, 20 females) from

Geneva University Hospitals and University of Geneva. Each speaker utters 54 pseudo-words
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2.3. Evaluation metrics

and 8 sentences based on the MonPaGe speech screening protocol (Fougeron et al., 2018), with

all utterances being recorded at a sampling frequency of 44.1 kHz. This database is collected

as a part of the interdisciplinary SNF Sinergia project on motor speech disorders.

Preprocessing

After downsampling all recordings to 16 kHz, speech-only segments are extracted from the

recordings using an energy-based voice activity detector (Boersma, 2002). Concatenating

speech-only segments from all recordings for each speaker yields an average of 103.83 seconds

long speech signal for the healthy speakers and an average of 115.28 seconds long speech

signal for the patients.

Performance evaluation

To ensure a balanced number of healthy and pathological speakers, we exclude 10 healthy

speakers (9 females, 1 male) before evaluating the performance of our pathological speech

detection approaches on this database. Hence, considering 20 patients (14 males, 6 females)

and 20 healthy speakers (10 males, 10 females), we use a stratified speaker-independent 5-fold

cross-validation framework ensuring that each fold has the same number of healthy and

pathological speakers and that there is no overlap between speakers across folds used for

training and evaluation. As described in Section 2.2.1, one of our proposed pathological speech

detection approaches, i.e., temporal subspace-based approach in Chapter 4, requires healthy

reference speakers. The data from the excluded 10 healthy speakers are used as references

required for the time-alignment step in this approach.

2.3 Evaluation metrics

The performance of the pathological speech detection task as a binary classification problem

is evaluated by two metrics: i) classification accuracy, i.e., the percentage of correctly pre-

dicted (pathological vs. healthy) speakers. Due to the class balance for the above-mentioned

databases, accuracy measure is a suitable non-biased metric for our evaluation, and ii) area

under ROC curve (AUC) measuring the classification performance at various threshold set-

tings.

2.4 Speech representations

In pathological speech detection approaches in this thesis, different speech representations

are exploited. The usage of some representations such as short-time Fourier transform, Mel-

scale representation, and Mel frequency Cepstral coefficients are motivated by their success

in state-of-the-art approaches. Therefore, in line with state-of-the-art approaches, we further

evaluate the efficacy of such representations in our frameworks. In addition, depending on our
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Chapter 2. Background on automatic pathological speech detection

used frameworks, we also propose to use other representations that have not been explored

for such a task before, i.e., one-third octave band and articulatory posterior representation.

This section gives an overview of the speech representations used in our pathological speech

detection approaches.

2.4.1 Short-time Fourier transform representation

Short-time Fourier transform (STFT) (Allen and Rabiner, 1977) is the most commonly used

time-frequency (TF) representation in speech processing. To obtain the STFT representation

of a discrete-time signal s(n), the speech signal is first segmented into fixed-length (usually

overlapping) frames. After weighting each frame by an analysis window wstft(n), the dis-

crete Fourier transform (DFT) is applied to each frame yielding the complex time-frequency

coefficients Sstft( f ,m), i.e.,

Sstft( f ,m) =
N−1∑
n=0

wstft(n)s(mR +n)e−
i 2πn f

F , f ∈ {0, ...,F −1}, (2.1)

with f being the index of the frequency bin, m being the time frame index, F being the

total number of frequency bins, N being the frame size (length of the window), R being the

frame shift, and i being the imaginary unit, i.e., i 2 =−1. The complex STFT coefficients can

be expressed as Sstft( f ,m) = |Sstft( f ,m)|e iθ( f ,m), with |Sstft( f ,m)| and θ( f ,m) denoting the

magnitude and phase of the TF units. For this thesis, we only use the magnitude of TF units.

However, as we have shown in Janbakhshi and Kodrasi (2022), also the phase information can

be exploited for pathological speech detection.

2.4.2 One-third octave band representation

To obtain a signal representation resembling the transform properties of the human auditory

system, the logarithm of one-third octave band representation is used. To obtain the one-third

octave band representations, the signals are first transformed to the TF domain using the STFT

and then one-third octave band analysis is applied to the STFT representation (Elliott and

Theunissen, 2009; Jensen and Taal, 2016), i.e.,

Soct( j ,m) = log10

√ ∑
f ∈CB j

|Sstft( f ,m)|2, (2.2)

where j denotes the one-third octave band index, CB j denotes the indices of STFT coefficients

corresponding to the j th one-third octave band, and j ∈ {0, .., J −1} where J is the total number

of octave bands.
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2.4. Speech representations

2.4.3 Mel-scale representation

Alternatively to the STFT representation, we also use log Mel-scale representation where

nonlinear frequency scaling motivated by the human auditory system is applied to the STFT

representation using a set of overlapping triangular filters. The central frequencies of the

filters are equally spaced in the Mel-frequency domain. A given frequency in the Mel scale

corresponds to the frequency in Hz based on the relation v(Hz) = 700ev(Mel)/1127−1 (Makhoul

and Cosell, 1976). Denoting the kth Mel-filter withΛk , k ∈ {0, ...,K } where K is the total number

of filters, the Mel-scale representation is computed as

SMel(k,m) = log10

∑
f
|Sstft( f ,m)|2Λk ( f ). (2.3)

2.4.4 Mel frequency cepstral coeffcients

Mel frequency Cepstral coefficients (MFCCs) capturing the vocal tract characteristics are

widely used in speech processing applications. MFCCs are extracted by computing the discrete

cosine transform of the logarithm of the (previously described) Mel-scale representation

in (2.3) and selecting the first K computed coefficients (Davis and Mermelstein, 1980).

2.4.5 Articulatory posterior representation

Distinct speech sounds are produced by different articulatory properties, i.e., by different

vocal tract configurations of the lips, jaw, tongue, pharynx, and palate altering the resonances

of the vocal tract (Pasley et al., 2015). Such articulatory properties of the vocal tract to produce

distinct sounds can be characterized by articulatory features. Articulatory features can be

quantified by learning the mappings between linguistic sub-word units of any language such

as phonemes to articulatory properties such as the place of constriction, the height of the

tongue, roundedness of the lips, etc. Articulatory representations in this thesis are extracted

as in Dubagunta and Magimai-Doss (2019), where frame-level posteriors of four articulatory

categories are computed, i.e., manner of articulation (e.g., degree of constriction), place of

constriction, the height of the tongue, and vowel. Articulatory posteriors (AP) for each category

are estimated using CNNs trained on healthy speech data from the English AMI corpus (Car-

letta et al., 2005) based on acoustic phoneme-to-articulatory feature mappings (Rasipuram

and Magimai.-Doss, 2016). To obtain the final AP representation per time frame, all extracted

APs for each category are concatenated. For details on the training procedure for AP feature

extraction, the reader is referred to Dubagunta and Magimai-Doss (2019).

17



Chapter 2. Background on automatic pathological speech detection

2.5 Summary

In this chapter, we have discussed several research areas on state-of-the-art automatic patho-

logical speech detection approaches. The majority of the approaches are based on classical

machine learning where handcrafted acoustic features are first extracted and used to train

classical classifiers to achieve pathological and typical speech discrimination. For many of the

handcrafted acoustic features related to vocal source, voiced speech segmentation methods

are required which can fail due to the low quality of pathological speech. More recently, there

has been a growing interest in leveraging deep learning-based approaches for pathological

speech assessment, where neural networks have been exploited to extract high-level and

abstract speech representations. However, due to challenges in successfully applying deep

learning approaches to pathological speech assessment, fewer contributions have been made

when compared to approaches based on classical machine learning. In the majority of deep

learning-based approaches for speech pathology detection, the neural networks are not ex-

plicitly trained to extract robust features. In this chapter, we have also introduced databases

and evaluation metrics used to evaluate the proposed detection approaches in the remainder

of this thesis. Details on different acoustic speech representations used in this thesis have also

been provided.
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3 Background on automatic pathologi-
cal speech intelligibility assessment

In this chapter, we provide an overview of state-of-the-art automatic pathological intelligibil-

ity techniques and establish the experimental framework and settings for the intelligibility

assessment techniques proposed in this thesis. We summarize several intelligibility measures

proposed in the literature in Section 3.1. Then, different databases, the required preprocessing

steps, and validation strategies used to evaluate our proposed intelligibility measures are pre-

sented in Section 3.2. The evaluation metrics are described in Section 3.3 and the information

about the used acoustic speech representation for the proposed intelligibility measures is

provided in Section 3.4. Finally a summary of the chapter is presented in Section 3.5.

3.1 Literature overview

In the past decade, several approaches for the automatic assessment of pathological speech

intelligibility have been proposed. Such approaches aim to develop an objective intelligibility

measure correlated with the subjective intelligibility scores, i.e., the percentage of words

correctly understood by listeners. These approaches can be broadly categorized into blind

approaches (Paja and Falk, 2012; Hummel et al., 2011; Falk et al., 2012; Martínez et al., 2013; Kim

et al., 2014; Haderlein et al., 2017; Fletcher et al., 2017) and non-blind approaches (Haderlein

et al., 2004; Middag et al., 2008, 2009; Maier et al., 2009; Nuffelen et al., 2009b; Middag et al.,

2010; Bocklet et al., 2012; Martínez et al., 2015; Imed et al., 2017; Kalita et al., 2018).

Blind approaches refer to approaches that do not exploit any knowledge about healthy (i.e.,

intelligible) speech and assess pathological speech intelligibility by extracting acoustic fea-

tures that are believed to be correlated with intelligibility. In Hummel et al. (2011); Falk et al.

(2012); Paja and Falk (2012); Haderlein et al. (2017); Fletcher et al. (2017), individual acous-

tic features such as jitter, shimmer, fundamental frequency, formant frequencies, voiced

frames percentage, or low-to-high modulation energy ratio (LHMR) are directly used to assess

pathological speech intelligibility. In Hummel et al. (2011); Paja and Falk (2012); Falk et al.

(2012); Kim et al. (2014); Fletcher et al. (2017), multiple acoustic features are handcrafted

and combined through feature selection/reduction methods and then regression models are
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Chapter 3. Background on automatic pathological speech intelligibility assessment

trained to estimate speech intelligibility. It should be noted that many of the handcrafted

acoustic features are similar to the ones used in classical machine learning-based approaches

for speech pathology detection discussed in Setion 2.1.2. However, instead of training a binary

classifier to discriminate between healthy and pathological speech, intelligibility assessment

deals with a regression problem to predict the speech intelligibility of pathological speakers.

Although several proposed measures have been shown to be correlated with subjective intelli-

gibility scores, rigorous validation strategies have not always been followed. For example, a

fair leave-one-subject-out paradigm or a separate test and train set have not been reported for

feature selection or regression training (Hummel et al., 2011; Paja and Falk, 2012; Falk et al.,

2012).

Non-blind approaches rely on intelligible speech recordings from healthy speakers to esti-

mate pathological speech intelligibility. In these approaches, healthy speech recordings are

exploited in different manners. In Bocklet et al. (2012), a speaker-independent GMM is trained

on healthy speech to create an intelligible reference model. By adapting the parameters of this

reference model, a GMM-based supervector is created to represent the pathological speech

signal. The intelligibility score is then obtained by training a regression model on the GMM-

based supervector. A very similar approach is followed in Martínez et al. (2013); Martínez et al.

(2015); Imed et al. (2017); Kalita et al. (2018), with the difference consisting in using an iVector

or Gaussian posteriogram representation instead of a GMM-based supervector. In other non-

blind approaches, pathological speech intelligibility is evaluated by training regression models

on features produced by automatic speech recognition (ASR) systems, automatic speech

alignment (ASA) systems, or phonological feature (PLF) extractor systems (Haderlein et al.,

2004; Schuster et al., 2005; Windrich et al., 2008; Middag et al., 2008; Maier et al., 2009; Middag

et al., 2009; Nuffelen et al., 2009b; Middag et al., 2010; Kim et al., 2015; Dimauro et al., 2017).

Commonly used features from such systems are the word error rate (WER), log-likelihood

ratio, phoneme posteriors, and phonological features. These systems are typically trained

using a large number of transcribed/segmented healthy speech recordings (Haderlein et al.,

2004; Schuster et al., 2005; Windrich et al., 2008; Middag et al., 2008, 2009; Maier et al., 2009;

Nuffelen et al., 2009b; Middag et al., 2010; Kim et al., 2015; Dimauro et al., 2017).

Although promising results have been shown using the above-mentioned approaches, several

drawbacks arise when using them in practical scenarios. Most approaches require a large

number of features for intelligibility prediction, increasing as a result the risk of over-fitting

and limiting the performance in unseen data due to very limited pathological training data

for intelligibility assessment. In addition, non-blind approaches are typically complex and

require a large number of healthy speech recordings for training, which might be infeasible for

low-resource languages. Finally, non-blind approaches relying on ASR, ASA, and PLF systems

require transcriptions of healthy and/or of pathological speech signals, which can be a time-

and resource-consuming task.
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3.2. Databases and protocols

3.2 Databases and protocols

Although many state-of-the-art pathological speech intelligibility measures have been pro-

posed, their performance evaluation is typically limited to one database, i.e., speech data

with one language or impaired speech data resulted from one speech disorder, therefore,

their generalization can be limited. In addition, evaluation protocols used for state-of-the-

art intelligibility measures are very diverse which results in the difficulty of conducting a

fair comparison between different measures. Similarly to the speech pathology detection

task described in the previous chapter, such diversity can be explained by the lack of stan-

dard and open-access pathological speech databases for intelligibility assessment and their

corresponding established intelligibility evaluation protocols.

In this thesis, for evaluation of pathological speech intelligibility measures and assessing their

generalisability, we use two databases with different languages and disorders. To evaluate

the proposed intelligibility measures, the ground truth for speech intelligibility, i.e., subjec-

tive intelligibility scores, are required. Therefore, only databases with available subjective

intelligibility scores computed through subjective listening paradigms can be used. Such

subjective intelligibility scores are not available for the previously mentioned databases in

Section 2.2 that are considered for pathological speech detection task in Chapter 2. Hence,

different databases are considered for pathological speech intelligibility assessment task.

In this thesis, by unifying our evaluation protocols and the pre-processed databases, we

aim to achieve a fair evaluation of different approaches for pathological speech intelligibility

assessment. In the following, the data sets and protocols used for the pathological speech

intelligibility assessment task in this thesis are provided.

3.2.1 Universal access speech (UA-Speech) database

The UA-Speech database (Kim et al., 2008) includes recordings of 15 adult English-speaking

dysarthric patients (11 males, 4 females) diagnosed with CP and of 13 adult healthy speakers

(9 males, 4 females). Each speaker read 763 isolated words, with 155 of the words uttered three

times and referred to as common words (CW). The remaining 298 words were uttered only

once and are referred to as uncommon words (UW). A 7-channel microphone array is used

for recording the speakers at a sampling rate of 16 kHz. The subjective intelligibility scores of

patients are computed by performing a subjective listening test using 5 naive listeners for each

patient. Listeners provided orthographic transcriptions of speech utterances, and based on

the mean percentage of the correct transcribed responses across the listeners, the subjective

intelligibility score of each patient is obtained. The subjective intelligibility scores of patients

range from 2% to 95%.
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Preprocessing

For evaluating intelligibility assessment approaches in this thesis, we consider the recordings

of the (arbitrarily selected) 5th channel from the UA-Speech database. To extract speech-only

segments, an energy-based voice activity detection (Boersma, 2002) is applied to the speech

recordings. Concatenating speech-only segments from all recordings for each speaker yields

an average of 6199.8 seconds long speech signal for the healthy speakers and an average of

17084.6 seconds long speech signal for the patients.

Validation strategy

For the UA-Speech database two scenarios are considered.

Phonetically-balanced scenario. In this scenario all speakers (healthy and pathological) utter

exactly the same words. All 763 available words are considered for this database. The intelli-

gibility score is calculated for each word, and the final intelligibility score for each patient is

computed as the mean intelligibility score across all words.

Phonetically-unbalanced scenario. In this scenario, we assume that all speakers (healthy and

pathological) utter different sets of word utterances. For word-level intelligibility assessment,

the intelligibility score is calculated for each word uttered by each patient, and the final

intelligibility score is computed as the mean intelligibility score across all available words

for that patient. If the word-level intelligibility assessment is not possible (depending on the

proposed measures, cf. Chapter 7), different sets of words are concatenated to create longer

utterances for each speaker, and a single intelligibility score is estimated for each patient.

Since the UA-Speech database contains a large number of words that can be combined in

different ways for different speakers, phonetically-unbalanced analyses are done on the UA-

Speech database.

3.2.2 Dutch corpus of pathological and normal speech (COPAS)

From the COPAS database (Nuffelen et al., 2009a), we consider recordings of 16 adult Dutch-

speaking HI patients with a speech disorder (6 males, 10 females) and of 22 adult healthy

speakers (11 males, 11 females). For each speaker, recordings of 10 sentences sampled at 16

kHz are used. The subjective intelligibility scores of the speakers are computed based on the

Dutch intelligibility assessment (DIA) test where a listener identifies missing phonemes in

word templates of 50 monosyllabic words uttered by each speaker. Subjective intelligibility

is then defined as the percentage of correctly identified phonemes for each speaker. The

subjective intelligibility scores of patients range from 53% to 98%.
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Preprocessing

Individual words are extracted from all sentences using forced alignment from an ASR system

followed by manual corrections, resulting in 47 available words for each speaker. Concatenat-

ing all available words for each speaker yields an average of 22.9 seconds long speech signal

for the healthy speakers and an average of 31.1 seconds long speech signal for the patients.

Validation strategy

For this database, only phonetically-balanced analysis is considered since unlike the UA-

Speech database, it does not contain enough words to combine in different ways for creating

phonetically-unbalanced scenarios. Given that all speakers (healthy and pathological) utter

exactly the same 47 words, the intelligibility score is calculated for each word, and the final

intelligibility score for each patient is computed as the mean intelligibility score across all

words.

3.3 Evaluation metrics

To evaluate the performance of the automatic pathological intelligibility measures, the Pearson

correlation coefficient (R) and the Spearman rank correlation coefficient (RS) between the

automatically estimated intelligibility and the subjective intelligibility scores of the patients are

computed. In addition, the statistical significance of these correlation values is also assessed.

To evaluate the statistical significance, the critical values of R and RS , denoted by Rc and RSc ,

respectively, are computed using a significance level α = 0.05 and taking into account the

number of patients in each database (Zwillinger and Kokoska, 2000a,b). The obtained critical

values are presented in Table 3.1. The correlation values obtained for the different intelligibility

measures are considered to be statistically significant if |R| ≥ |Rc | and |RS | ≥ |RSc |.

Table 3.1 – Critical values for the Pearson and Spearman correlation coefficients obtained using
α= 0.05 (Zwillinger and Kokoska, 2000a,b). The number of pairs of scores is considered to be
the number of patients in each database. The correlation values obtained for any intelligibility
measure are considered to be statistically significant if |R| ≥ |Rc | and |RS | ≥ |RSc |.

15 English CP patients 16 Dutch HI patients

Rc RSc Rc RSc

−0.441 −0.443 −0.426 −0.443
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3.4 Speech representations

For our proposed intelligibility measures in this thesis, we consider a simple perceptually

relevant acoustic speech representation, i.e., one-third octave band representation. The appli-

cability of this speech representation has been established for objective speech intelligibility

assessment in speech enhancement applications. One-third octave band representation of

speech is described in the previous chapter (cf. Section 2.4.2).

3.5 Summary

In this chapter, we have discussed several state-of-the-art techniques for assessing pathological

speech intelligibility which we believe to represent the most significant contributions in the

field. Automatic pathological speech intelligibility assessment approaches can be broadly

categorized into blind approaches and non-blind approaches. In blind approaches which do

not require any healthy (intelligible) speech signals, several handcrafted acoustic features are

extracted from pathological speech and are then analyzed to derive an intelligibility prediction.

Non-blind approaches on the other hand encompass a wide range of approaches where

healthy reference signals are exploited in different manners to extract features to be analyzed

for intelligibility assessment. The performance of many of the state-of-the-art approaches

can be limited since they are based on extracting a large number of acoustic features while

using very limited pathological training data. In addition, the complexity of many non-

blind approaches, their requirement to have access to a large number of healthy speech

recordings, and/or to speech transcriptions limit their application for low-resource languages.

Furthermore, in this chapter, we have also presented databases and evaluation metrics used

to evaluate our proposed intelligibility measures in the remainder of the thesis.
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4 Subspace-based learning for auto-
matic pathological speech detection

In this chapter, we present our proposed approach to automatically discriminate between

pathological and healthy speech based on analyzing speech spectral and temporal subspaces.

The applicability and generalisability of the proposed subspace-based approach in this chapter

are experimentally investigated across databases and also compared to using an SVM with

state-of-the-art features.

4.1 Introduction

In Chapter 2 we introduced classical machine learning-based approaches for automatic

pathological speech detection. In these approaches, short-time acoustic features are first

handcrafted to reflect impaired speech dimensions related to the vocal source and tract. These

features are then used to train a classifier for pathological speech detection. As mentioned

in Chapter 2, due to the low quality of pathological speech, the pitch estimation or voiced

speech segmentation methods that are required for features related to vocal source (e.g., f0,

jitter, shimmer or HNR) can fail (Parsa and Jamieson, 2001; Orozco-Arroyave et al., 2012).

Furthermore, all extracted short-time (i.e., frame-level) features need to be aggregated at the

utterance or speaker level to obtain fixed length representations before being fed to typical

classifiers. Among common aggregation methods are statistical parametrization using statis-

tical functionals and GMM-based modeling (cf. Section 2.1.2). In such feature aggregation,

information regarding temporal patterns of short-time features is not captured although it

can have important cues for pathological speech detection.

In this chapter we propose a learning method where spectral or temporal information can be

separately modeled and exploited for pathological speech detection using a minimal number

of parameters. Because of atypical changes in spectro-temporal fluctuations associated with

imprecise and reduced articulatory movements in many speech disorders (e.g., dysarthria),

the dominant spectro-temporal patterns of healthy and pathological speech can be expected

to differ (Rosen et al., 2006). Therefore, we propose to extract spectro-temporal subspaces

spanning the dominant spectro-temporal patterns of speech and use them as acoustic features
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Chapter 4. Subspace-based learning for automatic pathological speech detection

for automatic pathological speech detection. Spectro-temporal subspaces can be directly

extracted from continuous speech without requiring voiced speech segmentation. Further, a

subspace-based representation can be robust to unstructured random noise and can show

better generalization performance without requiring a large amount of training data (Ruiping

Wang et al., 2008; Chen et al., 2013; Mishra et al., 2019). Since we exploit the structural infor-

mation embedded in the subspace models to discriminate between healthy and pathological

speech, subspace-based learning yields a minimal number of parameters for training. To

the best of our knowledge, a subspace-based learning framework for pathological speech

detection has never been considered in the literature. Furthermore, while spectral subspaces

are the typical choice for speech subspace analyses in many applications, temporal subspace

analysis has never been explored. In Kacha et al. (2020), it has been experimentally shown that

the mean of the first and second dominant spectral basis vector of healthy and pathological

speech differ. However, no techniques aiming at automatic pathological speech detection

using these spectral subspaces have been proposed.

The rest of the chapter is organized as follows. Section 4.2.1 describes the construction

of spectro-temporal subspaces by extracting dominant basis vectors spanning the column

(i.e., spectral) and row (i.e., temporal) space of the TF representation using singular value

decomposition (SVD). The same section also provides a solution for unaligned utterances

prior to constructing the temporal subspaces. Section 4.2.2 provides details on Grassmann

discriminant analysis (GDA) which is a subspace-based discriminant analysis technique to

automatically discriminate between pathological and healthy speakers with each speaker

represented by subspaces. Experimental results are presented in Section 4.3, where it is shown

that compared to spectral subspaces, temporal subspaces are more powerful discriminators

for pathological speech detection. Section 4.5 presents a summary of the chapter.

4.2 Subspace-based pathological speech detection

As depicted in the schematic representation in Fig. 4.1, the proposed subspace-based patho-

logical speech detection approach consists of computing spectro-temporal subspaces and

applying subspace-based discriminant analysis using GDA. In the remainder of this section,

the computational details of the proposed approach are presented.

4.2.1 Computing spectro-temporal subspaces

To obtain an acoustic feature representation, all speech signals are first transformed to the

TF domain. Although any user-defined TF representations can be used, here we use either

logarithm of the one-third octave band spectrum (cf. Section 2.4.2) or MFCC representations

(cf. Section 2.4.4) that result into a low number of octave bands or MFCC coefficients. Let Sm

denote the (J ×Nm)–dimensional TF representation of an utterance from speaker m, with J

being the total number of frequency (e.g., one-third octave or MFCC) bands, Nm being the total

number of time frames, and J ¿ Nm . As the rank(Sm) = J , selecting TF representations with
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Figure 4.1 – Block diagram of the proposed subspace-based approach for pathological speech
detection. The dominant spectro-temporal patterns of speech are characterized by subspaces
spanning dominant spectral and temporal basis vectors of TF representations, where basis
vectors are obtained using SVD. Considering subspaces as acoustic features, a subspace-based
discriminant analysis, i.e., GDA, is used to automatically discriminate between pathological
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Figure 4.2 – Illustration of using SVD for obtaining spectral and temporal basis vectors span-
ning the spectral and temporal dimension of the TF representation of an utterance.

high values for J (e.g., in STFT representations) will result in higher computations required for

tuning the number of spectral and temporal basis vectors as will be explained in the following

subsections. While several techniques can be used to compute spectro-temporal basis vectors,

in this chapter we propose to use SVD which provides an analytical solution and results in a

high performance for our application. A schematic representation of applying the SVD to a

sample utterance representation to obtain spectral and temporal basis vectors is depicted in

Fig. 4.2.

The SVD of Sm is defined as

Sm = UΣVT , (4.1)

with U being the (J × J )–dimensional orthonormal matrix of left singular vectors, Σ being the

(J × J)–dimensional diagonal matrix of singular values assumed to be sorted in descending
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order, and V being the (Nm × J)–dimensional orthonormal matrix of right singular vectors.

Columns of U span the column space of Sm , i.e., spectral space, and rows of VT span the row

space of Sm , i.e., temporal space (Van Der Veen et al., 1993). Hence, in the following, columns

of U and V will be referred to as spectral and temporal basis vectors, respectively 1. It should

be noted that for comparing spectral basis vectors across different speakers, no constraints

on the speech phonetic content are required (on the condition that speech utterances are

long enough to establish an average spectral pattern). However, the computation of temporal

basis vectors highly depends on the phonetic content of the speech representations. Hence,

comparing temporal basis vectors across different speakers requires the availability of the

speech representations with the same phonetic content from all speakers.

Spectral subspaces

To construct the spectral subspace for speaker m, Sm is mean-centered in each frequency band

prior to computing the SVD in (4.1). The (J ×ds)–dimensional matrix Ũds of dominant spectral

basis vectors spanning the spectral subspace is then constructed from the first ds spectral

basis vectors in U, where ds < J since rank(Sm) = J . The parameter ds can be automatically

computed based on nested cross-validation (cf. Section 4.3.2).

It has been theoretically proven that computing spectral basis vectors using the SVD without

mean-centering the representations biases the first spectral basis vector to the direction of

mean spectral vector across time (also known as the long-term average spectrum (LTAS)

in the speech community) rather than to the direction with maximal variability of spectral

information (Cadima and Jolliffe, 2009; Alexandris et al., 2017). Furthermore, in Kacha et al.

(2020), this phenomenon is experimentally confirmed for voiced segments of speech, i.e.,

the first principal component (PC) of the spectrogram is shown to be highly correlated with

LTAS (Kacha et al., 2020). Although in Kacha et al. (2020) a group difference in the average of

the first PC of the spectrograms (i.e., LTAS) computed from control speakers and PD patients

is observed, in our application removing the bias of LTAS is important for achieving a good

detection accuracy. As mentioned before, spectral mean is one of the statistical functionals

commonly applied on TF features for feature aggregation. However, through initial analysis on

our considered databases, we confirmed that using only the spectral mean is not discriminative

enough for pathology detection. The difference in our finding and in Kacha et al. (2020) might

be due to the fact that we consider all speech segments while in Kacha et al. (2020) only voiced

frames are analyzed.

1It should be noted that spectral basis vectors given by (4.1) can be equivalently computed by PCA. PCA is
commonly used for feature dimensionality reduction by projecting each feature vector (i.e., representing each
speaker) onto the space spanned by the basis vectors of the feature matrix (consisting of features from all speakers).
However, here we represent each speaker by a subspace spanned by basis vectors as the basic elements of our
subspace-based learning method. In other words, here we are dealing with classifying subspaces represented by “a
set” of vectors rather than (more conventionally) classifying feature vectors.
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Temporal subspaces

As pointed out before, for computing and comparing temporal basis vectors, utterances from

speakers must have the same phonetic content. The dominant temporal basis vectors in V

from (4.1) can be used to construct the temporal subspace from Sm . However, temporal basis

vectors obtained from different speakers cannot be directly compared to each other because

of unaligned TF representations (due to different speakers and speaking rates). Therefore,

prior to computing the temporal basis vectors, we propose to time-align all TF representations

using dynamic time warping (DTW) (Rabiner and Juang, 1993). Following a similar procedure

as in (Kodrasi and Bourlard, 2020) for time-alignment, utterances Sm ,m = 1, . . . , M , from all M

available speakers are individually time-aligned to the (J ×Nr )–dimensional representation Sr

of the same utterance from an (arbitrarily selected) healthy reference speaker r . For each time

frame i in Sr , with i ∈ 1, ..., Nr , all time frames in Sm that are mapped to it by DTW are extracted

and averaged to create the corresponding time frame i in the time-aligned representation Ŝm .

By repeating this procedure for all available Sm , m 6= r , the utterance representations of all

speakers are time-aligned. The dimension of the time-aligned representations Ŝm is J ×Nr ,

i.e., it is dictated by the dimension of the reference representation Sr .

To construct the temporal subspace for speaker m, the SVD is applied to the time-aligned

representation as in (4.1), i.e.,

Ŝm = ÛΣ̂V̂T , (4.2)

with Û being a (J × J )–dimensional orthonormal matrix of spectral basis vectors, Σ̂ being the

(J × J)–dimensional diagonal matrix of singular values assumed to be sorted in descending

order, and V̂ being the (Nr × J)–dimensional orthonormal matrix of temporal basis vectors.

The time-aligned representations are mean-centered in each time frame prior to computing

the SVD. The (Nr ×dt )–dimensional matrix of dominant temporal basis vectors Ṽdt spanning

the temporal subspace is then constructed from the first dt temporal basis vectors in V̂, where

dt < J since rank(Ŝm) = J . The parameter dt can be automatically computed based on nested

cross-validation (cf. Section 4.3.2).

It should be noted that the computation of temporal subspaces relies on being able to accu-

rately time-align representations. Based on our informal analyses, using DTW yields a very

good alignment performance for our application.

4.2.2 Subspace-based discriminant analysis

Unlike typically used features that lie in a Euclidean space, subspaces lie in a non-Euclidean

space called the Grassmann manifold. Hence, we propose to perform the classification for

automatic pathological speech detection on this manifold using GDA (Hamm and Lee, 2008).

GDA, which has shown promising results for image classification tasks, applies kernel linear

discriminant analysis (LDA) using a Grassmann kernel respecting the geometry of subspaces

on the manifold. The Grassmann manifold is first mapped into a high-dimensional Hilbert
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space H which obeys the Euclidean geometry. This embedded manifold is then mapped into

a lower-dimensional and more discriminative Euclidean space under the Fisher LDA criteria.

Finally, the dimensionality-reduced data can be classified through classical classifiers such as

LDA or k-nearest neighbors (Hamm and Lee, 2008).

For pathological speech detection, we are dealing with a two-class (healthy vs. pathological)

classification problem where each class c , c ∈ {1,2}, has Mc training samples (speakers). Let Yq

denote the orthonormal matrix representing the (spectral or temporal) subspace associated

with the training sample q . Further, let Φ denote the function mapping subspaces to the

Hilbert space H . Finding the discriminant Fisher directions w in H requires maximizing

J =
wT Sφb w

wT Sφw w
, (4.3)

with

Sφb = 1

M

2∑
c=1

Mc (mφ
c −mφ)(mφ

c −mφ)
T

, (4.4)

Sφw = 1

M

2∑
c=1

∑
Yq∈c

(Yφ
q −mφ

c )(Yφ
q −mφ

c )
T

, (4.5)

where M = M1 + M2, mφ
c denotes the mean of the mapped training samples from class c,

mφ denotes the mean of all mapped training samples, and Yφ
q denotes the mapped training

sample Yq . Clearly, with H being a very high-dimensional space, (4.3) cannot be solved

directly. To overcome this limitation, the kernel trick is used where the original subspaces Yq

are never explicitly mapped to H (Mika et al., 1999). Instead, they are represented through

a set of pairwise similarity comparisons based on a valid kernel function defined on the

Grassmann manifold. The Grassmann kernel used in our approach is defined as (Hamm and

Lee, 2008)

k(Yp ,Yq ) =
∥∥∥YT

p Yq

∥∥∥2

F
, (4.6)

with {·}F denoting the matrix Frobenius norm and Yp and Yq being the orthonormal matrices

representing the (spectral or temporal) subspaces of samples p and q . Using the Grassmann

kernel in (4.6), (4.3) can be reformulated without explicitly computing Sφb and Sφw and the

discriminant directions w can be analytically computed and used to project the spectro-

temporal subspaces onto a lower-dimensional Euclidean space.2 The final classification

results presented in Section 4.3.4 are then obtained using LDA on these dimensionality-

reduced subspaces.

It should be noted that as in KLDA, generally C −1 discriminant directions can be found, where

C is the number of classes. Hence, by using C −1 discriminant directions, the dimensionality

of the resulting Euclidean space can be reduced to C −1. For our two-class problem (e.g.,

2For details on reformulating (4.3) using the kernel trick and computing the discriminant direction w, the reader
is referred to Mika et al. (1999).
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C = 2), the final resulting lower-dimensional Euclidean space is of dimension 1, therefore the

final LDA classifier has only 1 parameter.

4.3 Experimental results

In this section, the performance of the proposed subspace-based approach for pathological

speech detection is investigated and compared to state-of-the-art approaches.

As mentioned before, on the one hand, the temporal subspace-based detection method

requires all speakers to utter the same speech material and uses the speech signals of a healthy

speaker as a reference. On the other hand, spectral subspace-based and other state-of-the-art

approaches do not have such a requirement. For a fair comparison of all approaches, in the

following, we consider two scenarios. The first scenario is designed to compare the temporal

subspace-based method and other methods by excluding a subset of the speech material and

several healthy speakers before the evaluation. The second scenario is designed to compare

the performance of all other approaches on the complete databases.

4.3.1 Evaluation protocols

The applicability and generalisability of the proposed approach are evaluated on two databases,

i.e., the Spanish PC-GITA and French MoSpeeDi databases (cf. Section 2.2.1 and 2.2.2). The

construction of the two previously explained scenarios on the two databases is done as follows.

Scenario 1

Due to computational limitations of DTW for time alignment when temporal subspaces are

used, from each database we consider only 6 sentences for each speaker. After preprocess-

ing (cf. Section 2.2), all sentences are concatenated and used to extract spectro-temporal

subspaces and state-of-the-art features for each speaker (cf. Section 4.3.3).

Reference speakers for time-alignment As described in Section 4.2.1, computing temporal

subspaces requires a reference speaker for time-alignment. To avoid introducing any bias, the

considered reference speakers are not included in the training/testing sets of the databases.

To analyze the sensitivity of the temporal subspace-based approach to the reference speaker

selection, 5 and 10 randomly selected (healthy) reference speakers are considered for the

PC-GITA and MoSpeeDi databases, respectively. Excluding the reference speakers from the

databases and also maintaining the balance between the number of speakers in each class,

we consider 45 PD patients (22 males, 23 females) and 45 healthy speakers (22 males, 23

females) from the PC-GITA database and 20 PD and ALS patients (14 males, 6 females) and 20

healthy speakers (10 males, 10 females) from the MoSpeeDi database to train and test the final

classification using GDA. The validation strategy on the PC-GITA and MoSpeeDi databases for

this scenario is a stratified speaker-independent 9-fold and 5-fold cross-validation, respectively.
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The performance of the proposed temporal subspace-based approach using each reference

speaker is computed, and the presented performance values in Section 4.3.4 for the temporal

subspace-based approach represent the mean and standard deviation of this performance

across different reference speakers. The same evaluation paradigm is also used for state-of-

the-art approaches.

Scenario 2

To maintain comparability to the literature and across the different chapters in this thesis,

we also evaluate the performance of the different approaches on the complete available

databases. In such a scenario, the temporal subspace-based method is not applicable (due

to requirements mentioned in the previous subsection). Hence, in this scenario we evaluate

the spectral subspace-based method and the state-of-the-art approaches using all the speech

material available for both databases, i.e., considering total 100 speakers in PC-GITA and 40

speakers in MoSpeeDi (cf. Section 2.2.1 and 2.2.2). The validation strategy on the PC-GITA and

MoSpeeDi databases for this scenario is a stratified speaker-independent 10-fold and 5-fold

cross-validation, respectively.

4.3.2 Algorithmic settings

Spectro-temporal subspaces are extracted on the logarithm of one-third octave band repre-

sentations and MFCC representations. The one-third octave band representation is computed

using J = 15 and a 32 ms Hamming window with 50% overlap. For the MFCC representa-

tion, similar framing parameters as in the octave band representation and 20 Mel filters are

considered. Finally the first 15 MFCC coefficients are used (cf. Section 2.4).

As in Hamm and Lee (2008), a regularization parameter δ is used for GDA to avoid numerical

issues and improve generalisability. Therefore, our subspace-based approach has two hyper-

parameters, i.e., δ and the number of spectral basis vectors (ds) or the number of temporal

basis vectors (dt ). To select δ, ds , and dt , a grid-search with δ ∈ {10−10, . . . ,10−1}, ds ∈ {1, . . . , J },

and dt ∈ {1, . . . , J } is performed using nested cross-validation in each training fold. The final δ,

ds , and dt are selected as the ones yielding the highest mean accuracy on the training set.

4.3.3 State-of-the-art methods and baseline features

The proposed subspace-based approach is compared to using an SVM with a radial basis

kernel function with state-of-the-art features such as MFCCs and the frequency-dependent

shape parameter µ. Furthermore, we also evaluate using an SVM with one-third octave band

representations, which has not been previously explored for this task. When using MFCCs, the

feature vector is a 60–dimensional vector constructed by extracting 4 functionals, i.e., mean,

standard deviation, kurtosis, and skewness of 15 MFCCs across time. When using the shape

parameter µ, the feature vector is a 385–dimensional vector constructed as in Kodrasi and
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Table 4.1 – Performance of the proposed (i.e., T-GDA and S-GDA) and state-of-the-art patho-
logical speech detection methods (i.e., SVM using TF functionals and SVM using the sparsity
parameter) on different databases using evaluation scenario 1.

Spanish PC-GITA French MoSpeeDi

Method Representation Accuracy (%) AUC Accuracy (%) AUC

Proposed

T-GDA MFCC 79.1±4.2 0.87±0.03 90.5±3.3 0.94±0.02
T-GDA Octave 82.9±1.9 0.90±0.01 81.5±4.6 0.89±0.03

S-GDA MFCC 78.9 0.84 75.0 0.78
S-GDA Octave 61.1 0.71 65.0 0.66

Baseline

SVM on functionals MFCC 72.2 0.81 65.0 0.77
SVM on functionals Octave 69.0 0.75 67.5 0.75
SVM µ 67.8 0.77 72.5 0.77

Bourlard (2020). For both considered feature vectors, to select the soft margin constant C and

the kernel width γ of the SVM, a grid search with C ∈ {10−2, . . . ,104} and γ ∈ {10−4, . . . ,102} is

performed using nested cross-validation in each training fold. The final C and γ are selected

as the ones yielding the highest mean accuracy on the training set.

It should be noted that we also investigated the performance using an SVM with other state-of-

the-art acoustic features such as f0, jitter, shimmer, and HNR. However using such features did

not perform well for this task (Janbakhshi et al., 2020; Kodrasi and Bourlard, 2020). Therefore

we decided to report the result of the acoustic features which have shown more promising

results in the literature (e.g., MFCCs and sparsity parameters).

4.3.4 Results

Table 4.1 presents the accuracy and AUC of the considered pathological speech detection

approaches on the considered databases using evaluation scenario 1, with bold entries in-

dicating the maximum performance. The proposed spectral and temporal subspace-based

approaches are denoted by S-GDA and T-GDA, respectively. The SVM methods refer to state-

of-the-art (baseline) approaches. For the proposed temporal subspace-based approach on the

PC-GITA and MoSpeeDi databases, besides the mean performance, the standard deviation of

the performance across different reference speakers are also presented (cf. Section 4.3.1).

Several observations can be made based on the presented results. First, it can be observed that

the proposed subspace-based approach using temporal subspaces yields better performance

than using spectral subspaces and outperform all other state-of-the-art approaches for both

considered databases independently of the used speech representation. Hence, it can be said
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Table 4.2 – Performance of the proposed (i.e., S-GDA) and state-of-the-art pathological speech
detection methods (i.e., SVM using TF functionals and SVM using the sparsity parameter) on
different databases using evaluation scenario 2.

Spanish PC-GITA French MoSpeeDi

Method Representation Accuracy (%) AUC Accuracy (%) AUC

Proposed

S-GDA MFCC 77.0 0.82 67.0 0.72
S-GDA Octave 65.0 0.69 70.0 0.65

Baseline

SVM on functionals MFCC 65.0 0.68 52.5 0.52
SVM on functionals Octave 70.0 0.76 72.5 0.8
SVM µ 71.0 0.78 67.5 0.70

that the characterization of temporal patterns has higher discriminative power for subspace-

based healthy and pathological speech discrimination than the characterization of spectral

patterns. Further, observing the low standard deviation of the performance of the temporal

subspace-based approach suggests that this approach is not highly sensitive to the reference

speaker selection. Although an optimal reference speaker can be chosen based on nested

cross-validation on the training data, we did not attempt to find the best reference speaker

for alignment. This is a fair comparison for scenarios where many reference speakers are not

available. Second, it can be observed that the spectral subspace-based approach using MFCC

representations performed better than other state-of-the-art approaches. Comparing the two

speech representations on both databases, we observe that baseline approaches, i.e., SVM on

functionals of MFCC and octave-band representations yield comparable performance while

using spectral subspace-based approach (i.e., S-GDA) only improves the performance using

MFCC representations. It should be noted that in both approaches, the temporal information

is ignored and only spectral information is considered.

In summary, the proposed temporal subspace-based method outperforms the state-of-the-art

methods achieving better performance on both considered databases and both considered fea-

ture representations. However, such an approach is applicable only in phonetically-balanced

scenarios.

Table 4.2 presents the performance of the considered pathological speech detection ap-

proaches for scenario 2, where we compare different spectral approaches to establish the

baseline performance on all available data from the two databases. First, it can be observed

that S-GDA using MFCC representations yields the best performance on the PC-GITA database

while using an SVM with octave band representations yields the best performance on the

MoSpeeDi database. Nevertheless, the performance of the S-GDA using MFCC representations

on the MoSpeeDi database is not significantly lower than the performance of best performing
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approach on this database, i.e., using an SVM with octave band representations.

In summary, when considering all speakers and available speech material, the proposed S-GDA

with MFCC representations yields better or comparable performance than state-of-the-art

approaches.

4.4 A note on extending linear subspace-based analysis

In this chapter, temporal subspaces when compared to spectral subspaces, are shown to be

more successful in characterizing pathological speech. However, constructing the temporal

subspaces requires time-alignment limiting its application to only phonetically-balanced

scenarios. In further analysis, we have attempted to further improve the performance of

the spectral subspace-based discriminant analysis approach, since it does not require time-

alignment and is applicable to phonetically-unbalanced scenarios. While in the current

chapter only linear subspace-based discriminant analysis was used, in this further analysis we

characterized nonlinear spectral patterns of speech using nonlinear subspaces obtained by

nonlinear PCA benefiting from the kernel trick (kernel PCA) (Schölkopf et al., 1997). Automatic

pathological speech detection was then achieved by nonlinear (kernel) subspace-based dis-

criminant analysis. To partly incorporate short-time temporal information in the constructed

subspaces, we considered Hankel representations (Zhao and Liu, 2004; Ku et al., 1995; Luo

et al., 2019). Hankel representations are modified TF representations, where each column

vector was constructed by concatenating several temporally consecutive spectral vectors

from the original TF representation, resulting in a higher-dimensional vector. By represent-

ing healthy and pathological speakers by nonlinear (kernel) subspaces, the kernelized GDA

(KGDA) (Wang and Shi, 2009) was used for the final classification of speakers. We achieved

promising results showing that using nonlinear subspaces modeling Hankel representations

was superior to using linear spectral subspaces modeling TF representations for the speech

pathology detection task. However, finding an efficient way to select the optimal number of

kernel basis vectors to construct the nonlinear subspaces remained an unsolved issue. We

omitted the results of our nonlinear subspace analysis in this chapter, however, we would like

to note that this topic should be further investigated.

4.5 Summary

To automatically discriminate between pathological and healthy speech, in this chapter

we have proposed a subspace-based approach representing speakers through spectral or

temporal subspaces spanned by the dominant spectral or temporal basis vectors of the feature

representation of speech. Prior to constructing the temporal subspaces, it has been proposed

to time-align signals to a reference representation using DTW. The spectral and temporal basis

vectors are extracted using the SVD. Since speakers are represented through subspaces, it has

been proposed to apply subspace-based discriminant analysis to automatically discriminate
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between pathological and healthy speakers. Experimental results on two databases have

shown that compared to spectral subspaces, temporal subspaces are more successful in

characterizing pathological speech. In addition, it has been shown that the proposed subspace-

based approach using temporal subspaces outperforms using an SVM with state-of-the-art

features for pathological speech detection. A limitation of the temporal subspace-based

approach is that it relies on having access to utterances with the same phonetic content

from both healthy and pathological speakers. However, when the phonetic content of the

available utterances from speakers differs, the proposed subspace-based approach using

spectral subspaces can be used instead.
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5 Deep learning for automatic patholog-
ical speech detection

In this chapter we propose different deep learning-based approaches as alternatives to classical

machine learning-based approaches to automatically discriminate between pathological and

healthy speech. First, we present our approach based on a pairwise distance-based CNN.

Then, we describe our proposed supervised speech representation frameworks using CNNs

to achieve pathological speech detection. The applicability of the proposed approaches in

this chapter is experimentally investigated across databases and compared to many baseline

frameworks.

5.1 Introduction

In Chapter 4 we evaluated the performance of classical machine learning-based methods for

pathological speech detection and demonstrated that our proposed temporal subspace-based

learning method outperforms the state-of-the-art approaches. As mentioned in Chapter 2,

handcrafting appropriate acoustic features is a crucial step in such machine learning-based

approaches, however, such features may fail to characterize abstract (but similarly important)

acoustic cues that can further assist in differentiating pathological speech from healthy speech.

Therefore, deep learning approaches can be used for learning high-level abstract speech

representations for such a task. While deep learning approaches have dramatically improved

the state-of-the-art in many speech processing applications, their advantages are yet to be

established in the field of pathological speech assessment (Cummins et al., 2018).

In this chapter we focus on extracting high-level representations of speech using data-driven

deep learning approaches. The main challenge in successfully learning such representations

is being able to alleviate overfitting issues and also to guide the networks to learn robust and

relevant features for pathological speech detection while using the small amount of patho-

logical training data that is typically available. Based on these motivations, in this chapter,

we propose two different deep learning frameworks using CNNs for automatic pathological

speech detection.

37



Chapter 5. Deep learning for automatic pathological speech detection

5.1.1 Pairwise distance-based convolutional neural networks

For speech pathology detection, deep learning-based approaches are usually based on mod-

eling short segments of speech since splitting speech signals into short segments (e.g., 160

ms) increases the number of training samples per speaker. However, such short segments

do not always exhibit pathological characteristics and the CNNs are not guided to ignore

speaker variabilities that are unrelated to a speech disorder. Considering that larger segments

of speech (e.g., word-level) can be expected to better reflect pathological characteristics, we

need a framework which can cope with the limited number of word utterances in training

data. Therefore, we propose pairwise training CNNs using distance matrices constructed from

representations of words. Pairwise training is advantageous for limited training data, since

it guides the network to extract features that are discriminative of pathological speech while

being robust to other unrelated speaker variabilities. In the literature, pairwise training has

been exploited before for such a task (Bhati et al., 2019), however, the used network in Bhati

et al. (2019) is phonetic content specific, i.e., it requires training different networks for different

utterances. While our proposed system benefits from pairwise training, a single network can

be used for different utterances, since it operates on distance matrices instead of operating

directly on pairs of input data as in Bhati et al. (2019).

Inspired by the CNN-based query detection system in Ram et al. (2020), we consider utterances

from healthy speakers as reference representations and we propose to compute frame-level

distance matrices between these reference representations and phonetically-balanced test

representations. We hypothesize that when the test speaker is healthy, the pattern of the dis-

tance matrix between the test and reference (i.e., healthy) representations is different (i.e., it is

expected to be more quasi-diagonal) than when the test speaker is pathological. This distance

pattern can be used as the input to a CNN-based binary classifier, which then categorizes it as

an example from a healthy speaker (i.e., the distance pattern arises from comparing a healthy

utterance to the reference representation) or as an example from a pathological speaker (i.e.,

the distance pattern arises from comparing a pathological utterance to the reference represen-

tation). Such a system can operate on any user-defined representation of utterances such as

the STFT representation. Instead of the STFT representation as in Vasquez et al. (2017), we

propose to use articulatory posteriors (APs). The use of APs is motivated by their potential to

characterize articulation deficits in speech pathologies, their robustness to noise, and their

multilingual and cross-lingual portability (Rasipuram and Magimai.-Doss, 2016).

Figure 5.1 shows two examples of distance matrices computed from AP representations of

a sample utterance belonging to a test pathological (dysarthric) speaker and a test healthy

speaker. The reference representation used in both distance matrices is the same and is from

a healthy speaker (different from the test healthy speaker). As can be observed, the distance

matrix corresponding to the test healthy speaker (shown in Figure 5.1b) has different (e.g.,

more quasi-diagonal) patterns compared to the distance matrix corresponding to the test

pathological speaker (shown in Figure 5.1a).
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Figure 5.1 – Distance matrices computed from AP representations of a sample utterance from
(a) a test pathological and a reference speaker (b) a test healthy and the reference speaker.
The distance matrix corresponding to the test healthy speaker has different (e.g., more quasi-
diagonal) patterns compared to the distance matrix corresponding to the test pathological
speaker.

Although a CNN can directly operate on distance matrices computed from user-defined

representations of utterances (e.g., STFT or AP), these user-defined representations might not

be optimal for healthy and pathological speech detection. To ensure that distance matrices

are computed on optimal representations for our task, we propose to incorporate a front-end

feature extraction layer into the network prior to computing the distance matrices. The front-

end feature extraction, the distance matrix computation, and the final healthy and pathological

speech detection layers are jointly optimized in an end-to-end learning framework.

5.1.2 Supervised speech representation learning

As previously mentioned, our first proposed approach exploits pairwise training while using a

single network for different utterances, which guides the network to extract features that are

discriminative of speech pathologies while being robust to other unrelated speaker variabilities.

However, such an architecture relies on having access to utterances with the same phonetic

content from both healthy and pathological speakers.

Recently it has been proposed to learn high-level (but not necessarily robust and discrimi-

native as explained in the following) representations through unsupervised auto-encoders

operating on phonetically unmatched speech segments (Vasquez-Correa et al., 2020; Karan

et al., 2020b). The extracted representations are then used as input for training pathological

speech classifiers. Unsupervised representation learning based on auto-encoders yields rep-

resentations that are designed to reconstruct the input. Consequently, there is no guarantee

that these learned representations are robust to pathology-unrelated cues such as acous-

tic information about the speaker’s identity. In addition, there is no guarantee that these

representations are discriminative for pathology detection.
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To tackle these issues, in this thesis we propose methods to extract robust and discriminative

representations from speech exploiting supervised auto-encoders.

Using a single encoder, first we propose to supervise the representation learning process such

that only speaker-invariant information is retained in the obtained learned feature represen-

tation. This is achieved through training an adversarial network by jointly minimizing the

auto-encoder reconstruction loss and the performance of a (healthy) speaker identification

(ID) task. The prominence of speaker variabilities unrelated to speech pathology in such rep-

resentations will be limited, and hence, it can be expected that the performance of pathology

detection can be improved. Suppressing unrelated speaker variabilities from representations

in an adversarial training framework has been recently shown to improve the performance

for different classification tasks such as speech emotion classification, phoneme/senone

discrimination, and speaker de-identification (Meng et al., 2018; Li et al., 2020; Higuchi et al.,

2019; Espinoza-Cuadros et al., 2020). Second, to ensure that the learned representations retain

pathological speech discriminative information, using the same architecture (i.e., with a single

encoder) we propose to train the representation layer by jointly minimizing the auto-encoder

reconstruction loss and maximizing the performance of pathological speech detection. in Le

et al. (2018) it has been shown that such supervised auto-encoders typically do not harm the

performance compared to a standard neural network, since the incorporation of the recon-

struction loss into the training procedure acts as a regularisation method. It should be noted

that such a joint training procedure to learn discriminative representations for pathological

speech detection has been investigated in Korzekwa et al. (2019). However, in Korzekwa et al.

(2019) two encoders are used, i.e., an audio and a text encoder. Differently from Korzekwa et al.

(2019) and inline with unsupervised representation learning in Vasquez-Correa et al. (2020);

Karan et al. (2020b), a single encoder is used in our framework.

Our experimental results on the larger considered database (cf. Section 5.3.3) show that using

the supervised speaker-invariant representations can be as effective as using the supervised

pathology discriminative representations for improving the performance when using unsu-

pervised learned representations. However, due to the difficulty of training the adversarial

networks for obtaining the speaker-invariant representation mentioned before, we also pro-

pose a dual representation learning framework based on a feature separation such that the

speaker identity-related features are isolated without using any adversarial training. Among

the limitations of adversarial training is that they might suffer from oscillating and unsta-

ble training where convergence can be evaded (Sha and Lukasiewicz, 2021). Furthermore,

in Moyer et al. (2018), specific failure modes of adversarial training are also argued. Our

adversarial-free proposed system consists of two encoders: the first encoder generates a

bottleneck feature representation containing speaker identity information supervised by max-

imizing the performance of a speaker ID auxiliary task; whereas the second encoder generates

speaker-invariant feature representations. To reduce the impact of speaker identity cues in

the second encoded bottleneck representation, the mutual information (MI) between the two

encoded bottleneck representations is minimized. To avoid loss of information embedded

within the representative features, a decoder fed by both encoded features is simultaneously
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5.2. Pairwise distance-based convolutional neural networks

trained to minimize the reconstruction loss. Such a training procedure reducing the depen-

dency between the two learned representations yields a feature representation (generated by

the second encoder) that contains less cues about speaker identities, and therefore, is a more

robust representation for pathological speech detection.

Estimating the MI between high dimensional continuous variables is a difficult task, therefore,

different estimators of the upper bound and lower bound of MI using neural network archi-

tectures have been proposed and considered for optimization (Belghazi et al., 2018; Cheng

et al., 2020). Optimizing MI estimators to separate the latent representations into (ideally)

independent components while avoiding adversarial training has been exploited for different

applications, such as unsupervised domain adaptation for image classification tasks, voice

style transfer (voice conversion), and speech synthesis (Cheng et al., 2020; yao Hu et al., 2020;

Yuan et al., 2021). In previous work, adversarial methods are still used for feature separation

while the MI minimizer is incorporated in the training to strengthen the feature separation

performance, e.g., for cross-lingual TTS synthesis and learning domain-agnostic representa-

tions for computer vision tasks (Peng et al., 2019; Xin et al., 2021). In addition, in a domain

adaptation framework to improve cross-domain pathological speech detection in Wang et al.

(2021), MI minimization along with domain adversarial training is used to separate speech

pathology discriminative information from domain-related information. Contrary to the

state-of-the-art literature, in this thesis we propose to obtain a speaker-invariant represen-

tation for pathological speech detection using a feature separation framework relying on MI

minimization criteria without using any adversarial training. To the best of our knowledge,

the applicability of such a framework to improve pathological speech detection has not been

explored before.

This chapter is organized as follows. Section 5.2.1 presents the approach based on pairwise

distance-based CNNs. The performance of this approach is evaluated in Section 5.2.2. Super-

vised speech representation learning approaches using a single encoder to obtain speaker-

invariant and/or pathological speech discriminative representations are presented in Sec-

tion 5.3.1. The alternative approach to obtain speaker-invariant representation using a feature

separation framework instead of adversarial training is presented in Section 5.3.2. Experimen-

tal results and discussions for all supervised representation learning methods are presented in

Section 5.3.3. Finally, we summarize our findings in Section 5.4.

5.2 Pairwise distance-based convolutional neural networks

5.2.1 Proposed approach

Fig. 5.2 depicts a schematic representation of the proposed pairwise distance-based patho-

logical speech detection CNN. As shown in this figure, the input to the system consists of

pairs of reference and test representations of utterances. We follow the same procedure as

in Dubagunta and Magimai-Doss (2019) to extract AP features for the representations of utter-
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Figure 5.2 – Block diagram of the proposed pairwise distance-based pathological speech
detection CNN. For this approach, pairs of phonetically-matched reference and test utter-
ance representations are considered. Given such pair inputs to the system, features are first
extracted, then distance matrices are computed, which are then further evaluated by a CNN-
based classifier to predict whether the test representation is from a pathological or healthy
speaker. The two feature extraction blocks share the same set of parameters.

ances (cf. Section 5.3.3). These representations are transformed through a feature extraction

block prior to computing the distance matrix. The distance matrix is then considered as an

image by a CNN-based classifier as in a standard binary image classification task. The com-

plete architecture is optimized in an end-to-end framework to achieve pathological speech

detection.

In the following, we present details on the different components of the proposed system, i.e., i)

the front-end feature extraction, ii) the distance matrix computation, and iii) the CNN-based

classifier.

Front-end feature extraction

We consider pairs of phonetically-balanced AP representations of utterances from two speak-

ers; one utterance being a reference representation from a healthy speaker and the other

utterance being from a test (healthy or pathological) speaker. Let us denote by R the (F1 ×M)–

dimensional reference representation, with F1 being the number of AP features and M being

the number of time frames in the reference representation. Similarly, let us denote by T the

(F1 ×N )–dimensional test representation, with N being the number of time frames in the test

representation. To be able to handle variable-length inputs, we fix the length of all representa-

tions to a predetermined (user-defined) size S as in Ram et al. (2020). Representations with

more time frames than S, i.e., M > S or N > S, are down-sampled by deleting time frames

in regular intervals. Representations with less time frames than S, i.e., M < S or N < S, are

padded at the beginning and the end with time frames filled with a constant value. The

constant value is arbitrarily set to the maximum value in the representation. We denote the
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5.2. Pairwise distance-based convolutional neural networks

Table 5.1 – Front-end feature extraction architecture.

Layer Description

Input Size: (1xF1xS): input speech representation
Conv1d + Relu Channel: in=1, out=32, Filter: F1x1, Stride: 1

resized reference and test representations by Rs and Ts and hypothesize that they contain

similar (healthy or speech pathology-related) cues as in the original representations R and T.

The front-end feature extraction block transforms the (F1 ×S)–dimensional representations

Rs and Ts into (F2 ×S)–dimensional representations. To this end, we use a 1D convolution

layer with F2 channels such that the F1–dimensional AP feature vectors for each time frame

are transformed into F2–dimensional feature vectors. Since this layer is jointly optimized with

the distance matrix computation and the CNN-based classifier (cf. following subsections)

in an end-to-end framework, it can be expected that the transformed (F2 ×S)–dimensional

representations are more discriminative representations for the pathological speech detection

task.

The architecture of the front-end layer is summarized in Table 5.1, where we have used F2 = 32.

It should be noted that the parameters of the front-end feature extraction layer to compute

both test and reference feature representations are the same (cf. Fig. 5.2).

Distance matrix computation

The distance matrix is computed from the representations at the output of the feature extrac-

tion block. Let us denote the reference representation after feature extraction by R̂ = [r1, . . . ,rS ],

with ri , i = 1, . . . ,S, being the F2–dimensional feature vector at time frame i . Similarly, the

test representation after feature extraction is denoted by T̂ = [t1, . . . ,tS], with t j , j = 1, . . . ,S,

being the F2-dimensional feature vector at time frame j . The frame-level distance matrix

D between the representations T̂ and R̂ is an (S ×S)–dimensional matrix, where the (i , j )–th

entry is computed as the distance d between ti and r j , i.e.,

Di , j = d(ti ,r j ). (5.1)

To compute D within the proposed end-to-end framework, Euclidean distance is used, i.e.,

d(ti ,r j ) = ||ti − r j ||. Since the reference representation R̂ always belongs to a healthy speaker,

we expect the pattern of the so-computed distance matrix D to be more quasi-diagonal (i.e.,

contain more zeros on the diagonal due to similar ti and r j ) when the test representation T̂

belongs to a healthy speaker than when it belongs to a pathological speaker.
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Table 5.2 – Architecture of the proposed CNN-based classifier operating on pairwise distance
matrices.

Layer Description

Input Size: (1xSxS) input distance matrix
Conv2d + Relu Channel: in=1, out=16, Filter: 10x10, Stride: 1
Maxpool2d Channel: in=16, out=16, Filter: 2x2, Stride: 2
Conv2d + Relu Channel: in=16, out=16, Filter: 10x10, Stride: 1
Maxpool2d Channel: in=16, out=16, Filter: 2x2, Stride: 2
Dropout Probability: 0.5
FC + Relu Input: 784, Output: 128
FC + Softmax Input: 128, Output: 2

CNN-based classifier with pairwise distance matrices

The distance matrices computed in the previous subsection serve as input to our CNN classi-

fier. As summarized in Table 5.2, the CNN classifier consists of two 2D convolutional layers,

followed by two Maxpooling and two fully connected (FC) layers. To prevent overfitting,

dropout is employed during training. The label for each distance matrix fed into the CNN

classifier is the label of the test speaker (healthy or pathological) used for the distance matrix

computation.

The classifier is trained using distance matrices computed from all phonetically-matched pairs

of test and reference representations in the training set. As mentioned in Section 5.1.1, a single

network can be used for different utterances since the CNN operates on distance matrices

instead of pairs of input data as in Bhati et al. (2019). To evaluate an utterance from an unseen

test speaker, we pair it to its phonetically-matched counterpart from many reference speakers

in the training set and compute multiple distance matrices. All available distance matrices are

then independently processed by the CNN classifier, and the final decision for the unseen test

speaker is made by applying soft voting on all CNN prediction scores for all available distance

matrices from that speaker.

5.2.2 Experimental results

Baseline networks

To demonstrate the advantages of the proposed approach, the following two baseline systems

B-CNN1 and B-CNN2 are considered.

B-CNN1. We have implemented a baseline CNN adapted from Vasquez et al. (2017), which is

trained on log magnitude of STFT representations of short (i.e., 160 ms) segments of speech

with 50% overlap. Each segment is labeled as healthy or pathological depending on the label of

the complete signal. The STFT representations are computed using 10 ms Hanning windows
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5.2. Pairwise distance-based convolutional neural networks

Table 5.3 – Architecture of the baseline B-CNN1 adapted from Vasquez et al. (2017).

Layer Description

Input Size: (1xFx16); F: dimension of input representation
Conv1d + Relu Channel: in=1, out=32, Filter: F x1, Stride: 1
Conv1d + Relu Channel: in=32, out=16, Filter: 1x4, Stride: 1
Dropout Probability: 0.5
FC + Relu Input: 208, Output: 128
FC + Softmax Input: 128, Output: 2

without overlap, resulting in 129 frequency bins for each time frame. The final decision for an

unseen speaker is made by applying soft voting on the segment-level CNN prediction scores.

To demonstrate the advantage of using AP representations instead of STFT, such a baseline

CNN is also trained on the logarithm of AP representations. The architecture of this baseline

system is summarized in Table 5.3.

B-CNN2. To further establish the advantages of the proposed end-to-end CNN framework

(which uses a front-end feature extraction layer), a second baseline is implemented where

the proposed CNN-based classifier in Section 5.2.1 is trained on distance matrices computed

directly from AP representations (i.e., without using the front-end feature extraction layer).

To compute such distance matrices, Kullback-Leibler divergence is used as the local distance

measure in (5.1). The architecture of this baseline system is the same as in Table 5.2.

Training and evaluation

The applicability and generalisability of the proposed approach is evaluated on the considered

database, i.e., the Spanish PC-GITA database and the French MoSpeeDi database (cf. Sec-

tion 2.2.1 and 2.2.2). As mentioned before, our pairwise distance-based network operates on

pairs of word utterances, therefore here we use word utterances from each database. Similarly

to the previous chapter, the validation strategy on the PC-GITA and MoSpeeDi databases is a

stratified speaker-independent 10-fold and 5-fold cross-validation, respectively. As described

in Section 2.4.5, AP features are extracted as in Dubagunta and Magimai-Doss (2019), and by

concatenating all extracted APs, F1 = 53 features per time frame are obtained.

In each training fold, a development fold with the same size as the test fold is set aside for

early-stopping. Z-score normalization is applied to all input representations. All networks are

trained using the stochastic gradient descent (SGD) algorithm and the cross-entropy loss. The

batch size is 256, and the initial learning rate is 0.05. The learning rate is divided by 5 each time

the loss on the development set does not decrease for 5 consecutive iterations. The training is

stopped either after 100 epochs or after the learning rate has reached the value 10−6.

Random weight initialization is used for the baselines B-CNN1 and B-CNN2. The weights on

the first convolution layer of the trained baseline B-CNN1 are used to initialize the front-end
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Table 5.4 – Mean and standard deviation of the speech pathology detection accuracy [%] and
AUC score using the baseline B-CNN1 with STFT and AP representations on the PC-GITA and
MoSpeeDi databases.

Spanish PC-GITA French MoSpeeDi

Input representation Accuracy (%) AUC Accuracy (%) AUC

STFT 53.7±3.3 0.56±0.03 52.5±0.0 0.64±0.02
AP 72.0±0.8 0.75±0.00 60.8±3.1 0.73±0.03

feature extraction layer of the proposed end-to-end CNN. The weights of the trained baseline

B-CNN2 are used to initialize the classifier layers of the proposed end-to-end CNN.

The number of total samples (training/testing) available for the different considered networks

is as follows. Using the STFT representation for B-CNN1 results in 17383 (PC-GITA) and 25197

(MoSpeeDi) segments. Using the AP representation for B-CNN1 results in 17368 (PC-GITA)

and 25907 (MoSpeeDi) segments. The number of distance matrices computed from all pairs of

reference and test AP representations for B-CNN2 and the proposed CNN is 96000 (PC-GITA)

and 25920 (MoSpeeDi).

To reduce the impact of the random seed on the final model parameters, we have trained all

networks with multiple different random seeds. The reported performance measures are the

mean and standard deviation of the performance obtained by models trained using different

seeds.

Results

Table 5.4 presents the classification accuracy and AUC values obtained using B-CNN1 on

STFT and AP representations for both considered databases. It can be observed that the

AP representation yields a better performance than the STFT on both databases, with a

particularly significant improvement observed for the PC-GITA database. These results are to

be expected given the advantages of articulatory modeling of speech using AP as described in

Section 5.1.1.

It should be noted that the CNN proposed in Vasquez et al. (2017) was trained on the PC-

GITA database using speech segments centered at transitions between voiced and unvoiced

regions. However, although not presented here, using such segments did not result in a

better performance than the performance presented in Table 5.4. Further, it should be noted

that Vasquez et al. (2017) uses more recordings than the word recordings we have used here.

To ensure that the conclusions derived in this chapter on the advantages of the proposed

approach as opposed to B-CNN1 are still valid even when more recordings are available, we

have investigated the performance of B-CNN1 using AP representations on both databases

when all available recordings are used (rather than just words).
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Table 5.5 – Mean and standard deviation of the speech pathology detection accuracy [%] and
AUC score using the baseline B-CNN1 and B-CNN2 and the proposed pairwise distance-based
approach with a front-end feature extraction layer on the PC-GITA and MoSpeeDi databases.

Spanish PC-GITA French MoSpeeDi

CNN Accuracy (%) AUC Accuracy (%) AUC

Baseline B-CNN1 72.0±0.8 0.75±0.00 60.8±3.1 0.73±0.03
Baseline B-CNN2 68.3±0.7 0.78±0.01 70.8±2.3 0.77±0.00
Proposed 77.7±0.5 0.83±0.01 76.7±4.2 0.84±0.02

Using all available recordings and the AP representation for B-CNN1 results in 74762 (PC-GITA)

and 54626 total available segments. In this case, B-CNN1 yields accuracy and AUC values of

73.33% and 0.78 on the PC-GITA database and 60.0% and 0.75 on the MoSpeeDi database.

When comparing these results to the ones obtained using only word recordings (cf. entries

for AP representations in Table 5.4), we observe that increasing the used speech material

does not significantly improve the pathological speech detection performance of B-CNN1.

In summary, the presented results demonstrate the advantage of using AP representations

as opposed to the STFT representations used in Vasquez et al. (2017). In the following, the

performance of both baseline systems B-CNN1 and B-CNN2 and of the proposed end-to-end

CNN is compared when AP representations are used.

Table 5.5 presents the classification accuracy and AUC values of the baseline systems B-CNN1

and B-CNN2 and of the proposed approach on both databases. Bold entries indicate the

maximum performance for each database. It can be observed that the proposed pairwise

distance-based CNN with front-end feature extraction outperforms both considered baselines

in terms of both performance measures on both databases. Comparing the difference in per-

formance between the proposed framework and B-CNN2 shows that incorporating a feature

extraction front-end significantly improves the performance in comparison to computing

distance matrices directly on AP representations. Analyzing the learned representations from

the feature extraction front-end remains a topic for future investigation.

In summary, the presented results show that the proposed pairwise distance-based CNN

with a front-end feature extraction layer is successfully applicable to the pathological speech

detection task. Although a small number of utterances per speaker are used, the proposed

approach outperforms CNN-based baseline systems for both databases.

Before comparing the results obtained by our pairwise distance-based CNN to the base-

line classical machine learning-based approaches in Chapter 4, it should be noted that our

pairwise distance-based CNN operates only on word utterances, while for the baseline clas-

sical machine learning-based approaches in Chapter 4 all speech material from speakers is

used (cf. entries regarding the baseline in Table 4.2). Bearing in mind such differences, it

can be observed that pairwise distance-based CNN performs better than classical baseline
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approaches.

Both pairwise distance-based CNN and our previously proposed temporal subspace-based

approach (cf. Section 4) rely on using utterances with the same phonetic content from both

healthy and pathological speakers. However, as mentioned before, pairwise distance-based

CNN operates only on word utterances while the temporal subspace-based approach operates

on sentence-level speech signals. By considering the performance of the temporal subspace-

based approach (cf. entries regarding T-GDA in Table 4.1) while bearing in mind the differences

in the training speech material for both approaches, we observe that distance-based CNN has

not performed better. As mentioned before, temporal subspace approach uses the long-term

discriminative cues embedded in the speech signals while most CNN systems use short-term

acoustic cues. Such long-term discriminative cues might be more powerful indicators of

pathological speech than short-term cues. Therefore, generally, this can be a bottleneck in the

performance of the CNN-based systems operating on short-term cues.

5.3 Supervised speech representation learning

In this section, we present two proposed supervised representation learning frameworks

for the pathological speech detection task. The first framework aims at learning a single

representation, while in the second framework, dual representation learning motivated by

feature separation is proposed.

5.3.1 Proposed supervised single representation learning

Figure 5.3 illustrates the proposed representation learning for pathological speech detection

using an auto-encoder (single encoder and decoder) and two auxiliary modules, i.e., an

adversarial speaker ID module and a pathological speech classifier module. To obtain a

speaker identity-invariant representation, the auto-encoder can be jointly trained with the

speaker ID task in an adversarial manner. To obtain a pathological speech discriminative

representation, the auto-encoder can be jointly trained with the pathological speech classifier.

To obtain a speaker identity-invariant and pathological speech discriminative representation,

the auto-encoder can be jointly trained with both auxiliary tasks.

Auto-encoder

Following a similar framework adapted from Vasquez-Correa et al. (2020), we consider a CNN-

based auto-encoder to compute low-dimensional representations from chunks of speech TF

representations. TF representations are encoded with three convolutional layers (filter size:

6×6, stride: 1), with the number of feature maps on each layer being twice the number of

feature maps on the previous layer (starting with 32 maps in the first layer). Each convolutional

layer is followed by max-pooling (filter size: 3×3, stride: 3), batch normalization, and ReLU
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Speaker ID
task θid
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Figure 5.3 – Proposed supervised single representation learning for pathological speech detec-
tion using an auto-encoder and auxiliary tasks. The auto-encoder is jointly trained with the
auxiliary speaker ID task and/or with the auxiliary pathological speech classifier.

activation functions. The output of the last convolutional layer is further processed with a fully

connected layer (with 128 hidden units) to form the final feature representation, i.e., bottleneck

representation, of size 128. The bottleneck representation is decoded into a reconstructed

version of the input TF representations by the decoder. The decoder components are stacked in

reverse order of the encoder components, where transposed convolutional and interpolation

layers are used instead of convolutional and max-pooling layers. In the remainder of this

section, the parameters of the encoder and decoder are denoted by θe and θd respectively.

Speaker identity-invariant representation with adversarial training

To learn representations robust to speaker variabilities unrelated to pathological speech, i.e.,

speaker identity, the bottleneck representation of the auto-encoder in the previous subsection

is connected to a speaker ID module. The architecture of this module is adapted from the final

classifier used in Vasquez-Correa et al. (2020) and consists of two fully connected layers with

64 hidden units each, a ReLU activation function after the first layer, and a Softmax activation

function after the final (i.e., second) layer. The number of output units, i.e., the number of

units in the final layer, is the same as the number of speakers used for the speaker ID task (cf.
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Section 5.3.3). To avoid over-fitting, a dropout layer with a rate of 0.2 is included between the

bottleneck layer and the speaker ID module. The parameters of this module are denoted by

θid.

To obtain a compact representation where the information related to the speaker identity is

minimized, we use adversarial training by minimizing the auto-encoder reconstruction loss

Lae such that a low reconstruction error is achieved while maximizing the speaker ID loss Lid

such that a low speaker ID accuracy is achieved. Adversarial training is achieved through the

min-max optimization objective

(θ̂e, θ̂d, θ̂id) = argmin
θe,θd

argmax
θid

E(θe,θd,θid), (5.2)

with

E(θe,θd,θid) = Lae(θe,θd)−λLid(θe,θid), (5.3)

where λ is the trade-off parameter between the auto-encoder and the adversarial loss func-

tions (cf. Section 5.3.3). In practice, the optimal parameters in (5.3) are approximated using an

alternating training procedure, where in the first step, the auto-encoder parameters θe and θd

are updated assuming fixed speaker ID parameters θid, and in the second step, the parameters

θid are updated assuming fixed θe and θd obtained in the first step, i.e.,

(θ̂e, θ̂d) = argmin
θe,θd

E(θe,θd, θ̂id), (5.4)

θ̂id = argmax
θid

E(θ̂e, θ̂d,θid). (5.5)

For adversarial training, the gradient reversal layer (GRL) is used (with λ being the GRL

parameter) (Ganin and Lempitsky, 2015; Ganin et al., 2016). GRL acts as an identity function

in forward propagation and inverts the sign of the loss function in backpropagation. Each

parameter set is updated using the ADAM optimizer (Kingma and Ba, 2015). While all training

speakers (healthy and pathological) are used for optimizing the reconstruction loss Lae, we

consider data only from healthy speakers to optimize the speaker ID loss Lid. This ensures that

only non-pathological speaker variabilities are suppressed from the bottleneck representation.

Pathological speech discriminative representation

To learn pathological speech discriminative representations, the bottleneck representation

of the auto-encoder is connected to a pathological speech classifier module. The same

architecture of fully connected layers as for the speaker ID module (described in the previous

subsection) is used for the pathological speech classifier module. However, differently from

the speaker ID module, the final layer for the pathological speech classifier module consists

of 2 output units since we are dealing with binary classification (i.e., pathological speech vs.

typical speech). The parameters of this module are denoted by θpc.
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The optimal parameters θe, θd, and θpc are computed as the ones simultaneously minimizing

the auto-encoder reconstruction loss Lae and the pathological speech detection loss Lpc, i.e.,

(θ̂e, θ̂d, θ̂pc) = arg min
θe,θd,θpc

E(θe,θd,θpc), (5.6)

with

E(θe,θd,θpc) = Lae(θe,θd)+αLpc(θe,θpc), (5.7)

where α is the trade-off parameter between the two loss functions (cf. Section 5.3.3). Similarly

to before, the ADAM optimizer is used for finding the optimal parameters.

Fusion of pathological speech discriminative representation and speaker identity-invariant

representation with adversarial training

To jointly learn a speaker identity-invariant and pathological speech discriminative represen-

tation, we also consider training the auto-encoder using both auxiliary modules (described in

previous subsections) through the optimization objective

(θ̂e, θ̂d, θ̂pc, θ̂id) = arg min
θe,θd,θpc

argmax
θid

E(θe,θd,θpc,θid), (5.8)

where

E(θe,θd,θpc,θid) = Lae(θe,θd)

+αLpc(θe,θpc)−λLid(θe,θid). (5.9)

The solution to (5.8) is approximated using a similar alternating training procedure as in the

previously described adversarial training.

Pathological speech classification

After obtaining the bottleneck representation following any of the training procedures outlined

in previous subsections, this representation is used to train a pathological speech classifier.

The classifier architecture is identical to the auxiliary classifier module used before for training

the pathological speech discriminative representation. The final decision for an unseen (test)

speaker is made by applying soft voting on the classifier prediction scores for all input TF

representations belonging to that speaker.

5.3.2 Proposed supervised dual representation learning (feature separation)

To obtain a bottleneck representation that contains less cues about speaker identities without

using adversarial training, we propose to use a feature separation framework with two encoders

as illustrated in Figure 5.4. In this framework, chunks of speech TF representations are
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Figure 5.4 – Proposed feature separation framework to obtain speaker-invariant representation
for pathological speech detection without using adversarial training. This framework includes
two encoders, a single decoder, an auxiliary speaker ID module, and a MI minimizer. Two sep-
arate bottleneck representations are learned such that one is intended to encode only speaker
identity cues guided by the auxiliary speaker ID task, and the other one is intended to contain
less speaker identity information by minimizing the MI between the two representations.

projected into a pair of bottleneck representations using two encoders. A decoder is also

trained to generate a reconstructed version of the input using the concatenated bottleneck

representations to avoid loss of information embedded within both representations. The

first bottleneck representation, denoted as zid, is intended to contain only information about

speaker identities, while the second (residual) bottleneck representation, denoted as zr, is

intended to contain no information about speaker identities. Therefore, the zid representation

is directly supervised by a speaker ID classifier while the zr representation is isolated from the

zid representation by minimizing an MI criterion between zid and zr. Since all the modules, i.e.,

the two encoders, the decoder, and the auxiliary speaker ID classifier are jointly trained, it can

be expected that the residual zr bottleneck representation encodes speaker identity-invariant

cues, making zr a more robust representation for pathological speech detection.

The architecture of both encoders is the same and identical to the encoder module of the

auto-encoder used in the previous framework (cf. Section 5.3.1). For the speaker ID classifier,

the same architecture as in the previous framework is used. The decoder architecture is also
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the same as the previous framework with the difference being the size of the first layer of the

decoder. In the current feature separation framework, two bottleneck representations are

concatenated before being fed to the decoder, hence the number of nodes in the first fully

connected layer of the decoder would be twice the number of nodes in the first fully connected

layer of the decoder used in the previous framework (cf. Section 5.3.1). The parameters of

the two encoders generating bottleneck representations zid and zr are denoted by θid
e and θr

e ,

respectively, and similarly to before, the parameters of the decoder and speaker ID modules

are denoted by, θd and θid respectively. This framework also consists of an MI estimator

module which is needed for estimating and minimizing the MI criterion between zid and zr as

will be explained in the following.

MI minimizer

To reduce the dependency between the two bottleneck representations, we consider minimiz-

ing MI between zid and zr. Considering zid and zr as two continuous random variables, the

MI, I (zid, zr), is defined as the Kullback-Leibler (KL) divergence between the joint distribution

and the product of marginal distributions of the two variables, i.e.,

I (zid, zr) = DK L
(
p(zid, zr)||p(zid)p(zr)

)
. (5.10)

Since the MI computation is challenging for high-dimensional variables with unknown prob-

ability distributions, variational contrastive log-ratio upper bound (vCLUB) is proposed

in Cheng et al. (2020) to calculate an upper bound for MI, i.e.,

IvCLUB(zid, zr) = Ep(zid,zr)
[
logqφ(zid|zr)

]−Ep(zid)Ep(zr)
[
logqφ(zid|zr)

]
, (5.11)

where qφ(zid|zr) is the variational approximation of p(zid|zr) which is parameterized in a

Gaussian family qφ(zid|zr) =N (zid|µ(zr),σ2(zr)I ) with mean µ(zr) and variance σ2(zr) being

estimated by (MI estimator) neural networks with overall parameters of φ (Cheng et al., 2020).

The MI estimator for the mean or variance is parameterized by a fully connected layer with

64 hidden units following a ReLU activation function that outputs a 128 dimensional vector

representing µ(zr) and σ2(zr). For the network estimating the variance, a Tanh (hyperbolic

tangent) activation function is also applied after the output. Due to identical encoder archi-

tectures used here (and used in the previous approaches to learn a single representation of

dimension 128 (cf. Section 5.3.1)), the dimension of both bottleneck representations (zid and

zr), and therefore the dimension of input and output of MI estimator networks, are also 128.

The parameters of the MI estimator are approximated by maximizing the log-likelihood loss,

i.e., Lll(φ) = logqφ(zid|zr) as in Cheng et al. (2020). After obtaining the parameters of the MI

estimator, we use vCLUB as our MI objective to be minimized, i.e., LMI(θid
e ,θr

e ) = IvCLUB(zid, zr).
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Feature separation

Obtaining a speaker-invariant representation zr is achieved through the optimization of the

following objective function, where due to the presence of MI loss and MI estimators, optimal

parameters are approximated using an alternating training procedure, i.e.,

(θ̂id
e , θ̂r

e , θ̂d, θ̂id) = arg min
θid

e ,θr
e ,θd,θid

E(θid
e ,θr

e ,θd,θid, φ̂) (5.12)

φ̂= argmin
φ

−Lll(φ, θ̂id
e , θ̂r

e ) (5.13)

with

E(θid
e ,θr

e ,θd,θid, φ̂) = Lae(θid
e ,θr

e ,θd)+λLid(θid
e ,θid)+βLMI(θ

id
e ,θr

e , φ̂), (5.14)

where λ and β are the trade-off parameters for speaker ID and MI loss functions (cf. Sec-

tion 5.3.3). All training speakers (healthy and pathological) are used for optimizing the re-

construction loss Lae and LMI, while similarly to before, we consider only data from healthy

speakers to optimize the speaker ID loss Lid. This ensures that only non-pathological speaker

variabilities are being pushed away from the residual bottleneck representation zr.

Pathological speech classification

The final learned encoder generating the bottleneck representation zr that contains less

speaker identity cues is then used as input for pathological speech detection. The architecture

of the classifier used for pathological speech detection is identical to the final and auxiliary

classifier modules in Section 5.3.1. The final decision for an unseen (test) speaker is made

by applying soft voting on the classifier prediction scores for all input TF representations

belonging to that speaker.

5.3.3 Experimental Results

In this section, we first evaluate our proposed supervised single representation learning ap-

proaches. Then, we evaluate our proposed supervised dual representation learning approach

based on the feature separation framework. The performance of the proposed approaches is

compared to their corresponding baseline systems.

Baseline networks for supervised single representation learning

We consider two sets of baseline systems for the supervised single representation learning

framework.

Without representation learning. In order to investigate the advantages of representation
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learning through using a decoder in our supervised representation learning frameworks, we

consider a baseline classifier trained in a fully supervised manner without including a decoder,

and therefore, no reconstruction error loss is involved in the training procedure. Hence, there

is no explicit attempt to learn a speech representation reconstructing the input. The classifier

architecture is composed of an encoder (identical to the encoder module in Section 5.3.1)

followed by a pathological speech classifier (identical to the classifier module in Section 5.3.1).

We denote this system as Baseline0.

With representation learning. To demonstrate the advantages of the obtained speaker identity-

invariant and pathological speech discriminative representations, we consider the vanilla auto-

encoder in (Vasquez-Correa et al., 2020) as the baseline system where the single bottleneck

representation is learned using an auto-encoder (with the same architecture as in Section 5.3.1)

without any supervision. As a comparison to the vanilla auto-encoder, we also consider the

PCA dimensionality reduction method which transforms chunks of speech TF representations

into a lower-dimensional vector (e.g., of size 128), while maintaining as much information as

possible. Unlike auto-encoders, PCA uses a linear orthogonal transformation. We denote PCA-

based unsupervised representation learning as Baseline1 while vanilla auto-encoder-based

unsupervised representation learning is denoted as Baseline2. Furthermore, to investigate the

suitability of supervised representation learning for suppressing irrelevant speaker identity

information, we also train a speaker ID module on each of the learned representations. The

architecture of this module is identical to the auxiliary speaker ID module in Section 5.3.1.

Baseline networks for supervised dual representation learning (feature separation)

For the supervised dual representation learning framework, we consider the following baseline

systems. To investigate the effects of the auxiliary modules on feature separation, our baseline

systems are based on excluding the supervision of these modules. Without using the speaker

ID and MI minimizer modules in training, i.e., setting λ = β = 0 in (5.14), we obtain one

baseline system that is trained without any supervision (unsupervised dual representation

learning). Keeping the speaker ID module, but removing the MI minimizer during training,

i.e., setting β= 0 in (5.14), we obtain a second baseline system.

Training and evaluation

As in Vasquez-Correa et al. (2020), the input TF representations for our frameworks, are

Mel-scale representations of 500 ms segments of speech with 50% overlap. Mel-scale rep-

resentations are computed using 32 ms Hamming windows with a frame shift of 4 ms and

126 Mel bands. Z-score normalization is applied to all input representations. Similarly to

the previously proposed approach, i.e., pairwise distance-based CNNs, AP representations

can also be used as inputs in this framework. Obtaining AP representations requires training

phoneme-to-articulatory feature mappings using a large number of healthy speech recordings

(cf. Section 2.4.5). To avoid AP training in this framework, we choose Mel-scale representations
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as have been previously used for unsupervised representation learning for pathological speech

detection (Vasquez-Correa et al., 2020).

For training and evaluation, we use the same validation strategy for our databases as before,

i.e., a stratified speaker-independent 10-fold and 5-fold cross-validation on the PC-GITA and

MoSpeeDi databases, respectively.

In each training fold, a development fold of the same size as the test fold is set aside for

early-stopping in training the final pathological speech classifier. For the speaker ID auxiliary

task, utterances from the healthy speakers in the training set (i.e., 45 speakers for PC-GITA

and 16 speakers for MoSpeeDi) are split without overlap into 50% train, 25% development,

and 25% test sets. Cross-entropy is used for the auxiliary loss functions Lid and Lpc, and for

the final pathological speech classification in all systems, whereas mean square error (MSE) of

the reconstruction is used for the auto-encoder loss Lae.

Since our supervised representation learning framework is composed of different modules

for different tasks, our preliminary results showed that the learning rate for each module

should be different, e.g., for the speaker identity classifier, a higher learning rate is required

compared to the pathological speech classifier. Setting different learning rates is particularly

important when adversarial training is used. After we set an initial learning rate of 10−5 for the

auto-encoder modules in both frameworks, we set the learning rate for pathological speech

classifier and speaker ID classifier modules to 10 and 102 times higher, respectively. All models

are trained with a batch size of 128. When using the pathological speech classifier module in

the single representation learning framework, early-stopping is performed where the learning

rate for the overall model is halved each time the auxiliary pathological speech detection loss

on the development set does not decrease for 5 consecutive iterations. Training is stopped

either after 50 epochs or after the auto-encoder learning rate has decreased beyond 10−6.

In the dual representation learning framework, we also trained the systems for 50 epochs.

For the final pathological speech detection after representation learning in all systems, the

pathological speech classifier is trained with a learning rate 10−4 while freezing the encoder

parameters. The learning rate for the classifier is halved each time the classification loss on

the development set does not decrease for 5 consecutive iterations. Training is stopped either

after 50 epochs or after the classifier learning rate has decreased beyond 10−5.

The pathological speech detection performance is evaluated in terms of accuracy (i.e., percent-

age of correctly classified healthy and pathological speakers) and the AUC. The performance

for the speaker ID task is evaluated for unseen (test) utterances also using accuracy (i.e., per-

centage of correctly identified speakers) and AUC. To reduce the impact of the random seed

on the final model parameters all networks are trained with 5 different random seeds. The

reported performance measures are the mean and standard deviation of the performance

obtained by models trained using different seeds.

To select the hyper-parameters λ and α of the proposed single representation learning frame-

work (cf. (5.3) and (5.7)), we use grid-search for the set of valuesλ ∈ {0.001,0.005,0.01,0.05,0.1,0.5}
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and α ∈ {0.0005,0.0001,0.001,0.01,0.1,0.5}. The final hyper-parameters λ and α are selected

as the ones yielding the highest mean pathological speech detection accuracy on the devel-

opment set. For the fusion approach in Section 5.3.1, the hyper-parameters used in (5.9) are

optimized using a grid search for the set of previously mentioned values forλ andα. For feature

separation framework, the hyper-parameters λ and β (cf. (5.14)) are selected using grid-search

for the set of values λ ∈ {0.001,0.005,0.01,0.05,0.1,0.5} and β ∈ {0.001,0.005,0.01,0.05,0.1,0.5}.

The final hyper-parameters λ and β are selected as the ones yielding the highest mean patho-

logical speech detection accuracy on the development set.

Results for supervised single representation learning

In this section, we first present the results obtained for the MoSpeeDi database using the

supervised single representation learning, where we show that such representation learning is

not suitable for this database. Then, we present results using the larger PC-GITA database.

Table 5.6 presents the pathological speech detection accuracy and AUC values obtained

using the baseline systems and the supervised single representations learning frameworks

on the MoSpeeDi database. As it can be observed, the highest performance is obtained using

Baseline0 where no representation learning is used, whereas the representation learning

frameworks have failed to further improve the performance. It can be seen that pathological

speech discriminative training improved the performance in comparison to the unsupervised

representation learnings using PCA (Baseline1) and vanilla auto-encoder (Baseline2), while the

adversarial speaker invariant training yielded the lowest performance. It should be noted that

the architecture used in our representation learning frameworks are adapted from Vasquez-

Correa et al. (2020), where these architectures were optimized for the PC-GITA database.

These architectures have not been further optimized for the MoSpeeDi database, which is a

significantly smaller database than the PC-GITA database. The reason that representation

learning is not as effective on the MoSpeeDi database might be due to non-suitable training

parameters and architectures. Furthermore, the reason that speaker-invariant representation

learning yields the lowest performance can be attributed to the limited number of healthy

speakers in the training set (i.e., 16) required for training the speaker ID module.

Considering the supervised single representation learning framework using the PC-GITA

database, Table 5.7 presents the pathological speech detection accuracy and AUC values

obtained using the baseline system without exploiting any representation learning (i.e.,

Baseline0), the baseline representation using PCA (i.e., Baseline1), the vanilla auto-encoder

from Vasquez-Correa et al. (2020) learned without any supervision (Baseline2)1, and the

proposed supervised representations learned through auxiliary tasks.

1It should be noted that the auto-encoder used in Vasquez-Correa et al. (2020) was trained on a larger healthy
speech database. However, although not presented here, using the same healthy speech database for training
the auto-encoder did not result in a better performance than the performance obtained using only the PC-GITA
database.
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Table 5.6 – Mean and standard deviation of the speech pathology detection accuracy [%] and
AUC score using the Baseline0, unsupervised single representation learning (i.e., Baseline1

and Baseline2) and the proposed supervised single representation learning approaches on the
French MoSpeeDi database.

No representation learning

System Accuracy (%) AUC

Baseline0 (without a decoder) 73.5±2.5 0.89±0.03

Representation learning

Auxiliary task in representation learning Accuracy (%) AUC

No auxiliary task (Baseline1, i.e., PCA) 62.0±1.9 0.70±0.02
No auxiliary task (Baseline2) 68.0±2.9 0.73±0.02
Adversarial speaker invariant training 52.0±1.9 0.68±0.03
Pathological speech discriminative training 70.0±2.7 0.81±0.02
Fusion (speaker invariant+pathological speech discriminative train-
ing)

55.0±2.2 0.73±0.05

Table 5.7 – Mean and standard deviation of the speech pathology detection accuracy [%] and
AUC score using the Baseline0, unsupervised single representation learning (i.e., Baseline1

and Baseline2) and the proposed supervised single representation learning approaches on the
Spanish PC-GITA database.

No representation learning

System Accuracy (%) AUC

Baseline0 (without a decoder) 71.8±3.0 0.80±0.02

Representation learning

Auxiliary task in representation learning Accuracy (%) AUC

No auxiliary task (Baseline1, i.e., PCA) 53.8±2.0 0.61±0.03
No auxiliary task (Baseline2) 60.8±1.7 0.72±0.02
Adversarial speaker invariant training 77.0±4.2 0.85±0.03
Pathological speech discriminative training 73.0±3.2 0.87±0.02
Fusion (speaker invariant+pathological speech discriminative train-
ing)

78.0±1.9 0.87±0.02

It can be observed that using the representations learned by any of the proposed auxiliary tasks

improves the performance of pathological speech detection compared to using the baseline un-

supervised learned representations by either PCA or vanilla auto-encoder. Furthermore, both

supervised representation learnings have improved the performance in terms of both mea-

sures when there is no explicit representation learning is involved in training (i.e., Baseline0).

When comparing the two proposed supervised representation learning approaches, a larger

performance improvement is observed in terms of accuracy for the speaker-invariant training,
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while a larger performance in terms of AUC is achieved by pathological speech discriminative

training. Furthermore, fusing both auxiliary tasks to obtain a robust and discriminative repre-

sentation yields a better pathological speech detection accuracy than other representations,

clearly outperforming the unsupervised baseline systems as well. It can be observed that

while the fusion of auxiliary tasks improves the pathological speech detection accuracy as

opposed to using any of the auxiliary tasks, the resulting AUC is still the same as when using

pathological speech discriminative training.

In summary, the results presented in Table 5.7 confirm the advantages of supervised rep-

resentation learning for pathological speech detection on the PC-GITA database. However,

similar advantageous were not observed for the MoSpeeDi database. We suspected that is

due to suboptimal training parameters and the small amount of training data in this database

negatively affecting the considered frameworks. For this reason, only the PC-GITA database is

considered for the results presented in the following.

To investigate the suppression of irrelevant speaker identity information in each of the super-

vised representations as opposed to the unsupervised representations, Table 5.8 presents the

accuracy and AUC values obtained for the speaker ID task on all the different representations

using the PC-GITA database.

It can be observed that using the baseline (unsupervised) representations learned by PCA

results in the highest speaker ID performance, i.e., classifying healthy speakers’ identities with

almost 100% accuracy. The unsupervised representation learned by the vanilla auto-encoder

gives lower speaker ID performance than PCA but nevertheless, a higher performance than

the supervised learned representations is obtained. We observed that PCA yields represen-

tations resulting in lower MSE compared to the representations obtained through a vanilla

auto-encoder trained with a limited number of epochs. Since in representations obtained by

PCA, there is less information lost (i.e., a lower MSE), PCA results in the highest speaker ID

performance. This result confirms that unsupervised training yields representations contain-

ing speaker identity cues, reducing as a result the generalization and the final performance

Table 5.8 – Mean and standard deviation of the speaker ID accuracy [%] and AUC score
using the unsupervised single representation learning (i.e., Baseline1 and Baseline2) and
the proposed supervised single representation learning approaches on the Spanish PC-GITA
database.

Auxiliary task in representation learning Accuracy (%) AUC

No auxiliary task (Baseline1, i.e., PCA) 99.1±0.4 1.00±0.00
No auxiliary task (Baseline2) 56.3±2.5 0.98±0.00
Adversarial speaker invariant training 5.2±2.2 0.67±0.05
Pathological speech discriminative training 35.2±4.4 0.94±0.00
Fusion (speaker invariant+pathological speech discriminative train-
ing)

14.0±5.4 0.80±0.07
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of pathological speech detection (cf. Table 5.7). Further, as expected, the lowest speaker ID

performance is observed for the speaker identity-invariant representations obtained using

adversarial training. These results confirm the suitability of adversarial training to reduce

the presence of irrelevant speaker identity cues in the bottleneck representation. Finally, it

can be observed that although the pathological speech discriminative feature representation

results in a higher speaker ID performance than adversarial training, it still yields a lower

speaker ID performance than the unsupervised baseline representations. This result shows

that supervising the auto-encoder training such that a discriminative feature representa-

tion for pathological speech detection is learned inherently reduces the presence of speaker

identity cues, since they are irrelevant to the pathological speech detection task. For the

fusion of auxiliary tasks, we observe lower speaker ID performance than pathological speech

discriminative feature representation due to the presence of adversarial training.

It should be noted that we also investigated the presence of other pathology-unrelated cues

(e.g., age and gender) in the learned representations using the PC-GITA database. We obtained

gender-invariant and age-invariant representations with similar adversarial training as in

Section 5.3.1. In our further analysis (results that we have omitted here), we observed that

suppressing age or gender cues does not improve the pathological speech detection perfor-

mance compared to suppressing speaker identity cues. Our analysis showed that age cues are

not captured in any of the learned representations obtained by unsupervised and supervised

auto-encoders (yielding accuracy < 50% and AUC < 0.56), therefore removing age cues using

adversarial training did not improve the performance. Surprisingly, we observed that gender

cues are present in all learned representations, with more cues present in the pathological

speech discriminative representation (yielding accuracy > 90% and AUC > 0.98). This suggests

that gender cues might be useful for pathology detection as the speech disorder can affect

people of different genders differently.

Comparing the distance-based CNN and single representation learning

Before comparing the performance of our supervised representation learning to our previously

proposed pairwise distance-based CNN (cf. Section 5.2) on the PC-GITA database, we should

first point out the inevitable differences in the used speech material for training both systems.

Pairwise distance-based CNN relies on using a limited number (< 25) of word utterances

with the same phonetic content from both healthy and pathological speakers. Supervised

representation learning approaches do not require any phonetic constraints in the speech

material, however more speech data (resulted from uttering sentences, text, and words by

each speaker) are used in their training to achieve a robust performance. Comparing the

results obtained by our supervised representation learning in Table 5.7 to the results obtained

by pairwise distance-based CNN (cf. Table 5.5) while ignoring these inevitable differences

between the two approaches, it can be observed that their performance is not largely different.
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Table 5.9 – Mean and standard deviation of the speech pathology detection accuracy [%] and
AUC score obtained from learned bottleneck representations zr and zid using dual representa-
tion learning approaches on the Spanish PC-GITA database.

Speaker ID task MI minimizer representations zr representation zid

Accuracy (%) AUC Accuracy (%) AUC

Baseline

57.2±5.4 0.72±0.02 56.2±3.8 0.72±0.03
X 61.4±3.4 0.75±0.02 55.6±4.0 0.67±0.02

Proposed

X X 75.2±3.5 0.82±0.03 54.2±6.2 0.63±0.03

Results for supervised dual representation learning (feature separation)

In this section, the feature separation framework to obtain a representation robust to speaker

identity without adversarial training is evaluated by considering the PC-GITA database. As

mentioned before, if the feature separation is successful, the bottleneck representation zid

is expected to contain more speaker identity cues, whereas the bottleneck representation zr

is expected to contain less speaker identity cues. Therefore, it is expected that using zr for

pathological speech detection task performs better than using zid.

Table 5.9 presents the pathological speech detection accuracy and AUC values using the

two learned representations trained by the baseline frameworks and by our proposed super-

vised feature separation frameworks. Based on the results presented in this table, several

observations can be made.

• First, using either of the representations obtained from the baseline framework (i.e., zid

or zr) where neither speaker ID nor MI minimizer is included in the training, a similarly

low pathological speech detection performance is achieved. This is to be expected as

the two representations are trained similarly in the unsupervised framework.

• Second, including only the speaker ID module in the training slightly improves the

pathological speech detection performance of zr compared to the unsupervised baseline

system, while a slight performance decrease can be observed for zid. This is to be

expected due to the direct supervision of the representation zid to include more speaker

identity cues, and hence, decreasing the performance of pathological speech detection.

However, in both baseline systems, no supervision is used for isolating speaker identity

cues from zr, therefore their performance when using zr is comparable.

• Third, the representation zr learned by the proposed method gives the highest perfor-

mance outperforming the baseline systems, while the performance using the represen-

tation zid remains low. Considering the two representations obtained by our proposed
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Table 5.10 – Mean and standard deviation of speaker ID accuracy [%] and AUC score ob-
tained from learned bottleneck representations zr and zid using dual representation learning
approaches on the Spanish PC-GITA database.

Speaker ID task MI minimizer representation zr representation zid

Accuracy (%) AUC Accuracy (%) AUC

Baseline

58.3±2.1 0.98±0.00 56.1±4.5 0.98±0.00
X 49.6±3.2 0.98±0.00 87.0±2.8 1.00±0.00

Proposed

X X 5.0±5.2 0.67±0.09 71.7±4.3 0.99±0.00

feature separation framework using both speaker ID and MI minimizer modules, these

results confirm that the zid contains non-relevant information for pathological speech

detection while zr is the most informative representation for the task. This can be

attributed to the efficacy of the performed separation of speaker identity cues by our

framework. Furthermore, by comparing the results obtained using zr trained by the

proposed method in Table 5.9 to the adversarial speaker invariant training results using

the single representation learning in Table 5.7, it can be observed that the pathological

speech detection performance using the feature separation framework without adver-

sarial training is not largely different than using single representation learning with

adversarial training.

To further analyze the performance of the feature separation framework, we investigate the

presence of speaker identity cues in all representations by evaluating the performance of a

speaker ID classifier trained on the obtained representations. Table 5.10 presents the accuracy

and AUC values obtained for the speaker ID task using the two learned representations trained

by the baseline frameworks and by our proposed supervised feature separation framework.

It can be observed that using representations learned by the unsupervised baseline system

(i.e., zid or zr) where neither speaker ID nor MI minimizer is included in the training, similar

speaker ID performance is achieved. This confirms that the two encoders generate feature

representations containing a similar amount of speaker identity cues. In addition, it can be

observed that including only the speaker ID module in the training only decreases the speaker

ID performance using the representation zr in terms of accuracy compared to the unsuper-

vised baseline system, while, as expected, a significant increase is observed when using the

representation zid due to the direct supervision of zid to include more speaker identity cues.

Finally, it can be observed that the representation zr learned by the proposed method gives

the lowest speaker ID performance, while the performance using the representation zid is

higher than the performance of unsupervised baseline system. These results confirm the

applicability of the proposed feature separation by our framework in which speaker-specific
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cues during training are being isolated from zr to obtain a more robust representation for

pathological speech detection.

5.4 Summary

As an alternative to using handcrafted acoustic features in the proposed T-GDA approach in

Chapter 4 which also requires time-alignment, in this chapter, we have proposed two CNN-

based frameworks to learn and exploit high-level representations for automatic pathological

speech detection. We were motivated by the necessity of alleviating overfitting issues dictated

by the small size of the typically available databases and also by the necessity of learning more

robust and relevant features for the pathological speech detection task.

In the first approach, we have proposed analyzing pairwise distance matrices where we repre-

sent utterances through articulatory posteriors and consider pairs of phonetically-balanced

representations, with one representation from a healthy speaker (i.e., the reference repre-

sentation) and the other representation from the test speaker (i.e., test representation). This

approach benefits from pairwise training, which inherently guides the network to extract more

robust features (robust to irrelevant speaker-specific information) by considering many paired

representations from different speakers. Given such pairs of reference and test representations,

features are first extracted using a feature extraction front-end, a frame-level distance matrix is

computed, and the obtained distance matrix is considered as an image by a CNN-based binary

classifier. The feature extraction, distance matrix computation, and CNN-based classifier

are jointly optimized in an end-to-end framework. Experimental results on the considered

Spanish and French databases of healthy and pathological speakers have shown that the

proposed approach yields a high pathological speech detection performance, outperforming

other CNN-based baseline approaches. However, such a system relies on using utterances

with the same phonetic content from both healthy and pathological speakers.

In the second approach, relaxing the phonetic constraints required for the first approach, we

have focused on explicitly learning a high-level abstract representation from short segments

of speech that is robust to pathology-unrelated cues such as speaker identity information

and/or is discriminative for pathology detection. To this end, we have exploited supervised

auto-encoders to extract robust and discriminative speech representations for speech pathol-

ogy detection. To reduce the influence of speaker variabilities unrelated to pathology, we have

proposed two approaches to obtain speaker identity-invariant representations: i) we have

trained an auto-encoder jointly with adversarial training a speaker ID module resulting in a

single representation and ii) we have used a non-adversarial feature separation framework

by training a dual encoder and a single decoder generating two representations. To enforce

speaker identity cues to be present only in one of the representations, we have supervised one

of the representations with a speaker ID task while minimizing a MI criterion between the

two representations. In addition, to obtain a discriminative representation, we have proposed

to jointly train an auto-encoder and a pathological speech classifier. Experimental results
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on the Spanish database have shown that the proposed supervised single representation

learning frameworks yield more robust and discriminative representations for automatically

classifying pathological speech, outperforming the baseline system without explicit repre-

sentation learning and also the baseline systems with unsupervised representation learning.

However, the proposed representation learning frameworks did not generalize to the smaller

French database. Furthermore, evaluating the feature separation learning framework on the

Spanish database has confirmed the success of such a framework to obtain speaker-invariant

representations without adversarial training.
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6 Pathological speech intelligibility
assessment based on a short-time
objective intelligibility measure
In this chapter we propose a measure to assess speech intelligibility of pathological speech

based on the extended short-time objective intelligibility assessment. This measure requires

creating utterance-dependent reference representations from speech signals of multiple

healthy (fully intelligible) speakers perfectly matching the phonetic content of the pathological

speech signal. To increase its flexibility, we also propose to use synthetic speech generated by

text-to-speech systems to create reference representations. The applicability of the proposed

intelligibility measure in this chapter is experimentally investigated across databases and

compared to many state-of-the-art pathological speech intelligibility measures.

6.1 Introduction

In Chapter 3, we introduced state-of-the-art approaches for automatic pathological speech

intelligibility assessment which were broadly categorized into blind approaches and non-blind

approaches. Blind approaches often underperform since they do not use fully intelligible

data from healthy speakers as references to better estimate speech intelligibility. Non-blind

approaches however tend to combine a large number of features for intelligibility prediction,

which increases the risk of over-fitting and limits the performance in unseen data (due to the

lack of a large amount of pathological training data with available subjective intelligibility

scores). More successful non-blind approaches, e.g., ASR or GMM-based approaches (cf.

Chapter 3), are typically complex and require a large number of healthy speech recordings for

training, which might not be feasible for low-resource languages.

To tackle the drawbacks of state-of-the-art techniques, in this chapter we propose a non-

blind pathological speech intelligibility measure based on the extended short-time objective

intelligibility (P-ESTOI). P-ESTOI is motivated by the extended STOI (ESTOI) measure which is

an objective intelligibility measure commonly used in speech enhancement. ESTOI has been

successful in estimating the intelligibility of speech contaminated by temporally modulated

noise (Jensen and Taal, 2016). Direct application of enhancement objective measures to assess
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pathological speech is difficult since they are typically based on comparing time-aligned

noisy and reference (clean) signals. While the pathological speech signal can be viewed as

a noisy signal, the reference signal, i.e., the non-impaired and fully intelligible version of

the patient’s speech signal, is clearly not available. Hence, we propose to use a temporal

clustering method based on DTW to create an utterance-dependent reference representation

from multiple healthy speakers. Intelligibility is then assessed through time-alignment of the

pathological utterance with the utterance-dependent reference representation using DTW

and computing the short-time spectral correlation between the two aligned representations.

P-ESTOI takes speech perception and distortion into account, and unlike state-of-the-art

measures, has a simple structure, minimizes the risk of overfitting by providing a single feature

as an intelligibility score instead of relying on a large number of features, and does not require

any training or a large number of healthy speech recordings.

For assessing the intelligibility of a sample utterance from a patient in P-ESTOI, recordings of

the same utterance from several healthy speakers are needed. Consequently, P-ESTOI cannot

be used in scenarios where healthy recordings perfectly matching the phonetic content of the

pathological speech signal are not available. To deal with these scenarios, we also propose to

exploit synthetic speech generated by text-to-speech (TTS) systems to create intelligible refer-

ence models in P-ESTOI. This way, P-ESTOI becomes a flexible measure which can also be used

in phonetically-unbalanced scenarios (i.e., in scenarios where recordings from several healthy

speakers uttering the same utterances as the pathological speaker are not available). This idea

is motivated by the substantial progress made in the TTS field to generate high-quality syn-

thesized speech capturing characteristics of intelligible natural speakers (Hinterleitner et al.,

2013). Using TTS systems as an “average” intelligible speaker has already been successfully

exploited in the past for different applications. For example, in Anumanchipalli et al. (2012),

synthetic speech is used for voice disorder detection by extracting acoustic features charac-

terizing the deviation of the test speech signal from its synthesized counterpart. In Soldo

et al. (2012), TTS systems are used to generate reference templates in template-based ASR

systems, showing comparable ASR performance to generating reference templates using natu-

ral speech. To our knowledge, the suitability of synthetic speech references for pathological

speech intelligibility assessment has never been investigated.

The rest of the chapter is organized as follows. Section 6.2.1 presents an overview of the ESTOI

measure in speech enhancement. Section 6.2.2 provides details on our proposed P-ESTOI

intelligibility measure with natural healthy speech used to create fully intelligible references

to assess the speech intelligibility of pathological speakers. Section 6.2.3 presents details on

extending P-ESTOI measure by using synthetic speech to create intelligible references. The

experimental results and discussions for two considered scenarios are described in Section 6.3,

where P-ESTOI measure is compared to state-of-the-art measures, its robustness to non-

pathological variations, e.g., gender and age is empirically analyzed, and its performance

using synthetic speech references as opposed to natural speech references is investigated.

Finally, Section 6.4 summarizes this chapter.

66



6.2. Proposed approach

6.2 Proposed approach

In this section, our proposed intelligibility measure to automatically assess the intelligibility

of utterances from patients is described. Since our measure is based on the ESTOI measure in

speech enhancement, we first give an overview of the ESTOI measure. Then, our proposed

pathological speech intelligibility measure using either healthy speech references or synthetic

speech references is presented.

6.2.1 Overview of the extended short-time objective intelligibility measure

The ESTOI measure as defined in Jensen and Taal (2016) requires a clean and a degraded

speech signal, which are assumed to be time-aligned. To estimate speech intelligibility of a

sample degraded utterance, first, one-third octave band analysis is applied to the TF represen-

tation of both clean and degraded signals corresponding to that utterance, yielding in total J

one-third octave bands. We denote the J ×T -dimensional time-aligned one-third octave band

representations of the clean and degraded signals for the sample utterance n as Rn and Pn,

respectively, with T being the total number of frames. TF-units are denoted by Rn( j , i ) and

P n( j , i ), with j denoting the octave band index and i denoting the frame index.

To compute ESTOI, an intermediate intelligibility measure b(t ) is first computed from a region
of I consecutive normalized TF-units, with i ∈ {t , (t +1), . . . , (t + I −1) for t ≤ T − I +1. All
I consecutive TF-units in each band of the clean and degraded representations are mean
and variance normalized. For each time frame, the linear correlation coefficient between
J frequency bands is computed. Denoting by R̃n( j , i ) and P̃ n( j , i ) the mean and variance
normalized TF-units of each representation, b(t ) is computed as the average of the spectral
linear correlation coefficients across I consecutive time frames (Jensen and Taal, 2016), i.e.,

b(t )=1

I

t+I−1∑
i=t

J∑
j=1

(
R̃n( j , i )−R̃n( j , i )

) (
P̃ n( j , i )−P̃ n( j , i )

)
√

J∑
j=1

(
R̃n( j , i )−R̃n( j , i )

)2 J∑
j=1

(
P̃ n( j , i )−P̃ n( j , i )

)2

, (6.1)

where R̃n( j , i ) = 1
J

J∑
j=1

R̃n( j , i ) and P̃ n( j , i ) is similarly defined. The intelligibility score of the

degraded signal corresponding to the utterance n (denoted as ISn) is finally computed as the

average of the intermediate measure over all frames:

ISn = 1

(T − I +1)

∑
t

b(t ). (6.2)

It should be noted that ESTOI measure does not assume mutual independence between

contributions of frequency bands to intelligibility unlike its STOI variant (Taal et al., 2010),

where temporal correlations are analyzed instead of spectral ones.

It is worth mentioning that the intelligibility predictions given by ISn in (6.2) should not
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Utterance from
a pathological

speaker

Utterances from
healthy speakers

1/3-octave band
TF analysis

1/3-octave band
TF analysis

Reference
representation

DTW
Spectral cross-

correlation P-ESTOI

Figure 6.1 – Block diagram of the proposed pathological intelligibility measure P-ESTOI.
The reference representation (template) is obtained from DTW-based clustering of healthy
speakers’ representations (after 1/3-octave band TF analysis). A test (possibly pathological)
utterance is then compared by DTW to the reference representation to estimate spectral
correlations, which are then used to calculate the P-ESTOI intelligibility measure (according
to (6.2)).

be interpreted as an absolute intelligibility score (the percentage of words understood by

listeners), but rather should be treated as an index, i.e., expected to be correlated with absolute

subjective intelligibility scores. For learning the corresponding mapping ISn to final absolute

intelligibility scores, a separate test and train data including data from many pathological

speakers with different levels of intelligibility is required. Such mapping will be dependent on

the language and the speech material. Therefore, in this thesis, we did not attempt to learn

such mappings.

6.2.2 Pathological intelligibility assessment using healthy speech references

Pathological speech intelligibility is a measure of the influence of the speech production deficit

of a patient on a listener’s perceptual understanding (Ansel and Kent, 1992), with pathological

and healthy speech being differently perceived. We hypothesize that quantifying the diver-

gence of a perceptual acoustic representation of pathological speech from healthy (intelligible)

speech yields a reliable pathological intelligibility assessment technique. Therefore, we pro-

pose to use the simple perceptual acoustic representation used in ESTOI measure, i.e., the

previously described one-third octave band representation in Section 2.4.2. By computing the

spectral correlations between the octave band representations of a reference and time-aligned

test signal, an estimate of speech intelligibility can be derived.

For pathological intelligibility assessment, the test signal is the pathological signal while a

time-aligned (fully intelligible) reference signal is not available. Therefore, we propose to cre-

ate an utterance-dependent reference representation from recordings from multiple healthy

speakers using DTW. DTW is then also used to align the pathological speech representation

to the reference representation before computing the intelligibility measure based on the

spectral cross-correlation of the aligned representations. The block diagram of the resulting

pathological speech intelligibility measure, i.e., P-ESTOI is illustrated in Figure 6.1. As de-

picted in this figure, the computation of P-ESTOI measure relies on i) creating an utterance-

dependent (intelligible) reference representation, ii) aligning the considered pathological

representation to the reference representation using DTW, and iii) computing the spectral
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correlation between the two aligned representations to estimate the intelligibility.

In the following, the time alignment, the method proposed to create utterance-dependent

reference signals from healthy speakers, and finally, the intelligibility assessment is described.

Time alignment

Let Xn
s denote the J ×M-dimensional octave band representation of the sample utterance n

from speaker s, with M denoting the total number of time frames. Similarly, we define Xn
p to

be the J ×N -dimensional octave band representation from another speaker p with N being

the total number of time frames in Xn
p . The representations Xn

s and Xn
p are typically not aligned

(due to different speakers and speaking rates) and are generally of different lengths, i.e., M 6= N .

These two representations are aligned through DTW, using a simple Euclidean distance as

the cost function (Rabiner and Juang, 1993). DTW finds T -dimensional warping pathsφs,p

and φp,s , with T ≥ max[M , N ], such that the warped representations Xn
s (φs,p ) and Xn

p (φp,s)

are point-to-point aligned sequences.

Utterance-dependent reference representations

For each considered utterance, a healthy speaker r is randomly selected, with r ∈ {1, . . . , R}

and R being the total number of healthy speakers. Let us denote the one-third octave band

representation of the utterance n from healthy speaker c by Hn
c . Using DTW, the octave

band utterance representation Hn
r is separately time-aligned with the representations from

all remaining healthy speakers. For each frame in Hn
r , we extract all frames mapped to it

by DTW from the representations of all remaining speakers. The representation for each

reference frame is then created by taking the mean of all extracted aligned frames. The

final reference representation for the considered utterance denoted by Rn is then obtained

by concatenating all reference frames so obtained. It should be noted that using such an

approach results in a reference representation that has the same length as the initial randomly

selected representation Hn
r . Our experimental results suggest that the computed P-ESTOI

measure is not sensitive to the selected initial reference representation.

Intelligibility assessment

To assess intelligibility, the one-third octave band representation for the considered test utter-

ance is computed and aligned to the created reference template using DTW, with Euclidian

distances as local scores. Due to different speaking rates, the aligned representations will

obviously have repeated frames, i.e., after alignment, the shorter representation is likely to be

expanded by repeating several frames. In Darley et al. (1969), it was shown that for diseases

such as CP and ALS, the speaking rate did not show a high correlation with speech intelligibility.

However, the repeated frames in the reference or patient representation will clearly affect the

computed intelligibility measures. To discard the differences in speaking rates, these repeated
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frames are removed before computing the P-ESTOI. Denoting the TF-units of the aligned

healthy reference of the sample utterance n as Rn( j , i ) and pathological test representations

of the the same utterance from the pathological speaker k (with repeated frames discarded) as

P n( j , i ), P-ESTOI, the intelligibility score of the sample utterance n from patient k (denoted

here as ISn
k ) is computed using (6.2).

6.2.3 Pathological intelligibility assessment using synthetic speech references

As described in Section 6.2.2, to evaluate the intelligibility of an utterance from a pathological

speaker, P-ESTOI creates a reference representation based on recordings of the same utterance

from multiple healthy speakers. In practice, however, such recordings are not always available.

To make P-ESTOI a flexible measure that can be used in scenarios where such recordings

are not available, in this section we propose to generate the reference representation using

synthetic utterances generated with high-quality state-of-the-art TTS systems.

We propose to use a Deep Neural Network (DNN)-based TTS system inspired by the Merlin TTS

system (Wu et al., 2016). The Merlin TTS system has been used as a benchmark for assessing

the quality of TTS systems in the Blizzard Challenge in 2016 (King and Karaiskos, 2016) and

2017 (King et al., 2017). It has been shown that such a system yields high-quality synthesized

signals, outperforming systems based on Hidden Markov Models in terms of naturalness

and intelligibility (Wu et al., 2016). We train this system on multiple healthy speakers. For

each sample utterance n in the pathological speech signal, we generate multiple synthesized

reference utterances. The reference representation Rn is then computed following the same

procedure as in Section 6.2.2. However, instead of using healthy speech recordings of the same

utterance, we use synthesized speech of the same utterance from multiple TTS systems trained

on multiple healthy speakers. Although following such an approach requires multiple healthy

speech recordings to train appropriate TTS systems, it does not require healthy recordings of

exactly the same utterances that are present in the pathological speech signal.

6.3 Experimental results

In this section, first, the performance of the proposed P-ESTOI measure using healthy speech

references, as well as its generalisation capabilities across languages and diseases is investi-

gated on two considered databases, i.e., English-speaking CP patients database and Dutch-

speaking patients with hearing impairment database (cf. Section 3.2). P-ESTOI measure is

also compared to several state-of-the-art measures. In addition, the robustness of the P-ESTOI

measure using healthy speech references to gender and age variations is empirically analyzed.

Finally, the performance of P-ESTOI using synthetic speech references as opposed to natural

speech references is extensively investigated for the English-speaking CP patients.
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6.3.1 Algorithmic settings, evaluation, scenarios and state-of-the-art measures

To compute P-ESTOI, the TF analysis is performed using a 32 ms Hamming window with an

overlap of 50% (cf. Section 2.4.2). The number of consecutive frames I considered for the

correlation is 15 and the number of one-third octave bands J is 15.

For training the TTS systems required in P-ESTOI with synthetic speech references, we consider

the CMU ARCTIC database consisting of recordings of 1132 phonetically-balanced utterances

from 4 US English-speaking healthy speakers (2 males, 2 females) (Kominek and Black, 2004).

To compute reference representations from synthetic speech signals, we train 4 TTS systems

using these healthy recordings of the 4 healthy speakers in the CMU ARCTIC database. To this

end, we use a DNN-based state-of-the-art Merlin TTS system in conjunction with the Festival

front-end, two bidirectional long short-term memory networks as duration and acoustic

models, and the WORLD vocoder. For details on the TTS systems and the training procedure,

the reader is referred to Schnell and Garner (2018); Marelli et al. (2019). By training a TTS

system for each speaker, we get 4 speaker-dependent TTS systems.

To evaluate all considered measures, we use the Pearson correlation coefficient (R) and the

Spearman rank correlation coefficient (Rs) between the automatically estimated intelligibility

(as the mean across all considered utterances) and the subjective intelligibility scores.

As previously mentioned, the computation of a reference representation in P-ESTOI (inde-

pendently of whether natural or synthetic speech is used) requires selecting a random initial

intelligible representation Hn
r (cf. Section 6.2.2) from the given set of natural or synthetic ut-

terances. To analyze the sensitivity of P-ESTOI measure to the initial reference representation,

we repeat the computation of P-ESTOI multiple times using a different selection of the initial

representation for creating the reference representation. The presented correlation values for

P-ESTOI measure are the mean and standard deviation of the correlation values obtained for

these different repetitions.

To analyze the proposed measures and demonstrate their applicability, the following two

scenarios are considered.

Phonetically-balanced scenario

In this scenario, we assume that all speakers (healthy and pathological) utter exactly the same

utterances, and the final intelligibility score is computed as the mean across all utterance-level

intelligibility scores.

The performance of P-ESTOI in this phonetically-balanced scenario is compared to many

blind state-of-the-art measures from Falk et al. (2012), and two non-blind ASR-based measure

and the iVector-based measure (Martínez et al., 2015). For the ASR-based and iVector-based

approaches, we report the results from Martínez et al. (2015), where these approaches are only

evaluated on the English database of CP patients using a leave-one-out validation strategy. For
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blind state-of-the-art feature-based methods, we consider several measures which have been

shown to yield a high correlation with subjective intelligibility scores in Falk et al. (2012), i.e.,

the kurtosis of the linear prediction residual KLP , the standard deviation of the zeroth-order

delta coefficient σ∆, the voicing percentage %V , the range of the fundamental frequency ∆ f 0,

and the low-to-high modulation energy ratio (LHMR). KLP aims at characterizing vocal source

excitation atypicality, σ∆ aims at characterizing short-term temporal dynamics, %V and ∆ f 0

aim at characterizing disordered prosody, and LHMR aims at characterizing long-term tem-

poral dynamics. ∆ f 0 and the voicing percentage have been computed using Praat (Boersma,

2002), the linear prediction residual and σ∆ have been computed using the speech signal

processing (SSP) Python package (Garner, 2013), and LHMR has been computed using Falk

et al. (2010). It should be noted that the used voice activity detector and all implementation

details for the different measures have not been reported in Falk et al. (2012), hence, the

obtained results evaluated on the same English database are different from the ones reported

in Falk et al. (2012).

To provide empirical evidence on the robustness of P-ESTOI measure with healthy speech

references to gender and age variations, recordings of healthy speakers from the Spanish

PC-GITA database (Orozco-Arroyave et al., 2014a) (cf. Section 2.2.1) are used. We consider

recordings of 50 healthy Spanish-speaking speakers (25 males and 25 females) from this

database with each speaker uttering 10 sentences. The age of the speakers ranges from 31 to

86 years old, with a median age of 62 years old (Orozco-Arroyave et al., 2014a).

Only in such phonetically-balanced scenarios can the performance of P-ESTOI measure using

synthetic speech references be compared to the performance of P-ESTOI using healthy speech

references (since otherwise healthy speech reference models cannot be generated). Since

only high-quality TTS systems were available for the English language, P-ESTOI with synthetic

speech references is only evaluated for the English database. The effect of the number of TTS

systems used to generate reference representations is also analyzed in this scenario. When

comparing P-ESTOI with natural healthy speech references to its counterpart P-ESTOI with

synthetic speech references, we compute reference representations from 4 healthy speakers

from the English database, i.e., R = 4 (cf. Section 6.2.2), since 4 speaker-dependent TTS systems

are trained for creating synthetic speech references. However, in general, for comparing P-

ESTOI with natural healthy speech references to other state-of-the-art measures, all available

healthy speakers in databases are used to create the intelligible speech references.

Phonetically-unbalanced scenario

In this scenario, we assume that all speakers (healthy and pathological) utter different ut-

terances. P-ESTOI using healthy speech references cannot be used in such scenarios since

healthy reference models cannot be generated. Instead, only the performance of P-ESTOI

using synthetic speech references is evaluated, since it is applicable to such phonetically-

unbalanced scenarios. The effect of the number of utterances that is available to estimate

intelligibility is also investigated.
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Table 6.1 – Performance of the phonetically-balanced intelligibility assessment on the English
CP and Dutch HI databases using the proposed (i.e., P-ESTOI with natural speech references)
and state-of-the-art measures. The entry denoted by {·}∗ indicates non-significant correlation,
and entries denoted by {-} indicate that correlation values are not available.

15 English CP patients 16 Dutch HI patients

Intelligibility Measures R RS R RS

P-ESTOIH 0.95±0.00 0.94±0.00 0.80±0.01 0.80±0.01
iVector 0.74 - - -
ASR 0.55 - - -
∆ f 0 −0.63 −0.61 −0.08∗ −0.09∗
LHMR −0.42∗ −0.44∗ −0.36∗ −0.40∗
%V −0.37∗ −0.58 −0.33∗ −0.33∗
KLP 0.46 0.49 −0.34∗ −0.16∗
σ∆ 0.49 0.58 0.08∗ 0.04∗

6.3.2 Results

Performance in phonetically-balanced scenario

In this section, the performance of the proposed P-ESTOI measure in phonetically-balanced

scenarios is compared to the performance of state-the-art measures. In addition, the robust-

ness of P-ESTOI to gender and age variations is empirically analyzed. The performance of

P-ESTOI measure using synthetic speech references as opposed to natural speech references

is also investigated.

P-ESTOI and state-of-the-art measures

Table 6.1 presents the Pearson and Spearman correlation values obtained for the CP and HI

patients using the proposed and state-of-the-art measures. P-ESTOI intelligibility measure

with healthy references is denoted as P-ESTOIH . The Pearson correlation values obtained for

the CP patients using the iVector- and ASR-based approaches in Martínez et al. (2015) are

also presented. As previously mentioned, only the Pearson correlation coefficients for the

CP patients have been reported in Martínez et al. (2015). Hence, results for HI patients and

Spearman correlation values for CP patients are not available.

To assess the statistical significance of the reported correlation values, entries in Table 6.1 are

compared to the corresponding critical correlation values in Table 3.1 (cf. Section 3.3).

It can be observed that P-ESTOIH gives the highest (significant) correlation values on both

databases (i.e., for both considered languages and diseases). Comparing P-ESTOIH to other

non-blind state-of-the-art iVector- and ASR-based approaches, it can be observed that P-

ESTOIH significantly outperforms them for the CP patients. Considering the rest of state-of-

the-art measures, i.e., blind approaches, P-ESTOIH significantly outperforms them as well.
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For the CP patients, some of the blind state-of-the-art measures, e.g., ∆ f 0, KLP , and σ∆ also

yield significant correlations with the subjective intelligibility scores while they do not show

significant correlations for Dutch HI patients. The fundamental advantage of P-ESTOI over the

blind measures is that it relies on comparing a perceptual representation of the pathological

speech to a reference perceptual representation of intelligible (healthy) speech, resulting in a

high performance independently of the language or of the disease.

Furthermore, low standard deviations of correlation values obtained by P-ESTOIH suggest

that the computed P-ESTOIH measure is not sensitive to the selected initial reference repre-

sentation. In addition, our further experimental results (not presented here) suggest that it

is beneficial to use gender-specific reference representations, i.e., reference representation

constructed using only healthy male (female) speakers when evaluating the intelligibility of

male (female) patients. However, if the number of available healthy speakers is too small, it is

more beneficial to use all speakers and create a single reference representation for both male

and female patients

Robustness of P-ESTOI to gender and age variations

A robust objective intelligibility measure should not be significantly impacted by non-pathological

characteristics of speech such as gender- and age-related features. In this section, we investi-

gate the robustness of the proposed P-ESTOIH measure to the gender and age of speakers. To

ensure that the only source of variability is the gender or the age instead of pathology-related

features, the following analyses are conducted on healthy (i.e., perfectly intelligible) speech

recordings from the PC-GITA database (cf. Section 2.2.1).

To investigate the effect of gender on P-ESTOIH , utterances of 20 (10 males and 10 females)

speakers are used to represent the intelligible reference speech signals. To represent the test

speech signals, utterances of 30 (15 males and 15 females) speakers are used. The disjoint sub-

sets of intelligible and test speakers are randomly chosen from all available healthy speakers in

the PC-GITA database, and the selection of these subsets is repeated 100 times. The P-ESTOIH

measure is then computed for each test utterance from each of the test male and female

speakers. For each test utterance, the reference representation is computed as in Section 6.2.2

by DTW-based clustering of the representations of the same utterance from the 20 speakers

used as the intelligible reference speakers.

To investigate the robustness of P-ESTOIH to age, a similar analysis is conducted by dividing

the speakers into two age groups (i.e, a young group of speakers with age 6 62 years old and

an old group of speakers with age > 62 years old). To represent the intelligible speech signals,

utterances of 18 (9 old and 9 young) speakers are used. To represent the test speech signals,

utterances of 30 (15 old and 15 young) speakers are used. The disjoint subsets of intelligible

and test speakers are also randomly chosen from all available healthy speakers in the PC-GITA

database, and the selection of these subsets is repeated 100 times. The P-ESTOIH measure is

then computed for each test utterance from each of the test young and old speakers. For each

test utterance, the reference representation is computed as in Section 6.2.2 by DTW-based
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Figure 6.2 – Mean and standard deviation of the obtained P-ESTOIH values for 10 utterances
across a) male and female speakers, and across b) old and young speakers for one repetition
of the speakers’ subset selection. For the used speakers’ subset selection, no statistically
significant differences between mean P-ESTOIH values of male and female speakers and no
statistically significant differences between mean P-ESTOIH values of old and young speakers
for any of the utterances are found.

clustering of the representations of the same utterance from the 18 speakers used as the

intelligible reference speakers.

Figs. 6.2a and 6.2b depict the mean and standard deviation of the obtained P-ESTOIH values

for each utterance across the male and female speakers and across the young and old speakers.

These results are obtained for one disjoint subset of intelligible and test speakers randomly

chosen from all available healthy speakers in the PC-GITA database. It can be observed

that the obtained mean P-ESTOIH values are similar across the two gender and age groups,

independently of the considered utterance. This shows that the proposed P-ESTOIH measure

is barely affected by the gender or age of speakers.
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To evaluate whether there are significant differences between the mean P-ESTOIH values

for each utterance across the groups of speakers (i.e., male vs. female groups and old vs.

young groups), an independent samples t-test is conducted. The t-test is conducted for each

repetition of the speakers’ subset selection in both gender- and age-based analyses. Out of

the 10 considered utterances, the average number of utterances across all repetitions which

yields a statistically significant difference (i.e., p < 0.01) between the mean P-ESTOIH values

of male and female speakers is less than 1. Similarly, the average number of utterances across

all repetitions which yields a statistically significant difference (i.e., p < 0.01) between the

mean P-ESTOIH values of old and young speakers is also less than 1. For the speakers’ subset

selection used in Fig. 6.2, no statistically significant differences for any of the utterances are

found. Hence, it can be said that the difference in the mean P-ESTOIH values across male

and female speakers and the difference in the mean P-ESTOIH values across old and young

speakers is generally not statistically significant.

In summary, our analyses show that the proposed P-ESTOIH measure is not sensitive to the

gender and age of speakers and is able to construct representations that reflect intelligibility-

related degradations.

Comparing P-ESTOI using synthetic and natural references

In the following, the performance of P-ESTOI using synthetic speech references is compared

to using healthy speech references for assessing the intelligibility of English CP patients.

The P-ESTOI intelligibility measure with synthetic references is denoted as P-ESTOIS and as

mentioned before, the P-ESTOI intelligibility measure with natural healthy speech references

is denoted as P-ESTOIH . As previously mentioned, P-ESTOIS is only evaluated for the database

with English CP patients, as we only have access to high-quality synthetic English speech

samples generated by our trained TTS systems.

To analyze whether the performance of P-ESTOI measure is dependent on the number of

TTS systems used to generate the reference representation, we investigate the performance

when using 1, 2, 3, and 4 such TTS systems. Accordingly, this is compared to the performance

of P-ESTOI using natural speech references generated from 1, 2, 3, and 4 healthy speakers.

Since there are multiple ways of selecting, 1, 2, or 3 TTS systems or healthy speakers out of the

available 4 TTS systems or healthy speakers, we have repeated the computation of P-ESTOI

for each of these possible selections.

Fig. 6.3 presents the Pearson and Spearman rank correlation between the subjective intelligi-

bility scores and the P-ESTOI intelligibility measure using synthetic references (i.e., P-ESTOIS)

and healthy references (i.e., P-ESTOIH ) for different numbers of TTS systems or healthy

speakers. The columns and bars in Fig. 6.3 present the mean and standard deviation of the

correlation values across all repetitions. Although not presented in this figure, the correlation

values obtained using both P-ESTOIS and P-ESTOIH across all repetitions are statistically

significant (using the comparison to the corresponding critical correlation values in Table 3.1).

It can be observed that the Pearson and Spearman correlation values obtained using P-ESTOIS
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Figure 6.3 – a) Pearson correlation R and b) Spearman rank correlation RS using P-ESTOIS and
P-ESTOIH for different number of TTS systems and healthy speakers. The columns and bars
depict the mean and standard deviation of the correlation values across different selections of
the set of TTS systems or healthy speakers. (ns) denotes non-significant differences between
the correlation values of P-ESTOIS and P-ESTOIH .

and P-ESTOIH are both high and very similar, independently of the number of TTS systems

or healthy speakers used to generate the reference representations. When using 1 or 2 TTS

systems or healthy speakers, the Pearson correlation obtained with P-ESTOIS is slightly higher

than the Pearson correlation obtained with P-ESTOIH . In the remainder of the considered

scenarios, the correlation values obtained with P-ESTOIS are slightly lower than the correla-

tion values obtained with P-ESTOIH . Given all 4 TTS systems used to generate the reference

representations, P-ESTOIS yields mean and standard deviation of R and RS of 0.89±0.01 and

0.88±0.02 for the English CP patients.

To analyze whether the differences in the presented correlation values of P-ESTOIS and P-

ESTOIH for each considered number of TTS systems or healthy speakers are statistically

significant, we conduct a two-tailed dependent Steiger’s Z-Test on all possible pairs of cor-

relation values obtained across all repetitions (Steiger, 1980). The difference between the

correlation values is considered significant when the obtained p-value is p < 0.01 in the ma-

jority (i.e., more than 50%) of the considered correlation pairs, otherwise this difference is
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considered to be non-significant (depicted by ns in Fig. 6.3). As shown in Fig. 6.3, there is no

significant difference between P-ESTOIS and P-ESTOIH independently of the number of TTS

systems or healthy speakers.

In summary, it can be said that the performance of P-ESTOI using synthetic speech references

is high and similar to using natural speech references.

Performance in phonetically-unbalanced scenario

In this section, the performance of P-ESTOI using synthetic speech references is evaluated

in phonetically-unbalanced scenarios for the English database (i.e., assessing the speech

intelligibility of CP patients).

To investigate the effect of the number of available utterances in estimating intelligibility, a set

of utterances is randomly selected from the 763 available utterances for each speaker. The

number of considered utterances ranges from 25 to 763. Clearly, there might be common

utterances among speakers, however, these utterances are not exactly the same. The random

selection of the set of utterances is repeated 100 times, and the final intelligibility score is

obtained by averaging across all repetitions.
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Figure 6.4 – a) Pearson correlation R and b) Spearman rank correlation RS using P-ESTOIS in
phonetically-unbalanced scenarios for different number of considered utterances.
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Fig. 6.4 presents the Pearson and Spearman rank correlation obtained using P-ESTOIS in

the phonetically-unbalanced scenario for different numbers of utterances. Although not

presented in this figure, the correlation values obtained using P-ESTOIS are always statistically

significant for each considered number of utterances. It can be observed that independently

of the considered number of utterances for intelligibility assessment, the correlation values

obtained using P-ESTOIS are always high, demonstrating the advantages of the proposed

method in phonetically-unbalanced scenarios. Further, it can be observed that the correlation

values obtained using P-ESTOIS quickly converge, showing that a relatively small number of

utterances is necessary for P-ESTOIS to obtain a robust intelligibility assessment.

6.4 Summary

In this chapter, we have proposed to automatically assess the intelligibility of pathological

speech based on a short-time objective intelligibility measure typically used in speech en-

hancement, which however requires a reference signal that is time-aligned to the test signal.

We have proposed to create an utterance-dependent reference signal of intelligible speech

from multiple healthy speakers. In order to assess intelligibility, the pathological speech signal

is aligned to the created reference signal using DTW. Our proposed intelligibility measure,

i.e., P-ESTOI, is finally computed by quantifying the divergence between the two signals us-

ing the spectral correlation. By relying on a reference representation created from multiple

healthy speakers, P-ESTOI has shown a high performance (i.e., obtaining high correlation

values with subjective intelligibility ratings) independently of the language, i.e., English or

Dutch, or the pathology, i.e., CP and HI, and also outperforms the state-of-the-art pathological

speech intelligibility measures. In addition, we have shown that the proposed measure is

robust to gender- and age-induced changes in the acoustical properties of signals. Hence, our

proposed measure is reliable, simple, and does not need a large amount of training data. In

addition, it is based on developing a single feature correlated with subjective intelligibility

ratings, therefore, it is advantageous over methods that require many features (since training,

and hence, overfitting is avoided).

However, to assess the intelligibility of an utterance from a patient, P-ESTOI relies on the

availability of recordings of the same utterance by several healthy speakers such that an

intelligible reference model can be created. Such recordings are not always easily available,

limiting the practical applicability of P-ESTOI. To be able to use P-ESTOI in such scenarios,

we have also proposed to use synthetic speech generated by state-of-the-art high-quality TTS

systems to create an intelligible reference model. Experimental results on a database of CP

patients have shown that the performance of P-ESTOI using synthetic speech references is

comparable to using natural speech references. Therefore using synthetic speech references

can make P-ESTOI a flexible measure that does not require healthy speech recordings and

can be successfully used in a wide range of scenarios while outperforming state-of-the-art

pathological speech intelligibility measures.
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7 Pathological speech intelligibility as-
sessment exploiting subspace-based
analyses
In this chapter we propose a measures to assess the intelligibility of pathological speech based

on analyzing the subspaces spanning the dominant speech spectral patterns. This measure

unlike our proposed intelligibility measure in the previous chapter does not require any time-

alignment, is not computationally expensive, and can also be used in phonetically-unbalanced

scenarios. The applicability of the proposed subspace-based intelligibility measure in this

chapter is experimentally investigated across databases and compared to many state-of-the-

art pathological speech intelligibility measures.

7.1 Introduction

In Chapter 6, we proposed a non-blind pathological speech intelligibility measure based on

the extended short-time objective intelligibility, i.e., P-ESTOI measure to tackle the drawbacks

of state-of-the-art techniques. P-ESTOI does not rely on extracting a large number of features,

does not require any training or a large number of healthy speech recordings, and was shown

to be highly correlated with subjective intelligibility ratings for patients suffering from different

pathologies. However, for assessing the intelligibility of a sample utterance from a patient

in P-ESTOI, recordings of the same utterance from several healthy speakers are needed such

that an utterance-dependent reference model can be created. Intelligibility is then assessed

through time-alignment of the pathological utterance with the utterance-dependent reference

model. Consequently, P-ESTOI measure cannot be used in scenarios where such healthy

recordings perfectly matching the phonetic content of the pathological speech signal are

not available. To be able to use P-ESTOI measure in such scenarios, in Chapter 6, we also

proposed to use synthetic speech generated by state-of-the-art high-quality TTS systems to

create an intelligible reference model. However, training TTS systems requires a large amount

of healthy speech data with the same language as patients under evaluation, which might

not be easily available for under-resourced languages. In addition, the computational cost

of time-alignment performed by DTW in P-ESTOI measure (using either natural or synthetic

speech references) is high when aligning long utterances.
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Aiming to develop an automatic intelligibility measure that does not require any time-alignment

and can be used in phonetically-unbalanced scenarios without being computationally expen-

sive, in this chapter we propose a subspace-based intelligibility (SBI) measure. This measure

is inspired by the knowledge that speech pathologies typically decrease the degree of spectral

modulation in pathological speech signals (Rosen et al., 2006). We hypothesize that pathology-

induced spectral modulation changes are reflected in the subspace spanned by the most

dominant speech spectral basis vectors. In addition, we hypothesize that the divergence

between intelligible and pathological speech spectral subspaces (computed from healthy and

pathological speech recordings that do not necessarily share the same phonetic content) can

be used as an automatic intelligibility measure.

In this chapter first, we propose to characterize spectral subspaces using a (possibly) different

number of spectral basis vectors for the healthy and pathological speech signals. Second, we

provide empirical evidence on i) the relation between the SBI measure and low-frequency

components of the spectral modulation of speech, which have been shown to be crucial for

speech intelligibility, ii) the robustness of the SBI measure to gender variations, and iii) the

robustness of the SBI measure to age variations. Third, we provide insights on the computa-

tional complexity reduction that is achieved using SBI instead of P-ESTOI measure. Fourth, we

propose two techniques to incorporate short-time temporal information in the SBI measure.

Finally, we provide an extensive experimental evaluation of the proposed measures to inves-

tigate their applicability in phonetically-balanced and phonetically-unbalanced scenarios

and their generalisability across languages, i.e., English and Dutch, and across pathologies,

i.e., CP and HI. Experimental results show that the proposed measures yield high and signif-

icant correlations with subjective intelligibility scores, while not requiring any training or a

large number of healthy speech recordings and being applicable to phonetically-unbalanced

scenarios.

It should be noted that in Chapter 4 we also used a similar subspace-based characterization

of speech signals for automatic pathological speech detection. We extracted both spectral

and temporal subspaces spanning the dominant spectro-temporal patterns of speech and

used them as acoustic features representing each speaker for the detection task. However,

in this chapter, we characterize only the dominant speech spectral basis vectors reflecting

pathology-induced spectral modulation changes that are important to the perceived speech

intelligibility, and the subspace analysis used for pathological speech intelligibility assessment

here is different than subspace-based learning used for the detection task in Chapter 4.

This chapter is organized as follows. Section 7.2 presents a brief overview of the psychoacoustic

evidence on the importance of spectral modulation frequencies on speech intelligibility.

Section 7.3 describes the proposed SBI measure, and Section 7.4 describes the proposed

temporal extensions. Section 7.5 presents empirical insights on the relation between the

proposed SBI measure and spectral modulation frequencies and on the robustness of SBI

to gender and age variations. Experimental results using the proposed SBI measure and its

temporal extensions are presented in Section 7.6, and finally, Section 7.7 presents a summary
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of this chapter.

7.2 Modulation spectrum and speech intelligibility

In this section, we first present a brief overview of the psychoacoustic evidence supporting the

relation between spectral modulation frequencies and speech intelligibility.

Fluctuations of the speech power spectrogram in time (at any frequency) and in frequency

(at any time frame) are referred to as temporal and spectral modulations. Psychoacoustic

studies have shown that the temporal and spectral modulations of speech are critical to speech

perception, since they represent phonological information such as syllable boundaries and

formant information (Drullman et al., 1994; Shannon et al., 1995; Zeng et al., 2005; Elliott

and Theunissen, 2009; Hermansky, 2011). The importance of spectro-temporal modulations

to speech intelligibility is further confirmed by the success of several objective intelligibility

measures typically used in speech enhancement which aim to incorporate (or indirectly assess)

modulation cues, such as the speech transmission index (Steeneken and Houtgast, 1980), the

spectro-temporal modulation index (Elhilali et al., 2003), LHMR (Falk et al., 2012), envelope

power spectrum-based measures (Jorgensen et al., 2013; Biberger and Ewert, 2017), and ESTOI

measure (Jensen and Taal, 2016). Since our previously proposed pathological intelligibility

measure, i.e., P-ESTOI, is based on ESTOI, it can be easily deduced that P-ESTOI also reflects

differences in the spectro-temporal modulation of intelligible and pathological speech. While

temporal modulations are indeed very important to speech intelligibility (Drullman et al.,

1994; Shannon et al., 1995; Zeng et al., 2005; Elliott and Theunissen, 2009), the objective in

this paper is to develop a measure that does not require time-alignment and which can be

used in phonetically-unbalanced scenarios. Hence, the proposed SBI measure can only reflect

spectral modulation differences between healthy and pathological speech.

The effect of spectral modulation cues on the perceived speech intelligibility by human lis-

teners (i.e., subjective speech intelligibility) has been extensively analyzed in Elliott and

Theunissen (2009). In Elliott and Theunissen (2009), the spectral modulation pattern is ob-

tained by computing the Fourier transform of each time frame of the TF representation of

utterances. TF representations with a linear frequency axis result in spectral modulations in

units of cycle/kHz, whereas TF representations with one-third octave band frequency axis

result in spectral modulation in units of cycle/ 1
3 octave. To investigate the spectral modulation

frequencies contributing to speech intelligibility, the spectral modulation spectrum at each

time frame is low-pass filtered at different cut-off frequencies. Using such low-pass filtering,

the oscillations in the spectral modulation domain with frequencies above the considered

cut-off frequency (i.e., higher-frequency components of the spectral modulation) are removed,

while oscillations below the considered cut-off frequency (i.e., lower-frequency components

of the spectral modulation) are preserved. The time-domain signal corresponding to the low-

pass filtered signal in the spectral modulation domain is reconstructed, and human listeners

are asked to rate the intelligibility of these synthetically manipulated utterances.
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Figure 7.1 – Subjective intelligibility of low-pass spectral modulation filtered utterances based
on the percentage of words misunderstood by human listeners. The spectral modulation
spectrum of utterances is low-pass filtered at different cut-off frequencies (figure adapted
from Elliott and Theunissen (2009)).

Fig. 7.1 shows the effect of low-pass modulation filtering at different cut-off frequencies on

the word error rate, i.e., the percentage of words misunderstood by listeners. As it can be

observed, the word error rate significantly increases, i.e., speech intelligibility significantly de-

creases, when low spectral modulation frequencies are missing from the speech signal (Elliott

and Theunissen, 2009). Low spectral modulation frequencies represent spectral amplitude

fluctuations imposed by the vocal tract, i.e., formants and formant transitions (Elliott and

Theunissen, 2009). Hence, it is to be expected that the removal of low spectral modulation

frequencies yields a decrease in speech intelligibility. As will be shown in Section 7.5.1, the

SBI measure proposed in this paper responds to missing spectral modulation frequencies

similarly to Fig. 7.1, i.e., similarly to how humans rate the perceived speech intelligibility when

spectral modulation frequencies are missing in the speech signal.

7.3 Subspace-based pathological speech intelligibility assessment

It is commonly accepted that speech spectrograms can be well approximated by low-rank

matrices constructed using low-dimensional spectral patterns. Because of the reduced extent

of articulatory movements in pathological speakers, the spectral variations in pathological

speech are reduced (Rosen et al., 2006). Therefore, it can be expected that the dominant spec-

tral patterns characterizing intelligible (healthy) speech differ from the ones characterizing

pathological speech. Hence, we propose to estimate speech intelligibility by quantifying the

distance between the spectral subspaces spanned by the dominant spectral basis of pathologi-

cal speech and the dominant spectral basis of healthy speech. A schematic representation

of the proposed SBI measure is depicted in Fig. 7.2. As depicted in this figure, SBI relies

on i) computing spectral basis vectors characterizing spectral patterns in intelligible (i.e.,

healthy) utterances (referred to as intelligible spectral basis vectors), ii) computing spectral
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Figure 7.2 – Schematic representation of the proposed subspace-based intelligibility mea-
sure. Intelligible and pathological spectral basis vectors are obtained from intelligible (i.e.,
healthy) and pathological utterances. Low-dimensional spectral subspaces spanned by the
most dominant intelligible and pathological spectral basis are created, where the number of
dominant spectral basis vectors are automatically found. The pathological intelligibility score
is computed as the distance between intelligible and pathological spectral subspaces.

basis vectors characterizing spectral patterns in the test (i.e., pathological) utterance (referred

to as pathological spectral basis vectors), iii) automatic selection of the number of spectral

basis vectors used to create low-dimensional spectral subspaces corresponding to intelligible

and pathological spectral patterns, and iv) computing the intelligibility score as the distance

between the intelligible and pathological spectral subspaces. In the remainder of this section,

the computational details of the proposed SBI measure are presented.

7.3.1 Computing intelligible spectral basis

While several techniques can be used to compute spectral basis such as approximate joint

diagonalization (AJD) (Cardoso and Souloumiac, 1996), non-negative matrix factorization (Lee

and Seung, 1999), and sparse coding (Olshausen and Field, 1996), in this paper we propose to

use the simple low-rank matrix decomposition minimizing the approximation error in the

least-squares sense, i.e., the SVD. The SVD provides an analytical solution and results in a

high performance for our application. To obtain meaningful spectral basis vectors, multiple

utterances by several healthy speakers should be taken into account, such that the spectral

basis vectors can capture patterns that are specific to intelligible speech but are independent

of the particular speaker.

To obtain a signal representation resembling the transform properties of the auditory system,

signals are first transformed to the TF domain by taking the logarithm of the one-third octave

band spectrum (Elliott and Theunissen, 2009; Jensen and Taal, 2016) (cf. Section 2.4.2).

Let Hs denote the (J×Ms)–dimensional TF representation of an utterance from healthy speaker
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s, with J being the total number of one-third octave bands and Ms being the total number

of time frames. We consider TF representations of (possibly but not necessarily the same)

utterances from different healthy speakers by concatenating them into a (J ×M)–dimensional

matrix H, where M =∑S
s=1 Ms , i.e.,

H = [H1 H2 . . . HS], (7.1)

with S being the total number of available healthy speakers. The SVD of H is given by

H = UΣVT , (7.2)

with U being the (J × J )–dimensional orthonormal matrix of left singular vectors representing

spectral basis vectors, Σ being the (J ×M)–dimensional diagonal matrix of singular values σi

assumed to be sorted in descending order, and V being the (M ×M)–dimensional orthonormal

matrix of right singular vectors. The (J ×BH )–dimensional matrix of dominant intelligible

spectral basis vectors ŨH is then constructed from the first BH (with BH < J) spectral basis

vectors in U. The selection of the number of intelligible spectral basis vectors BH is described

in Section 7.3.3.

It should be noted that prior to computing the SVD, the matrices Hs , s = 1, . . . ,S, in (7.1) are

mean-centered in each octave band and scaled by 1p
Ms

to remove the bias introduced by the

number of time frames. This way, using the SVD in (7.2) to compute the spectral basis vectors

is equivalent to PCA (Wall et al., 2003). Although mean-centering the representations in the

framework of SVD is optional, it has been shown that the non-zero mean vector across time

biases the first spectral basis vector to its direction rather than to the direction with maximal

variability of spectral information (Cadima and Jolliffe, 2009; Alexandris et al., 2017).

Instead of using the SVD, we have also investigated the applicability of AJD (Cardoso and

Souloumiac, 1996) to extract intelligible spectral basis vectors (the results of which are omitted

here). The usage of AJD was motivated by the possibility that spectral subspaces from different

healthy speakers might differ significantly. In that case, computing spectral basis vectors by

concatenating TF representations from all speakers in (7.1) and then applying SVD in (7.2)

might yield basis vectors that do not offer a reasonable approximation to the different repre-

sentations. Hence, we also proposed to compute the healthy spectral basis vectors by means

of AJD (Janbakhshi et al., 2019b). As shown in Janbakhshi et al. (2019b), using the SVD-based

decomposition appears to be slightly more advantageous than using the AJD-based decom-

position for phonetically-balanced scenarios, while in phonetically-unbalanced scenarios,

using the AJD decomposition slightly outperforms using the SVD decomposition. However, in

this chapter, we use only SVD-based decomposition to extract basis vectors since, unlike AJD,

SVD is simple, provides an analytical solution, and it does not yield a significantly different

performance than AJD.
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7.3.2 Computing test spectral basis vectors

To be able to assess intelligibility, the test (i.e., pathological) spectral basis vectors also need to

be computed. Let Pr denote the (J ×Mr )–dimensional TF representation of the test utterance

from patient r , with Mr denoting the total number of time frames. Similar to Section 7.3.1,

the SVD of Pr is computed and the (J × J)–dimensional orthonormal matrix UP containing

all pathological spectral basis vectors is obtained. Extracting only the dominant BP basis

vectors (with BP < J) from UP , the (J ×BP )–dimensional matrix of test spectral basis vectors

ŨP is constructed. The selection of the number of test spectral basis vectors BP is described

in Section 7.3.3. It should be noted that different from our preliminary research on SBI

in Janbakhshi et al. (2019b), to be able to obtain a better approximation of the intelligible and

test representations, we allow the number of dominant spectral basis vectors for intelligible

and test speech to be different, i.e., BH 6= BP .

7.3.3 Automatic selection of the number of spectral basis vectors

The number of spectral basis vectors BH and BP are hyperparameters of the proposed tech-

nique which obviously impact its performance. Using a large number of spectral basis vectors

yields a better approximation of the considered TF representations. However, such an approx-

imation is likely to capture not only spectral patterns important to speech intelligibility (i.e.,

the spectral basis vectors corresponding to larger singular values), but also spectral patterns

describing extraneous variations such as speaker variability or noise (i.e., the spectral basis

vectors corresponding to smaller singular values). The optimal number of spectral basis vec-

tors should be as small as possible while at the same time it should yield a small approximation

error to the original TF representation. Due to this inherent trade-off, in the following, we

propose to automatically select the number of spectral basis vectors BH and BP by adapting

the L-curve method from Hansen (1992), which has been successfully used to automatically

select optimal regularization parameters in regularized least-squares techniques (Kodrasi

et al., 2013).

To automatically select the number of spectral basis vectors, we propose to use a parametric

plot of the approximation error of the original TF representation versus the number of spectral

basis vectors. This plot typically has an L-shape, with the corner (i.e., point of maximum

curvature) representing a good compromise between the minimization of the approximation

error and keeping the number of spectral basis vectors as low as possible. It should be noted

that BH and BP can also be selected based on a user-defined threshold on the approximation

error (as is typically done when using PCA for dimensionality reduction). However, using such

a technique requires the user to define a threshold, introducing an additional hyperparameter

that needs to be tuned.

The rank-BH approximation of the original healthy representation H is obtained using the

truncated SVD, i.e.,

Ĥ = ŨH Σ̃H ṼT
H , (7.3)
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Figure 7.3 – Typical L-curve obtained for the approximation error ε(BH ) versus the number of
basis vectors BH for a sample utterance from the PC-GITA database (cf. Section 2.2.1). The
circle depicts the corner point automatically computed using the triangle method.

where Σ̃H denotes the (BH ×BH )–dimensional diagonal matrix containing the first BH singular

values and ṼH is the (BH ×M)–dimensional matrix containing the truncated right singular

vectors in V. The approximation error ε(BH ) of the intelligible TF representation H for different

number of basis vectors BH can be computed as

ε(BH ) = ∥∥H− Ĥ
∥∥2

F =
J∑

i=BH+1
σi

2, (7.4)

with ‖·‖F denoting the matrix Frobenious norm and σi denoting the i th singular value. The

approximation error ε(BP ) of the pathological TF representation Pr for different number of

basis vectors BP can be computed similarly to (7.4). To automatically select the number of

spectral basis vectors BH and BP , the parametric plots of ε(BH ) versus BH and of ε(BP ) versus

BP are constructed. Using the triangle method (Castellanos et al., 2002), the corner points of

these parametric plots are computed and used as the number of dominant spectral patterns

spanning the intelligible and pathological subspaces.

Fig. 7.3 depicts a typical parametric plot of ε(BH ) versus BH for a sample utterance from the

PC-GITA database (cf. Section 2.2.1). As illustrated in this figure, this parametric plot has

an L-shape, with the approximation error ε(BH ) decreasing as the number of spectral basis

vectors BH increases. The corner point automatically computed by the triangle method for

this exemplary utterance is also depicted in this figure. Based on the L-curve criterion, using a

larger number of basis vectors BH than the one corresponding to the corner point (i.e., BH = 4

in this example) does not provide any significant reduction in the approximation error. It

should be noted that in this work, typical values for the number of basis vectors found with

the L-curve method are 3 and 4.
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7.3.4 Computing a distance measure between spectral basis vectors

As previously mentioned, the pathological intelligibility score is derived by quantifying the

distance between the subspaces spanned by the spectral basis vectors in ŨH (intelligible

spectral subspace) and the spectral basis vectors in ŨP (pathological spectral subspace). Since

the dimensions of the intelligible and pathological subspaces are typically not the same, i.e.,

BP 6= BH , we use a distance measure between subspaces of different dimensions proposed

in Ye and Lim (2016). While other subspace distance measures can be used, in this work we

use the Procrustes distance defined as

δ(ŨH ,ŨP ) = 2

√√√√min(BH ,BP )∑
i=1

si n2(θi /2), (7.5)

where θi denotes the i th principal angle between subspaces which can be readily computed

via SVD1 (Ye and Lim, 2016). To be able to compare and combine intelligibility scores from

different utterances (i.e., derived from using subspaces of different dimensions), the distance

values are normalized to have a maximum value of 1 when the distance between the two

subspaces is of the largest possible value, i.e., when θi =π/2, i = 1, ...,min(BH ,BP ). Hence, the

distance δ(ŨH ,ŨP ) obtained for each utterance is scaled by the factor

a = 1p
2 min(BH ,BP )

. (7.6)

It should be noted that the proposed SBI measure is negatively correlated with speech intelli-

gibility since the distance between pathological and intelligible spectral subspaces increases

as pathological speech intelligibility decreases. Therefore, such predictions of intelligibility

should not be interpreted as an absolute intelligibility score (the percentage of words under-

stood by listeners), but rather should be treated as an index, i.e., expected to be negatively

correlated with absolute subjective intelligibility scores. As mentioned in the previous chapter,

in this thesis we did not attempt to learn a mapping between predicted intelligibility scores

and absolute subjective intelligibility scores.

7.3.5 Complexity analysis

In this section, we provide some insights on the complexity reduction that is achieved when

using the SBI measure instead of P-ESTOI proposed in the previous chapter. As mentioned

before, computing the spectral basis vectors in (7.2) is equivalent to using PCA on the J × J–

dimensional correlation matrix HHT . The computation of spectral basis vectors is efficient

when PCA is used in practice. Computing correlation matrices requires a complexity of

O (J 2M), where M denotes the number of time-frames (Kwatra and Han, 2010). In addition,

the complexity of the PCA decomposition is O (J 3) (Tammen et al., 2018). Hence, the proposed

1It should be noted that the SVD used in Ye and Lim (2016) for computing the principal angles θi is unrelated to
the SVD in (7.2) representing the spectral basis vectors.
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SBI has a computational complexity of O (J 2M + J 3). The distance computation in (7.5) results

in lower-order terms dominated by higher order terms in O (J 2M + J 3), hence, they are ignored.

When using P-ESTOI, the burden on the computational complexity arises due to using DTW

(cf. Section 6.2.2). The DTW algorithm has a computational complexity of O (M N ), with

M and N being the number of time frames in the two octave band representations being

aligned (Meinard, 2007). Additionally, for each iteration step of DTW, a frame-wise Euclidean

distance with complexity O (J) needs to be computed. Hence, assuming M = N , the overall

complexity of P-ESTOI is O (J M 2) (the spectral correlation computation in P-ESTOI (cf. Sec-

tion 6.2.1) results in lower-order terms dominated by higher order terms in O (J M 2), hence,

they are ignored). Since M À J (particularly for long utterances), using the proposed subspace-

based measure instead of P-ESTOI reduces the computational complexity by a factor of M

(i.e., from O (J M 2) to O (J 2M + J 3)), which can be advantageous when using such automatic

measures for real-time feedback and assistance of clinicians.

7.4 Incorporating temporal information in subspace-based intelli-

gibility measure

The proposed SBI measure in Section 7.3 exploits only the spectral basis vectors in UH and UP

for intelligibility assessment, while ignoring temporal patterns. Although temporal variations

are important cues for speech intelligibility, the temporal basis of intelligible and pathological

speech cannot be directly computed and compared to each other (because of unaligned

and different phonetic contents in the TF representations of intelligible and pathological

speech signals). In the following, we propose two viable approaches to incorporate short-time

temporal information into the SBI measure. As will be shown in the experimental results in

Section 7.6.2, using the proposed approaches to incorporate temporal information in the SBI

measure can significantly improve the intelligibility assessment performance.

7.4.1 Dynamic subspace-based intelligibility measure

Motivated by the dynamic PCA approach in Ku et al. (1995); Zhao and Liu (2004), in this

section we propose to incorporate short-time temporal information into the SBI measure by

modifying the TF representations through concatenating consecutive spectral vectors. Let

hm denote (J ×1)–dimensional spectral vector at index m of the TF representation H (i.e., the

mth column of H). By concatenating d such consecutive vectors, with d being a user-defined

number (d ¿ M , cf. Section 7.6.1), a new TF representation matrix HDSBI is obtained, i.e.,

HDSBI =


h1 hd+1 . . . h(k−1)d+1
...

...
. . .

...

hd h2d . . . hkd

 , (7.7)
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where k = ⌊ M
d

⌋
. The matrix HDSBI in (7.7) is a (Jd ×k)–dimensional matrix. The new patho-

logical representation PDSBI is obtained similarly to (7.7). Applying the same procedure as for

computing the SBI measure in Section 7.3 to the modified representations HDSBI and PDSBI,

the dynamic SBI (DSBI) measure of pathological speech intelligibility is obtained. It should be

noted that the modified TF representations HDSBI and PDSBI are of a larger spectral dimension

than the original TF representations H and P (i.e., the number of rows in HDSBI and PDSBI

is larger than the number of rows in H and P). Consequently, the number of spectral basis

vectors required to span these TF representations is also larger.

7.4.2 Moving average subspace-based intelligibility measure

Motivated by the moving average PCA model in Zhao and Liu (2004), in this section, we

propose to incorporate short-time temporal information into the SBI measure by modifying

the TF representations through a moving average model. Exploiting a moving average model

can account for the short-time temporal correlation of speech signals, which is ignored in

the SBI measure. It should be noted that while the DSBI measure proposed in Section 7.4.1

considers multiple time frames simultaneously, the moving average SBI (MASBI) measure

proposed in this section considers only a smoothed average across consecutive time frames.

Unlike (7.7) where the spectral dimension is increased, the modified TF representation in

MASBI has the original spectral dimension of (7.1).

The modified moving average TF representation is constructed as

HMASBI = [ h′
1 h′

2 . . . h′
M−q+1 ], (7.8)

where h′
m = 1

q

m+q−1∑
j=m

h j for m = 1, . . . , M −q +1 and q is a user-defined number of time frames

(cf. Section 7.6.1). The matrix HMASBI in (7.8) is a (J × (M −q +1))–dimensional matrix. The

new pathological representation PMASBI is also obtained similarly to (7.8). Applying the same

procedure as for computing the SBI measure in Section 7.3 to the modified representations

HMASBI and PMASBI, the MASBI measure of pathological speech intelligibility is obtained.

7.5 Empirical insights into the proposed subspace-based intelligi-

bility measure

The objective of this section is to show through empirical analyses that the proposed SBI

measure focuses on low-frequency spectral modulation cues to assess pathological speech

intelligibility. This property can be justified by the psychoacoustic evidence confirming

that low-frequency spectral modulations contribute to the perceived speech intelligibility

by human listeners (cf. Section 7.2). In addition, we provide empirical evidence on the

robustness of SBI to gender and age variations. We used the same protocol as our previously

mentioned empirical analysis on the robustness of P-ESTOI to gender and age in Chapter 6
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Figure 7.4 – Automatically estimated intelligibility using the proposed SBI measure for low-
pass spectral modulation filtered utterances. The cut-off frequency units are cycle/ 1

3 octave.
The lack of low-frequency spectral modulations of speech has a similar effect on the estimated
intelligibility by SBI as on the subjective intelligibility perceived by human listeners as depicted
in Fig. 7.1.

(cf. Section 6.3.2). For these analyses, the algorithmic settings described in Section 7.6.1 and

recordings of healthy speakers from the PC-GITA database (Orozco-Arroyave et al., 2014a) (cf.

Section 2.2.1) are used. Similarly to analyses in Section 6.3.2, we consider recordings of 50

healthy Spanish-speaking speakers (25 males and 25 females) from this database with each

speaker uttering 10 sentences. The age of the speakers ranges from 31 to 86 years old, with a

median age of 62 years old (Orozco-Arroyave et al., 2014a).

7.5.1 Subspace-based intelligibility measure and spectral modulation of speech

In analogy to the experiment conducted in Elliott and Theunissen (2009) (cf. Section 7.2), in

this section, we analyze the effect of spectral modulation cues on the proposed SBI measure. To

this end, the modulation spectrum obtained from the TF representation of each utterance from

the PC-GITA database is low-pass filtered at different cut-off frequencies. Instead of asking

human listeners to evaluate the perceived intelligibility of the low-pass spectral modulation

filtered signals as in Elliott and Theunissen (2009), we compute the proposed SBI measure

based on the spectral basis vectors spanning the original utterances (representing e.g. healthy

speech signals) and the low-pass filtered utterances (representing e.g. pathological speech

signals).

Fig. 7.4 depicts the mean intelligibility estimated using the proposed SBI measure across all

considered low-pass spectral modulation filtered utterances for different cut-off frequencies.2

2It should be noted that the cut-off frequencies we use differ from Elliott and Theunissen (2009) due to
differences in the parameters of the TF representations. In addition, while Elliott and Theunissen (2009) uses a
linear frequency representation resulting in units of cycle/kHz, we use a logarithmic frequency representation
resulting in units of cycle/ 1

3 octave

92



7.5. Empirical insights into the proposed subspace-based intelligibility measure

It can be observed that the effect of missing spectral modulation frequencies on SBI is similar

to Fig. 7.1, i.e., similar to the effect of missing spectral modulation frequencies on the subjective

speech intelligibility perceived by human listeners. In other words, the lack of low-frequency

modulations in speech signals decreases the intelligibility estimated through the proposed SBI

measure in a similar trend to how the perceived intelligibility by human listeners decreases.

This observation shows that low-frequency components of spectral modulations are crucial

for speech intelligibility assessment through SBI as they are also crucial for the perceived

speech intelligibility by human listeners (cf. Section 7.2). This observation is expected since

the dominant spectral basis vectors obtained by SVD usually span low-frequency spectral

patterns. Consequently, the manipulation of these spectral patterns will be reflected in the

proposed SBI measure.

7.5.2 Robustness of the subspace-based intelligibility measure to gender and age
variations

To ensure that our proposed SBI measure is not significantly impacted by non-pathological

characteristics of speech such as gender- and age-related features, in this section, we investi-

gate its robustness to the gender and age of speakers.

To investigate the effect of gender on SBI, utterances of 20 (10 males and 10 females) speakers

are used to represent the intelligible speech signals. To represent the test speech signals,

utterances of 30 (15 males and 15 females) speakers are used. The disjoint subsets of intelligible

and test speakers are randomly chosen from all available healthy speakers in the PC-GITA

database, and the selection of these subsets is repeated 100 times. The SBI measure is then

computed for each test utterance from each of the test male and female speakers. For each

test utterance, the healthy TF representation is computed as in (7.1) by concatenating multiple

instances of this utterance from the 20 speakers representing the intelligible speakers.

To investigate the robustness of SBI to age, a similar analysis is conducted by dividing the

speakers into two age groups (i.e., a young group of speakers with age 6 62 years old and an

old group of speakers with age > 62 years old). To represent the intelligible speech signals,

utterances of 18 (9 old and 9 young) speakers are used. To represent the test speech signals,

utterances of 30 (15 old and 15 young) speakers are used. The disjoint subsets of intelligible

and test speakers are also randomly chosen from all available healthy speakers in the PC-GITA

database, and the selection of these subsets is repeated 100 times. The SBI measure is then

computed for each test utterance from each of the test young and old speakers. For each test

utterance, the healthy TF representation is computed as in (7.1) by concatenating multiple

instances of this utterance from the 18 speakers representing the intelligible speakers.

Figs. 7.5a and 7.5b depict the mean and standard deviation of the obtained SBI values for

each utterance across the male and female speakers and across the young and old speakers.

These results are obtained for one disjoint subset of intelligible and test speakers randomly

chosen from all available healthy speakers in the PC-GITA database. It can be observed
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Figure 7.5 – Mean and standard deviation of the obtained SBI values for 10 utterances across
a) male and female speakers, and across b) old and young speakers for one repetition of the
speakers’ subset selection. For the used speakers’ subset selection, no statistically significant
differences between mean SBI values of male and female speakers and no statistically signifi-
cant differences between mean SBI values of old and young speakers for any of the utterances
are found.

that the obtained mean SBI values are very similar across the two gender and age groups,

independently of the considered utterance. This shows that the proposed SBI measure is

barely affected by the gender or age of speakers. In addition, it can be observed that the

mean SBI values for all groups of speakers and for all utterances are typically low. This is to

be expected since the test signals are perfectly intelligible independently of the gender or

age of speakers and the distance between spectral subspaces of intelligible speech should be

minimal.

To evaluate whether there are significant differences between the mean SBI values for each

94



7.6. Experimental results

utterance across the groups of speakers (i.e., male vs. female groups and old vs. young groups),

an independent samples t-test is conducted. The t-test is conducted for each repetition of the

speakers’ subset selection in both gender- and age-based analyses. Out of the 10 considered

utterances, the average number of utterances across all repetitions which yield a statistically

significant difference (i.e., p < 0.01) between the mean SBI values of male and female speakers

is less than 1. Similarly, the average number of utterances across all repetitions which yield a

statistically significant difference (i.e., p < 0.01) between the mean SBI values of old and young

speakers is also less than 1. For the speakers’ subset selection used in Fig. 7.5a and Fig. 7.5b,

no statistically significant differences for any of the utterances are found. Hence, it can be said

that the difference in the mean SBI values across male and female speakers and the difference

in the mean SBI values across old and young speakers is generally not statistically significant.

In summary, our analyses show that the proposed SBI measure is not sensitive to the gen-

der and age of speakers and is able to construct representations that can mainly reflect

intelligibility-related degradations.

7.6 Experimental results

In this section, the performance of the proposed intelligibility measures is extensively inves-

tigated and compared to state-of-the-art measures. To demonstrate the applicability of the

proposed measures for several languages and pathologies, we evaluate the performance on

databases of English-speaking CP patients and Dutch-speaking HI patients (cf. Section 3.2).

To demonstrate the applicability of the proposed measures for a wide range of scenarios, we

consider both phonetically-balanced and phonetically-unbalanced scenarios.

7.6.1 Algorithmic settings, state-of-the-art measures, scenarios, and evaluation

In this section, we present the algorithmic settings for the implementation of the proposed

intelligibility measures. The considered scenarios and the performance evaluation metrics are

also presented. The considered state-of-the-art measures that are compared to the proposed

measures in this chapter are the same as in Chapter 6, i.e., Section 6.3.2.

To compute intelligible representations for the proposed measures, we use speech signals from

both healthy male and female speakers. Intelligible representations for the CP patients are

constructed using the speech signals of 9 male and 4 female healthy speakers from the English

(i.e., UA-Speech database). Intelligible representations for the HI patients are constructed

using the speech signals of 11 male and 11 female healthy speakers from the Dutch (i.e.,

COPAS) database. To obtain the octave-band representations, the same STFT and octave

band settings as in the previous chapter are used (cf. Section 6.3.1). The empirically selected

number of time frames used to incorporate temporal information in the DSBI and MASBI

measures is d = 5 (cf. (7.7)) and q = 9 (cf. (7.8)), respectively.
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As mentioned before, the computation of spectral basis vectors for the proposed measures

is efficient when PCA is used in practice. For the SBI and MASBI measures, spectral basis

vectors are obtained by applying PCA on the 15×15–dimensional correlation matrices HHT

and HMASBI H
T
MASBI

. Running PCA for such matrices on a computer with a 2.7 GHz processor

and 8 GB RAM requires only 0.0003 seconds. For the DSBI measure, spectral basis vectors are

obtained by applying PCA on the 75×75–dimensional matrix HDSBI H
T
DSBI

(since d = 5). Running

PCA for such matrices on a computer with a 2.7 GHz processor and 8 GB RAM requires only

0.003 seconds.

The performance of the proposed measures is compared to the performance of the non-blind

state-of-the-art measures mentioned in the previous chapter, i.e., iVector-based and ASR-

based approaches (Martínez et al., 2015), and our previously proposed P-ESTOI measure (cf.

Section 6.2.2). For the iVector- and ASR-based approaches, we report the results from Martínez

et al. (2015) where these approaches are evaluated only on the UA-Speech database following

a leave-one-subject-out validation strategy.

The performance of the considered intelligibility measures is evaluated for the following two

scenarios.

Phonetically-balanced scenarios

In these scenarios, we assume that all speakers (healthy and pathological) utter exactly the

same words. All 763 available words are considered for the UA-Speech database, and all 47

available words are considered for the COPAS database. The intelligibility score is calculated

for each word, and the final intelligibility score is computed as the mean intelligibility score

across all words. Only in such phonetically-balanced scenarios can the performance of the

proposed measures be compared to the performance of P-ESTOI (since otherwise healthy

speech reference models for P-ESTOI cannot be constructed). In addition, the performance

of the iVector- and ASR-based approaches in Martínez et al. (2015) has been analyzed also in

such a phonetically-balanced scenario (only for the UA-Speech database).

Phonetically-unbalanced scenarios

In these scenarios, the applicability of the proposed measures is analyzed in the presence of

phonetic variability in the considered speech signals from each speaker. Since speakers utter

different words in such scenarios, a robust spectral subspace can only be constructed when

longer utterances (i.e., longer than a single word) are taken into account. Different sets of

words are concatenated to create longer utterances for each speaker, and a single intelligibility

score is estimated for each patient. Since the UA-Speech database contains a large number of

words that can be combined in different ways for different speakers, these analyses are done

on the UA-Speech database. We assess the effect of different levels of phonetic variability on

the proposed intelligibility measures by concatenating multiple words for each speaker in the
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following manners.

i) The phonetic content within the speakers in each group is the same, while the phonetic

content across the two groups of speakers is partially different. To generate this scenario,

the set UW is randomly divided into two subsets of equal size (149 words). The utterance

uttered by all healthy speakers is created by concatenating one such subset of UW and

one repetition (155 words) of the set CW. The utterance uttered by all pathological

speakers is created by concatenating the other subset of UW and one repetition (155

words) of the set CW. The total number of concatenated words in each utterance is 304.

ii) The phonetic content within the speakers in each group is the same, while the phonetic

content across the two groups of speakers is completely different. To generate this

scenario, a similar procedure as in i) is followed. Differently from i), the set CW is also

randomly divided into two disjoint subsets (of size 77 and 78 words). The utterance

uttered by all healthy speakers is created by concatenating the previously considered

subset of UW and one such subset of CW. The utterance uttered by all pathological

speakers is created by concatenating the previously considered subset of UW and the

other subset of CW. The total number of concatenated words for each healthy speaker is

226, whereas the total number of concatenated words for each pathological speaker is

227.

iii) The phonetic content across all speakers is partially different. To generate this scenario,

the utterance for each speaker is created by concatenating 200 randomly selected words

from the UW and CW sets. Since there are only a total of 763 words available, there is a

partial overlap between the phonetic content across the different speakers.

iv) The phonetic content across all speakers is completely different. To generate this

scenario, the utterance for each speaker is created by concatenating 16 distinct (and

randomly selected) words from the UW and CW sets.

The subset of words to be concatenated for creating longer utterances for each speaker in the

above-mentioned scenarios is randomly selected. This selection is repeated 100 times, and

the performance of the proposed measures is analyzed in terms of the mean and standard

deviation of the performance across all repetitions.

Similar to the previous chapter, the Pearson correlation coefficient (R) and the Spearman

rank correlation coefficient (RS) between the automatically estimated intelligibility and the

subjective intelligibility scores of the CP patients and HI patients are computed.
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Table 7.1 – Performance of the phonetically-balanced intelligibility assessment on the English
CP and Dutch HI databases using the proposed (i.e., SBI, DSBI, and MASBI) and state-of-
the-art (i.e., P-ESTOI, iVector, and ASR) measures. The entry denoted by {·}∗ indicates non-
significant correlation, and entries denoted by {-} indicate that correlation values are not
available.

15 English CP patients 16 Dutch HI patients

Measures R RS R RS

P-ESTOI 0.95 0.94 0.80 0.80
iVector 0.74 - - -
ASR 0.55 - - -
SBI −0.86 −0.88 −0.48 −0.40∗
DSBI −0.86 −0.93 −0.64 −0.60
MASBI −0.82 −0.88 −0.68 −0.65

7.6.2 Results

Performance in phonetically-balanced scenarios

In this section, the performance of the proposed measures in phonetically-balanced scenarios

is compared to the performance of state-the-art measures.

Table 7.1 presents the Pearson and Spearman correlation values obtained for the CP and HI

patients using the proposed measures and the P-ESTOI measure. In addition, the Pearson

correlation values obtained for the CP patients using the iVector- and ASR-based approaches

in Martínez et al. (2015) are also presented. As previously mentioned, only the Pearson

correlation coefficients for the CP patients have been reported in Martínez et al. (2015). Hence,

results for HI patients and Spearman correlation values for CP patients are not available. To

assess the statistical significance of the reported correlation values, entries in Table 7.1 are

compared to the corresponding critical correlation values in Table 3.1 (cf. Section 3.3).

It can be observed that P-ESTOI still gives the highest correlation values on both databases,

which is to be expected since P-ESTOI takes both the temporal and spectral distortions into

account by aligning the pathological speech signals to the intelligible reference representations.

However, this limits the application of P-ESTOI to only such phonetically-balanced scenarios.

For the CP patients, the proposed SBI, DSBI, and MASBI measures also yield very high and

significant correlations with the subjective intelligibility scores, significantly outperforming

the state-of-the-art iVector- and ASR-based approaches. In comparison to the SBI measure,

incorporating short-time temporal information as in the DSBI measure slightly increases the

obtained correlation on this database. Incorporating short-time temporal information as in the

MASBI measure slightly decreases the Pearson correlation coefficient, whereas the Spearman

rank correlation coefficient is the same as for the SBI measure. However, the SBI measure does

not show significant Spearman rank correlation values on the HI database. Incorporating short-
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time temporal information through the DSBI and MASBI measures significantly improves the

performance over the SBI measure on this database.

It should be noted that the results presented here are obtained using an arbitrarily selected

subset of healthy speakers to generate intelligible representations. We have additionally

investigated the sensitivity of the proposed measures to the choice of healthy speakers for

computing intelligible representations. Although we have omitted these results here, they

show that the performance of the proposed measures is insensitive to the specific healthy

speakers used for generating reference representations. Additionally, one can compare the

proposed measures to the blind state-of-the-art blind intelligibility measures computed in the

previous chapter (cf. Section 6.3.2). Since these measures result in a worse performance than

the proposed measures, their results are not repeated here for the sake of brevity.

In summary, it can be said that the proposed measures are applicable to phonetically-balanced

scenarios and result in high and significant correlations with subjective intelligibility scores.

In addition, it can be said that incorporating short-time temporal information (i.e., as in the

DSBI and MASBI measures) can yield a substantial performance improvement as opposed to

considering only spectral information (i.e., as in the SBI measure).

Performance in phonetically-unbalanced scenarios

In this section, the performance of the proposed measures is analyzed in phonetically-

unbalanced scenarios. It should be noted that the P-ESTOI measure is inapplicable to such

scenarios since the phonetic content among all speakers should be the same to be able to

create an intelligible reference representation.

Table 7.2 presents the mean and standard deviation of the Pearson and Spearman rank corre-

lation values across all repetitions of words’ subset selection obtained using the proposed SBI,

DSBI, and MASBI measures for all considered phonetically-unbalanced scenarios. To assess

the statistical significance of the reported correlation values, entries in Table 7.2 are compared

to the corresponding critical correlation values in Table 3.1 (cf. Section 3.3). Overall it can

be observed that all proposed measures typically yield high and significant correlations with

the subjective intelligibility scores. In addition, the performance of individual measures for

scenarios i)–iii) is very similar, showing that the different levels of phonetic variability in these

scenarios do not substantially affect the performance of the proposed measures. However, it

can be observed that the performance of the proposed measures for scenario iv) is lower than

for the other scenarios. This performance degradation in scenario iv) is to be expected since

intelligibility is assessed using only 16 words which are different across all speakers. Such a

small number of words with different phonetic content does not suffice to construct a robust

subspace reflecting speech intelligibility. While the performance of all proposed measures

decreases in this scenario, the performance of the proposed DSBI measure is particularly

lower. The DSBI measure relies on a TF representation of a larger spectral dimension than

the SBI and MASBI measures. The number of spectral basis vectors required to span the
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Table 7.2 – Performance of the phonetically-unbalanced intelligibility assessment on the
English CP database using the proposed measures. The entries denoted by {·}∗ indicate
non-significant correlations.

Measures R RS

Phonetically-unbalanced scenario i)

SBI −0.74±0.02 −0.76±0.03
DSBI −0.69±0.05 −0.71±0.06
MASBI −0.73±0.04 −0.76±0.06

Phonetically-unbalanced scenario ii)

SBI −0.73±0.03 −0.75±0.04
DSBI −0.70±0.06 −0.73±0.06
MASBI −0.71±0.06 −0.74±0.07

Phonetically-unbalanced scenario iii)

SBI −0.73±0.03 −0.76±0.04
DSBI −0.69±0.06 −0.72±0.07
MASBI −0.72±0.05 −0.75±0.06

Phonetically-unbalanced scenario iv)

SBI −0.70±0.07 −0.72±0.08
DSBI −0.37∗±0.16 −0.41∗±0.17
MASBI −0.65±0.11 −0.65±0.12

intelligible and test representations for this measure is larger. Consequently, to construct

robust subspaces when the phonetic content among speakers differ, longer utterances are

required for this measure than for the SBI and MASBI measures.

In summary, it can be said that the proposed measures are applicable to phonetically-unbalanced

scenarios and result in high and significant correlations with subjective intelligibility scores.

Since the phonetic content across speakers differs in such scenarios, incorporating short-time

temporal information (i.e., as in the DSBI and MASBI measures) does not yield a performance

improvement as opposed to considering only spectral information (i.e., as in the SBI measure).

The presented analyses show the successful applicability of the proposed measures on speech

disorders arising due to CP and HI. To the best of our knowledge, a systematic comparison of

spectral modulation changes across different pathologies has never been done. If the induced

spectral modulation changes are dependent on the pathology, it can be expected that the

proposed measures perform differently on different pathologies.
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7.7. Summary

7.7 Summary

In this chapter, we have proposed the automatic pathological speech intelligibility SBI measure,

which is based on the assessment of the distance between subspaces spanned by dominant

spectral patterns of intelligible (i.e., healthy) and pathological speech. This measure unlike

our proposed P-ESTOI intelligibility measure in the previous chapter does not require any

time-alignment and can also be used in phonetically-unbalanced scenarios. Exploiting psy-

choacoustic evidence on the importance of spectral modulation cues to the perceived speech

intelligibility, we have shown that the proposed SBI measure is advantageous since it can

capture pathology-induced distortions in the spectral modulation cues. In addition, we have

shown that the proposed measure is robust to gender- and age-induced changes in the acous-

tical properties of signals, while also being more computationally efficient than our previously

proposed P-ESTOI measure. To be able to additionally track possible degradations in the tem-

poral structure of the pathological speech signal, we have also proposed two extensions of the

SBI measure, i.e., the DSBI and MASBI measures. Experimental results for different languages

and speech pathologies have shown that the proposed measures obtain high correlations with

subjective intelligibility scores, with the incorporation of temporal information into the DSBI

and MASBI measures yielding a better performance in phonetically-balanced scenarios. In

addition, it has been shown that the proposed measures outperform several non-blind state-

of-the-art measures, while not requiring regression training, a large amount of healthy speech

training data, time-alignment, and being applicable to phonetically-unbalanced scenarios.
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8 Toward a clinical tool for joint auto-
matic speech pathology detection and
speech intelligibility assessment

In this chapter we jointly validate pathological speech detection and intelligibility assessment

tasks using two of our proposed approaches. The goal of the joint analysis of the two tasks is

to confirm the possibility of developing a multi-purpose clinical tool useful for clinicians to

perform automatic pathological speech assessment.

8.1 Introduction

As mentioned in Chapter 1, to diagnose speech disorders, speech screening through clinical

auditory-perceptual assessments is typically used. For the management and treatment of

speech disorders to improve the communication ability of patients, speech intelligibility

assessment is also performed in clinical settings. Such clinical approaches to pathological

speech detection and intelligibility assessment can be time-consuming and inconsistent,

since they are subjective and influenced by the level of expertise of clinicians. Furthermore,

subjective intelligibility assessment can be biased by the availability of syntactic/semantic

clues in the speech of the speaker under evaluation as well as by the familiarity of the clinician

with the speaker or speech disorder. To assist clinical speech screenings, automatic techniques

offering objective and repeatable pathological speech assessments with the capability of being

used in real-time and also in remote speech therapy applications can be exploited. The high-

level objective of this thesis is proposing a multi-purpose automatic tool that can be used

by clinicians to evaluate the two aspects of clinical analysis automatically, i.e., pathological

speech detection and intelligibility assessment. In this chapter, we aim to jointly validate one

of our previously proposed automatic speech pathology detection approaches along with one

of our previously proposed intelligibility measures in a unified scenario to be viewed as an

evaluation of such a multi-purpose clinical tool.

A schematic representation of the joint analysis for the clinical tool is depicted in Fig. 8.1. As

depicted in this figure, such a clinical tool consists of two separate modules for speech pathol-

ogy detection and intelligibility assessment. The goal is to assist clinicians by automatically
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Figure 8.1 – Schematic representation of the clinical tool for joint automatic speech pathology
detection and speech intelligibility assessment.

discriminating speakers with atypical speech from speakers with typical speech, followed by

further predicting how much the atypical speech intelligibility is affected.

In Chapters 4 and 5, we proposed methods for speech pathology detection, while in Chapters 6

and 7, we proposed suitable intelligibility measures applicable for different scenarios. For

the speech intelligibility assessment module of the joint analysis in this chapter, while any

of our proposed intelligibility measures can be used, we choose the P-ESTOI intelligibility

measure with healthy natural speech reference (cf. Section 6.2.2), as its performance was

superior compared to other measures under phonetically-balanced scenarios. It should be

noted that due to the need for availability of the ground truth (i.e., subjective intelligibility

score) for the speech intelligibility assessment module of the joint analysis in this chapter,

we use two databases that were previously considered for intelligibility assessment, i.e., the

English UA-Speech database and the Dutch COPAS database (cf. Section 3.2). These databases

for intelligibility assessment have a smaller size compared to databases previously used for

evaluating the detection task (cf. Section 2.2). Hence, for the detection module of the clinical

tool, we choose an approach among our previously proposed ones that has shown a high

performance in phonetically-balanced scenarios without requiring a large amount of data,

i.e., the temporal subspace-based discriminant approach (i.e., T-GDA ) (cf. Chapter 4). It

should be noted that to be able to jointly evaluate both modules on these databases, a different

evaluation scenario than the one in Chapter 6 needs to be defined (cf. Section 8.2.1). Therefore,

the presented P-ESTOI results in the following differ from the ones in Chapter 6. Clearly, the

T-GDA results presented in the following also differ from the ones in Chapter 4, since different

databases are used.
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8.2. Experimental results

The remainder of this chapter is organized as follows. Section 8.2 provides experimental results

for the pathological speech assessment tool, whereas Section 8.3 presents a summary of this

chapter.

8.2 Experimental results

In this section, the performance of the T-GDA approach for pathological speech detection

and the performance of the P-ESTOI for intelligibility assessment under a unified scenario is

investigated. For the T-GDA approach in this chapter, similarly to the P-ESTOI measure we

consider using one-third octave band representations (cf. Chapters 4 and 6).

8.2.1 Evaluation protocol

We consider two databases for the joint analysis, i.e., the English UA-Speech database including

recordings from English-speaking healthy speakers and CP patients and the Dutch COPAS

database including recordings from the Dutch-speaking healthy speakers and patients with

HI (cf. Section 3.2). For both tasks, we consider a phonetically-balanced scenario, where

we use the same sets of word utterances uttered by both groups of speakers (healthy and

pathological) in each database. As mentioned in Chapter 4, the T-GDA approach requires

an initial (arbitrarily selected) healthy reference speaker for the time-alignment. Hence,

from the UA-Speech database we consider all 15 CP patients (11 males, 4 females) and 12

healthy speakers (8 males, 4 females) for jointly evaluating the tasks, while one healthy speaker

(one male) is used as the initial reference for the time-alignment step. Although many word

utterances are available for the UA-Speech database, we randomly select 47 words from the

uncommon words (UW) words set for each speaker. Given the small number of speakers in

the UA-Speech database, the validation for this database is based on a leave-one speaker-out

strategy. From the COPAS database, we consider 16 patients with HI (6 males, 10 females)

and 16 (8 males, 8 females) healthy speakers. Furthermore, one more healthy speaker (one

male) is used as the initial reference for the time-alignment step. All 47 available words from

all speakers are considered from this database. The validation strategy for the COPAS database

is a stratified speaker-independent 8-fold cross-validation. As mentioned in Section 6.2.2,

P-ESTOI is a reference-based intelligibility measure, i.e., requires data from multiple healthy

speakers to create an utterance-dependent reference representation. For creating the reference

representations in P-ESTOI measure for each database, we use the healthy speakers in the

training set. The speech pathology detection score and the intelligibility score are calculated

for each word from the test speakers, and the final detection and intelligibility scores are

computed as the mean detection score and intelligibility score across all words.
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Table 8.1 – Performance of the speech assessment tasks in the joint analysis, i.e., pathological
speech detection and intelligibility assessment using the two considered databases.

Task English UA-Speech Dutch COPAS

Pathological speech detection
Accuracy (%) AUC Accuracy (%) AUC

96.3 0.98 96.9 0.97

Pathological speech intelligibility assessment
R RS R RS

0.95 0.91 0.84 0.84

8.2.2 Results

In this section, we present the individual performance of the two tasks on our considered

databases. In addition, we also provide a brief speaker-wise analysis of the predictions ob-

tained by the two approaches.

Table 8.1 presents the performance of the joint analysis on our considered databases, i.e.,

the modules for pathological speech detection (in terms of accuracy and AUC) and intelli-

gibility assessment (in terms of Pearson correlation and the Spearman rank correlation). It

can be observed that T-GDA yields high pathological speech detection accuracy and AUC

performance for both databases. Considering intelligibility assessment for both databases

(i.e., HI Dutch-speaking patients in COPAS and CP English-speaking patients in UA-Speech),

the P-ESTOI measure yields high and significant correlations with the subjective intelligibility

scores.

Figure 8.2 depicts the predicted P-ESTOI intelligibility scores (non-normalized values) and the

detection score obtained by the T-GDA approach for Dutch HI patients and healthy speakers

in the COPAS database. Figure 8.3 depicts the predicted P-ESTOI intelligibility scores (non-

normalized values) and the detection score obtained by T-GDA approach for English CP

patients and healthy speakers in the UA-Speech database. The detection score indicates the

certainty of the classifier that a given speaker belongs to the healthy class. Considering that

the detection threshold is 0.5 (depicted by black dashed horizontal lines in the figures), any

speaker with a score higher than 0.5 is then predicted as a healthy speaker and a score lower

than 0.5 is predicted as a pathological speaker. Red dashed vertical lines indicate an error

made by the detection system, e.g., in Figure 8.2b, only a false positive error has occurred

where a healthy speaker (i.e., with index 2) is detected as a patient. Furthermore, in Figure 8.2

it can be observed that the obtained P-ESTOI values are similar across the healthy speakers,

and as to be expected they are similar or higher than the scores of the high-intelligible HI

patients (i.e., patients with higher predicted intelligibility scores). According to Figure 8.3a,

only a false negative error has occurred where a high-intelligible CP patient (i.e., with index

4) is detected as a healthy speaker. It can be also observed that there are more variations in

the obtained P-ESTOI values shown in Figure 8.3b across the healthy speakers, while as to be
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Figure 8.2 – Predicted (non-normalized) P-ESTOI intelligibility scores (upper plot) and pre-
dicted speech pathology detection scores (lower plot) for a) HI patients in the COPAS database
and for b) healthy speakers in the COPAS database. The detection threshold 0.5 is indicated by
the black horizontal dashed line. Red dashed vertical line indicates an error (false positive)
made by the detection system, i.e., a healthy speaker is detected as a patient.
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Figure 8.3 – Predicted (non-normalized) P-ESTOI intelligibility scores (upper plot) and pre-
dicted speech pathology detection scores (lower plot) for a) CP patients in UA-Speech database
and for b) healthy speakers in the UA-Speech database. The detection threshold 0.5 is indi-
cated by the black horizontal dashed line. Red dashed vertical line indicates an error (false
negative) made by the detection system, i.e., a high intelligible patient is detected as a healthy
speaker.
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expected they are similar or higher than the scores of the high-intelligible CP patients (i.e.,

patients with higher predicted intelligibility scores).

8.3 Summary

In this chapter we have jointly evaluated the two tasks of pathological speech detection

and intelligibility assessment, leading to a potential multi-purpose clinical tool useful for

clinical practitioners to perform an automatic evaluation of pathological speech. For the

speech pathology detection module, we have used and evaluated our proposed temporal

subspace-based learning method, while for the intelligibility assessment module, we have

used and evaluated our proposed P-ESTOI measure. Experimental results on Dutch and

English databases of healthy and pathological speakers have shown that both modules achieve

high performance. Although investigating the applicability of such an automatic clinical tool

on larger databases with other types of speech disorders is required, we view our contribution

here as a step toward designing an automatic assistive tool needed for the pathological speech

assessment field.
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9 Conclusions and future directions

In this chapter, we summarize the conclusions of this thesis (cf. Section 9.1) and discuss

directions of future research (cf. Section 9.2).

9.1 Conclusions

This thesis focused on automatic pathological speech assessment addressing two aspects of

automatic acoustic analysis for clinical applications, i.e., pathological speech detection and

intelligibility assessment.

We first proposed a subspace-based learning approach to automatically discriminate between

pathological and healthy speech. Due to atypical changes in spectro-temporal fluctuations of

speech associated with speech disorders (e.g., dysarthria), the dominant spectro-temporal

patterns of healthy and pathological speech differ. These patterns are characterized by lower-

dimensional subspaces, which are then classified through subspace-based discriminant anal-

ysis. Our experimental results have shown that compared to spectral subspaces, temporal

subspaces are more successful in discriminating between pathological and healthy speakers

and consistently outperform state-of-the-art methods on two databases of different languages

and pathologies. However, the temporal subspace-based approach requires time-alignment

and having access to utterances with the same phonetic content from both healthy and

pathological speakers.

To overcome the need for time-alignment, we investigated the applicability of deep learning

as an alternative to classical machine learning-based approaches for pathological speech

detection. We proposed novel CNN-based frameworks aiming to learn more robust and rel-

evant features for such a task. First, we explored the feasibility of a pairwise distance-based

CNN which relies on comparing two given phonetically-balanced articulatory posterior repre-

sentations from healthy (reference) and test speakers. The system predicts whether the test

representation is from a healthy or pathological speaker after extracting features from input

representations and processing the distance matrices computed from them. Experimental
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result have shown that our proposed system obtains a good detection performance, is general-

isable across languages, and outperforms other baseline CNN-based systems. Such a system

does not suffer from the availability of limited training data (usually associated with such tasks)

due to the usage of pairwise training. However, similarly to our temporal subspace-based

approach, this approach also relies on using utterances with the same phonetic content from

both healthy and pathological speakers. In order to investigate the applicability of a CNN-

based framework without any phonetic constraints on the speech material from speakers, we

proposed supervised speech representation learning frameworks. To reduce the influence of

speaker variabilities unrelated to pathology, we proposed to obtain speaker identity-invariant

representations by including an adversarial speaker ID auxiliary classifier into the representa-

tion training. Further, to obtain a more discriminative representation, we also proposed to

supervise the representation learning by a pathological speech auxiliary classifier. Our investi-

gations showed that the proposed representations yield improvement in speech pathology

detection performance when compared to unsupervised representation learning frameworks.

To avoid using adversarial training for obtaining speaker identity-invariant representations,

we also proposed a dual representation learning framework in which separation of the two

encoded representations is enforced to either speaker identities cues or cues unrelated to

speaker identities. Feature separation is achieved by supervising one of the representations

with a speaker ID auxiliary classifier while minimizing a MI criterion between the two repre-

sentations. Our findings confirm the success of feature separation to obtain speaker-invariant

representations without adversarial training, and using the so-obtained speaker-invariant

representations improves the pathological speech detection performance compared to unsu-

pervised frameworks. When phonetically-balanced utterances from speakers are available for

training, our proposed temporal subspace-based approach for pathological speech detection

can be used where it has shown a superior performance compared to other approaches we

have proposed in this thesis. When access to such phonetically-balanced utterances is not

possible for training, our supervised representation learning approaches can be used instead.

Aiming to automatically assess pathological speech intelligibility, we proposed several non-

blind pathological speech intelligibility measures relying on i) creating an intelligible reference

representation/model and ii) comparing the reference model to the pathological speech rep-

resentations/model under evaluation. Our first measure is based on the extended short-time

objective intelligibility where utterance-dependent reference representations from multiple

healthy speakers are created using a DTW-based clustering method. Intelligibility is then

assessed by computing the short-time spectral correlation between the aligned test and ref-

erence representations. We showed that this measure is highly correlated with subjective

intelligibility ratings for patients with different pathologies outperforming many state-of-

the-art pathological speech intelligibility measures while avoiding many of their drawbacks.

However, this measure can only be used in scenarios where healthy recordings perfectly

matching the phonetic content of the pathological speech signal are available. To increase its

flexibility, we also proposed to use synthetic speech generated by state-of-the-art high-quality

TTS systems to create intelligible reference representations. We found that the performance
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of the intelligibility measure using synthetic speech references is comparable to using nat-

ural speech references in phonetically-balanced scenarios, while being also applicable to

phonetically-unbalanced scenarios.

To overcome the need for time-alignment, we also proposed a subspace-based intelligibility

measure. This measure assesses speech intelligibility by analyzing and comparing the sub-

spaces of healthy and pathological speech through computing a subspace-based distance

between them. We have shown that the subspace-based measure can capture pathology-

induced distortions in the spectral modulation cues that are important to the perceived speech

intelligibility. After proposing two extensions of such a measure, we found that subspace-

based measures can outperform several state-of-the-art measures, while being applicable to

different scenarios. Considering phonetically-balanced scenarios, our proposed intelligibil-

ity measure based on extended short-time objective intelligibility assessment using natural

healthy references is shown to be the best performing intelligibility measure among all the

measures we have proposed in this thesis. Such a measure can also be used in phonetically-

unbalanced scenarios by using synthetic speech references without a substantial decrease in

the performance.

Finally, we jointly validated the two tasks of automatic speech pathology detection and speech

intelligibility assessment as two components of a multi-purpose clinical tool that can offer

objective and automated assistance with pathological speech assessment. Using our temporal

subspace-based learning method and the short-time objective intelligibility measure for these

tasks, we further confirmed that both modules achieve high performance, independently of

the language or disorder.

9.2 Directions for future research

In the following, we provide a few possible directions for future research.

• As mentioned in the thesis, to address the data limitation for pathological speech detec-

tion using deep learning, we used two ways to increase the number of training samples,

i.e., pairwise word representation training as in our proposed distance-based CNN sys-

tem and analyzing short (fixed length) segments of speech in our representation learning

frameworks. However, as mentioned before, the success of the temporal subspace-based

approach in analyzing longer-term acoustic cues for discriminating between pathologi-

cal and healthy speech might suggest that modeling short segments of speech signals

by CNNs may not be sufficiently informative for such a task. In the future, it is worth

investigating the applicability of neural architectures that can aggregate information

over a longer period of time, while not requiring a large amount of data.

• Although neural architectures have shown promising results for the pathological speech

detection task, because of the absence of large training data, they have not yet had a

significant dominance over classical machine learning-based approaches. The appli-
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cability of transfer learning, i.e., incorporating prior knowledge obtained by training

models on another explicit but relevant task with available data, can be investigated.

• Given the availability of enough data, it is worth investigating if our proposed pathologi-

cal speech detection methods can be extended to automatic classification of different

types of speech disorders, which remains an under-explored topic in the literature.

• Due to the difficulty in interpreting high-level feature representations learned by neural

networks for pathological speech detection, it is worth investigating the applicability

of networks with interpretable convolutional filters (e.g., in SincNet architecture). If

such networks are successful in modeling pathological speech, they can also provide

interpretable information that can be informative for clinicians.

• To further develop the multi-purpose automatic clinical tool, it is worth investigating

training the different tasks jointly by incorporating a multi-task learning framework, as

one task might provide useful information for the other task.
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