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Abstract: Voice communication between air traffic controllers (ATCos) and pilots is critical for
ensuring safe and efficient air traffic control (ATC). The handling of these voice communications
requires high levels of awareness from ATCos and can be tedious and error-prone. Recent attempts
aim at integrating artificial intelligence (AI) into ATC communications in order to lessen ATCos’s
workload. However, the development of data-driven AI systems for understanding of spoken ATC
communications demands large-scale annotated datasets, which are currently lacking in the field.
This paper explores the lessons learned from the ATCO2 project, which aimed to develop an unique
platform to collect, preprocess, and transcribe large amounts of ATC audio data from airspace in
real time. This paper reviews (i) robust automatic speech recognition (ASR), (ii) natural language
processing, (iii) English language identification, and (iv) contextual ASR biasing with surveillance
data. The pipeline developed during the ATCO2 project, along with the open-sourcing of its data,
encourages research in the ATC field, while the full corpus can be purchased through ELDA. ATCO2
corpora is suitable for developing ASR systems when little or near to no ATC audio transcribed
data are available. For instance, the proposed ASR system trained with ATCO2 reaches as low as
17.9% WER on public ATC datasets which is 6.6% absolute WER better than with “out-of-domain”
but gold transcriptions. Finally, the release of 5000 h of ASR transcribed speech—covering more
than 10 airports worldwide—is a step forward towards more robust automatic speech understanding
systems for ATC communications.

Keywords: air traffic control communications; automatic speech recognition and understanding;
OpenSky Network; callsign recognition; ADS-B data

1. Introduction

There has been a growing interest in the development of automatic speech recognition
(ASR) and understanding systems for air traffic control (ATC) due to their potential to
enhance the safety and efficiency of the aviation industry. The application of ASR and
understanding technologies in ATC has resulted in the creation of advanced proof-of-
concept engines that can assist air traffic controllers (ATCos) in their daily tasks. These
systems are designed to analyze spoken ATC communications and convert them into
machine-readable texts, allowing for faster and more accurate processing. Previous works
such as MALORCA [1], HAAWAII [2] or SESAR2020’s Solution 97.2 [3] have shown mature
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enough methods to reduce ATCos’ workload while increasing safeness, e.g., see [4,5]. The
authors concluded that integrating novel ASR-based tools can reduce the total amount of
time that ATCos expend on entering and confirming the clearances in their workstations by
20% absolute points. As a result, ASR and understanding technologies are becoming more
advanced and capable of handling the complexities of ATC communications, leading to
improved safety and efficiency in the aviation industry. The paragraphs below summarize
three current challenges—while working with ATC voice communications—addressed by
this paper:

(1) Previous works on ASR to analyze air traffic communication is built for a specific
domain, e.g., one airport or en-route/approach scenarios. The process of adapting machine
learning models to different airports or control areas requires new in-domain data, which
remain challenging to collect and annotate. For instance, ATC audio data collected from
one airport, e.g., airport X, in general, do not transfer well to airport Y.

(2) ATC data collection and their transcription [6] are expensive and time-consuming
tasks. The data collection phase includes data capture and preprocessing; this task can be
automated. The data transcription phase aims at producing the word-by-word transcript of
the given ATC utterance; this task is carried out by hand by humans. It becomes expensive
as several man hours are needed to transcribe one hour of ATC speech without silence. For
some solutions, such as those targeting small airports, this cost may be prohibitive. This
raises the question of what is the most efficient manner to collect and process large-scale
ATC audio data.

(3) In addition, audio data from ATC communication are considerably noisier with
regard to standard ASR corpora when they are captured via very-high-frequency (VHF)
receivers. In some cases, SNR (signal-to-noise) levels may range from 5 to 20 dB. Thus, it
becomes challenging to develop an ASR system and later use its outputs for downstream
tasks, e.g., natural language processing (NLP), due to the high word error rates (WER).
In contrast, higher SNR ATC data sourced from operation rooms and characterized by
close-mic recordings and substantially reduced noise can be obtained from air navigation
service providers (ANSPs), albeit being limited to private use in most cases.

In this paper, we answer these questions by extending our previous work on the
ATCO2 project and its resulting corpora [7]; see detailed information in Appendix A. The
ATCO2 project aimed to reduce the human effort required to collect, preprocess, and tran-
scribe ATC voice communications by employing state-of-the-art ASR and NLP systems [8].
ATCO2 releases the largest corpus of ATC voice communications to date, consisting of
more than 5000 h of automatically transcribed audio data and their correspondent surveil-
lance data [9]. In addition, four hours of human-transcribed data (i.e., gold transcriptions)
were also released, where we quantified that the transcription process can be significantly
accelerated by providing the annotators with automatically transcribed data (i.e., output
from an in-domain ASR system), rather than requiring them to produce transcriptions
from scratch. According to [7], the real-time factor (RTF; time needed to generate the gold
word-by-word transcription of the ATC audio with regard to its duration) for transcribing
the data can be reduced from 50 to 20. An overview of the composition of ATCO2 corpora
is given in Figure 1.

This paper covers several aspects and lessons learned (see Section 6) related to the
data collection and the transcription pipeline, including its primary actors. Also, it covers
the main AI-based systems that can be developed with the ATCO2 corpora, and we set
baselines on ASR and understanding.

The rest of the paper is organized as follows. Section 2 covers related work on
automatic speech recognition and understanding for ASR. We describe the ATCO2 system,
data collection pipeline, and the main contributions of this paper in Section 3. In Section 4,
we cover technical details about the data collection platform (front end and back end) and
how the community of volunteers interacts with them. In Section 5, we cover the main
technologies that can be developed with ATCO2 corpora. We conclude the paper and
discuss the main lessons learned in Section 6.
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Figure 1. ATCO2 corpora. Blue circles denote transcriptions only available for ATCO2 test set corpus.
Green circles denote transcriptions and metadata available for both ATCO2 test set and ATCO2
transcribed corpus sets. Taken from previous work in [7].

2. Early Work on Automatic Speech Recognition and Understanding in ATC

Recent work in ASR and understanding of ATC communications has been documented
for trainee’s ATCo training by AENA (Aeropuertos Españoles y Navegación Aérea) [10]
and MITRE corporation [11]; also including workload estimation with ASR systems [12].
In recent years, more research-oriented work has focused on pure ASR. For example,
ref. [13] established the first benchmark on ASR for different ATC communications-focused
databases. Furthermore, there has been a significant effort to integrate novel semisupervised
learning algorithms for boosting the ASR performance with surveillance data such as [14].
This supports the idea of the growing interest in research in ASR and understanding
towards ATC, with mature proof-of-concept engines that can assist ATCos in their daily
tasks. Our previous work related to the large-scale automatic collection of ATC audio data
from different airports worldwide was in [9]. Additionally, recent work targeted to improve
callsign recognition by integrating surveillance data into the pipeline has been explored
in [15] or, for instance, automating pilots report extraction with ASR tools [16].

Another line of work has been directed at open-sourcing ATC-related databases: for
US-based communications [17], in Czechia [18], and [19] for several accents in English.
Recently, there was an Airbus-led challenge [20] for ATC communications, with French-
accented recordings from France [21]. Private databases such as VOCALISE [22] and
ENAC [23] have also targeted ATC communications. For a general overview of ATC-
related databases, we redirect the reader to Table 1 in ref. [7], and for the databases released
by the ATCO2 project, to Table 1 in this paper.
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Table 1. Air traffic control communications corpora released by ATCO2 project. † Full database after
silence removal. †† Speaker accents depend on the airport’s location and on the airline origin (e.g.,
Air France in Australia may contain French-accented audio); accents of pilots are not known at any
time of the communication due to privacy regulations.

Database Details Licensed Accents Hours † Ref.
Released corpora by ATCO2 project

ATCO2 corpora Data from different airports and countries: public
corpora catalog.elra.info/en-us/repository/browse/
ELRA-S0484/ (accessed on 10 October 2023)

Several †† [7]

ATCO2-test-set Real life data for ASR and NLP research. X Several †† 4 [7]
ATCO2-T set ASR-based transcribed dataset. Real data for research

in ASR and NLU.
X Several †† 5281 [7,9]

Free access databases released by ATCO2 project
ATCO2-test-set-1h ‘ASR dataset’: public 1 h sample, a subset of ATCO2-

test-set. https://www.atco2.org/data (accessed on 10
October 2023)

X Several †† 1 [9]

ATCO2-ELD set ‘ELD dataset’: public dataset for English language de-
tection. https://www.atco2.org/data (accessed on 10
October 2023)

X Several †† 26.5 [24]

3. ATCO2 Corpora

It is well known that AI-based tools need large amounts of reliably transcribed data
during their training process. For instance, ASR or NLP tools for ATC could work better if
we had large-scale data. The ATCO2 corpora was designed to target this data scarcity issue
by solving four big challenges:

(1) Current corpora related to air traffic control are primarily focused on automatic
speech recognition. However, for an AI engine to be successfully deployed in the control
room, it must not only accurately transcribe ATC communication but also understand it.
This includes the ability to detect speaker roles (SRD) as well as extract and parse callsigns
and commands. The ATCO2 corpora provides a comprehensive solution to this challenge
by including detailed tags for SRD and callsign and command extraction. This, in turn, will
improve the accuracy and efficiency of AI-based systems in ATC operations.

(2) Out-of-domain ASR and NLP-based corpora transfer poorly to the ATC domain.
ATC communication follows an unique grammatical structure and employs a specific
set of the vocabulary defined by ICAO [25], making it a niche application. This poses a
significant limitation to the use of out-of-domain corpora (previous studies [13] have shown
that employing non-ATC related corpora such as LibriSpeech [26], CommonVoice [27] or
SWITCHBOARD [28], does not match the acoustics of ATC communication, and therefore
does not contribute substantially to ASR training). As such, the ATCO2 project collected
and publicly released a large amount of ATC-specific data to aid in the development of
ASR and understanding engines for ATC.

(3) The research community working on ATC is hindered by a severe lack of openly
available annotated data. To address this issue, the ATCO2 project has released a vast
corpus of over 5000 h of automatically transcribed data (i.e., ATCO2-T set), as well as 4 h of
manually annotated data (i.e., ATCO2-test-set-4h). It is worth noting from Table 1, that the
transcriptions generated by the automatic tools have been proven to be robust, with WERs
as low as 9%. These errors are achieved when training an ASR engine with ATCO2 corpora
only. See the prior results for the Malorca-Vienna-test set coming from the MALORCA
project in [7].

(4) There is no standardized metric to evaluate quality of nontranscribed data prior
to their transcription process. Currently, when a new corpus for ASR is in its collection
and labeling phase, few filtering stages are performed to ensure high-quality audio data
selection. In contrast, in Section 3.3, and specifically in Equation (1), ATCO2 uncovers the

catalog.elra.info/en-us/repository/browse/ELRA-S0484/
catalog.elra.info/en-us/repository/browse/ELRA-S0484/
https://www.atco2.org/data
https://www.atco2.org/data
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quality estimation that helped to select the best audio files for gold transcription generation
by humans.

3.1. ATCO2 System and Generalities

The ATCO2 system is described in Figure 1. During the collection of the ATCO2
corpora, we followed several preprocessing steps in order to normalize the generated
transcriptions. Here, we aim at minimizing errors produced by phonetic dissimilarities,
e.g., “descent to two thousand” and “descend two two thousand”. We performed several
text normalization steps in order to unify the gold and automatic transcriptions following
ICAO rules [25] and well-known ontologies for ATC communications [5]. A summary of
the transcription protocol is depicted in Figure 2. Additionally, we direct the reader to
a more detailed overview on text normalization and lexicon for transcript generation in
Section 3 of ref. [7]. Furthermore, the ATCO2 corpora are composed of ATCO2-T set corpus
and ATCO2-test-set corpus, described below:

• First, the ATCO2-T set corpus is the first ever release of a large-scale dataset targeted
to ATC communications. We recorded, preprocessed, and automatically transcribed
∼5281 h of ATC speech from ten different airports (see Table 2). To the best of the
authors’ knowledge, this is the largest and richest dataset in the area of ATC ever
created that is accessible for research and commercial use. Further information and
details are available in [7].

• Second, ATCO2-test-set-4h corpus was built for the evaluation and development of au-
tomatic speech recognition and understanding systems for English ATC communications.
This dataset was annotated by humans. There are two partitions of the dataset, as stated
in Table 1. The ATCO2-test-set-1h corpus is a ∼1 h long open-sourced corpus, and it
can be accessed for free at https://www.atco2.org/data (accessed on 10 October 2023).
The ATCO2-test-set-4h corpus contains ATCO2-test-set-1h corpus and adds to it ∼3 more
hours of manually annotated data. The full corpus is available for purchase through
ELDA at http://catalog.elra.info/en-us/repository/browse/ELRA-S0484 (accessed on
10 October 2023).

Annotations rules 

(ontology)

ATC-related resources

Airline designators 

Runway numbers 

Tower Names 

Sectors 

Waypoints

Previous ATC datasets

LDC-ATCC 

UWB-ATCC 

AIRBUS-Challenge 

MALORCA 

ATCO2-test-set

Cheat Sheet

ATCO2-PL-set

ASR engine

Annotators

Figure 2. Transcription protocol. ATCO2 corpora follow a rigorous transcription protocol based on
previous ATC-related corpora and resources. Additionally, a cheat sheet for ATC transcript generation
was developed during the project. The cheat sheet is available in Appendix E.

https://www.atco2.org/data
http://catalog.elra.info/en-us/repository/browse/ELRA-S0484
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Table 2. Total accumulated duration. (in hours) of speech after voice activity detection per airport
in ATCO2-T set. † English language detection (ELD) (0–1) score. This score shows how confident
our ELD system is in detecting whether there is only English spoken inside the ATC communication.
Note that the first word for each name denotes the ICAO airport identifier.
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English Data (language score ≥0.5) †

131 <1 1762 888 330 699 921 24 170 77 <1
Non-English Data (language score <0.5) †

2 <1 187 611 83 55 49 26 10 3 <1

3.2. Data Collection Pipeline

The processing pipeline is implemented as a Python script that follows a configuration
file → worker.py. The configuration file allows us to modify the logic and flow of the
data in the pipeline on-the-fly. It allows parallelism, forking, and conditions. In principle,
worker.py consists of global definitions (constants), blocks (local definitions), and links
(an acyclic oriented graph) between blocks. The processing pipeline is given in Figure 3.
For instance, we address earlier implementations of each technology from the previous
work [9], e.g., segmentation and diarization, ASR, or named entity recognition (NER). All
the technologies and tools are encapsulated in BASH scripts with an unified interface.

The first row of blocks from Figure 3 refers to segmentation and demodulation. Initially,
an antenna and a recording device jointly capture the radio signal, which is divided into
segments containing portions where the transmission was “active”, and the silent parts
are not recorded (push-to-talk is used in ATC voice communication). This functionality
is part of the RTLSDR-Airband audio recording software, from which we dump the raw
I/Q signal. Second, we convert this complex I/Q radio signal into a waveform signal by a
software-defined radio CSDR. The first part is performed in the recording device, while the
second is performed at the OpenSky Network (OSN). The OSN is a nonprofit community-
based receiver network which has been continuously collecting air traffic surveillance data
since 2013. Unlike other networks, OpenSky keeps the complete unfiltered raw data and
makes them accessible to academic and institutional researchers).

Next, we perform “signal-to-noise ratio (SNR) filtering” (second row); the purpose
is to remove the recordings that are too noisy. In bad recording conditions, we can end
up in a situation in which the voice is not intelligible. The following step is “diarization”
(third row). In the automatically segmented data, some recordings contain more than one
speaker. This is a problem because we intend to automatically transcribe speaker turns
of single speakers. And, for subsequent NLP/SLU tasks, it is important to separate the
speaker turns as well. The diarization solves this by splitting the audio into segments with
single speakers and assigning them speaker labels. In the ASR step, we simply convert
“speech-to-text”. This is performed by our ASR system that we build with tools from the
Kaldi toolkit [29]. The outputs from this step are transcripts, which inevitably contain some
errors. To improve the accuracy of the transcripts, we use callsign lists from surveillance as
contextual information. The callsign lists come from the air traffic monitoring databases of
OpenSky Network. Further details can be found in Section 5.2.2 and [15].

Next, the transcripts are used as input for the English language detection (ELD) system.
The purpose is to be able to discard non-English audio data. The typical state-of-the-art
language identification system is based on acoustic modeling and uses audio as input. For
the ATC speech, we do not need to “identify” the non-English languages, so we developed
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a “lexical English detection system” which uses transcripts and confidence scores produced
by ASR as its inputs (see previous work at Interspeech in 2021 [24]). For ATC speech,
this worked better than the “traditional” acoustic language identification method. The
last automatic operation is “post-processing by NLP”. Currently, the pipeline performs
a callsign-code extraction step. It returns the callsign in ICAO format, like “DLH77RM”,
belonging to an aircraft. Finally, some processed data go through “human correction”,
and some data are kept with automatic labels. The former case produced ATCO2-test-set-
4h corpus, while the latter, ATCO2-T set corpus. A more detailed description of the data
collection flow and data transcription is given in Appendices C and D.

Download CSDR

Audio length
< 120s

Start

Processed - 
error

Processed - 
success

Adjust gain Media 
detection Audio length

VADSNRSpeech lengthSNR levelSNR
 > 0db

Speech length 
> 0.5s Diarization Callsign 

expansion
ASR LID English 

likelihood

Callsign 
extraction

Good data 
threshold 
estimator

Quality
 > thr

Good data 
filter

Create
thumbnails

for human 
annotation

Create
mp3

Create
JSON

English
 > 0.5

No

Yes

Yes
No

No

Yes

NoYes

Yes

No

ATCO2 on-line processing pipeline

Figure 3. ATCO2 workflow for processing data collected by a community of feeders. Initially, the
data are sent and stored on OSN servers. The audio data go through several modules to filter
out recordings with a high level of noise and too-long or too-short segments. Blue rectangles are
processes. The cyan arrow blocks are internal callback events, where the pipeline informs the master
node about progress and sends intermediate results. The orange rhombuses are conditions, where
intermediate results are taken into account (e.g., an SNR level), i.e., whether to continue (clean audio)
or stop processing. A final internal callback is run when the pipeline finishes. It triggers the API
to call the OSN server with the particular callback, for instance, the processing has finalized as OK
or ERROR.

3.3. Quality Estimation for Data Transcription

As mentioned at the end of Section 3.2, the captured, processed, and automatically
transcribed data (see Figure 3) can be annotated by humans. This in turn would generate
“gold transcriptions” that we use to evaluate the proposed ASR and NLP systems. The
ATCO2-test-set-4h corpus went through all these steps. As the data are continuously being
recorded by OSN, we need to select the most intelligible and clean data. We developed
a score that ranks the recordings depending on their quality. This score integrates seven
metrics that assess the quality of each recording present in ATCO2 corpora. For instance, we
used Equation (1) to measure, rank, and select the ATC communications with the highest
quality. Later, these recordings were shortlisted for human transcription (see Section 4.2).
The data annotators generated the ground truth transcripts and tags that are part of the
ATCO2-test-set-4h corpus. The ranking score is given as follows:
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Score = log(avgSNR + e) + log(numspk + e) + log
(

speechlen
audiolen

+ e
)
+

ELDscore × 3 + avgWordCon f × 3 + log(wrdcnt + e),
(1)

where

• avgSNR—provides average SNR of speech in range <0, 40>. SNR needs to be as high
as possible;

• numspk—provides the number of speakers in the audio in the range of <1, 10>. The
more speakers detected in audio, the better;

• speechlen—provides the amount of speech in seconds;
• audiolen—provides the overall audio length. More speech detected in audio is better;
• ELDscore provides “probability” of audio being English in the range <0.0, 1.0>. The

higher the ELD score, the better;
• avgWordCon f —provides average confidence of the speech recognizer <0.0, 1.0>. We

want data where the recognizer is confident. Higher is better;
• wrdcnt—provides the number of words spoken in the range of <0, ∼150>. The more

words, the better.

A breakdown of the outputs of these steps for a single day is given in Figure 4. For
instance, ∼0.6 h of data are selected for gold transcriptions from an initial 26 h pool
of audio data. We believe this is a robust quality scoring method because it gathers
information from different systems, e.g., ASR, SNR, and ELD estimation. A day-to-day
estimation of the output of each of these steps is available on the SpokenData website:
https://www.spokendata.com/atc (accessed on 10 October 2023).

Feeders audio
length

speech
length SNR

English
LID

>0.5>0dB>0.5s<120s

Quality
score 

>thr

Annotators

ATCO2-PL

ATCO2
test set

26 hrs 26 hrs 25 hrs 23 hrs 0.6 hrs20 hrs

Figure 4. Breakdown of data flow yield from raw data (recordings from data feeders) w.r.t the human-
annotated transcripts throughout the pipeline. This is a one-day snapshot from 9 February 2022.

3.4. Runtime Characteristics

We also measured the running time for individual components of our processing
pipeline. In Table 3, we list the relative time spent by each module, such as ASR and
speaker diarization; both accounting for 65% of the overall processing time. This disparity
compared to other modules is due to the fact that both are AI-powered modules, which, in
principle, needs more processing time. Other important parts are preprocessing, voice activ-
ity detection (VAD) segmentation, and ELD. Audio data preprocessing involves obtaining
data, demodulation by software radio, segmental gain control, detecting media format,
and plotting waveform. A key metric is the real-time factor of the whole pipeline. The
real-time factor is the ratio of “processing time” over “length of the audio”. Our processing
pipeline has a real-time factor of 4.47. In other words, the processing is computationally
demanding. For an average five-second-long recording, the processing time is 22 s. The
actual running times of each component for the “average” five-second-long recording are
shown in Table 3.

https://www.spokendata.com/atc
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Table 3. Processing time per component in the transcription pipeline. The values in the second
column are for an average 5.016 s long recording. The average was computed over 10,334 recordings
(14.4 h), recorded on 4 December 2021.

Processing Step Time [s] Percentage [%]
Preprocessing 2.5 11.6

VAD segmentation 2.4 11.1
SNR estimation 0.6 3.0

Diarization 7.1 32.6
Callsign expansion 0.5 2.1

Speech-to-text (ASR) 7.0 32.1
English detection 1.3 5.9

Callsign extraction 0.1 0.4
Post-processing 0.2 1.2

Total time 21.6 100.0

4. Collection Platform and Community of Volunteers

In this section, we summarize the data collection and distribution. In addition, a short
description of the roles involved in data processing is provided. We also cover some high-
level statistics about the collected data. First, data are captured and fed into the OpenSky
Network by the volunteers who operate their own receiver equipment (see Figure 5). These
individuals are often aviation enthusiasts with previous operational experience, or people
with an interest in aviation technology, e.g., conducting domain-related research. But
anyone with little to no background in aviation or technology can become a feeder. To
become a feeder, one must have an internet connection and access to a VHF receiver. An
affordable low-complexity setup is covered in the ATCO2 corpora paper [7] and the guide
for setting it up is provided https://ui.atc.opensky-network.org/set-up (accessed on 10
October 2023). It is important to recall that in some countries, it is prohibited by law
to record air traffic management (ATM) data. Readers interested in the legal aspect are
directed to the legal and privacy aspects for collection of ATC recordings section in [7].

Storage OSN

Feeders

ADS-B/VHF

antenna

Figure 5. Data feeders pipeline. The data users have set up a VHF receiver and feed data to OSN servers.

4.1. The Platform

The high-level architecture is given in Figure 6. As one can observe, the platform has
been divided into three distinct groups: (i) feeder equipment, (ii) back-end, and (iii) front-
end. The architecture was decided during the design phase of ATCO2, with the main
objective to achieve scalability of the entire system. That means keeping the complexity
relatively low within all the groups, which allows it to

• Support a similar number of users to the current OpenSky Automatic Dependent
Surveillance–Broadcast system (ADS-B);

• Keep the feeder equipment simple and affordable;
• Provide data to different types of users in a simple and intuitive way;

https://ui.atc.opensky-network.org/set-up
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• Interface external services (e.g., voice annotation) in a simple and intuitive way;
• Keep maintenance and error handling as simple as possible.

A better overview of the OSN platform is also listed in Appendix B. As mentioned
above, the platform has been divided into three parts. Below, we describe each of these
platform’s groups.

Back-end

Ingestion API

Aggregation layer

Serving API

Scheduled jobs

Feeder 
Equipment

Front-end

Web based UI

External 
Annotation 

Platform

Figure 6. The high-level architecture of the data collection platform.

Feeder equipment: the main task of the feeder equipment is to capture the conver-
sation between the pilot and the ATCo and feed the data, together with some relevant
metadata, to the back-end. For the recording part, we recommend using RTLSDR-Airband
together with RTLSDR dongle. RTLSDR is a set of tools that enables USB dongles based on
the Realtek RTL2832U chipset to be used as cheap software defined radios, given that the
chip allows transferring raw I/Q samples from the tuner straight to the host device (see
further documentation in https://osmocom.org/projects/rtl-sdr/wiki/Rtl-sdr; accessed
on 10 October 2023). The latter is an affordable and widely used combination within the
aviation enthusiast community for this exact purpose—to capture and stream ATC voice.

The feeder software is responsible for transmitting the recordings from the receiver to
the remote server. It is a rather simple piece of software that monitors the output directory
of the RTLSDR-Airband and transfers any new data it finds to the back-end using a gRPC
(gRPC; remote procedure calls) connection. The fact that the feeder software only looks for
specific types of data from the output folder suggests that the feeder is free to choose any
other software for capturing and storing the voice data. Care must be taken to assure that
the output is suitable for the feeder software. A simple, step-by-step guide is provided to
simplify the setup process. It can be found at https://ui.atc.opensky-network.org/set-up
(accessed on 10 October 2023).

Back-end: the main tasks for the back-end are (i) to store recordings, transcripts,
and any other relevant metadata, and (ii) to provide interfaces for external users. The
external users in this are data feeders, transcription service providers, data users, or any
other parties contributing to the dataset or making use of it. The back-end is deployed
on Kubernetes, an open-source container orchestration system. As one can observe from
Figure 6, there are several processing layers involved. These layers are as follows:

• Ingestion API: receives recording segments and metadata and queues them for pro-
cessing in Kafka/S3 compatible object storage;

• Aggregation layer: converts raw data to flac audio, stores metadata, and triggers
transcription using Kafka Streams, S3, and Serving API;

• Serving API: provides external interfaces to consume metadata, store, and consume
transcript and statistics;

• Scheduled jobs: run processes that are not part of the streaming process like statistics
aggregation and data housekeeping.

Interfacing the back-end is performed using API, which is well documented in https://api.
atc.opensky-network.org/q/swagger-ui (accessed on 10 October 2023). In order to access
the back-end and make use of the available APIs, one needs to register on https://auth.

https://osmocom.org/projects/rtl-sdr/wiki/Rtl-sdr
https://ui.atc.opensky-network.org/set-up
https://api.atc.opensky-network.org/q/swagger-ui
https://api.atc.opensky-network.org/q/swagger-ui
https://auth.opensky-network.org/auth/
https://auth.opensky-network.org/auth/
https://auth.opensky-network.org/auth/
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opensky-network.org/auth/ (accessed on 10 October 2023), contact OpenSky Network
(mailto: contact@opensky-network.org), and give a short description of what one needs
the access for.

Front-end: the front-end is a web-page (https://ui.atc.opensky-network.org/; ac-
cessed on 10 October 2023) and it provides access to public stats, links to documentation,
e.g., API documentation, and external web pages, e.g., SpokenData transcription service.
In addition, this is a place for an user to set up their receivers, see some statistics about the
receiver performance, and so on.

Statistics: since the public opening of the service (5 March 2023), the ATCO2 project
has recorded speech from 24 different airports in 14 different countries. In Figures 7 and 8,
names of countries and airports, together with corresponding recording lengths, are shown.
Please note that only the airports/areas with the length of regrinding ≥ 1 h are included.
This also applies for the ATCO2 corpora released in ELDA.
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Figure 7. Length of recordings per country from the beginning of the service until 5 March 2023.
Countries where the length of recordings is longer than 1 h are given. Note that some countries (e.g.,
United States) were not part of the official release of the ATCO2 corpora (see Table 2). Still, they are
currently being collected in the OSN Platform.
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Figure 8. Length of recordings per airport from the beginning of the service until 5 March 2023. Airports
where the length of recordings is longer than 1 h are given. LKPR: Vaclav Havel Airport Prague; LZSH:
Zurich Airport; LSZB: Bern Airport; KAUS: Austin-Bergstrom International Airport; KROC: Frederick
Douglass Greater Rochester International Airport; YBBN: Brisbane Airport; LKTB: Brno Airport; KDNN:
Dalton Municipal Airport; EPLB: Lublin Airport; EHAM: Amsterdam Airport Schiphol.

https://auth.opensky-network.org/auth/
https://auth.opensky-network.org/auth/
https://auth.opensky-network.org/auth/
https://ui.atc.opensky-network.org/
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4.2. Data Annotators

Apart from the data feeder, there is another type of volunteers who have contributed
to the project and will continue to contribute in the future. These are called “Annotators”.
The data annotators are volunteers who write down the transcripts of the ATC voice
communications, including assigning speakers and annotating named entities, i.e., callsigns
and commands. For the ATCO2 project, we relied on both volunteers and paid transcribers.
Our data processing pipeline (as seen in Figure 3) generates transcripts and NLP tags for
each communication. By generating transcriptions with AI tools, we are able to speed up the
overall transcription process (if you are interested in becoming an annotator, please create
an account on the SpokenData transcription platform: http://www.spokendata.com/atco2;
accessed on 10 October 2023). The amount of human transcribed data is the package of a
four-hour test set, i.e., ATCO2-test-set-4h corpus. The data annotators are the final actors
involved in the transcription step, as shown in Figure 4.

5. Technologies

In this section, we cover the main tools developed with the ATCO2 corpora. We also list
some potential topics that can be explored with it. Moreover, note that the ATCO2 corpora
are not limited to the fields covered in this paper e.g., ASR or NLP, but also can be used for
text-to-speech (TTS), which is somehow opposite to ASR. We expect the community will
build on top of ATCO to foster and advance speech and text-based technologies for ATC.

5.1. Automatic Speech Recognition

One of the principal components of the ATCO2 project is the strong ASR system,
used in order to provide high-quality automatic transcriptions for the collected ATC data.
An ASR system is trained to predict the best text translation for the input acoustic signal.
Formally speaking, ASR aims to find the best probability candidate output sequence of
words from a set of all possible word combinations (or sentences) in a language given a
noisy acoustic observation sequence. End-to-end ASR models learn a direct mapping of
speech S, to the output text W:

Ŵ = argmax
W∈V∗

p(W|S).

The hybrid (conventional) ASR systems combine three separately trained models:
acoustic model (AM), pronunciation model, and language model (LM). The model calcu-
lates the conditional probability p(W|S), where W is a sequence of words (W = w1, . . . , wn),
S is a sequence of input feature vectors representing the acoustic observations (S = s1, . . . , st),
and V is the vocabulary of all possible words [30,31] or subwords [32], as shown in
Equation (4).

Ŵ = argmax
W∈V∗

p(W|S) (2)

= argmax
W∈V∗

p(S|W)p(W) (3)

= argmax
W∈V∗

∑
P

p(S|P)p(P|W)p(W), (4)

where p(S|P) is an AM, p(P|W) is a pronunciation model, and p(W) is an LM; we use
V∗ to represent the collection of all word sequences formed by words in V . One of the
advantages of conventional pipeline models is a more transparent optimization of an
objective function [33]. Moreover, the LM is trained with unpaired text data and can be
easily adapted to a specific domain. This gives conventional models more flexibility and
makes them convenient for use in industrial projects, such as ATC.

5.1.1. Training Data Configuration

To measure the effectiveness of using automatically transcribed data (ATCO2-T set)
versus using fully supervised gold transcriptions, we defined three training scenarios.

http://www.spokendata.com/atco2
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• Scenario (a) only supervised data: we employ a mix of public and private supervised
ATC databases (recordings with gold transcriptions). It comprises ∼190 h of audio
data (or 573 h after speed perturbation);

• Scenario (b) only ATCO2-T 500 h dataset: we use only a subset of 500 h from the
ATCO2-T corpus (see introductory paper [7]);

• Scenario (c) only ATCO2-T 2500 h dataset: same as scenario (b), but instead of only
using 500 h subset, we use five times more, i.e., a 2500 h subset. This subset is only
used to train a hybrid-based ASR model (CNN-TDNNF; convolutional neural network
and time-delay neural network) to test the boosting experiments in Section 5.2.2.

5.1.2. Test Data Configuration

Two ATCO2 test sets are used for ASR evaluation, as shown in Table 4: ATCO2-test-
set-1h (in short ATCO2-1h) and ATCO2-test-set-4h (in short ATCO2-4h). The same test sets
are used for boosting experiments presented in Section 5.2.2.

Table 4. WER results for the public ATCO2 test sets with CNN-TDNNF models trained on different
data; this includes from scenario (a) to scenario (c).

Model Test Sets
CNN-TDNNF ATCO2-1h ATCO2-4h

Scenario (a) only supervised 573 h dataset 24.5 32.5
Scenario (b) only ATCO2-T 500 h dataset 18.1 25.1
Scenario (c) only ATCO2-T 2500 h dataset 17.9 24.9

5.2. Conventional ASR

To obtain automatic transcriptions of the best possible quality for ATCO2 corpora
audio, we use a strong hybrid model trained on ATC data only. We train a hybrid-based
model for each of the scenarios described above. For scenario (a), an AM was built to
include all available 190 h datasets, speech augmentation accounting for 573 h of data. The
model dictionary consists of 30,832 words coming from diverse sources. This includes (i) a
list of airline designators for callsigns taken from Wikipedia: https://en.wikipedia.org/
wiki/List_of_airline_codes (accessed on 10 October 2023); (ii) all five-letter waypoint names
in Europe retrieved from the Traffic project, see https://pypi.org/project/traffic/ (accessed
on 10 October 2023); (iii) additional words, such as countries, cities, airport names, airplane
models and brands, and some ATC acronyms. For training the acoustic model, we use
the Kaldi toolkit [29]. The system follows the standard Kaldi recipe, which uses MFCC
and i-vectors features [34] with time-delay neural networks (TDNN) [35,36]. The standard
chain training is based on lattice-free maximum mutual information (LF-MMI [37], which
includes threefold speed perturbation and one-third frame subsampling). The acoustic
model is a CNN-TDNNF [38], which comprises a convolutional network and a factorized-
TDNN. The LM is 3G trained on the same data as the acoustic model with additional
text data coming from additional public resources such as airlines names, airports, ICAO
alphabet, and way-points in Europe.

Results and analysis: the results are presented in Table 4. We compared three mod-
els trained with the same conventional CNN-TDNNF architecture but on different data:
scenarios (a), (b), and (c) (see Section 5.1.1). The model (a) in Table 4 is trained on the
“out-of-domain” for ATCO2 but supervised data. The models (b) and (c) are trained on the
“in-domain” ATCO2 data and the difference is only in the size of the training set: 500 h vs.
2500 h. We can see that training on completely unsupervised data yields good performance
in comparison to (a). Increasing the size of unsupervised data from 500 h to 2500 h, however,
does not bring too much improvement: the WER goes from 18.1% to 17.9% and from 25.1%
to 24.9% only for ATCO2-1h and ATCO2-4h, respectively.

Our main hypothesis is that ATCO2 test sets contain higher levels of noise compared
to the audio data present in (a), i.e., mainly clean data from ATCos. Moreover, ATCO2 test
sets also contain speech from pilots collected via VHF receivers, which in turn degrades the

https://en.wikipedia.org/wiki/List_of_airline_codes
https://en.wikipedia.org/wiki/List_of_airline_codes
https://pypi.org/project/traffic/


Aerospace 2023, 10, 898 14 of 33

SNR levels, i.e., reduced audio quality. Hence, when the system is trained on “clean data”,
i.e., scenario (a) and later tested on ATCO2, it creates a large train–test set mismatch. Yet,
when we use ATCO2 training data, scenario (b) or scenario (c), this mismatch is reduced,
and therefore we obtain substantially better results.

5.2.1. End-to-End ASR

Differently from hybrid-based ASR, there exists another paradigm for performing
ASR [39], named end-to-end (E2E) ASR [40]. Here, we aim at directly transcribing speech to
text without requiring alignments between input features and output words or characters
(i.e., standard procedure in hybrid-based ASR); see Equation (4). Recent work on encoder–
decoder ASR has shown that this step can be removed [41]. E2E can be divided into
connectionist temporal classification (CTC)-based [42], attention-based encoder–decoder
modeling [43], or hybrid [44]. Previous work based on self-supervised learning [45] for
ASR includes Wav2Vec2.0 [46], vq-Wav2Vec [47], and, most recently, WavLM [48] and
multilingual XLS-R [49] models. E2E ASR aims at reducing the expert knowledge needed.
This makes the overall ASR development simpler; thus, it could have a significant impact
on ATC [50]. This work focuses on data novelty (including their collection and preparation)
rather than investigating (i) different E2E architectures for ASR, e.g., Conformer [51],
HyperConformer [52], Conmer [53], or BranchFormer [54]; or (ii) toolkits for E2E ASR such
as SpeechBrain [55], ESPnet [56], NeMo [57], or WeNet toolkits [58]. Therefore, we leave
these lines of research for future work.

5.2.2. Callsign Boosting

To further improve the prediction made by an ASR system, along with speech input,
one can use other information available from context. For the ATC domain, such context
information may be the data received from radar. Every moment, radar registers aircraft
that are currently in the airspace, listing unique identifiers of those aircraft, i.e., “callsigns”.
With the radar data, we know exactly what callsigns are especially likely to appear in
the conversation. This knowledge allows us to bias the system outputs towards these
registered callsigns and to increase the probability that they are recognized correctly. A
callsign is typically a sequence of an ICAO airline identifier, letters, and digits, which
in speech turns into a sequence of words. In ASR, the target sequences of words can be
boosted during decoding with WFST (weighted finite state transducer) by adjusting the
weights in the prediction graphs, called “lattices”. The rescoring technique with WFST was
proposed earlier and applied for biasing towards use’s play lists [59], contact names [60],
and named entities [61]. Recently, a similar biasing approach has proved to be useful in
improving callsign recognition [9]. The rescoring of lattices is performed with the finite
state transducer (FST) operation of composition between lattices produced by an ASR
system and an FST created with the target transcript and discount weights (Equation (5)):

biased_Lattices = Lattices ◦ biasing_FST (5)

Biasing the lattice toward the context callsigns usually allows us to considerably im-
prove their recognition in the final outputs (Table 5). The results of different experiments on
the ATC data proved that applying the lattice rescoring method on top of ASR predictions
leads to higher accuracy of automatic transcriptions, first of all, callsigns [14]. Therefore,
lattice rescoring was used for all transcriptions of the ATCO2 data.
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Table 5. Results for boosting experiment on ATCO2 corpora. Results are listed for the CNN-TDNNF
model trained with either all supervised data or 500 h or 2500 h of ATCO2 corpora. The top results
per block are highlighted in bold. The best result per column is marked with underline. † 1h public
test set. ‡ 4h full test set. Results are obtained with offline CPU decoding. ¶ word error rates only on
the sequence of words that compose the callsign in the utterance. CallWER: callsign word error rate;
ACC: accuracy.

Boosting
ATCO2-test-set-1h † ATCO2-test-set-4h ‡

WER CallWER ¶ ACC WER CallWER ¶ ACC
scenario (a) only supervised dataset

Baseline 24.5 26.9 61.3 32.5 36.7 42.4
Unigrams 24.4 25.5 63.2 33.1 35.0 45.8
N-grams 23.8 23.8 66.4 31.3 33.7 47.9
GT boosted 22.9 19.1 75.2 29.7 29.1 58.5

scenario (b) only ATCO2-T 500 h dataset
Baseline 18.1 16.2 71.2 25.1 24.8 62.6
Unigrams 19.1 14.6 74.2 26.0 22.8 65.6
N-grams 17.5 13.5 75.3 24.3 21.4 66.6
GT boosted 16.3 6.9 88.9 22.5 13.0 82.9

scenario (c) only ATCO2-T 2500 h dataset
Baseline 17.9 16.7 70.5 24.9 24.2 62.0
Unigrams 18.3 14.4 73.8 25.6 22.0 65.9
N-grams 17.3 14.2 74.3 24.3 21.1 66.5
GT boosted 15.9 6.5 89.4 22.2 12.5 83.9

Results and analysis: in Table 5, we report the results for the out-of-domain (ATC
supervised) and in-domain (ATCO2-500 h/2500 h) ATC models. Both acoustic models are
trained with CNN-TDNNF architecture following the standard Kaldi recipe, as described
in Section 5.2. The results are reported with three metrics: WER (word error rate), Call-
WER (WER calculated on the sequence of n-grams that correspond to callsigns only), and
ACC (accuracy).

To rescore a decoding lattice according to the current context, we perform the following
steps: (1) we receive all the callsigns registered by the radar at the current timestamp in the
ICAO format; (2) we expand the ICAO callsigns to word sequences to include all possible
callsign variations, i.e., ways this callsign can be spoken; (3) we use the expanded callsigns
to bias the decoding lattice towards the current context. See our previous work [15] for
more details on callsign verbalization.

Biasing multiple callsigns registered by the radar, compared to biasing only a ground
truth (GT) callsign, can be used in a real-life scenario and with real-time ASR. To allow it,
a new contextual FST with expanded callsigns is generated on the fly every time when
new data come from radar. The results of biasing a GT callsign are given in Table 5 to
illustrate the oracle performance of the biasing method. Overall, decoding with n-grams
biasing always helps to achieve better performance, especially for callsigns, with a relative
improvement of 15.0% and 12.8% for callsign recognition and of 3.4% and 2.4% for the
entire utterance on ATCO2-test-set-1h and ATCO2-test-set-4h test sets, respectively.

The size of biasing FST depends on the number of callsigns and their variations we
want to boost. Too many callsigns may decrease the effectiveness of the biasing method,
as the more nontrue callsigns are boosted, the less the correct sequence is prominent. The
previous results show that the optimal size of biasing FST highly depends on the data, but
generally, the performance begins to degrade when the number of biased word sequences
exceeds 1000 [62]. For our experiments, we have, on average, 214 biased callsigns variations
per utterance in the ATCO2-test-set-4h and 140 biased callsigns variations per utterance in
the ATCO2-test-set-1h corpus.
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5.3. Natural Language Understanding of Air Traffic Control Communications

Natural language understanding (NLU) is a subfield of NLP that focuses on the ability
to understand and interpret human language. NLU involves the development of algorithms
and models that can extract meaning and intent from text and/or spoken communication.
NLU involves several subtasks, including (i) named entity recognition [63], which aims at
identifying entities in text, such as people, places, and organizations [64]; (ii) part-of-speech
tagging (POS), identifying the grammatical role of each word in a sentence [65], similar to
sequence classification (see Section 5.3.2); (iii) sentiment analysis, identifying the emotional
tone of a piece of text [66]; (iv) relationship extraction, identifying the relationships between
entities in text [67]; (v) question answering, understanding, and answering natural language
questions [68]. The following subsections cover each of the proposed NLU submodules
that can be developed with ATCO2 corpora, like the ones presented in Figure 9.

BERT
Text encoder

ASR 

Audio

Transcript

ELD NLU SpkRoleID RBED

English: 0.9

Callsign

command

values

ATCO  

PILOT

<s> <atco>...

<pilot> ... <s/> 

RBED detected

Figure 9. Main automatic speech recognition and understanding tasks that can be achieved with
the ATCO2 corpora. ELD: English language detection; NLU: natural language understanding, e.g.,
callsign highlighting; SPKRoleID: speaker role identification; RBED: read-back error detection.

5.3.1. Named Entity Recognition for Air Traffic Control Communications

In ATC communications, NLU can be used to automatically analyze and interpret
the meaning of spoken messages between pilots and ATCos, which can aid ATCos in
downstream tasks, such as assisting in identifying emergency situations and other critical
events. NLU can help to extract important information, such as flight numbers, callsigns,
or airport codes, which in turn can aid ATCos to manage traffic more efficiently.

Overall, the use of NLU in ATC helps improve communication accuracy and efficiency,
aids in reduction of ATCos’ workload by prefilling aircraft radar labels, and provides
valuable data for analysis and decision making. In this work, one of the main tasks is to
understand and extract high-level information within ATC communication. Therefore, we
develop an NER system tasked to extract this information, as depicted in Figure 10a. For
instance, consider the following transcribed communication (taken from Figure 1):

ASR transcript: runway three four left cleared to land china southern three two five,

would be converted to high-level entity format with the NER system to:

Output: <value>
:::::::
runway

:::::
three

:::::
four

:::
left </value> <command> .. . . . . . . .cleared. . . .to . . . . . .land </com-

mand> <callsign> china southern three two five </callsign> .

In this work, we developed two systems based on transformers [69] to extract and
tag this information from ATC communications, i.e., a pretrained BERT [70] model and
RoBERTa [71] model.

Experimental setup: we fine-tune a pretrained BERT and RoBERTa model on the NER
task, as shown in Figure 9). We employed the pretrained version of BERT-base-uncased [70]
with 110M parameters, URL: https://huggingface.co/bert-base-uncased (accessed on 10
October 2023). Also, the pretrained version of RoBERTa-base [71] is composed of 123M
parameters, URL: https://huggingface.co/roberta-base (accessed on 10 October 2023).
We download the pretrained models from HuggingFace [72,73]. For training, we use
the full ATCO2-test-set-4h, which contains ∼3k sentences. In this dataset, each word is
annotated together with a predefined class, as follows: callsign, . . . . . . . . . . . .command,

:::::
values, and

https://huggingface.co/bert-base-uncased
https://huggingface.co/roberta-base
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:::::
UNK (everything else). In order to fine-tune the model, we append a layer on top of
the BERT model by using a feedforward network with a dimension of 8 (we define two
outputs per class, see the class structures in Section 3.3 of ref. [8] and in [15]). Due to
the lack of gold transcriptions, we perform a fivefold cross-validation scheme to avoid
overfitting. The reader interested in developing their own NER system for ATC is redirected
to the open-source GitHub repository of the ATCO2 corpora (GitHub repository: https:
//github.com/idiap/atco2-corpus; accessed on 10 October 2023). We fine-tune each model
on an NVIDIA GeForce RTX 3090 for ∼10 k steps. During experimentation, we use a
linear learning rate scheduler with an initial learning rate of γ = 5× 10−5, dropout [74] of
dp = 0.1, and GELU (Gaussian error linear unit) activation function [75]. We also employ
gradient norm clipping [76] for regularization and AdamW as optimizer [77]. Each model
during the cross-validation scheme uses an effective batch size of 32.

BERT
BERT

(sequence classification)

(b) Text-based speaker role detection

Tokenizer

Speaker1 Speaker2

95% ATCO

Classification layer

5% Pilot
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(a) Named-entity recognition task
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Legend

Figure 10. (a) Named entity recognition and (b) speaker role detection module based on sequence
classification (SC). Both systems are based on fine-tuning a pretrained BERT [70] model on ATC data.
The NER systems recognize callsign, command, and values, while the SC assigns a speaker role to
the input sequence. Taken from [7].

Evaluation metric: we evaluate both BERT and RoBERTa NER systems with a binary
classification metric named, F-score. Particularly, the F1-score, defined in Equation (8),
represents the harmonic mean of precision and recall. Recall, as defined in Equation (7), is
the ratio of TP to all samples that should have been identified as positive (including false
negatives (FN)). Precision, as described in Equation (6), is the ratio of true positive (TP)
results to all positive results (including false positives (FP)):

Precision =
TP

TP + FP
(6)

Recall =
TP

TP + FN
(7)

F1 =
2 ∗ Precision ∗ Recall

Precision + Recall
=

2 ∗ TP
2 ∗ TP + FP + FN

(8)

Results and analysis: the NER system’s performance is evaluated on the ATCO2-test-
set-4h corpus using a fivefold cross-validation scheme, with five fine-tuning runs using
different training seeds. Table 6 presents the performance metrics for callsign, command,
and values classes of two transformer-based [69] models, namely, BERT-base and RoBERTa-
base. Although both models achieve similar F1-scores, we provide analysis for the BERT-
based NER system, which achieves an F1-score of over 97% for the callsign class, while the

. . . . . . . . . . . . .command and
::::::
values classes lag behind with F1-scores of 81.9% and 87.1%, respectively.

We hypothesize that the command class contains higher complexity when compared to the
other two classes, values and callsigns. Values are mostly composed of defined keywords
(e.g., flight level) followed by cardinal numbers (e.g., “one hundred”), while callsigns
follow a well-defined structure of airline designators and a set of numbers or letters spoken

https://github.com/idiap/atco2-corpus
https://github.com/idiap/atco2-corpus
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in ICAO format [25]. These characteristics make it easier for the NER system to correctly
detect them.

One potential method for increasing the performance of the NER system for the
command and values classes is to incorporate plausible commands and values in real time,
depending on the situation of the surveillance data. This can be achieved using the boosting
technique, as described in Section 5.2.2. Although the results with boosting callsigns are
reported in Table 5, further investigation is needed to assess the impact of boosting on the
command and values classes.

Table 6. Different performance metrics for callsign, command, and values classes of the NER
system. Results are averaged over a fivefold cross-validation scheme on ATCO2-test-set-4h cor-
pus in order to mitigate overfitting. We run five-times fine-tuning with different training seeds
(2222/3333/4444/5555/6666). Results are reported on two transformer-based models. @P, @R, and
@F1 refer to precision, recall, and F1-score, respectively.

Model
Callsign Command Values

@P @R @F1 @P @R @F1 @P @R @F1

Bert-base 97.1 97.8 97.5 80.4 83.6 82.0 86.3 88.1 87.2
RoBERTa-base 97.1 97.7 97.5 80.2 83.7 81.9 85.6 88.6 87.1

5.3.2. Text-Based Speaker Role Detection

Sequence classification (SC) is a type of machine learning (ML) task that involves
assigning a label or a category to a sequence of data points [78,79]. The data points in the
sequence can be of various types, such as text, audio, or numerical data, and the label
assigned to the sequence can also be of different types, such as binary (e.g., positive or
negative sentiment [66]) or multiclass. Sequence classification can also be used to automati-
cally classify ATC communication sequences into various categories. This technique can
be applied to both audio and text data, making it a versatile tool to provide a high-level
understanding of the communication at hand.

In scenarios where only a monaural communication channel exists, it can be challeng-
ing to recognize the identity of the speaker. Hence, it is especially important to distinguish
between the ATCo and the pilot over the target communications. As a potential solution,
we propose an alternative approach that utilizes a speaker role detection (SRD) system
based on SC. The system receives text as an input, and it returns as output a category where
the communication falls, either uttered by the ATCo or the pilot. In recent years, there has
been a growing interest in using deep learning techniques, such as the transformer-based
models [69], to improve the performance of SC for SRD in ATC communications. Here, we
ablate three types of such models, (i) BERT [70], (ii) RoBERTa [71], and (iii) DEBERTA [80].
These models have been shown to achieve state-of-the-art performance on a wide range of
sequence classification tasks, including SRD for ATC. The proposed SRD is illustrated in
Figure 10b.

Overall, the SRD and speaker diarization (see Section 5.3.3) tasks can leverage the fact
that ATC dialogues follow a well-defined lexicon and dictionary with simple grammar.
This standard phraseology has been defined by the ICAO [25] for ATCos. The main idea
is to guarantee safety and reduce miscommunications between the ATCos and pilots.
Therefore, previous work has shown the potential in performing SRD in an E2E manner on
the text-level, as presented here (see in [8,81]).

Experimental setup: he SRD system is built on top of pretrained models (BERT [70],
RoBERTa [71], and DEBERTA [80]), which are downloaded from HuggingFace [72,73].
Here, the experimental setup is exactly the same as the one described for the NER system,
including the training hyperparameters. For further details, we redirect the reader to
Section 5.3.1. Still, the SRD model is fine-tuned on the SC rather than on the NER task.
Further, we define an output layer with two units (classes): one for ATCo and one for pilot.
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Results and analysis: we evaluate the SRD system on ATCO2-test-set-4h corpus.
Differently from the NER system, here, we have access to two training corpora. (1) The
Air Traffic Control Corpus (LDC-ATCC) corpus, see URL: https://catalog.ldc.upenn.edu/
LDC94S14A (accessed on 10 October 2023). It consists of audio recordings in the area of
ASR for air traffic control communications. We use the metadata along the transcripts to
perform research on NLU for ATC, i.e., speaker role detection. The data files are sampled at
8 kHz, 16 bit linear, with continuous monitoring and without squelch or silence elimination.
(2) the UWB-ATCC corpus by the University of West Bohemia, which can be downloaded
for free at the following URL: https://lindat.mff.cuni.cz/repository/xmlui/handle/1185
8/00-097C-0000-0001-CCA1-0 (accessed on 10 October 2023). The UWB-ATCC corpus
contains recordings of air traffic control communication. The speech is manually transcribed
with the speaker information; thus, it can be used for speaker role detection) datasets. We
evaluate the SRD under two considerations: (i) ablations of different pretrained models for
SRD on ATC communications, and (ii) low-resource and incremental training scenarios.

(i) Analysis of the Impact of Pretrained Models and Training Data Type. In this
scenario, we evaluate the impact of pretrained models and training data on the SRD task
for ATC data. To this end, we compare the performance of three transformer-based [69]
models, including BERT, RoBERTa, and deBERTa-V3, trained on two different corpora,
LDC-ATCC and UWB-ATCC, and evaluate them on the ATCO2-test-set-4h corpus. The
F1-scores for SRD are reported separately for ATCo and pilot speakers in Table 7. Our
results show that all the models achieved comparable F1-scores, ranging from 87–88% for
ATCo and 84–85% for pilots. These findings suggest that the SRD task for ATC data is not
significantly sensitive to the choice of pretrained models. However, we observe that models
trained on UWB-ATCC outperform those trained on LDC-ATCC, with up to 4% absolute
improvement in F1-scores. For instance, BERT-model with LDC-ATCC→ UWB-ATCC
gives a comparison of 82.4%→ 86.2% for ATCo and 79.2%→ 83.2%, for Pilot. Additionally,
we find that combining both datasets leads to a 1% absolute improvement in F1-scores.
Overall, our study highlights the importance of selecting appropriate training data for
the SRD task in ATC data and suggests that using multiple datasets can lead to improved
performance. The findings also suggest that the choice of pretrained models has a relatively
minor impact on the SRD task for ATC data.

Table 7. ATCO/PILOT F1-scores for speaker role identification based on full ATC utterances for
ATCO2-test-set-4 test set. Each utterance represents one sample. Metrics reported with three different
transformer-based models (BERT [70], RoBERTa [71], deBERTa-V3 [80]). All models are the “base”
version, e.g., bert-base. Numbers in bold refer to the top performance per split, i.e., ATCO or
PILOT. Results are averaged over a fivefold cross-validation scheme on ATCO2-test-set-4h corpus in
order to mitigate overfitting. Each round of fine-tuning is run five times with different training seeds
(2222/3333/4444/5555/6666).

Training Corpora BERT DEBERTA ROBERTA
ATCO PILOT ATCO PILOT ATCO PILOT

LDC-ATCC 82.4 79.2 82.4 79.6 84.0 80.2
UWB-ATCC 86.2 83.2 86.8 84.0 87.0 82.8

↪→ + LDC-ATCC 87.6 85.2 88.8 85.8 88.0 84.2

(ii) Analysis of the Impact of Data Quantity on Speaker Role Detection. In this study,
we aim to evaluate the impact of the number of text samples on the performance of SRD.
The results of this analysis are illustrated in the left panel of Figure 11, where the F1-score
on the ATCO2-test-set-4h is plotted against the number of samples in a logarithmic scale
on the x-axis. Interestingly, we found that as few as 100 samples are necessary to achieve
a reasonably good F1-score of 60% on SRD. Notably, the UWB-ATCC appears to be more
informative for the BERT model, which achieves an F1-score of 71% with only 100 training
samples. Increasing the training data to 1000 samples further improves the performance,

https://catalog.ldc.upenn.edu/LDC94S14A
https://catalog.ldc.upenn.edu/LDC94S14A
https://lindat.mff.cuni.cz/repository/xmlui/handle/11858/00-097C-0000-0001-CCA1-0
https://lindat.mff.cuni.cz/repository/xmlui/handle/11858/00-097C-0000-0001-CCA1-0
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resulting in F1-scores near 80% (LDC-ATCC + UWB-ATCC). These findings are significant,
considering that the gold transcription of ATC communications is generally expensive
and time-consuming. In the right panel of Figure 11, we present a box plot that shows
the variation of the BERT model’s performance when fine-tuned on SRD with different
training seeds. Each box represents the variation of the model between the ATCo and
pilot subsets, over the fivefold cross-validation scheme. Overall, the results indicate that
increasing the training data leads to better performance and more consistent results. These
observations highlight the importance of selecting a suitable training set size for speaker
role detection tasks.
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Figure 11. Metrics for the speaker role detection system (introduced in [7]). Metrics are reported only
on ATCO2-test-set-1h corpus with a bert-base-uncased model trained with different datasets from
Table 1. Left plot: ablation of the F1-score versus the number of samples used to train the system. Right
plot: F1-score for models trained with different training seeds. The box plot depicts the performance
variability when splitting the test set into ATCo and pilot subsets.

5.3.3. Text-Based Diarization

In addition to only detecting roles in a given ATC communication (e.g., SRD), there
are cases where multiple segments end up in the same recording/communication. The
task that solves this issue is known as speaker diarization (SD). SD answers the question
“who spoke when?”. Here, the system receives an audio signal or recording (or text, in our
case) and detects the speaker changes or segmentation and the speaker role. The main
parts of an SD system are (i) segmentation, (ii) embedding extraction, (iii) clustering, and
(iv) labeling (similar to SRD). SD is normally performed on the acoustic level, and previous
work based on mel filterbank slope and linear filterbank slope was covered in [82]. Speaker
discriminative embeddings such as x-vectors are investigated in [83], and, more recently, a
variational Bayesian hidden Markov model (VBx) was investigated in [84], which is the SD
system used during the data collection stage of ATCO2 (see Section 3.2). State-of-the-art
SD systems are based on the E2E paradigm, named E2E neural diarization (EEND) [85].
This approach was introduced in [86] where an SD model is trained jointly to perform
extraction and clustering [87]. Here, differently from SRD, we only used the BERT [70]
pretrained model.

Experimental setup: The SD system is built on top of a pretrained BERT model down-
loaded from HuggingFace [72,73]. As in the NER and SRD system, here, the experimental
setup is the same; this also includes the training hyperparameters. For further details we
redirect the reader to Section 5.3.1. The SD model is fine-tuned on the NER task, where each
speaker role (ATCo or pilot) is a class. Therefore, we have two tags per class, accounting
for four classes in total. Readers are directed to our paper on text-based SD presented at
The 2022 IEEE Spoken Language Technology Workshop (SLT 2022), see [8].

Evaluation metric: to score the text-based SD system, we use the Jaccard error rate
(JER) metric. JER is a recent metric introduced in [88] that aligns with speaker diarization.
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JER aims at avoiding the bias that the predominant speaker might cause, i.e., JER evaluates
all speakers equally. The JER is defined in Equation (9):

JER = 1− 1
#speakers ∑

speaker
maxcluster

|speaker∩ cluster|
|speaker∪ cluster| , (9)

where (i) speaker is the selected speaker from reference and (ii) maxcluster is the cluster from
the system with maximum overlap duration with the currently selected speaker.

Results and analysis: we evaluate the SRD system on ATCO2-test-set-4h corpus. Dif-
ferently from the NER system, but similar to SRD, here, we have access to two training
corpora: LDC-ATCC and UWB-ATCC datasets. We evaluate the SD under one considera-
tion: (i) low-resource and incremental training scenario.

(i) Analysis of the Impact of Data Quantity on Text-based Speaker Diarization In
this study, we aim to evaluate the impact of the number of text samples on the performance
of SD. The results of this analysis are illustrated in the left panel of Figure 12, where the JER
(the lower the better) on the ATCO2-test-set-4h is plotted against the number of samples
in a logarithmic scale on the x-axis. We found that as few as 100 samples are necessary to
achieve a JER score of 45.6% (LDC-UWB). Similar to SRD, the UWB-ATCC dataset seems
to be more informative in the SD system. For instance, under the 1000 samples scenario,
we noted a 5% absolute JER reduction if UWB-ATCC is used. Furthermore, increasing
the training data to 10k samples improved the performance, resulting in JER scores near
to 20% (LDC+UWB). A more appropriate comparison of text and acoustic-based SD for
ATC communications can be found in our previous work [8]. Additionally, in the right
panel of Figure 11, we present a box plot that shows the variation of the BERT-based SD
model’s performance when fine-tuned with different training seeds. Each box represents
the variation of the model between the two proposed classes: ATCo and pilot, over the
fivefold cross-validation scheme. The results are listed with F1-scores. Overall, we can
conclude that the UWB-ATCC dataset is more informative for the SD model in comparison
to the LDC-ATCC dataset.
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Figure 12. Metrics for the text-based diarization system (introduced in [7,8]). Metrics are reported
only on ATCO2-test-set-4h corpus with a bert-base-uncased model trained with different datasets
from Table 1. Left plot: ablation of the Jaccard error rate versus the number of samples used to train
the system. Right plot: F1-score for models trained with different training seeds. The box plot depicts
the performance variability when splitting the test set by ATCo and pilot subsets.

5.4. Future Work Enabled by ATCO2

In this subsection, we discuss several research directions that can be explored with the
ATCO2 corpora. We cover (i) end of communication detection (akin to VAD), (ii) read-back
error detection, and (iii) English language detection.
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5.4.1. End of Communication Detection

In the ATC domain, it is crucial to detect the end of communications. While push-to-
talk (PTT) signals are commonly acquirable in the ATC operations room or in the cockpit,
there are cases where PTT is not available, and in such scenarios, the ATCO2 corpora can
be leveraged to develop end-of-communication detection systems using either acoustic- or
text-based approaches. Acoustic-based systems, known as VAD, perform their task prior to
the ATC communication being sent to the ASR system [89], but may require the integration
of a new independent module into the recognition pipeline. Text-based systems rely on
strong artificial intelligence models like BERT, and previous studies in ATC [8] have shown
their effectiveness in detecting callsigns [90], commands [7], and end-of-communication
signals from transcripts generated by an ASR system.

5.4.2. Read-Back Error Detection

Pilot read-backs happens when a pilot speaks back the relevant instructions initially
uttered by the ATCo. In practice, the ATCo is listening and checking the conformity of each
read-back. Therefore, it is important to have a procedure in place, e.g., a read-back error
detection (RBED) system. Despite the infrequency of communication errors in ATC, they
still have the potential to cause significant safety issues, with some transmissions containing
multiple errors. Authors in [91] show that in every hundredth ATC communication, an
error may occur, and in [92], the authors show that the error may occur in every sixteenth
communication. The possibility to detect such error still remains a challenge, as shown
in this recent work [93]. Although, in general, read-back errors are quite rare, preventing
even one incident due to automatic RBED can make an important difference in ensuring
ATM safety. To support ATCos in this task, previous projects employ ASRU engines to
extract high-level information from ATC communications [5]. Previous work in [93] has
proposed two approaches for performing RBED. One system is based on rules, while
a second system is a data-driven sequence classifier based on a BERT-alike pretrained
encoder, named RoBERTa [71]. Here, the input sequence is a concatenation of ATCo and
pilot utterance transcriptions with a special separator token [SEP] between them. They
show that combining these approaches results in an 81% RBED rate in real-life voice
recordings from Isavia’s en-route airspace. They also cover a proof-of-concept trial with six
ATCos producing challenging, artificial read-back error samples.

A main issue with well-known past projects, such as HAAWAII or MALORCA, is that
their data cannot be publicly shared. In contrast, ATCO2 corpora are open to the public,
e.g., ATCO2-test-set-1h set can be accessed for free, and practitioners can follow previous
research to implement an RBED module.

5.4.3. English Language Detection

Currently, we have developed and deployed a suitable English language detection
system (ELD) to discard non-English utterances in newly collected data. We tested a
state-of-the-art acoustic-based system with an x-vector extractor. We also came up with
the idea of using an NLP approach that processes ASR output with word confidence for
the ELD. Finally, our experiments show that the ELD based on NLP is superior to the
acoustic approach in both detection accuracy and computational resources. Moreover, the
NLP approach can use outputs from several ASR systems jointly, which further improves
the results. For the processing pipeline, we integrated the NLP-based English detector
operating on Czech and English ASR. The integrated English detector consists of TF–IDF
(term frequency–inverse document frequency) for reweighting the accumulated “soft” word
counts and a logistic regression classifier to obtain the English/non-English decision [24].

We created the development and evaluation dataset consisting of data from various
airports, data with various English accents, and code-mixing of English and local languages.
The data are selected from our ATCO2 corpora introduced in Table 1. The development
set is used to estimate the model parameters of our English language detector (the logistic
regression classifier). The evaluation set is used for testing. The rules for manually tran-
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scribing the utterances are mentioned below. We found several interesting properties of the
ATC data during listening and tagging the ELD dataset:

• Various noise conditions. The majority of data are clean, but there are some very noisy
segments;

• Strongly accented English. The speakers’ English accent varies widely. From native
speakers (pilots) to international accents (French, German, Russian, etc.) (pilots and
ATCos) and strong Czech accents (pilots and ATCos);

• Mixed words and phrases. For example, the vocabulary of Czech ATCos is a mix
of Czech and English words. They use standard greetings in Czech which can be
a significant portion of an “English” sentence if a command is short. On the other
hand, they use many English words (alphabet, some commands) in “Czech” sentences.
Moreover, they use a significant set of “Czenglish” words.

We use the language of spoken numerals as a rule of thumb to decide on the language
of a particular ATCo-pilot communication utterance. The language has to be consistent
within the audio recording. More detailed information, including experimental results, is
covered in our previous work [24].

6. Conclusions

This paper expands upon our previous work [7] and discusses the main lessons
learned from the ATCO2 project. The aim of the ATCO2 project was to develop a platform
for collecting, preprocessing, and posterior ASR-based transcription generation of ATC
communications audio data. With over 5000 h of ASR transcribed audio data, ATCO2 is
the largest public ATC dataset to date, thus pushing the research boundaries on robust
automatic speech recognition and natural language understanding of ATC communications.
The main lessons learned from ATCO2 are sixfold, as follows:

• Lesson 1: ATCO2’s automatic transcript engine (see Appendix B) and annotation
platform (see Appendix C) have proven to be reliable (∼20% WER on ATCO2-test-set-
4h) for collection of a large-scale audio dataset targeted to ATC communications;

• Lesson 2: Good transcription practices for ATC communications have been developed
based on ontologies published by previous projects [5]. A cheat sheet (see Appendix E)
has been created to provide guidance for future ATC projects and reduce confusion
while generating transcripts;

• Lesson 3: The most demanding modules of the ATCO2 collection platform are the
speaker diarization and automatic speech recognition engines, each accounting for
∼32% of the overall system processing time. The complete statistics regarding runtime
are covered in the Table 3. In ATCO2, we make these numbers public so they can be
used as baselines in future work aligned to reducing the overall memory and runtime
footprint of large-scale collection of ATC audio and radar data;

• Lesson 4: Training ASR systems purely on ATCO2 datasets (e.g., ATCO2-T 500h set
corpus) can achieve competitive WERs on ATCO2 test sets (see Table 4). The ASR
model can achieve up to 17.9%/24.9% WERs on ATCO2-test-set-1h/ATCO2-test-set-
4h, respectively. More importantly, these test sets contain noisy accented speech,
which is highly challenging in standard ASR systems;

• Lesson 5: ATC surveillance data are an optimal source of real-time information to
improve ASR outputs. The integration of air surveillance data can lead to up to 11.8%
absolute callsign WERs reduction, which represents an amelioration of 20% (62.6% no
boosting→ 82.9% GT boosted) absolute callsign accuracy in ATCO2-test-set-4h, as
shown in Table 5;

• Lesson 6: ATCO2 corpora can be used for natural language understanding of ATC
communications. BERT-based NER and speaker role detection modules have been
developed based on ATCO2-test-set-4h. These systems can detect callsigns, commands,
and values from the textual inputs. Additionally, speaker roles can also be detected
based on textual inputs. For instance, as few as 100 samples are necessary to achieve
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60% F1-score on speaker role detection. Furthermore, the NLU task is of special
interest to the ATC community because this high-level information can be used to
assist ATCos in their daily tasks, thus reducing their overall workload.

In addition to these six lessons learned, this paper brings substantial improvements
in the domain of automatic speech recognition and understanding for ATC domain, i.e.,
Tables 5 and 6 show the current best-performing ASR and NLU engines developed on
open-source data, and, thus, are replicable by the community. Furthermore, to the authors’
knowledge, there is no other research or commercial activity at this moment which would
demonstrate a more accurate engine for an ATC domain built on publicly open data.
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Nomenclature

AI Artificial Intelligence
AM Acoustic Model
ATC Air Traffic Control
ATM Air Traffic Management
ASR Automatic Speech Recognition
ATCo Air Traffic Controller
ATCC Air Traffic Control Corpus
ADS-B Automatic Dependent Surveillance–Broadcast
CTC Connectionist Temporal Classification
Conformer Convolution-augmented Transformer
dB Decibel
DNN Deep Neural Networks
E2E End-To-End
ELDA European Language Resources Association
FST Finite State Transducer
ICAO International Civil Aviation Organization
GELU Gaussian Error Linear Units
LF-MMI Lattice-Free Maximum Mutual Information
LM Language Model
ML Machine Learning
NER Named Entity Recognition
NLP Natural Language Processing
NLU Natural Language Understanding
PTT Push-To-Talk
SNR Signal-To-Noise
VAD Voice Activity Detection
VHF Very-High Frequency
WER Word Error Rate
WFST Weighted Finite State Transducer
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RBE Read-back Error
RBED Read-back Error Detection

Appendix A. ATCO2 Project

The ATCO2 project developed an unique platform that allows the collection, organiza-
tion, and preprocessing of air traffic control (voice communication) data from airspace. The
project considers real-time voice communication between air traffic controllers and pilots
available either directly through publicly accessible radio frequency channels, or indirectly
from air-navigation service providers (ANSPs). In addition to the voice communication, the
contextual information available in a form of metadata (i.e., surveillance data) is exploited.

More specifically, data acquisition was based on off-the-shelf automatic-dependent
surveillance-broadcast (ADS-B) technology already exploited by OpenSky Network (OSN),
collecting detailed (live) aircraft information over the publicly accessible 1090 MHz radio
frequency channel. ADS-B sensors are distributed among volunteers (i.e., community of
users) throughout the world (at https://opensky-network.org/network/facts; accessed
on 10 October 2023), making it possible to analyze billions of ADS-B messages. The aim
of ATCO2 was to extend the current cloud setting (i.e., central server responsible for
managing the sensors, collecting the received ADS-B messages, and storing all received
information in a database) so that ATC voice communication of both channels (ATCo and
pilot’s read back) will be captured, time correlated with the surveillance data, and stored in
the database for further processing. These data will also be complemented by air traffic
voice communication data provided by ANSPs. Below are listed some links that might be
of interest to the reader.

• The latest news and blog posts from ATCO2 project are located in the following
website: https://www.atco2.org/; accessed on 10 October 2023.

• The ATCO2 corpus can be downloaded for a fee at https://catalog.elra.info/en-us/
repository/browse/ELRA-S0484/; accessed on 10 October 2023.

• The ATCO2-test-set-1h can be downloaded for free at https://www.atco2.org/data;
accessed on 10 October 2023.

• Stats and voice feeding of ATC data is listed at https://ui.atc.opensky-network.org/
set-up; accessed on 10 October 2023.

• ATC training and transcription service is provided by SpokenData at: https://www.
spokendata.com/atco2; accessed on 10 October 2023.

Appendix B. Automatic Transcription Engine

This appendix describes in detail how we collected the audio and metadata that
brought to life the ATCO2 corpus. We mainly rely on the automatic transcription engine,
described in more detail in Section 3.2. The automatic transcription engine is implemented
as a scalable cloud service. It communicates with other services (or partners) using APIs.
This service is designed to process large flows of data produced by data feeders. Data
feeders are enthusiasts that act as “feeders” of ATC speech and contextual ATC data (e.g.,
surveillance), see Section 4.2.

The data are pushed to this service by OSN (OpenSky Network: https://opensky-
network.org/; accessed on 10 October 2023) servers by calling an API request and providing
a job setting JSON file. After the request is accepted, settings parameters are processed and
the job is stored in an internal queue for processing. The user (in this case, OSN) may have
an ability to tweak the settings and to affect the processing pipeline and the result, namely:

• Audio input format choices;
• Rejection threshold for too-long audio;
• Rejection threshold for too-short audio;
• Rejection threshold for too-noisy audio;
• Rejection threshold for non-English audios;
• Switching the language of automatic speech recognizer.

https://opensky-network.org/network/facts
https://www.atco2.org/
https://catalog.elra.info/en-us/repository/browse/ELRA-S0484/
https://catalog.elra.info/en-us/repository/browse/ELRA-S0484/
https://www.atco2.org/data
https://ui.atc.opensky-network.org/set-up
https://ui.atc.opensky-network.org/set-up
https://www.spokendata.com/atco2
https://www.spokendata.com/atco2
https://opensky-network.org/
https://opensky-network.org/
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Most of these are actually disabled due to security reasons (not to interrupt the processing
pipeline), but may be easily enabled on the fly if needed. The overall data flow model is
described in Figure A1. Any new job (request for a full automatic transcription of recording)
accepted via API on the SpokenData (Industrial partner: https://www.spokendata.com/atco2;
accessed on 10 October 2023) side is processed by a master processing node. The job is
enqueued into a workload manager queue. Once there is a free processing slot, the job is
submitted to a processing server, or worker. The master processing node then informs the
OSN server about the state of the job by calling a callback.

Storage and Distribution

Transcription and Annotations Subsystem

Metadata
Subsystem

Air Surveillance
Data

VHF Receiverd subsystem

External 
antenna

Radio
Feeder

Config.
webpage

Reccordings
Storage

Metadata
Cache/DB

Voice
recording  
interface

Metadata  
interface

Annotations
API

Data
Distribution 

API

Database

Flight
Information

Airport Data

Live stream

Data batch

Natural
Language
Processing

Automatic
Speech

Recognition

Language
Identification

Figure A1. ATCO2 communication schema.

Appendix C. Transcription Platform: Data Flow

The data (the recording for human transcription) life cycle is split into four main states:
The new recording state is set as queued and is untouched when the recording is

pushed into the transcription platform from the transcription engine. The recording is
placed into a queue of transcription jobs and is immediately visible to all annotators. The
queue is shown in the open jobs screen. Annotators can interact with the queue—listen to
recordings and select some for transcription. Recording in this state may drop off the queue
in the case: they are old—no one is interested in annotating them; three annotators marked
the recording by thumbs down. The dropped-off recordings are deleted after 7 days.

https://www.spokendata.com/atco2
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Once an user selects the recording for transcription, revises the automatic transcription,
and saves it, the recording is set as queued and annotated. This state prevents the recording
from being dropped from the queue and deleted. Also, it is indicated as (to) re-check in
the open jobs screen, to inform other annotators that it was modified (annotated) and they
should recheck if the transcription is correct rather than annotate from scratch. If any
annotator indicates the existence of personal information in the recording (by “Anonymize”
label), the recording is dropped off the queue and deleted.

The next state is annotated. If the recording is successfully rechecked, then the
recording is considered as annotated and the transcription is final. The recording is removed
from the open jobs queue and placed on a stack of finished recording transcriptions.
The stack is periodically exported to ELRA for further packaging and distribution to the
community. This state also triggers a callback to the OSN platform, informing them that
the human transcription is completed, and they can download the transcription. After the
recording is exported to ELRA, we set the state as Finished. Here, the recording can be
archived or deleted. The detailed data flow schema is depicted in Figure A2.

Annotator took
the recording

Waiting in queue

Job is too old.
OR

3 annotators down 
voted it.

New job created QueuedForProcessing

Processing in pipeline Processing

Finished in Error

Shown in open jobs
queue as Fresh

Securely destroyed

High quality 
recording?

Finished as Done

Low quality

Wait 7 days

Enqueue in open jobs 
queue

Remove from open jobs 
queue

Annotator took
the recording

Annotating by 
annotator

Shown in open jobs
queue as Recheck

Checking by annotator

Annotator found
an error?
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Archive for export
to ELRA

Remove from open jobs 
queue

High quality

Yes

No

No

Yes

Delete

No

Yes

Yes

No

Callback to OSN

Export to ELRAArchived

Personal information 
found

No

Yes

Figure A2. Diagram of the data flow (lifetime) in the transcription platform. Transcription engine in
green. Queued and untouched state in yellow. Queued and annotated state in red. Annotated state
in blue. The rest (white) is for state, securely destroyed.



Aerospace 2023, 10, 898 28 of 33

Appendix D. Communication Schema

The communication schema developed during ATCO2 project is depicted in Figure A3.

SpokenData - Transcription engine

SpokenData - Annotation platform

ELDA                

ELDA                

Opensky Network

ASR LID

NLP

API

EXPORT

ATCO2 Automatically
transcribed data release

VHF data feeders
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ATCO2 communication schema

API

ADS-B data feeders

API

API

Audio

Automatic transcriptions and tags

Human annotations

Audio metadata (callsigns, airport, ...)

Legend

Audio with transcriptions or annotations

EXPORT

ATCO2 Human
annotated data release

API

Filter

Worker

Figure A3. Other view of the ATCO2 communication schema.

Appendix E. Transcription Cheat Sheet

Figure A4 presents the transcription cheat sheet developed by ATCO2 project.
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Segmentation and speaker "identity"

audio segment = speaker utterance
segment boundaries are in pauses (check the timing)
delete segments without speech

Transcription

Alphabet

Alfa
Bravo
Charlie
Delta
Echo
Foxtrot
Golf
Hotel
India
Juliett
Kilo
Lima
Mike
November
Oscar
Papa
Quebec
Romeo
Sierra
Tango
Uniform
Victor
Whiskey
X-ray
Yankee
Zulu

One
Two
Three
Four
Five
Six
Seven
Eight
Nine
Zero

everything is in lower case except Call-signs (Speedbird Charlie Nine Two), Airlines, Waypoints, Geographical Names

numbers are written as pronounced (one hundred / one zero zero), do not use numerals 10.3

only ASCII code letters are allowed A-Z a-z [ ] / ' - ( ) 

if abbreviations are spelled then capitalized QNH (as quenage) lowercase otherwise atis (as atis)

transcribe exactly what was said including re- re- restarts and and repetitions
indicate swallowed or cutted words if possible Lufthansa(-hansa) goodbye(goodb-)

whatever is not intelligible mark as unknown [unk] either word(s) or whole sentences
indicate hesitations like eeeh, uuuhhm by [hes]
label or enclose non-English parts of sentence into [NE] [unk] [/NE] if you understand then be specific [NE French] bonjour [/NE]
Any personal data must be labeled or tagged for later removal "morning cpt. [PERS] John Doe [/PERS] please"

Global

each segment has to have attached a speaker tag
be specific in the identity, attach ATCO-Radar, ATCO-Tower, Call-sign
if the identity is not clear distinguish speakers using UNK-1, UNK-2, UNK-3

 Transcription TAG  Example

UNK-1, UNK-2 etc. Unknown identity (callsign) of segment

XT Whole segment is Crosstalk (blocking)

[PERS] Jon Doe [/PERS] Personal data

[unk] Word(s) is not legible/understandable

[hes] Clear hesitation (umm, uhh, hmmm)

[noise] Non-speaker noise (alarm etc)

[spk] Speaker noise (laugh, cough etc)

[key] Double-press PTT

[XT] Small part of the segment is crosstalk

[NE] [unk] [/NE] Non-English language not identified

[NE langID] [/NE] Non-English but language identified e.g. [NE German][/NE]

 Speaker TAG  Example

ATCO, ATCO radar, ATCO tower ATCO side of the conversation

UNK-1, UNK-2 etc. Unknown identity (call-sign) of segment

LH469 Correct call-sign should also appear in the audio

Crosstalk Whole segment is Crosstalk

long passages of cross talks set as segment and tag Crosstalk

Do not waste your time on really bad files or segments. Refuse the job or ignore the segment.

Indicate segments which are correctly transcribed by checking the Correct transcript.

Indicate segments which are not in English checking the Non-English button.

Segment is in English if commands values and numerals are in English. Ignore greetings (but indicate
them by using [NE] [/NE] tag)

When the file is finished mark the job as DONE

 correct  incorrect

takeoff take off, take-off

callsign call sign, call-sign

stand by standby (to not be mixed up with “taxi to your stand bye/by”)

startup start up

readback read back

flight level flightlevel

good bye goodbye

line up lineup

descend descent (= still correct but not preferred), decent

taxiway taxi way

Abbrev.

acas
AFIS
AIP
AMSL
ATC
atis
ATS
ATZ
fato
FIS
POB
PTT
QDM
QDR
QFE
QNH
QTE
RNP
RTF
RVR
SSR
VDF
VHF
VFR
volmet

Use provided information (IFR/VFR manuals, list of waypoints and callsigns, etc).

Annotation manual cheat sheet: v6 10.02.2022

https://atc.spokendata.com

Labeling

Assign words into classes: Call-sign, Command, Value, Unnamed Phrase, Anonymize and optionally non-English.

If you do not understand -> write <UNK>, if you are not sure -> do not label.
We prefer QUALITY not quantity

Indicate segments which are correctly labeled by checking the Correct labeling.

Call-sign consists of: airline identifier / name and alfa-numeric code, or only the alfa-numeric code.
Command Value tuple(s) usually follows the Call-sign

You can indicate personal data using Anonymize label

Prepositions and variations are part of the command: continue to, expect a turn after, contact now, descend for

Call-signs

Stobart One Nine Lima
Ryanair Four Tango Mike
Iceair Four Four Six
Shamrock Twenty Two Zulu
Lufthansa Six Lima
Speedbird Triple One
Delta Bravo Delta Zulu
Heli Alfa One
Tiger Three Zero 

Commands and Values

descend flight level one five
climb to flight level one two zero
maintain flight level one five
continue heading value
left/right heading value
continue present heading value
maintain heading value
heading two one six
turn right
set altitude three thousand feet
direct Paris
vector for ILS six five
cross runway two eight seven
line up runway two eight
vacate zero five right
cleared to cross runway two eight seven
speed two five zero knots
reduce speed two five zero knots
contact apron one two one seven five
contact Zurich Approach
call Swiss two six eight zero
request startup and clearance
report established
expect vectors for ILS approach runway four

You can indicate non-English part of transcript using non-English label

Unnamed Phrase use when it does not fit Call-sign, Command, Value category, but it is obvious it carries an information.

Unnamed Phrase

Informations: wind speed, dew point, surface wind, QNH, visibility
Places that are not part of a value: Paris, London
Greetings: hello, goodbye, good morning
ATC IDs: Tower, London Arrival, Munich Approach, Swiss Radar

Figure A4. Cheat sheet for ATC communications annotation. This document was created during
the transcription process of ATCO2 corpora, which can be used to transcribe air traffic control
communications data from different airports.
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