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Abstract

The proliferation of automated face recognition (FR) ne-
cessitates increasingly accurate person identification. The
COVID-19 pandemic has exposed the limitations of FR
systems when presented with faces occluded by hygienic
masks. However, the security risks of personalised hygienic
mask attacks, whereby an attacker wears the mask on which
the bottom part of an enrolled user’s face is printed, have
not yet been studied. To address this research gap, we
introduce a novel face dataset consisting of smartphone-
recorded videos of real (bona-fide) faces and personalised
hygienic mask attacks. We also analyse the vulnerability of
two state-of-the-art FR systems to this type of attack, using
our dataset. Our results indicate that personalised hygienic
mask attacks have the potential to compromise system se-
curity, particularly for FR systems that are tuned towards
optimising user convenience. These findings underscore the
importance of developing suitable Presentation Attack De-
tection (PAD) algorithms. Our dataset will help researchers
and practitioners work towards this goal, thereby enhanc-
ing the security and reliability of FR systems.

1. Introduction

Although automated face recognition (FR) technologies
have been investigated since the 1960s, the past decade
has seen unprecedented gains in the recognition accuracy
thanks to the adoption of deep neural networks. For this rea-
son, FR has gained significant attention as a reliable means
of human identity management, with applications ranging
from verification in personal devices (e.g., smartphones) to
large-scale identification (e.g., surveillance). Despite con-
siderable progress in improving the accuracy of these tech-
nologies, FR systems continue to struggle against many dif-
ficult challenges, such as the ability to recognize occluded
faces. A recent example is the difficulty of recognising
faces covered by hygienic masks, studied in [1, 2]. How-
ever, the effect of personalised hygienic masks on FR sys-
tems has thus far been overlooked.

While the primary purpose of hygienic masks is to pro-
tect individuals from viruses such as COVID-19, they have
also become a fashion statement and a means of personal
expression. As such, personalised masks have gained popu-
larity in recent years, where people customise their hygienic
masks with various designs, patterns, and images. Some in-
dividuals have even taken mask personalisation a step fur-
ther, by printing the bottom half of their face onto their mask
[3]. This trend has gained attention in the media and has
raised concerns about its potential impact on FR technolo-
gies, particularly in security-sensitive areas such as airports,
banks, and other high-security facilities [4, 5].

This paper studies the vulnerability of FR systems to per-
sonalised hygienic mask attacks. This type of attack in-
volves printing the bottom part of an enrolled user’s face
onto a hygienic mask, then placing the mask onto an at-
tacker’s face to try to fool the FR system into accepting the
attacker as the genuine user they are attempting to imper-
sonate. Our two main contributions are the following:

1. A new public dataset 1 of face videos, including bona-
fide (i.e., normal, non-attack) videos, videos of per-
sonalised hygienic mask attacks, and videos of printed
photograph and phone replay attacks for comparison
(e.g., see Figure 1). All face videos were captured us-
ing the ‘selfie’ cameras of five different smartphones.

1https://www.idiap.ch/en/dataset/phymatt
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Figure 1. Video frames of bona-fide recordings for the same data
subject, captured during two data acquisition sessions, and the
three types of attacks present in our new dataset (captured using
iPhone 12’s ‘selfie’ camera).

https://www.idiap.ch/en/dataset/phymatt


2. An evaluation of how easy it is to fool FR systems into
accepting an attacker as the genuine user they are at-
tempting to impersonate via a personalised hygienic
mask attack. We present an assessment of the vulnera-
bility of two state-of-the-art FR systems to this type of
attack, and we compare this to the systems’ vulnera-
bility against printed photograph and phone replay at-
tacks. The code for this analysis is publicly available 2

to enable other researchers to reproduce our results.

As far as we are aware, neither a study nor a pub-
lic dataset of personalised hygienic mask attacks exists in
the literature. Our aforementioned contributions aim to fill
these gaps. This work will provide insights into the dangers
of personalised hygienic mask attacks, in terms of their abil-
ity to fool FR systems and thereby jeopardise their security.

The remainder of this paper is structured as follows. Sec-
tion 2 considers related work from the literature, Section 3
describes our new (public) face dataset, Section 4 analy-
ses the vulnerability of two state-of-the-art FR systems to
personalised hygienic mask attacks, and Section 5 presents
concluding remarks and plans for future work.

2. Related work
This section considers face presentation attack (PA)

datasets and literature on FR system vulnerability analysis.

Face PA datasets: As the face PAD domain has gained
increasingly more attention over the past 10 years, several
datasets have been acquired and shared in the scientific lit-
erature. Our analysis of the literature allowed us to identify
at least 23 relevant datasets, grouped by PA in Figure 2.

To the best of our knowledge, hygienic masks are only
present in CRMA [8] (not publicly available), where the
bona-fide data subjects were recorded both with and with-
out masks; however, the hygienic masks themselves were
not considered as a PA. Instead, this dataset contains print
and replay attacks, which were generated for the data sub-
jects with and without hygienic masks. This allowed the au-
thors to examine the performance of several advanced PAD
algorithms on print and replay attacks of masked faces un-
der various experimental conditions, as well as to conduct
a vulnerability analysis of FR systems to such attacks. Par-
tial face attacks (top of the face printed on paper and placed
over the attacker’s face) were presented in Rose-Youtu [22],
but no specific studies on the effect of this occlusion have
been reported. Other face occlusions, such as partial eyes,
partial faces and paper crafts were presented in SiW-M-v2
[25], WMCA [26] and HQ-WMCA [28].

Most partial face attacks (printed half-faces, printed
eyes, etc.), as well as the other attacks in the existing face

2https : / / gitlab . idiap . ch / bob / bob . paper .
ijcb2023_vuln_analysis_hyg_mask_attack
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Figure 2. List of PA datasets, grouped by PA type.

datasets (e.g., print, replay, 3D masks) are unlikely to pose
a real security threat in public places such as airports, since
the attack would usually be evident to human observers. On
the other hand, personalised hygienic mask attacks are more
subtle and thus have the potential to go unnoticed, particu-
larly if hygienic masks are allowed to be worn when pass-
ing through the FR system. For this reason, the focus of this
work is on evaluating the vulnerability of state-of-the-art FR
systems to personalised hygienic mask attacks, where the
“personalisation” aspect involves printing the bottom part
of a different person’s face onto the mask. We additionally
contribute a publicly available dataset of both bona-fide and
personalised hygienic mask attack face videos from 70 data
subjects, covering a wide range of ages and ethnic back-
grounds, with an almost equal male/female split.

Vulnerability analysis: Although PAD algorithms have
been tested on partially occluded faces in much of the afore-
mentioned research, vulnerability analysis for state-of-the-
art FR systems has been performed only in [8]. In fact,
the effect of hygienic masks on FR systems has been an
open research problem since the beginning of the COVID-
19 pandemic. Although [29] found that FR systems experi-
ence a drop in performance when the subjects wear hygienic
masks, [8] showed that FR systems are significantly less

https://gitlab.idiap.ch/bob/bob.paper.ijcb2023_vuln_analysis_hyg_mask_attack
https://gitlab.idiap.ch/bob/bob.paper.ijcb2023_vuln_analysis_hyg_mask_attack


vulnerable to print and replay PAs when the subject wears a
mask compared to when full-face attacks are launched.

However, the vulnerability of FR systems to person-
alised hygienic mask PAs, where the bottom part of an en-
rolled user’s face is printed on the mask, has not yet been
investigated. This is the aim of our paper, which will assess
the vulnerability of two state-of-the-art FR systems, IRes-
Net100 and IResnet50 [30], to personalised hygienic mask
attacks. The results are presented in Section 4.4.

3. New Dataset
We believe that personalised hygienic mask attacks have

the potential to pose a significant challenge to FR technolo-
gies, in terms of providing a relatively easy avenue for im-
personation attacks. So, studying the vulnerability of FR
systems to this type of attack is important, but there does
not exist a public dataset of such attacks to perform this type
of analysis. So, we collected a new face dataset, including
personalised hygienic mask attacks, which will be released
to the public to encourage further research in this domain.

Our new dataset consists of face videos of both bona-
fide (non-attack) captures, as well as personalised hygienic
mask attacks. Specifically, the dataset contains 1400 bona-
fide videos with variations in pose and background, along
with 345 videos of personalised hygienic mask attacks. For
comparison, we also generated 1400 videos of printed pho-
tograph attacks, and 2800 videos of phone replay attacks.

The face data was obtained from 70 volunteers, each of
whom participated in two data capture sessions. The data
was acquired using the front (i.e., selfie) cameras of five
smartphones: Apple iPhone 12, Apple iPhone 6s, Xiaomi
Redmi 6 Pro, Xiaomi Redmi 9A and Samsung Galaxy S9.
Each recorded video was 10 seconds long, where for the
first 5 seconds the data subject was required to stay still and
look at the camera, then for the last 5 seconds the subject
was asked to turn their head from one side to the other (such
that profile views could be captured). The videos were ac-
quired indoors, under normal office lighting conditions.

Sections 3.1, 3.2, and 3.3 present more details on the
capture of the bona-fide face videos, personalised hygienic
mask attacks, and print and replay attacks, respectively.

3.1. Bona-fide face captures

Each of our 70 data subjects was asked to participate
only in the bona-fide face captures. The volunteers were
required to be present during two recording sessions, which
on average were separated by about three weeks. The idea
was to incorporate some natural (uncontrolled) variability in
the acquired face videos. Figure 1 shows an example of two
bona-fide video frames captured from the same data subject
during the two different recording sessions – some evident
natural variabilities include different hairstyles and image

backgrounds (due to the use of different recording rooms,
or the same room but different locations within that room).

In each recording session, the volunteers were asked to
record a video of their own face using the front (i.e., selfie)
camera of each of the five smartphones mentioned earlier.
The face data was additionally captured while the data sub-
jects wore plain (not personalised) hygienic masks, to sim-
ulate the scenario where face recognition might need to be
performed on a masked face (e.g., during a pandemic like
COVID-19). Figure 3 shows examples of video frames
from the same subject, both without and with a plain hy-
gienic mask, acquired using the five different smartphones.
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Figure 3. Bona-fide video frames from the same data subject, cap-
tured using different smartphones. The top row shows the normal
face capture and the bottom row shows the face capture when the
subject is wearing a plain (non-personalised) hygienic mask.

In selecting the volunteers for our data collection, we
tried our best to have a balanced gender distribution, a wide
age range, and a uniform distribution of skin colours. Figure
4 shows the distribution of genders, ages, and skin colours
across our 70 data subjects. The skin colours were based on
the Fitzpatrick scale (see Figure 4c), and each data subject
was consulted on their opinion of their own skin colour.

From Figure 4, it is evident that our dataset consists of
an almost perfectly balanced gender split, which is a notable
achievement. Concerning the age distribution, we did man-
age to gather volunteers spanning a wide age range (from
about 20-80 years old); however, most subjects were in the
20-30 age range. We also succeeded in collecting volun-
teers across the whole Fitzpatrick-scale skin colour spec-
trum; however, the majority of our data subjects were Types
II and III, while skin colours on either end of the spectrum
(particularly dark) were difficult to acquire.

3.2. Personalised hygienic mask attacks

For each of the 70 data subjects, a personalised hy-
gienic mask was created from one of their best quality video
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Figure 4. Distribution of volunteer demographics.

frames. The selected frames (face images) were sent to the
Cadeaux Folies 3 company in Switzerland, which generated
the corresponding personalised hygienic masks.

To simulate attacks, the personalised hygienic mask for
each of 69 data subjects was placed in turn onto the face
of a human attacker (who was actually the 70th data sub-
ject). Figure 5 shows examples of two subjects (a man and
a woman) being impersonated by the same attacker, using
each of the five smartphones in turn to capture the attack.

At this stage, only one human attacker was used, so the
gender, age, and skin colour of the attacker did not neces-
sarily match those of the person being attacked; however, in
a real-life attack, it is normal to expect a mismatch between
the demographics of the attacker and the person being im-
personated. Nevertheless, in the future we plan to extend
this investigation to involve multiple human attackers with
different demographic attributes. Furthermore, most of the
hygienic masks exhibit a somewhat orange hue (e.g., see
Figure 5), which does not correspond perfectly to the skin
colour of the underlying person. So, another idea for an ex-
tension to this investigation is to generate the personalised
hygienic masks using multiple suppliers (besides Cadeaux
Folies), in case the quality of the printed masks differs.

3https://www.cadeauxfolies.ch/
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Figure 5. Personalised hygienic mask attacks carried out by the
same attacker for two different genuine users: a man (top row)
and a woman (bottom row). The attacks were captured using five
different smartphones.

Having made these observations and suggestions for fu-
ture work, we must emphasize that our current dataset of
personalised hygienic mask attacks is nevertheless novel
and provides fertile ground for investigating the vulnerabil-
ity of FR systems to this type of attack. Our vulnerability
investigation is presented in Section 4.

3.3. Print and replay attacks

Our dataset also includes printed photograph and phone
replay attacks. The print attacks involved printing the tar-
get’s face on a matte A4 paper, then showing this paper
to each of the five smartphones in turn to record videos
of the attack. For the replay attack, different phones were
paired such that one of the pair was used to replay the bona-
fide videos while the second (attacked) phone recorded the
videos using its front camera. Figure 1 shows examples of
a print and replay attack for the same data subject.

4. Vulnerability Analysis
This section analyses the vulnerability of two state-of-

the-art FR systems to a personalised hygienic mask attack
(based on our new dataset, described in Section 3). Section
4.1 presents our chosen FR systems, Sections 4.2 and 4.3
outline the bona-fide and PA evaluation protocols, and Sec-
tion 4.4 discusses the results of our vulnerability analysis.

4.1. Face recognition systems

Modern FR systems rely on trained neural networks,
CNNs or Vision Transformers, to extract representations of
face images. These networks are trained to generate dis-
criminative face features with respect to identity. The re-
sulting feature vectors are in turn used as templates for the
input face images. Then, to determine whether or not two

https://www.cadeauxfolies.ch/


face images match (i.e., originate from the same person),
the corresponding face templates are compared using dis-
tance or similarity measures.

The vulnerability analysis carried out in the work pre-
sented in this paper, uses an off-the-shelf neural network
trained with an additive angular margin-based loss function,
namely ArcFace [31]. Two backbones 4, IResNet100 and
IResNet50, derived from a modified ResNet [30] architec-
ture, have been selected. Both networks were trained on the
MS1MV2 dataset, a semi-automatically refined version of
the MS-Celeb-1M dataset [32]. Models trained with an ad-
ditive angular-margin framework generate highly discrim-
inative feature vectors for face recognition, thus reaching
state-of-the-art performance on various datasets. For ex-
ample, IResNet100 achieves 99.83% verification accuracy
on the Labeled Faces in the Wild (LFW) [33] dataset and
98.02% on the YouTube Faces (YTF) [34] dataset. Con-
sequently, IResNet100 seems to be a good candidate for
analysing the vulnerability of state-of-the-art FR systems
to PAs, such as personalised hygienic mask attacks (the fo-
cus of this paper). The trained IResNet100 model attained
a verification accuracy of 98.5% on our new face dataset.
We include the more lightweight architecture, IResNet50,
in our investigation as well. On the same dataset, the IRes-
Net50 model achieved a verification accuracy of 97.6%.

4.2. Bona-fide evaluation protocols

This section describes the two protocols used to evaluate
the accuracy of the FR systems outlined in Section 4.1. For
both protocols, face images (video frames) from the first
recording session were used as references, and images from
the second session were used as probes. The images were
20 equally-spaced frames extracted from the corresponding
face videos. Thus, the following two protocols were used:

Protocol 1 (p1): Both references and probes were images
of full faces, without hygienic masks.

Protocol 2 (p2): The probes were images of faces covered
by plain (not personalised) hygienic masks. The references
were full face images, as in p1.

The similarities between reference and probe images
were calculated in terms of cosine distance 5. Based on the
zero-effort impostor (probe ID does not match reference ID)
and genuine (probe ID matches reference ID) scores, the ac-
cept/reject decision threshold was set. Using this threshold,
the Impostor Attack Presentation Match Rate (IAPMR) was
calculated to evaluate the vulnerability of the face recogni-
tion systems to personalised hygienic mask attacks. The

4https://github.com/deepinsight/insightface
5The distances were multiplied by -1 to turn them into similarity scores.

evaluation protocol for these attacks (as well as print and
replay attacks) is explained in Section 4.3.

4.3. Presentation attack evaluation protocols

For each attack video, we extracted 20 equally-spaced
frames, all of which were used for the PA evaluations. For
both Genuine and Zero-Effort Impostor (ZEI) references
and probes, we used bona-fide images (frames) of full faces,
and for PAs we used the videos from all five smartphones.
The whole process is illustrated in Figure 6.

(b) Reference(a) Genuine (c) ZEI

(d) Print attack
(e) Replay attack

(f) Personalised
hygienic mask

attack
Figure 6. A reference is enrolled using the full bona-fide face (b).
This reference is then compared to genuine (a) and ZEI (c) probes.
It is also compared to three PAs: print attack (d), replay attack (e)
and personalised hygienic mask attack (f).

4.4. Results and discussion

Table 1 shows the performance of our two FR systems,
IResNet100 and IResNet50, on our new face dataset, when
the accept/reject decision threshold is set at FMR = 0.1%
on the FRGC dataset 6. A different dataset was used to set
the threshold to simulate the scenario where the FR systems
are tuned prior to deployment (in this case, the deployment
scenario is represented by our new dataset). The recogni-
tion accuracy is reported in terms of the False Match Rate
(FMR) and False Non-Match Rate (FNMR), which were
computed using the bona-fide protocols p1 and p2 (see Sec-
tion 4.2). The same threshold was used for p1 and p2, be-
cause the FRGC dataset does not contain images of faces
covered by hygienic masks, so we could not tune the thresh-
old separately for p2.

6https://www.nist.gov/programs-projects/face-
recognition-grand-challenge-frgc

https://github.com/deepinsight/insightface
https://www.nist.gov/programs-projects/face-recognition-grand-challenge-frgc
https://www.nist.gov/programs-projects/face-recognition-grand-challenge-frgc


IResNet100 IResNet50
p1 p2 p1 p2

FMR 0.0% 0.0% 0.0% 0.0%
FNMR 2.4% 27.0% 5.4% 47.1%
IAPMR 1.4% 1.3%

Table 1. False Match Rate (FMR), False Non-Match Rate
(FNMR), and Impostor Attack Presentation Match Rate (IAPMR)
for the IResNet100 and IResNet50 FR systems, evaluated on our
new dataset using a decision threshold set at FMR = 0.1% on the
FRGC dataset. The FMR and FNMR were evaluated using the
bona-fide evaluation protocols p1 and p2, while IAPMR was eval-
uated using the PA protocol described in Section 4.3.

Table 1 also shows the Impostor Attack Presentation
Match Rate (IAPMR) for each FR system. The IAPMR
quantifies the vulnerability of the system to a personalised
hygienic mask attack, in terms of the percentage of these
attacks that are falsely “accepted” as genuine users of the
FR system. So, the higher the IAPMR, the more vulnerable
the system is to the attack. Ideally, the IAPMR should be 0,
which would indicate that the FR system never mistakes the
attacker for the enrolled user whom they are impersonating.
Note that the IAPMR for each FR system in Table 1 was
based on the same decision threshold used to compute the
FMR and FNMR. We report a single IAPMR value per FR
system, since the same threshold was used for p1 and p2,
and the attacks are independent of these protocols.

The main observation from Table 1 is that the IAPMR
for both IResNet100 and IResNet50 is quite low, which sug-
gests that neither FR system is particularly vulnerable to a
personalised hygienic mask attack. However, these results
are based on a single (system-specific) decision threshold,
which was tuned on a different dataset (FRGC) to that used
for the evaluation (our new face dataset). While this thresh-
old seems excellent for maintaining a low (zero) FMR for
both FR systems, the FNMR may be considered unaccept-
ably high, particularly the FNMRs of 27.0% and 47.1%
obtained under protocol p2. These results suggest that, if
users of the IResNet100 and IResNet50 FR systems were
to be enrolled using full face images, but then the subjects
wore hygienic masks during the recognition stage, about
one-third of the users would be rejected as impostors in the
IResNet100 system and close to half would be rejected in
the IResNet50 system. These high FNMRs for the p2 eval-
uation protocol may be attributed to the fact that FRGC, on
which the accept/reject decision threshold was set, does not
contain images of faces covered by hygienic masks. So, this
threshold is not appropriate for the scenario where masked
faces are presented to the FR systems during the recognition
stage. This finding prompted us to experiment with setting
the decision threshold on our own dataset, which includes
both full-face images and faces covered by hygienic masks,
instead of on the FRGC dataset.

Table 2 shows the IAPMR of our two FR systems when

Presentation attack (PA) IResNet100 IResNet50
p1 p2 p1 p2

Printed photograph 99.9% 99.1% 99.8% 98.8%
Phone replay 95.5% 95.7% 93.3% 93.6%
Personalised hygienic mask 1.9% 3.3% 1.8% 2.9%

Table 2. Impostor Attack Presentation Match Rate (IAPMR) for
different PAs on the IResNet100 and IResNet50 FR systems. The
decision threshold used to calculate IAPMR was set at FMR =
0.1% (separately for each system and each evaluation protocol).

the decision threshold was set on our own face dataset. As
for the evaluation in Table 1, the threshold was once again
set at FMR = 0.1% (which is typical when evaluating FR
systems in the literature). This time, however, the thresh-
old was not only system-specific, as in Table 1, but also
protocol-specific. In other words, the threshold used to
compute the IAPMR was set separately for evaluation pro-
tocols p1 and p2. This is because our results in Table 1 indi-
cate that the recognition accuracy of the FR systems suffers
if a single threshold is used for both the scenario where face
recognition is based on full face images (p1) and the sce-
nario where the faces are occluded by a hygienic mask (p2).
Note that, although these decision thresholds are required
for the IAPMR calculation, the PAs themselves are inde-
pendent of the p1 and p2 protocols (i.e., the attacks remain
the same). Table 2 compares the IAPMR of the IResNet100
and IResNet50 FR systems for personalised hygienic mask
attacks (described in Section 3.2), to the IAPMR for the
more common printed photograph and phone replay attacks
(described in Section 3.3).

From Table 2, it is clear that, for both IResNet100 and
IResNet50, the IAPMR of the personalised hygienic mask
attack is much lower than the IAPMR corresponding to
printed photograph and phone replay attacks. This suggests
that the two FR systems are much less vulnerable to person-
alised hygienic mask attacks than to print or replay attacks.
However, a personalised hygienic mask attack may be eas-
ier to carry out in a subtler way than printed photograph or
replay attacks, since wearing a hygienic mask in public is
perfectly acceptable. So, this type of attack should still be
defended against in practice.

Thus far, our evaluation of the vulnerability of FR sys-
tems to personalised hygienic mask attacks has been based
on decision thresholds set at FMR = 0.1%. In this scenario,
which favours system security over user convenience, we
found that both the IResNet100 and IResNet50 FR systems
are unlikely to be fooled by this type of attack (based on the
low IAPMR values in Tables 1 and 2). However, we were
interested in finding out whether the vulnerability of our FR
systems to personalised hygienic mask attacks would in-
crease if the systems were set to operate at different decision
thresholds. Table 3 shows the IAPMR evaluated at three dif-
ferent thresholds (once again set on our own face dataset),
to provide insight into the vulnerability of our IResNet100



and IResNet50 FR systems to personalised hygienic mask
attacks when the FR systems are tuned to operate in higher-
system-security versus higher-user-convenience scenarios.

There are several important observations from Table 3.
Firstly, it is clear that the vulnerability of both FR systems
to personalised hygienic mask attacks increases when the
decision threshold is set to favour user convenience over
system security. For example, under evaluation protocol p1,
when the threshold is set at FMR = 0.1% (higher security)
the IAPMR for both IResNet100 and IResNet50 is less than
2%. On the other hand, when the threshold is set at FNMR
= 1% (higher convenience), the IAPMR jumps to 44.2%
for IResNet100 and 66.8% for IResNet50. These findings
indicate that personalised hygienic mask attacks may pose
a serious threat to FR systems that are tuned towards op-
timising user convenience. As for systems that are tuned
to value security and convenience equally, for example by
setting the threshold at the Equal Error Rate (EER), our re-
sults show an IAPMR of 12.9% for IResNet100 and 17.4%
for IResNet50. These figures suggest that, in this type of
general face recognition scenario, where there is an equal
trade-off between security and convenience, personalised
hygienic mask attacks present a non-negligible threat to the
FR systems. For example, an IAPMR of 12.9% (17.4%) im-
plies that about 13 (17) out of every 100 attacks would be
falsely accepted as a real authentication attempt by a gen-
uine user of the FR system.

Another important observation from Table 3 is that, for
all three threshold settings, both IResNet100 and IResNet50
are significantly more vulnerable to personalised hygienic
mask attacks under evaluation protocol p2 than p1 7. This
is especially the case when the thresholds are set to favour
user convenience (e.g., at FNMR = 1%) or to strike an equal
compromise between system security and user convenience
(at EER). For example, when the threshold is set at EER us-
ing evaluation protocol p2, for both FR systems the IAPMR
is close to 50%, suggesting that half of all personalised hy-
gienic mask attacks would succeed in fooling the FR sys-
tems. When the threshold is set at FNMR = 1%, the vulner-
ability jumps to over 90%. Since the attacks in p1 and p2 are
the same, this difference in the IAPMRs between the two
protocols can be attributed mainly to the worse recognition
accuracy of the two FR systems under p2, which is when
the probe faces are occluded by a (plain) hygienic mask.

For example, Figure 7 illustrates the IAPMRs for IRes-
Net100 at the three different decision thresholds, for evalua-
tion protocols p1 and p2. The thresholds and corresponding
IAPMR values are plotted along with the score distributions
of the bona-fide “genuine” and “zero-effort impostor (ZEI)”

7Recall that p2 represents the scenario where users enroll into the FR
system using full face images, but then they attempt to be recognised when
wearing a plain (non-personalised) hygienic mask. In contrast, for p1, both
enrollment and recognition are performed using full face images.

Figure 7. Similarity score distributions and IAPMR values for the
IResNet100 FR system, for evaluation protocols p1 and p2. The
further the “presentation attack” distribution is from the “genuine”
distribution, the lower the IAPMR and the less vulnerable the FR
system is to a personalised hygienic mask attack.

face presentations, as well as the “presentation attack” score
distribution corresponding to personalised hygienic mask
attacks. Note that, for an IAPMR of 0, we would expect to
see full separation between the “genuine” and “presentation
attack” score distributions. A visual comparison of the p1
and p2 distributions in Figure 7 shows that there is a much
greater separation between the “ZEI” and “genuine” distri-
butions in p1 than in p2. In fact, the “genuine” distribution
for p2 is much more spread out than for p1. Consequently,
the “presentation attack” distribution overlaps much more
with the “genuine” distribution in p2 than in p1, resulting
in a higher IAPMR. This is because a higher IAPMR indi-
cates a greater likelihood of mistaking a PA for a genuine
face, which increases as the threshold moves from FMR =
0.1% to FNMR = 1%.

A final observation from Table 3 is that, in general, the
IResNet50 FR system seems slightly more vulnerable than
IResNet100 to personalised hygienic mask attacks. To fully
understand the reason for this, as part of our future work we
intend to perform an in-depth investigation into the vulner-



IResNet100 IResNet50
@ FMR = 0.1% @ FNMR = 1% @ EER @ FMR = 0.1% @ FNMR = 1% @ EER

p1 1.9% 44.2% 12.9% 1.8% 66.8% 17.4%
p2 3.3% 93.5% 46.1% 2.9% 97.5% 50.3%

Table 3. IAPMR for personalised hygienic mask attacks on the IResNet100 and IResNet50 FR systems. Results are reported for the p1 and
p2 evaluation protocols, for which the attacks are the same, but where the bona-fide probes are full face images in p1 and faces occluded by
a plain hygienic mask in p2. The following accept/reject decision thresholds were used to calculate IAPMR: @ FMR = 0.1% (representing
higher system security), @ FNMR = 1% (representing higher user convenience), and @ EER (representing equal security/convenience).

abilities of several different types of FR systems.
Overall, our vulnerability analysis shows that state-of-

the-art FR systems, such as IResNet100 and IResNet50,
are vulnerable to personalised hygienic mask attacks to
some extent, depending on the threshold that is used for ac-
cept/reject decisions in the underlying FR system. The more
this threshold is tuned towards improving user convenience
(i.e., reducing the FNMR), the more vulnerable the FR sys-
tem becomes. This is particularly the case for FR systems
that are set up to perform face recognition on faces occluded
by (standard, non-personalised) hygienic masks. Our re-
sults show that, in this scenario, close to 50% of the attacks
would be accepted as genuine authentication attempts when
the decision threshold is set at the EER, and over 90% of
the attacks would fool the system when the threshold is set
at an FNMR of 1%. So, our findings indicate that it is im-
portant to consider ways of mitigating this type of attack in
practice, especially considering the ease with which such
attacks can be launched by practically anyone.

5. Conclusion

This paper made two important contributions towards
improving the security of FR systems. Firstly, we presented
a new, publicly available dataset of face videos captured us-
ing the ‘selfie’ cameras of five smartphones. The videos
were acquired from 70 data subjects, spanning a wide range
of ages and skin colours, with an almost equal male/female
split. Both full and partially masked (via a plain hygienic
mask) faces were captured. The dataset additionally con-
tains videos of three presentation attacks: printed photo-
graph, phone replay, and personalised hygienic mask. To
the best of our knowledge, ours is the first public dataset
to include personalised hygienic mask attacks. This attack
involves printing the bottom part of a genuine (enrolled)
user’s face image onto a hygienic mask, then placing the
mask on an attacker’s face. Therefore, our new dataset will
enable researchers to study the vulnerability of FR systems
to these types of attacks and to test the efficacy of their Pre-
sentation Attack Detection (PAD) algorithms, as well as to
evaluate the accuracy of FR systems in general.

Our second main contribution was an analysis of the vul-
nerability of two state-of-the-art FR systems, IResNet100
and IResNet50, to personalised hygienic mask attacks. We

found that, although these systems are significantly more
likely to be fooled by a printed photo or phone replay at-
tack, they are still vulnerable to personalised hygienic mask
attacks to some extent, depending on the decision threshold
of the underlying FR system. In particular, as the threshold
is tuned more towards optimising user convenience (i.e., de-
creasing FNMR), the system becomes more vulnerable to
the attack. For a threshold set at the EER, to balance user
convenience and system security, our experiments showed
an IAPMR of 12.9% (17.4%) for IResNet100 (IResNet50).
The IAPMR was found to increase significantly, to approx-
imately 50%, when the FR systems were tuned to perform
recognition on faces partially occluded by plain (standard)
hygienic masks. Therefore, our findings indicate that per-
sonalised hygienic mask attacks may present a threat to FR
systems in practice, particularly considering the ease with
which such attacks can be launched by the average person.

Our plans for future work include extending our dataset
and vulnerability investigation to include a larger number of
attackers, different manufacturers for the personalised hy-
gienic masks, a wider range of lighting conditions for the
face data acquisition, and several different types of FR sys-
tems. We also intend to explore suitable PAD algorithms
for thwarting this type of attack.
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