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Abstract

Demographic bias in deep learning-based face recog-
nition systems has led to serious concerns. Several ex-
isting works attempt to mitigate bias by incorporating
demographic-specific processing during inference, which
requires knowledge or learning of demographic attribute
with an additional cost. We propose to regularize training of
the face recognition CNN, for demographic fairness, by im-
posing constraints on the distributions of matching scores.
Our regularization term enforces the score distributions
from different demographic groups to respect a pre-defined
probability distribution, as well as it penalizes misalign-
ment of distributions across demographic groups. The pro-
posed method improves fairness of face recognition models
without compromising the recognition accuracy, and does
not require extra resources during inference. Our experi-
ments indicate that in a cross-dataset testing, the regular-
ized CNN can reduce the variation in accuracies (i.e., more
fairness) of different demographic groups up to 25% while
slightly improving recognition accuracy over baselines.

1. Introduction

Demographic bias in face recognition (FR)– which im-
plies that certain demographic groups may experience un-
equal treatment or discrimination– has emereged as a seri-
ous issue in FR [12, 37, 42]. The disparity in recognition
performance often leads to negative consequences for indi-
viduals from underrepresented groups, such as misidentifi-
cation and limited access to important services or opportu-
nities. [3,5,7,23,43]. This biased behavior of FR systems, is
thus, not only a technical but also a social and societal con-
cern. A detailed survey conducted by NIST FRVT on var-
ious commercial FR algorithms revealed significant differ-
ences in performance across different demographic groups,
particularly concerning gender and race [18]. The prevalent
nature of biased FR systems has led researchers to boost
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Figure 1. Non-equitable performance of recognition accuracy
across different demographic groups in RFW dataset [46]. De-
mographic bias is apparent despite training the FR CNN on demo-
graphically balanced dataset. (The score distributions are illustra-
tive, and do not refer to real dataset).

the efforts towards assessment and mitigation of bias in FR
systems.

Several factors contribute to demographic bias in FR
systems, wherein the use of imbalanced training data is
one of the major factors [8, 16, 25]. Most publicly avail-
able training datasets have a skewed representation towards
certain demographic groups, such as white men, while
other groups (typically African and women) are underrep-
resented [14, 24]. Figure 1 shows a pictorial representation
of issues of demographic fairness in FR along with samples
of face images from different races/ ethnic groups from the
RFW dataset [46]. In addition to gender and race, the age of
the subject has also been shown to induce bias in FR [1,50].
Recently, several works [9, 28, 49] have demonstrated that
bias in FR might also arise from the data acquisition pro-
cess.

Several works consider use of demographically balanced
training data to mitigate bias in FR systems. However, re-
cent works have shown that the use of balanced training
data alone is not sufficient to mitigate bias completely [25].
For instance, an FR CNN with ResNet-50 architecture is
trained with BUPT-BalancedFace dataset [45], when evalu-
ated on RFW dataset exhibits non-equal recognition accu-



racies for each of the four demographics groups (numbers
provided in Figure 1). Some works have proposed post-
processing techniques that focus on normalizing the score
distributions across different demographic groups to ensure
fairness in FR outcomes [22,41]. The Z-norm and T-norm–
popular score normalization techniques in biometrics– have
also been considered to improve the performance of biomet-
ric systems by aligning score distributions [22, 32]. While
the idea of score normalization is simple and appealing in
the context of fairness, it requires knowledge of the demo-
graphic label of the data which either needs to be avail-
able a priori or has to be explicitly inferred from the in-
put / face feaures at inference time from an additional clas-
sifier, typically a CNN. The additional resource leads to a
complex system and adds computational cost and memory
requirements during deployment. Training of a separate de-
mographic classifier, too, requires significant computational
and memory resources.

We incorporate the concept of score normalization as a
regularization term and reformulate the objective function
for training a FR CNN. We constrain the output scores of
mated and non-mated pairs to follow a pre-defined distri-
bution irrespective of the demographic groups of probe or
gallery subjects. This regularization term aims to minimize
the differences in score distributions across different demo-
graphic groups, thus promoting fairness in recognition score
distributions as well as in (binarized) decisions. As our
overall objective function consists of both the classification
loss and the score regularization term, we simultaneously
optimize for both the recognition accuracy and the demo-
graphic fairness in the score distributions. The training of
the proposed method requires a negligible amount of extra
computational and memory resources compared to training
a separate demographic classifier. Since we do not modify
the architecture of the FR CNN (only weights adapted to
the new objective function), the overall inference pipeline
remains unchanged.

The contributions of our work can be summarized as fol-
lows:

• We propose a regularization-based approach to miti-
gate demographic bias in FR systems by incorporating
score normalization-based regularization term.

• Unlike many bias mitigation methods, our method
does not require a separate classifier or additional
computational resources, making it more efficient and
practical for deployment.

• With the intra- and inter-demographic regularization
terms, our work focuses on improving both aspects of
fairness (differential performance and differential out-
comes [20])– whereas many existing bias mitigation
works solely focus on the latter.

• We evaluated performance of the proposed regulariza-
tion method on three datasets and three backbone FR

CNNs for in- and cross-dataset setups. Our experimen-
tal results demonstrate improvement in demographic
fairness, without compromising recognition accuracy.

In Section 2, we present a brief review of recent works in
mitigation of demographic bias in FR. We discuss the pro-
posed regularization-based method in Section 3, followed
by experimental results in Section 4. Finally, Section 5 pro-
vides conclusions.

2. Related Work

We begin by explaining how the notions of fairness are
applied to general biometric systems. We then briefly re-
view recent methods specifically designed to mitigate bias
in FR systems.

2.1. Fairness in Biometrics

The concept of fairness in the biometric community is
derived from the machine learning literature, and it aims
to ensure equitable treatment of individuals across different
demographic groups for biometric systems using trait such
as face, fingerprint, or iris [37, 41]. Broadly speaking, the
demographic fairness encompasses three main notions: par-
ity, equalized odds, and sufficiency [10, 33].

The concept of parity refers to the requirement that deci-
sion of an FR system should be unaffected by demographic
attributes (such as gender or ethnicity) of the subject. Equal-
ized odds implies that regardless of demographic attributes,
rates of false negatives and false positives should be the
same for all demographic groups. The notion of sufficiency
indicates that the available data attributes should contain
enough information to ensure accurate and fair results in
FR without relying on demographic details.

2.2. Methods for Bias Mitigation in FR

The existing works on bias mitigation in FR can be
categorized into three main approaches: data-processing,
model-based, and post-processing.

Data processing methods aim to address bias in FR sys-
tems by modifying the training data. Kortylewski et al.
considered synthetic data for pretraining the FR CNN and
then fine-tuning it with real data to mitigate the bias (re-
lated to yaw/pose, not demographic) [26]. In [47], Wang et
al. proposed a large-margin feature augmentation technique
to balance class distributions within FR systems. In [51], a
feature transfer method was discussed to enhance the fea-
ture space of under-represented individuals to address the
disparity between their distribution and that of more com-
monly represented individuals in FR datasets.

To address bias in FR, Gong et al. proposed a training-
based approach that utilizes adversarial techniques to ex-
tract distinct feature representations [16]. A race balance
network, based on reinforcement learning, was proposed



in [45] which adjusts margins for demographics to promote
balanced performance across different races. This work also
introduced the BUPT-GlobalFace and BUPT-Balancedface
datasets to facilitate further research in this area. In [17],
a group-adaptive training methodology is presented that in-
corporates adaptive convolution kernels and attention mech-
anisms into FR CNN backbones. Li et al. regarded debias-
ing as a signal-denoising problem and developed a progres-
sive cross-transformer architecture designed specifically for
fair FR by removing identity-unrelated components induced
by race from identity-related ones [29]. In [48], Wang et al.
developed a sampling strategy to address bias during train-
ing with a primary focus on gender. Gong et al. introduced
an adversarial network for debiasing that includes one iden-
tity classifier and three demographic classifiers (gender,
age, race) to achieve unbiased FR [15]. A two-stage method
for adversarial mitigation of bias through disentangled rep-
resentations and additive adversarial learning was proposed
in [30]. Huang et al. proposed a cluster-based large-margin
local embedding approach to reduce the effect of local data
imbalance and thus, also at reducing bias coming from un-
balanced training data [21]. Recent works in [35, 52] have
considered contrastive loss-based training with an objective
of improving the intra-class similarity and reducing the sim-
ilarity between negative samples. In this context, samples
with same sensitive attributes, but different target classes
are considered as negative.

For mitigation of age-related bias in FR at score-level,
Srinivas et al. used ensemble approaches for merging the
scores of multiple models [40]. Terhöst et al. proposed the
Fair Template Comparison (FTC) method which replaces
the computation of the cosine similarity score by a shallow
network trained using cross-entropy loss [44]. Some works
in [38, 41] used score calibration or normalization to miti-
gate bias in FR.

3. Bias Mitigation via Regularization
In this section, we describe the proposed bias mitigation

method for FR systems based on deep CNNs. Obtaining
large-scale dataset with perfectly balanced demographic at-
tributes is challenging, time-consuming, and noisy due to
requirement of manual efforts. Additionally, having equally
balanced demographics does not necessarily lead to unbi-
ased FR models [25]. Therefore, it is necessary to regu-
larize the training using some explicit criteria for fairness.
First, we briefly describe procedure for training a typical FR
CNN. Then we introduce our hypothesis for inducing fair-
ness constraint, and develop the regularized loss function.

3.1. Training Regular FR CNN

Consider an FR CNN, f(., θ) where θ represent the
learnable parameters of the model. We denote xi ∈ R3hw,
yi ∈ N0, and di ∈ D (such that D ⊂ N0) as the triplet from

training data representing an RGB face image, identity la-
bel, and demographic attribute, respectively. The training
procedure often considers FR as a classification problem
where the subject’s identity label acts as the ground truth
or target, and a suitable classification loss function, Lcls, is
minimized via Stochastic Gradient Descend (SGD) as given
by Equation 1. The left part of Figure 2 summarizes training
of a typical FR CNN.

θ∗ = argmin
θ

1

N

N∑
i=1

Lcls
(
f(xi, θ), yi

)
. (1)

In many FR systems, the feature representations are nor-
malized and thus, are constrained to lie on a hyperspherical
manifold. The cosine distance, as presented in Equation 2,
between feature representations of two samples- xj and xk,
(usually one from pre-defined gallery, and one from probe
or test sample) acts as the matching score.

s(f(xj), f(xk)) = cos
(
f(xj), f(xk)

)
. (2)

Most state-of-the-art FR systems employ an exten-
sion of typical cross-entropy loss such as ArcFace [11],
SphereFace [31], ElasticFace [4], etc. These loss functions
add angular margins to the feature representations of differ-
ent classes (subjects, in the present case), and have resulted
in better recognition accuracy. However, it is worth noting
that none of these cost functions make use of the demo-
graphic attribute, di.

3.2. Demographic Calibration for Fairness

For an FR system to be fair, the score distributions of
mated and non-mated pairs of different demographic groups
must be equally separable under single decision thresh-
old. In ML literature, this requirement is also referred to
as equalized odds estimator [19, 33]. Given an FR CNN
f(., θ), we hypothesize that the possible causes of de-
mographic biases are: (a) the distribution of f (matching
scores) for some demographic groups might exhibit a multi-
-modal behaviour (one would ideally expect a bi-modal dis-
tribution: one for mated scores and another for non-mated
ones), and (b) non-alignment of distribution of matching
scores of different demographic groups.

The first factor refers to the distribution of intra-
demographic scores. The correction for suppression of pos-
sible biases arising due to multimodal intra-demographic
distribution can be approached by constraining f(., θ) to
respect a particular prior probability distribution function.
If FR can be regarded as a binary classification, the distri-
bution of f for a given demographic group should be bi-
modal. If these distributions are constrained to be Gaussian
(which is often the case for several FR datasets/ networks),
for a training batch B ≡ {f(xi, θ)|i ∈ [1, B]}, to be mini-
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Figure 2. Training procedure for our proposed regularization method for demographic fairness in FR. The regular classification loss Lcls is
regularized by intra- and inter-demographic loss terms (Lintra-d and Linter-d) that impose matching scores from each demographic group to
follow specific distribution and to be aligned across demographic groups.

mized via SGD, the above constraint can be imposed using
Kullback-Leibler (KL) divergence as follows:

minKL[N (kc, 1)||N (µc, σc)], c ∈ [mated, non-mated]
(3)

where µc and σc are respectively the estimated mean and
the standard deviation of scores of mated or non-mated pairs
from the batch B.

The FR CNNs are typically trained in a contrastive learn-
ing framework. Thus, the constraint from Equation 3, too,
needs to be reformulated in a contrastive framework. We ac-
complish this by means of Platt scaling—which is a popular
method that transforms classification outputs into probabil-
ity distributions [34,36,39]. Smola et al. [39] demonstrated
the use of Platt scaling towards transforming raw matching
scores into probability estimates via one-variable logistic
regression. Equation 4 describes the Platt scaling function
S that yields the probability of score (s) being the positive
class (in biometric systems, typically mated scores are con-
sidered to be the positive class).

g ≡ P (mated | s) = 1

1 + e(ψas+ψb)
(4)

Here, ψa and ψb (hereafter, ψ) are the parameters of the
scaling function which are obtained by maximum likelihood
(ML) estimation from scores obtained from the training set
as:

− E
[
zjk logS(sjk) + (1− zjk) log(1− S(sjk))

]
, (5)

where sjk is the matching score between two feature rep-
resentations, and zjk indicates the similarity label for con-
trastive learning. It is set to 1 if the constituent features
belong to the same class (or identity), otherwise it is set to
zero. While Platt scaling does not directly lead to fairness
in classification models, we use this mechanism to impose

mated as well as non-mated scores to follow specific dis-
tributions by computing the regression loss (as presented in
Eq. 5). For a fixed (i.e. frozen) FR CNN, the parameters of
Platt scaling are learnt for scores of a given demographic
group; and subsequently the logistic regression loss, for
fixed values of ψ is used to quantify the degree of mismatch
in the scores of the corresponding demographic from the
predefined distribution. For each constituent demographic
group, we define the intra-demographic loss Lintra-d by in-
corporating Platt scaling function in the contrastive form as:

Lintra-d(f(xj), f(xk), zjk) = zjk log g(f(xj), f(xj))

+ (1− zjk) log(1− g(f(xj), f(xk))) (6)

Calculation of the intra-demographic loss is depicted in
(right part of) Figure 2– where for a demographic calibra-
tor is chosen based on the demographic labels of the pair
of samples. The intra-demographic loss helps constrain-
ing scores to a particular distribution for each demographic.
However, it does not address the issue of shifts between
distributions of scores of different demographic groups.
While this loss term, by clustering scores, has improved the
recognition performance of each demographic group sepa-
rately, we would still require different score thresholds for
each demographic group for optimal classification. The use
of such thresholds requires accurate knowledge of demo-
graphic label of each sample at run-time. It, thus, possibly
requires a separate demographic classifier– which increases
computational requirements during training and testing too.
We propose to incorporate an inter-demographic loss com-
ponent which penalizes large differences between intra-
demographic loss values of different demographic groups.

We define the inter-demographic loss as the degree of
variation between parameters ψ of each of the demographic
calibrators, gi, i = 1, 2, . . . , D. This term, Linter-d is defined



in Equation 7.

Linter-d = Var([ψ1, ψ2, . . . , ψD]). (7)

The inter-demographic loss ensures that the parameters
of each demographic calibrator– which in turn define the
shape and location of score distributions– are aligned as
much as possible.

Equation 8 provides the overall loss by combining Equa-
tions 1, 6, and 7.

θ∗, ψ∗ = argmin
θ, ψ

1

N

N∑
i=1

[
Lcls(f(xi, θ); yi)

+ λinter-dLinter-d([ψ1, ψ2, ..., ψD])

+ λintra-d

D∑
d=1

Lintra-d(f(xj , θ), f(xk, θ), zjk, djk)

]
,

(8)

where λinter-d and λintra-d are the relative weights for cor-
responding loss terms. During training, we alternate be-
tween fixing the calibrators, and finetuning the FR CNN.
First, the calibrators (ψd) are evaluated for frozen FR CNN.
In the next set of training epochs, FR CNN (θ) is finetuned
to improve the demographic fairness without compromising
recognition accuracy as governed by the classification loss
Lcls. The overall training pipeline, along with computation
of each loss term, is shown in Figure 2.

Both losses from equations 6 and 7 can be trivially ex-
panded to work with any deep FR CNN architecture. On
training or finetuning the FR CNN with either of the pro-
posed regularized loss functions, the comparison of mated
and non-mated scores from samples of the same demo-
graphic are inherently aligned (centered around the same
value), allowing us to better set single decision thresholds
for a fair behaviour without any post-processing.

4. Experimental Results
We first provide details related to experimental setup and

then discuss results of proposed regularization method on
different datasets.

4.1. Experimental Setup

Datasets: For our experimental analysis of the demo-
graphic regularization method, we utilized three publicly
available FR datasets that provide race or ethnicity infor-
mation. The first dataset is a subset of the VGGFace2 [6]
dataset by Cao et al., where we specifically considered 10
samples per subject identity, resulting in a training set with
86,310 samples. Our second dataset- MORPH dataset [2]
comprises approximately 55,000 mugshot images of sub-
jects from four races: Black, White Asian, and Hispanic
(with few additional samples from other races). Notably,

this dataset exhibits significant skewness in terms of de-
mographic distribution; black subjects account for nearly
75% of the data while Asian subjects constitute less than
1%. Lastly, we incorporated the RFW dataset for our
experiments– it has a well-balanced protocol for four demo-
graphic groups with 6,000 comparisons per group–resulting
in a total of 24 k comparisons [46].
FR CNN Backbones: We worked with the FR CNN based
on the iResNet architecture with either 34, 50, or 100 lay-
ers [13]. These models were trained using ArcFace loss on
the MS1MV3 dataset, which is a refined version of the MS-
Celeb1M dataset. The architecture and pretrained weights
for our models were obtained from the InsightFace reposi-
tory1.
FR Pipeline:2 For consistent experiments, each combina-
tion of dataset and backbone underwent a standardized pre-
processing procedure. This involved using MTCNN for ini-
tial face detection and facial landmark identification. The
resulting 5 landmarks were then used to align and resize the
face region to meet the specified requirement of 112× 112
pixels, as required by each iResNet-based FR CNN archi-
tecture. The FR CNN received the aligned, fixed size input
image and produced a 512-d feature vector. The match-
ing score was determined based on cosine similarity. To
enhance the fairness of the FR CNN through fine-tuning,
an SGD-based optimizer with initial learning rates ranging
from 1e-4 to 1e-2 was utilized. A rate scheduler was imple-
mented, decreasing the learning rate by a factor of 0.25 if no
improvements were observed for five epochs (also known
as patience). For iResNet34 and iResNet50 architectures,
a batch size of 128 was employed while for iResNet100, a
batch size of 64 was used during SGD-based optimization.
Since contrastive setup is required by the loss functions, we
predetermined that there would be ten positive samples and
five negative samples per subject. Fine-tuning took place
over 80 epochs with early stopping criteria; this process al-
ternated between calibrators and FR CNN in a ratio of 1:10
epochs.
Performance Evaluation: To measure recognition accu-
racy, we determined the score threshold on the train set con-
sidering the Equal Error Rate (EER). This threshold was
then used to convert scores from the test set into binary
decisions. Alongside recognition accuracy, we also report
false accept rate and false reject rate for the test set, which
indicate misclassifications of imposters and genuine sam-
ples respectively. To assess demographic fairness, we eval-
uated the recognition accuracy for each demographic group
within a cohort. We then calculated the standard deviation
and skewed error ratio (SER) of recognition accuracy per
demographic group. The SER is calculated as the ratio of

1https://github.com/deepinsight/insightface
2The source code for replicating our work is available at

https://gitlab.idiap.ch/bob/bob.paper.wacv2024 dvpba.



(a) FR CNN: iResNet34 (b) FR CNN: iResNet50 (c) FR CNN: iResNet100

Figure 3. Score distributions for pairs of subjects from different demographics of the VGGFace2 dataset for different FR CNN backbones.
Red and Blue boxes represent boxplots of non-mated (imposter) and mated (genuine) scores respectively. For each plot, top row: baseline;
bottom row: regularized FR CNN.

highest error rate to the lowest error rate among all demo-
graphic groups (SER = max errord/min errord, d ∈ D).
A lower standard deviation (std) and SER value, coupled
with higher recognition accuracy, indicates a more accurate
and equitable FR system.

We establish a baseline by measuring accuracy and fair-
ness without any additional processing or regularization.
We could not implement some of the comparative meth-
ods (from Sec. 2.2) due to either non-availability of code or
lack of information related to protocols (dataset splits, score
thresholds, etc.). Thus, we evaluate the performance of two
score normalization techniques: Z- and T-normalizations.
These normalization techniques are used to center the dis-
tribution of impostor scores for each demographic group
around zero, which can help improve fair behavior of FR
CNNs by allowing for a single decision threshold. Finally,
we present the matching scores obtained from the regular-
ized FR CNNs.

4.2. Results of Regularization Experiments

Results on VGGFace2: In the initial experiment, we
trained and evaluated the FR CNN using different partitions

Method FMR (↓) FNMR (↓) Avg Acc (↑) A acc I acc B acc W acc std (↓) SER (↓)
baseline 1.97 3.20 98.02 98.10 98.08 98.62 97.92 0.26 1.50
Z-norm 1.82 2.88 98.17 98.27 98.30 98.68 98.06 0.22 1.47
T-norm 1.93 3.28 98.07 98.19 98.30 98.69 97.93 0.27 1.58
Proposed 1.40 1.20 98.65 98.65 98.34 99.07 98.57 0.25 1.48

Method FMR (↓) FNMR (↓) Avg Acc (↑) A acc I acc B acc W acc std (↓) SER (↓)
baseline 1.74 2.56 98.26 98.42 98.29 98.69 98.17 0.20 1.40
Z-norm 1.76 2.48 98.24 98.44 98.32 98.68 98.12 0.20 1.42
T-norm 1.70 2.56 98.30 98.41 98.53 98.74 98.19 0.20 1.44
Proposed 1.62 1.28 98.38 98.55 98.42 98.81 98.38 0.18 1.36

Method FMR (↓) FNMR (↓) Avg Acc (↑) A acc I acc B acc W acc std (↓) SER (↓)
baseline 1.79 2.80 98.21 98.19 98.13 98.56 98.19 0.17 1.30
Z-norm 1.72 2.80 98.27 98.34 98.22 98.56 98.23 0.14 1.24
T-norm 1.88 2.80 98.12 98.15 98.26 98.53 98.05 0.18 1.32
Proposed 1.46 0.48 98.54 98.50 98.61 98.84 98.51 0.14 1.29

Table 1. Performance evaluation of the proposed method on VG-
GFace2 dataset. top: iResNet34, middle: iResNet50, and bottom:
iResNet100 FR backbones. The FMR, FNMR, and all accuracy
values are indicated as percentages.

of the VGGFace2 dataset. The calibration loss within de-
mographic groups was unbalanced (i.e., the loss value from
each demographic group was equally weighted irrespective
of group’s share in training partition). Table 1 shows the
recognition accuracy and demographic fairness results for
both the baseline (non-calibrated) and score-calibrated FR
CNNs, as well as accuracy values specifically for each of
the four demographic groups. We also provide the cor-
responding metrics for Z- and T-normalizations as these
methods are effective and, in some sense, close to the un-
derlying principle of our method. Overall recognition ac-
curacy increased by 0.63%, 0.12%, and 0.33% respectively
for FR CNNs with 34, 50, and 100 layers after proposed
regularization. There were slight improvements in accu-
racy for almost each demographic group for the proposed
method. At the same time, the variation in recognition accu-
racy among different demographics decreased as indicated
by the reduced standard deviation (std) and skewed error
rate (SER) metrics as listed in the table. The decrease in
variation suggests that the FR CNN treats samples from dif-
ferent races/ethnic groups more fairly after calibrated regu-
larization. Figure 3 provides the boxplots of score distribu-
tions for pairwise demographics, with colored boxes repre-
senting scores within the first and third quartiles (i.e., Q3-
Q1). It can be observed that mode (shown in colored boxes)
for each demographic’s scores are better aligned in regular-
ized cases, especially for 50- and 100-layer FR backbones.

Method FMR (↓) FNMR (↓) Avg Acc (↑) African acc Asian acc Caucasian acc Indian acc std (↓) SER (↓)
baseline 8.69 8.68 91.32 89.58 89.60 95.27 90.82 2.34 2.20
Z-norm 11.08 11.07 88.92 86.21 87.53 93.00 88.96 2.54 1.97
T-norm 10.84 10.84 89.16 86.50 87.65 93.52 88.97 2.66 2.08
Proposed 7.46 7.46 92.54 91.48 91.71 95.85 91.12 1.92 2.13

Method FMR (↓) FNMR (↓) Avg Acc (↑) African acc Asian acc Caucasian acc Indian acc std (↓) SER (↓)
baseline 3.29 3.29 96.71 96.44 95.48 98.17 96.75 0.96 2.46
Z-norm 4.63 4.63 95.37 95.14 93.63 97.32 95.38 1.31 2.37
T-norm 4.66 4.66 95.34 94.77 94.10 97.23 95.26 1.17 2.13
Proposed 2.24 2.24 97.76 97.79 97.17 98.72 97.36 0.60 2.20

Table 2. Performance evaluation of the proposed method on RFW
dataset using VGGFace2 dataset to regularize FR backbone. top:
iResNet50, bottom: iResNet100 FR backbone. The FMR, FNMR,
and all accuracy values are indicated as percentages.



(a) Baseline (b) Regularized with VGGFace2 (c) Regularized with MORPH

Figure 4. Score distributions for pairs of subjects from different demographics of the RFW dataset for different FR CNN backbones. Red
and Blue boxes represent boxplots of imposter and genuine scores respectively. For each plot, top row: iResNet50 backbone; bottom row:
iResNet100 backbone.

During the evaluation of the same FR CNN on the
RFW dataset, we noticed a substantial decrease in accuracy
and fairness metrics compared to the baseline performance.
This deterioration can largely be attributed to the fact that,
in the regularized model, weights were adjusted based on
intra-demographic loss, which was influenced by the im-
balanced demographic distribution of VGGFace2. Subse-
quently, we fine-tuned the FR CNNs on VGGFace2 with
balanced demographic weights.

The performance of three FR CNNs improved when
trained with balanced settings on the RFW dataset. For
both backbones, 50- and 100-layered iResNets, the overall
accuracy increased by nearly 1%, while reducing the stan-
dard deviation by 25% compared to the respective baseline
numbers. Although there were not consistent improvements
in recognition accuracy for individual demographic groups,
regularizing the FR CNNs resulted in improving overall
performance in terms of both accuracy and fairness. Table 2
shows evaluation of the performance on RFW dataset using
VGGFace2 regularization with balanced settings. The left
and middle columns of Figure 4 show the score distributions
of pairwise demographics (the RFW protocol does not have

Method FMR (↓) FNMR (↓) Avg Acc (↑) A acc H acc B acc W acc std (↓) SER (↓)
baseline 0.06 0.00 99.94 99.99 99.98 99.92 99.99 0.03 7.99
Z-norm 0.06 0.00 99.94 99.99 99.99 99.92 99.98 0.03 7.99
T-norm 0.06 0.02 99.94 100.00 99.99 99.92 99.98 0.03 -
Proposed 0.09 0.00 99.91 99.98 99.95 99.89 99.97 0.03 5.50

Method FMR (↓) FNMR (↓) Avg Acc (↑) A acc H acc B acc W acc std (↓) SER (↓)
baseline 0.06 0.00 99.94 99.99 99.99 99.92 99.99 0.03 7.99
Z-norm 0.09 0.00 99.91 99.99 99.98 99.88 99.98 0.04 11.98
T-norm 0.09 0.00 99.91 99.99 99.99 99.88 99.97 0.04 11.98
Proposed 0.11 0.03 99.89 99.98 99.94 99.87 99.97 0.04 6.50

Method FMR (↓) FNMR (↓) Avg Acc (↑) A acc B acc H acc W acc std (↓) SER (↓)
baseline 0.05 0.00 99.95 99.99 99.94 99.98 100.00 0.02 5.99
Z-norm 0.05 0.00 99.95 99.99 99.94 99.99 99.99 0.02 5.99
T-norm 0.05 0.00 99.95 100.00 99.94 99.99 99.99 0.02 -
Proposed 0.05 0.00 99.95 99.99 99.94 99.97 99.99 0.02 5.99

Table 3. Performance evaluation of the proposed method on
MORPH dataset. top: iResNet34, middle: iResNet50, and bot-
tom: iResNet100 FR backbones. The FMR, FNMR, and all accu-
racy values are indicated as percentages.

cross-demographic pairs) for baseline and for FR CNN reg-
ularized with VGGFace2 dataset. While the tails of score
distributions mated and non-mated pairs still overlap, the
extent of overlap has reduced by the use of regularized FR
CNN.
Results on MORPH: In Table 3, we present the results reg-
ularized FR CNN using different partitions of the MORPH
dataset– which is highly imbalanced for ethnic demograph-
ics. Since the baseline CNNs already provide near-perfect
recognition, this experiment does not shed much light in
terms of qualitative performance metrics. However, it
should be noted that the aspect of fairness is not only lim-
ited to disparity in differential outcome (classification deci-
sions), but also to the differential performance (distributions
of mated/ non-mated scores) [20, 27]. Hence, in addition
to improved accuracy/ reduced std, a bias mitigation tech-
nique should also attempt to improve the score distributions
towards specific desired properties [27]. Figure 5 shows the
boxplots depicting the distribution of scores for different
demographic groups. A comparison between score distri-
butions of the baseline (top row in Figure) and those of the
regularized FR CNN (bottom row) demonstrates improve-
ments in this regard: a better alignment across demographic
groups (for mated scores) and more compact distributions
(shorter whisks) can be observed in most cases.

By regularizing the FR CNNs at learning rate of 1e-4
with a balanced intra-demographic term, we observed im-

Method FMR (↓) FNMR (↓) Avg Acc (↑) African acc Asian acc Caucasian acc Indian acc std (↓) SER (↓)
baseline 8.69 8.68 91.32 89.58 89.60 95.27 90.82 2.34 2.20
Z-norm 11.08 11.07 88.92 86.21 87.53 93.00 88.96 2.55 1.97
T-norm 10.84 10.84 89.16 86.50 87.65 93.52 88.97 2.67 2.08
Proposed 10.87 10.87 89.13 88.31 87.58 92.75 87.89 2.11 1.71

Method FMR (↓) FNMR (↓) Avg Acc (↑) African acc Asian acc Caucasian acc Indian acc std (↓) SER (↓)
baseline 3.29 3.29 96.71 96.44 95.48 98.17 96.75 0.96 2.46
Z-norm 4.63 4.63 95.37 95.14 93.63 97.32 95.38 1.31 2.37
T-norm 4.66 4.66 95.34 94.77 94.10 97.23 95.26 1.17 2.12
Proposed 4.32 4.32 95.67 95.77 94.75 97.27 94.91 0.99 1.92

Table 4. Performance evaluation of the proposed method on
RFW dataset using MORPH dataset to regularize FR backbones.
top: iResNet50, bottom: iResNet100 FR backbones. The FMR,
FNMR, and all accuracy values are indicated as percentages.



(a) FR CNN: iResNet34 (b) FR CNN: iResNet50 (c) FR CNN: iResNet100

Figure 5. Score distributions for pairs of subjects from different demographics of the MORPH dataset for different FR CNN backbones. Red
and Blue boxes represent boxplots of imposter and genuine scores respectively. For each plot, top row: baseline; bottom row: regularized
FR CNN.

provements in demographic fairness (decrease in std and
SER) on RFW dataset as provided in Table 4. However,
the regularization resulted in lowering the overall recogni-
tion accuracy by around 1%. We believe that using a larger
learning rate may have been beneficial, but the correspond-
ing experiment did not converge on training set. From Fig-
ure 4(c), it may be observed that the regularized FR CNN
with iResNet100 backbone was able to improve the score
distributions (i.e., demographic fairness), however, other
FR CNN was not capable of producing fair models. A bet-
ter procedure, possibly with different learning rates for cal-
ibration and classification, may be required to work with
datasets that have near-perfect recognition accuracy base-
lines.

5. Conclusion

In this work, we have developed a regularization-based
approach to improve demographic fairness, primarily re-
lated to ethnicity or race, of an FR CNN without compro-
mising its recognition accuracy. For this finetuning, we use
score-calibrators for each demographic groups as a means
to quantify the disparity in matching scores of demographic
samples– which in turn acts as regularization term. This
regularization or disparity consists of two components: one
penalizes the scores of each demographic for not adher-
ing to specific distribution, and another one related to mis-
alignment of score distributions of different demographic
groups. Our work, possibly for the fist time for FR, demon-
strates how a popular concept of score calibration (typically
a post-processing method) can be transformed into training-
time regularization. Since the regularized FR CNN does not
modify the interfaces or architecture of the baseline CNN,
the inference pipeline does not require any changes from
the baseline one. Also, the generic nature of regulariza-
tion loss terms (Eqs.6, 7) implies that the proposed bias
mitigation method can be easily extended to different FR
CNNs. We have demonstrated the efficacy of the proposed
method in in- and cross-dataset testing. Additionally, we

have also demonstrated that the proposed regularization im-
proves, not just classification accuracy, but also score dis-
tributions of mated and non-mated pairs of different demo-
graphic groups.

The initial success of the proposed method is encourag-
ing, however, several factors influencing demographic fair-
ness (and recognition accuracy) of an FR system are re-
quired to examined further. We would like to examine dif-
ferent aspects of calibration namely: impact of weighing
/ balancing demographic groups across different terms of
loss function. It was observed that for FR CNNs that are
highly accurate for datasets, the learning rate was a crucial
factor. Further ablation studies in this regard (learning rate
and scheduler) can throw light on jointly improving fairness
and recognition accuracy of an FR CNN.
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