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Abstract
State-of-the-art ASR systems have achieved promising results
by modeling local and global interactions separately. While the
former can be computed efficiently, global interactions are usu-
ally modeled via attention mechanisms, which are expensive for
long input sequences. Here, we address this by extending Hy-
perMixer, an efficient alternative to attention exhibiting linear
complexity, to the Conformer architecture for speech recogni-
tion, leading to HyperConformer. In particular, multi-head Hy-
perConformer achieves comparable or higher recognition per-
formance while being more efficient than Conformer in terms of
inference speed, memory, parameter count, and available train-
ing data. HyperConformer achieves a word error rate of 2.9%
on LibriSpeech test-clean with less than 8M neural parameters
and a peak memory during training of 5.7GB, hence trainable
with accessible hardware. Encoder speed is between 38% on
mid-length speech and 56% on long speech faster than an equiv-
alent Conformer.1

Index Terms: Hypernetworks, HyperMixer, Efficient Auto-
matic Speech Recognition, LibriSpeech, SpeechBrain

1. Introduction
Automatic Speech Recognition (ASR) technologies have
greatly benefited from deep learning, reaching unprecedented
levels of accuracy and pushing successful products to real-
life use cases. Various architectures of ASR systems co-exist
and deliver superlative performance depending on the task or
domain of interest [1]. A prevalent family of ASR systems
uses self-attention and Transformer neural networks to con-
sume the input speech sequence and build powerful represen-
tations both at the acoustic and linguistic levels [2]. Indeed,
the ability of Multi-Head Self-Attention (MHSA) [3] to capture
long-term dependencies via its sequence-long receptive field
helped Transformer ASR architectures to outperform the pre-
vious state-of-the-art mostly composed with recurrent neural
networks [2]. Nevertheless, ASR not only requires capturing
global interactions describing the semantic and linguistic char-
acteristics of the speech utterance but also modeling properly
the local interactions that form the speech signal.

Conformer neural networks [4] have been introduced to
specifically address this issue. They combine Transformer and
Convolutional Neural Network (CNN) blocks to capture the
global and local dependencies respectively, leading to improved

⋆Equal contribution. Order is determined by a coin flip.
Research supported by the Swiss National Science Foundation (LAOS,
grant 200021-178862) and EU-H2020 (CRiTERIA, grant 101021866).

1The HyperConformer recipe is publicly available in: https:
//github.com/speechbrain/speechbrain/tree/
develop/recipes/LibriSpeech/ASR/transformer/
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Figure 1: Layout of the general Conformer architecture. Global
interactions can be modeled either with attention leading to
a Conformer or with HyperMixer to obtain HyperConformer.
T represents the transpose operation. Skip connections are
omitted for simplicity. The global interaction module is com-
bined sequentially with a convolution module to capture local
dependencies, critical for speech-related tasks.

Word Error Rate (WER). Most prominently, variations of the
Conformer, named Branchformer [5] and E-Branchformer [6]
reached the lowest WER on the widely-adopted LibriSpeech
dataset [7] while being trained from scratch without external
data. Following the local and global dependencies’ assumption,
Branchformer architecture physically create two branches per
block (a dual path) in the architecture to capture independently
and with adapted mechanisms (i.e., MHSA and CNN) both lev-
els of dependencies. The latter branches are then merged and
passed to the next architecture block. Such approaches are ag-
nostic to the type of ASR decoding or processing, e.g., Trans-
ducers [8], CTC only [9], or CTC and attention [10]. However,
they suffer from a major and well-documented efficiency issue
as MHSA exhibits a quadratic complexity and memory time-
dependency [11]. For instance, the MHSA block is among the
most computationally demanding elements of any Transformer
model. This is especially true for speech processing as input se-
quences are often long by nature e.g., longer than 30 seconds for
a few LibriSpeech utterances [12, 13]. In addition, large-scale
and Transformer-based Self-Supervised Learning (SSL) mod-
els for speech recognition are commonly trained with sentences
voluntarily cropped at 20 to 25 seconds. The latter transfor-
mation is necessary to enable training with top-tier GPU e.g.,
Tesla V100 or A100 [14], also making it potentially intractable
to train on more accessible compute infrastructures. This arti-
cle focuses on retaining MHSA’s global interactions capabili-



ties beneficial to ASR while lowering significantly its computa-
tional and memory cost.

How to efficiently compute interactions between tokens in
Transformer-like architectures is an active area of research [15].
Most works try to decrease the cost of attention directly, e.g.,
through a low-rank approximation [16], linearization [17], or
the introduction of sparse attention patterns [18]. However, to-
ken mixing can also be achieved from outside the framework of
attention, opening up considerably novel opportunities for im-
provement. MLPMixer [19] was the first to learn a fixed-size
MLP for modeling global interactions, with many to follow in
the vision domain [20, 21, 22]. However, the fixed size hinders
their adoption for domains with variable length signals. Exist-
ing approaches for speech have strong locality biases [23, 24]
and still rely on small attention modules for the best perfor-
mance [24]. Recently, [11] proposed HyperMixer for text pro-
cessing, which achieved competitive performance to attention
at a substantially lower cost in terms of computation and data.
Intuitively, HyperMixer constructs the token-mixing MLP of
MLPMixer dynamically as a function of the data, hence being
amenable to variable length inputs.

This article introduces HyperConformer, a novel and
simple-to-implement alternative to MHSA. It benefits from the
linear time and memory complexity of HyperMixer while cap-
turing both global and local dependencies from the speech sig-
nal necessary for ASR. The contributions are threefold. First,
we formally describe HyperConformer and its main compo-
nents (§2). Then, we introduce multi-head token mixing to
HyperMixer and HyperConformer to further improve the effi-
ciency of both models. Finally, we open-source a training and
inference ASR recipe within the widely adopted SpeechBrain
toolkit [25]. Experiments are conducted in a relatively resource-
constrained scenario with limited VRAM and neural parame-
ters budgets to highlight the efficiency aspect of each evaluated
model. Throughout the conducted ASR experiments on the Lib-
riSpeech dataset (§3), HyperConformer consistently reaches the
state-of-the-art Conformer baseline in terms of WER. In addi-
tion, HyperConformer shows between 37% and 56% reduction
in processing time on mid-length and long speech, respectively.
During training, it uses up to 30% less memory, hence being
trainable on GPUs from the Ti 70 family. Overall, HyperCon-
former offers a more accessible alternative to any ASR system
previously based on Conformer models.

2. HyperConformer
Figure 1 illustrates the different blocks of the introduced Hyper-
Conformer. It consists of four parts: Two feature mixing layers
(feed-forward networks) at the bottom and top of the layer, a
module for modeling local interactions, specifically the Convo-
lution module introduced in [4], and a global interaction mod-
ule. In the following, we discuss the global interaction modules
bringing token mixing to the model. Other components of Hy-
perConformer are identical to the Conformer [4].

2.1. Capturing Global Interactions

Let X ∈ RN×d represent N d-dimensional token vectors, also
equivalent to a latent representation of speech coming from the
previous layer on length N . The global interaction module
GI : RN×d → RN×d;X 7→ X ′ is responsible for combining
information from different tokens in such a way that every X ′

:,j

contains information from every X:,i. Such a behavior captures
global interactions as it interconnects the different time steps of

the given speech or latent sequence. This may be achieved, for
instance, via multi-head attention or via HyperMixer.

2.2. Multi-Head Self-Attention

At the core, Multi-Head Self-Attention (MHSA) [3] relies on
scaled dot-product attention:

Attention(X) = Softmax(
XXT

√
dk

)X,

which involves computing the dot product between every pair
of input tokens, invoking memory and runtime complexity of
O(N2 · d). The latter is responsible for the quadratic increase
in memory and time consumption of standard Transformer ar-
chitectures [11]. Further modeling capabilities are commonly
obtained with the introduction of k parallel heads, allowing
the model to attend to information from different representation
subspaces, i.e., different views of the data:

MHSA(X) = Concat(head1, . . . , headk)W
O,

headi = Attention(XWQ
i , XWK

i , XWV
i ),

with WO,WQ
i ,WK

i ,WV
i learnable weight parameters.

2.3. HyperMixer

From a high-level perspective, HyperMixer achieves token mix-
ing over variable length sequences by dynamically constructing
a token mixing MLP through the use of hypernetworks [26].
The latter models specialize in generating neural network pa-
rameters, e.g., weights and biases. A token-mixing MLP is a
multilayer perceptron TM-MLP : Rd×N → Rd×N that com-
bines information from different tokens for each feature inde-
pendently, e.g., processing the Fbank coefficients of each time
step of a sequence:

TM-MLP(X)i,: = LayerNorm(W1(σ(W
T
2 XT

i,:))), (1)

where W1,W2 ∈ RN×d′ are weight matrices with the hidden
layer size d′. σ represents some non-linear activation function;
we fix it to GELU [27] following [11]. Furthermore, we add
layer normalization [28] for improved stability. Intuitively, the
input layer W1 decides to what degree each token’s information
should be sent to the hidden layer of TM-MLP, and the output
layer W2 decides for each token what information to extract
from the hidden layer.

Importantly, W1,W2 themselves are not learnable param-
eters, which would require the input to be of the same fixed
size at all times. Instead, HyperMixer(X; d, d′), parameter-
ized through the embedding dimension d and the hidden layer
size d′, first dynamically generates W1,W2 from the inputs
themselves with the two hypernetworks MLP1,MLP2:

Wk(X) =

 MLPk(X:,1 + p:,1)
...

MLPk(X:,N + p:,N )

 ∈ RN×d′ , k ∈ 1, 2.

MLP1,MLP2 : Rd → Rd′ contain the learnable parameters
of HyperMixer, and p:,j are absolute position embeddings from
standards Transformers [3]. After generating the weights, Equa-
tion 1 is applied. This determines the complexity of this model:
O(N ·d·d′), which is the same asymptotic runtime as the feature
mixing layers. Hence, HyperMixer turns the quadratic memory
and inference time complexities to a linear regime.



2.4. Multi-Head HyperMixer

Analogously to MHSA, we propose an extension of Hyper-
Mixer to multi-head HyperMixer (MHHM) and HyperCon-
former, by introducing multiple token mixing heads. To this
end, we create k parallel HyperMixerl(·; d/k, d′/k), l ∈
0..k − 1, which each operates on (d/k)-dimensional feature
subsets of X , whose outputs are again concatenated:

headl = HyperMixerl(X:,(l·(d/k)):(l+1·(d/k)))

MHHM(X) = Concat(head1, . . . , headk)

As a result, and conversely to MHSA, the runtime complexity
even further reduces to O(k·(N ·(d/k)·(d′/k))) = O(N·d·d′

k
).

3. Experiments
This section details the experimental setup (3.1) used to evalu-
ate HyperConformer against three baselines including the state-
of-the-art Conformer. Models are compared both in terms of
ASR performance (Section 3.2.1) and efficiency metrics (Sec-
tion 3.2.2).

3.1. Experimental Setup

Our experiments aim at assessing the effectiveness and
efficiency of HyperConformer in comparison to Conformer.
Hence, we compare vanilla Transformer [3] and Conformer [4]
models to HyperMixer and HyperConformer. In practice,
we swap the global interaction module, i.e., attention, from
regularMHA (which uses absolute position embeddings [3])
of Transformer and RelPosMHAXL (which uses relative
position embeddings [29]) of Conformer to our multi-head
HyperMixer implementation.

Datasets and Decoding. We validate HyperConformer, on the
LibriSpeech dataset [7]. It is composed of ∼960h of transcribed
speech in English. We perform ablations either training on the
100h set or the full, 960h set, and report results on the dev/test
sets and clean/other partitions. Additionally, we use the text-
only corpus for external language modeling (LM).2 The LM is a
Transformer based [3] only-encoder model composed of 12 en-
coder layers, dffn = 3072 and dmodel = 768, which accounts
for 93.3M parameters. Word error rates are reported using beam
search with and without LM shallow fusion.
Neural Architectures. To gain a comprehensive understanding
of performance and primary trade-offs, we ablate four differ-
ent architectures in an encoder-decoder style: i) vanilla Trans-
former, ii) Conformer, iii) HyperMixer, and iv) HyperCon-
former. For the efficiency analysis only we also experiment with
replacing RelPosMHAXL with regularMHA (Conformer-
regular). All models use a 5K BPE sub-word unit [30] vo-
cabulary. This remains consistent across all experiments and
models. At the bottom of the encoder, we incorporated a
front-end module consisting of a 2-layer CNN that receives 80-
dim log Mel filterbank features. We use SpecAugment [31]
during training with the default configuration in SpeechBrain.
To correspond to accessible hardware as well as to emphasize
low-compute resources performance, all models are conceived
within a 25M parameter budget and trained with an 11GB mem-
ory constraint, corresponding to accessible GPU such as the Ti
80 family (or Ti 70 for the small version of HyperConformer).

2Pre-trained LM from SpeechBrain available in:
huggingface.co/speechbrain/
asr-conformersmall-transformerlm-librispeech.

Table 1: Word error rates [%] on the official LibriSpeech dev
and test sets for models trained on 960h LibriSpeech set. The
results include the four proposed encoder models, including
our novel architecture, HyperConformer. We ablate two dif-
ferent model sizes for each architecture and list results with and
without LM. The last column list the peak memory consumption
[GB] of each architecture under the same training conditions.

Model Par. WER w/o LM WER w/ LM Peak
dev test test Mem.

[M] clean other clean other clean other [GB]

Small sized models (dmodel = 144)

Transformer 6.1 7.7 15.6 7.8 15.8 3.9 8.2 6.45
HyperMixer 5.6 12.9 23.1 13.1 23.4 5.8 12.6 4.04
Conformer 8.7 4.7 11.4 5.0 11.3 3.1 6.8 8.18

HyperConformer 7.9 5.0 12.1 5.3 12.3 2.9 7.0 5.67

Medium sized models (dmodel = 256)

Transformer 16.2 4.6 10.7 4.7 10.9 2.7 6.1 7.6
HyperMixer 14.4 7.2 15.2 7.5 15.2 3.9 8.3 5.6
Conformer 24.1 3.6 8.8 3.8 8.7 2.6 5.9 10.7

HyperConformer 21.7 3.4 9.0 3.6 9.0 2.3 5.7 8.6

Hence, we select two model sizes for each architecture, i.e.,
8 different scenarios. We use the same configuration, 10 en-
coder layers, and 8 attention or HyperMixing heads. However,
we set dmodel = {144, 256} for {base,medium} models,
respectively. The feed-forward network dimensions is set to
dffn = 4 · dmodel for all cases. For simplicity, we set the
hidden layer size d′ of TM-MLP to d′ = dffn. We leave an
exploration of this hyperparameter to future work.
Training Hyperparameters. Training is performed by com-
bining the per-frame transformer decoder output probabilities
and CTC [2]. The CTC loss [9] is weighted by α = 0.3 during
training. All the models use the same decoder, i.e., 4 Trans-
former layers. We follow the default training configuration of
the LibriSpeech recipe from SpeechBrain.3 It uses Adam [32]
optimizer, learning rate (lr=1e−3) scheduler with warmup [3]
(25k steps warmup). We train for 110 epochs, i.e., ∼660k steps
when full LibriSpeech and ∼70k when LibriSpeech 100h set.
The recipe also uses dynamic batching, which reduces the over-
all training time. At decoding time, we use a beam size of 66
with a CTC weight of ctcw = 0.4. All of our experiments can
be run on accessible GPUs starting from the Ti 70 family.

3.2. Results and Discussion

Our experiments are designed to answer two questions: 1) Does
HyperConformer perform competitive to Conformer in terms
of word error rates? 2) Is HyperConformer more efficient than
Conformer?

3.2.1. Speech Recognition Results

We compare WERs of different state-of-the-art architectures for
ASR, listing the results on Table 1. We find that HyperMixer
alone achieves acceptable performance, especially in combina-
tion with a language model, but trails behind Transformer and
Conformer, in all cases. We hypothesize that this is because
the crucial local information in speech signals is difficult to
pass through the hidden layer bottleneck of TM-MLP, which
attention does not have. In contrast, HyperConformer per-
forms comparable and often even better than Conformer in the
medium-sized configuration. For instance, HyperConformer

3Please refer to the SpeechBrain recipe located in
recipes/LibriSpeech/ASR/transformer.
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(a) Forward pass of small (left) and medium sized (right) models.
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(b) Forward pass of 1 and 8 heads for HyperConformer.

Figure 2: Overall time (minutes) and GPU consumption (GB) required by different architectures for sequences of different lengths. The
left plot of (a) and (b) shows the small model, the right plot shows the mid-size model. Each sequence length in the x-axis represents
1000 samples from the LibriSpeech dataset. For all plots: Lines denotes time (left y-axis) and markers GPU consumption (right y-axis).
Batch size is 16 for all configurations.

beats Conformer by 0.17% absolute WER on test-other with
LM for the medium-sized model. We explain this as follows: In
HyperConformer, i) the convolution module helps to model the
local interactions between tokens, and ii) global interactions can
be modeled in and passed through the multi-head HyperMixer’s
bottleneck effectively. Finally, we note that HyperConformer is
amenable to scale, since moving from 7.9M → 21.7M, we ob-
tain a 17.9% relative reduction in WER on test-other with LM,
similar to Conformer.

3.2.2. Efficiency Analysis

In [11] is shown that HyperMixer has efficiency benefits regard-
ing processing speed and training data size. Here, we investi-
gate if these properties also transfer to the speech domain, par-
ticularly, HyperConformer on the ASR task.
Peak memory consumption The right hand side of Table 1
shows the peak memory consumption when training models
of the same size on the same hardware. We observe that
HyperConformer requires substantially less memory than Con-
former (-30.6% with small size and -19.7% with medium size).
The effect is stronger on small models than on large ones. Since
larger models are wider (i.e., larger d and d′), the feature mixing
components as well as TM-MLP require considerably more
compute in comparison to attention, whose complexity depends
primarily on the sequence length, which remains the same be-
tween training scenarios.
Resource consumption depending on sequence length The
main advantage of HyperMixer is its linear complexity com-
pared to attention’s quadratic complexity. To investigate this
property, we measure the peak memory and processing time of
the encoder as a function of the length of the speech sample. To
this end, we synthesize 1,000 sentences of 6, 12, 18, 24, and 30
seconds each by concatenating multiple signals from the Lib-
riSpeech dataset. Figure 2a shows the resource consumption
of all models. While HyperConformer and Conformer require
similar processing time at short sequences, HyperConformer
is considerably faster at mid-length (18s, small: 37.9%, mid:
15.2%) and long sequences (30s, small 56.1%, mid: 34.2%),
demonstrating its better asymptotic complexity compared to
Conformer. Note that Conformer with regularMHA is more
efficient than RelPosMHAXL. However, this would lead to a
performance loss [4], and HyperConformer is still substantially
more efficient.

Number of heads An important technical novelties is the intro-
duction of multi-head HyperMixer, which allows for multiple
parallel views on the data analogous to multi-head attention,
while at the same time reducing the model’s complexity. In
preliminary experiments, we found that HyperConformer with
k = 8 heads performs as well as with k = 1 head. At the same
time, moving from a single head to 8 heads reduces the num-
ber of parameters in the model by 7.1% in the small model and
20.8% in the mid-size model. Moreover, as Figure 2b shows,
the processing time is reduced substantially by up to 12.6%
(small) and 19.9% (mid-size) on the longest sequences.
Low-resource scenario HyperMixer is reported to work bet-
ter than MHSA in the low-resource scenario [11]. Here, we
conduct an initial experiment to test whether HyperConformer
inhibits the same characteristic. To this end, we compare
HyperConformer to Conformer on the 100h LibriSpeech sub-
set, which is 10 times smaller than the full dataset. All other
training parameters remain the same. Table 2 shows the results.
In this scenario, HyperConformer performs around 20% better
than Conformer, suggesting better data efficiency.

Table 2: Performance of Conformer and HyperConformer when
trained on 100h LibriSpeech (10× less data). Percentage in
brackets shows relative WER reduction on test-other with LM.

Model Small size Medium size

Conformer 8.29 7.57
HyperConformer 6.76 (-18.5%) 5.80 (-23.4%)

4. Conclusion
HyperConformer is a new architecture for efficient ASR intro-
duced in this work. It integrates the benefits of the Convolu-
tion module from Conformer, which models local interactions,
and the hypernetwork-based architecture, HyperMixer, which
models global interactions. We were able to attain comparable
or lower WERs (2.28/5.42 in test clean/other) HyperConformer
when compared to Conformer. In addition, this novel archi-
tecture is substantially faster on long sequences, while also
requiring less GPU memory during training. We believe
HyperConformer is a green alternative to previous established
Transformer and Conformer based models for ASR.
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