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ABSTRACT
1Machine learningmodels trainedwith passive sensor data frommo-
bile devices can be used to perform various inferences pertaining to
activity recognition, context awareness, and health and well-being.
Prior work has improved inference performance through the use of
multimodal sensors (inertial, GPS, proximity, app usage, etc.) or im-
proved machine learning. In this context, a few studies shed light on
critical issues relating to the poor cross-country generalization of
models due to distributional shifts across countries. However, these
studies have largely relied on inference performance as a means of
studying generalization issues, failing to investigate whether the
root cause of the problem is linked to specific sensor modalities
(independent variables) or the target attribute (dependent variable).
In this paper, we study this issue in complex activities of daily living
(ADL) inference task, involving 12 classes, by using a multimodal,
multi-country dataset collected from 689 participants across eight
countries. We first show that the ‘country of origin’ of data is cap-
tured by sensors and can be inferred from each modality separately,
with an average accuracy of 65%. We then propose two diversity
scores (DS) that measure how a country differentiates from others
w.r.t. sensor modalities or activities. Using these diversity scores, we
observed that both individual sensor modalities and activities have
the ability to differentiate countries. However, while many activities
capture country differences, only the ‘App usage’ and ‘Location’
sensors can do so. By dissecting country-level diversity across de-
pendent and independent variables, we provide a framework to
better understand model generalization issues across countries and
country-level diversity of sensing modalities.
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1 INTRODUCTION
Current literature on mobile sensing has demonstrated the utility
of multimodal passive sensor data in performing various inference
tasks associated with activity recognition, context awareness, and
health and well-being [24]. Examples include eating and drink-
ing behavior [22, 25–28], activities of daily living [5, 6], energy
expenditure estimation [3], mood [19, 23, 35], stress [20, 33], and
depression [7, 10], all of which exhibit reasonable performance
when inferred from multimodal sensing data. Even though cross-
country generalization is needed for models to be deployed across
diverse world regions [31, 34], most prior work has focused on
homogeneous populations in one or two countries, hence limiting
the understanding of model generalization to other countries [38].

Recent work has emphasized the importance of training models
that generalize across multiple countries and thus higher real-world
utility[5, 23]. These studies demonstrated that poor generalization
across countries could be attributed to distributional shifts in data
across countries. However, work on cross-country generalization
has largely relied on techniques for downstream inferences, such as
mood inference, social context inference, and activity recognition,
and compare their performance across countries to understand
distributional shifts [5, 16, 23, 38]. For example, for a two-country
setting, when a model trained in Country 1 performs poorly in
Country 2, studies directly attribute this finding to distributional
shifts in data across the two countries. Although this approach is
effective, it requires building multiple models to systematically test
generalization performance across countries, which can be time-
consuming and resource-intensive as the number of experiments

https://orcid.org/0000-0003-4441-5892
https://orcid.org/0000-0002-5275-6585
https://orcid.org/0000-0003-0379-2018
https://orcid.org/0000-0001-5488-2182
https://doi.org/10.1145/3600211.3604688
https://doi.org/10.1145/3600211.3604688
https://doi.org/10.1145/3600211.3604688


AIES ’23, August 8–10, 2023, Montréal, QC, Canada Nanchen et al.

grows. Furthermore, comparing models is not always straightfor-
ward due to differences in performance, attributable to choice of
training algorithms, non-optimal parameter tuning, and training
set characteristics, such as different numbers of training samples
per country. However, even though discussed in general terms (e.g.,
data distribution-based shift detection and classifier performance-
based shift detection [37]), prior work does not examine techniques
that allow an understanding of cross-country differences in sensing
modalities without relying on classifier performance.

Further, evaluations of model generalization must consider the
potential for diversity at the sensor level (independent variables)
and target attribute level (dependent variables). For instance, in a
three-country setting, accelerometer readings may exhibit similar-
ity between Country 1 and Country 2 but dissimilarity between
Country 1 and Country 3, whereas location readings may display
similarity between Country 1 and Country 3 but dissimilarity be-
tween Country 1 and Country 2. Current inference performance-
based techniques do not explicitly address the sensor-level diversity
and target attribute diversity across countries (also known as co-
variate shift and label shift, respectively [37]), which may obscure
the understanding of whether shifts affecting poor generalization
occur in the sensors or the targets. Moreover, if such shifts occur in
the sensors, investigations into which sensor modalities are more
likely to be impacted by distributional shifts have yet to be investi-
gated. In this work, we use the terms sensors and sensor modalities,
interchangeably.

Studying topics around mobile sensing and generalization is
important because poor cross-country generalization of machine
learning models could potentially perpetuate societal biases and
result in unfair or ineffective systems. For instance, models de-
veloped in economically privileged countries might not function
as well in less wealthy ones due to different data distributions,
which could exacerbate existing global disparities in technology
benefits. In this context, despite extensive discussion of these is-
sues in fields such as computer vision, speech, and natural lan-
guage processing, the challenges of understanding dataset shifts
and generalization are relatively unexplored in the domain of mo-
bile sensing [5, 23, 38]. Therefore, this study introduces a low-cost
framework to analyze country-level diversity across sensor modali-
ties and target attributes with a large, multi-modal, multi-country
dataset from 689 participants across eight countries. We investigate
whether sensor modalities can reveal the data’s country of origin
and then distinguish country differences in sensor modalities and
the target variable. We suggest two diversity scores to measure coun-
try differences and analyze country pairs to identify generalization
impacting factors. We then apply these scores to study how cross-
country data diversity influences inferences of complex activities
of daily living (ADL). In line with prior work [5], ADL are activities
that punctuate daily routines, are complex in nature, occur over
a non-instantaneous time window, and have a semantic meaning
around which context-aware applications could be built. In this
context, we pose the following research questions:

RQ1: Can the country of origin of data be inferred from each
sensing modality independently and in conjunction, to ascertain
whether each sensing modality captures country-level information?

RQ2: Can country-level diversity be methodically measured in
terms of the capacity to distinguish between countries, using vari-
ous sensing modalities, to gain a comprehensive understanding of
the sensors that influence variations across countries?
RQ3: By considering the inference of ADL as a case study, how
can we consider both sensor data (independent variables) and the
target attribute (ADL—dependent variable) together to understand
country-level diversity across target as shown by sensor data?

By addressing the above research questions, this paper provides
the following contributions:

Contribution 1: We utilized a dataset comprising sensor data col-
lected from 689 college students over a period of four weeks across
eight countries, namely, China, Denmark, India, Italy, Mexico, Mon-
golia, Paraguay, and UK. Our analysis found that each sensing
modality can reasonably infer the country of origin of the user, with
an accuracy ranging between 0.57 and 0.71 for different sensors
and an average accuracy of 0.65. This observation underscores the
crucial role of sensor modalities in comprehending cross-country
dataset generalization. Furthermore, the collective performance of
all sensors in distinguishing countries had an average accuracy
of 0.73, with a minimum of 0.59 and a maximum of 0.84, across
countries. This finding is intriguing as it suggests that different
sensor modalities may capture various aspects of the ‘country of
origin’ and highlights the necessity for further investigation at the
sensor modality level to better understand dataset shifts and model
generalization issues.
Contribution 2: We present a novel approach to assess country-
level diversity by introducing a country-level diversity score (DS1)
that incorporates differences in sensor modalities and countries.
While this is a simple measure, it provides insight into the distribu-
tional disparities of multimodal sensor data across countries. Based
on our scoring methodology, we discovered notable variations in
countries for certain sensor modalities, with high diversity scores
for Italy, Mongolia, and Mexico and low scores for Denmark and
Paraguay. These country-level diversity discrepancies are intriguing
as they could help to understand generalization, even before train-
ing any machine learning models. Specifically, do countries with
high country-level diversity across sensor modalities provide better
training data in terms of generalization? Are they more challenging
as test countries? By examining country pairwise differences (e.g.,
testing if data captured by the App modality differs significantly
for Italy and the UK users), we found that ‘App usage’ and ‘Loca-
tion’ are the two modalities with the highest discriminatory ability
between countries. These outcomes suggest that certain sensor
modalities might have a more pronounced effect on generalization
than others.
Contribution 3: Wepropose a second country-level diversity score
(DS2) that takes into account the country, sensors, and the target
attribute (ADL). Under this scoring scheme, we found considerable
country differences across activities. When comparing the order
of countries in DS1 and DS2, we observed noteworthy differences.
For instance, Italy ranks highest in DS1 but falls to fifth in DS2
scoring. Only Paraguay and Denmark maintain the same rank in
both orderings. This suggests that a country’s distribution of target
attributes may differ from others yet remain similar in terms of
sensor modalities. When analyzing pairwise country differences
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across activities (e.g., examining whether the sensor data of Italy
and India’s users differ for a given activity), we found that no single
activity stands out as a definitive differentiator between pairs of
countries, but many activities can serve this purpose. These re-
sults imply that a person’s ’country of origin’ could influence the
manner in which activities are practiced (dependent variable), as
demonstrated by sensor data (independent variables).

2 BACKGROUND AND RELATEDWORK
There is a plethora of research on mobile sensing related to health
and well-being. These studies have utilized passive sensing data to
infer behavioral, contextual, and psychological aspects of smart-
phone users. Recent studies have highlighted the challenges of
generalization, and several issues remain unresolved. To address
this, Adler et al. [2] employed two longitudinal study datasets to
infer mental health symptoms and investigate their generalization
across publicly available data using inference performance as a mea-
sure of generalization. They found that models trained on combined
data achieved better inference than models trained on single-study
data.

Muller et al. [29] investigated whether patterns in people’s mo-
bility behaviors could passively measure depression. They used a
U.S.-wide sample that was socio-demographic heterogeneous as
well as in mobility patterns, and found that depression inference
from GPS-based mobility did not generalize well to large, demo-
graphically heterogeneous samples. Meegahapola et al. [23] studied
mood inference and found that country-specific approaches per-
formed reasonably well for two or three classes of mood inferences,
but country-agnostic models did not generalize well to unseen
countries. Assi et al. [5] demonstrated that country-specific models
outperformed multi-country models in Human Activity Recogni-
tion (HAR) task settings, evenwhen trained on smaller data samples.
Khal et al. [16] showed that it is possible to achieve state-of-the-
art accuracy in a new country when building personality models
(Big 5), and investigated cross-cultural differences in features by
constructing multiple country-specific models and comparing the
most influential features per country.

Although these studies have highlighted the challenges of gen-
eralization in diverse datasets for a given target task, they all con-
sider inference performance as a metric for generalization. Further,
most of these studies advocate finding better techniques for model
generalization (in case data and labels from target domains are
unavailable) and domain adaptation (when target domain labels
are available). However, they also acknowledge the challenge of
adapting currently available techniques from other domains to mul-
timodal sensing data. Prior work has seldom examined domain
adaptation strategies or techniques to understand distributional
shifts in mobile sensing data for in multimodal settings [8, 23]. In
this work, we analyze country-level diversity directly from sensor
data to provide insights into how country differences are distributed
between sensor modalities and the target attribute (ADL). Our goal
is to contribute to a better understanding of what factors could in-
fluence cross-country generalization in multimodal sensor datasets.
The findings would allow researchers working on mobile sensing

to have a better understanding of distributional shifts when devel-
oping future domain adaptation or generalization techniques in
multimodal settings.

3 DATASET
We used a dataset originally collected as part of the European
WeNet project and described in [13, 23]. The data was gathered
from both undergraduate and graduate students in eight countries,
namely China, Denmark, India, Italy, Mexico, Mongolia, Paraguay,
and the UK, to capture diversity in behaviors across countries. This
diversity is decomposed into two dimensions: inherent attributes
(observable characteristics such as country of origin, gender, and
age) and acquired characteristics2. Both of these dimensions of
diversity were captured during four weeks in November 2020, via
an online questionnaire and a smartphone application called iLog.
The app was designed to record software and hardware sensors, as
well as some metadata, along with hourly questionnaires assessing
the participant’s activity and context. Information such as what the
students were doing, where they were, with whom, and how they
were feeling was collected in time diaries.

The original list of activities included 34 items selected using
prior work in human behavior modeling and social practice [12, 39].
As the data collection took place during the Covid-19 pandemic,
it significantly influenced the students’ way of life. Consequently,
some activities, such as traveling and walking, were underrepre-
sented. To address this issue, activities with similar broad semantic
meanings were merged, such as ‘eating’ and ‘cooking’ and ‘so-
cial media’ and ‘internet chatting’. Activities with very disparate
semantic meanings, such as ‘hobbies’, which include dissimilar ac-
tivities such as ‘painting’ or ‘playing the piano’, were filtered out.
The resulting dataset consisted of twelve activities of daily living,
that modeled the life of a student (Attending class, Eating, Online
comm./Social media, Reading, Resting, Shopping, Sleeping, Sport,
Studying, Walking, Watching something and Working). In total,
the dataset contains 252,393 ADL reports and covers eight coun-
tries. More information about the dataset, including the process of
narrowing down the ADL to 12, and data collection can be found
in [5, 23]. Figure 1 displays the selected activities with their country
distribution.

4 FEATURE EXTRACTION PIPELINE
In this section, we explain how we extract features from a sequence
of data captured from sensors.

4.1 Obtaining Raw Features
The raw data collected from the mobile app contains a sequence of
data captured from hardware and software sensors and time diary
metadata. In our study, we decided to keep a traditional feature
extraction approach by extracting features by means of functionals
applied to a window of features [18, 28]. This approach has the
advantage of yielding features that are interpretable.

Practically, feature extraction for the current activity is done
as follows: first, we pool software and hardware sensor data in a

2We point out that inherent and acquired characteristics are the terms used by ACM
as part of its “Commitment to Diversity, Equity, and Inclusion in Computing”: https:
//www.acm.org/diversity-inclusion/about.
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Table 1: Summary of features extracted from raw sensor data, aggregated around self-reports using ten-minute windows before
and after a time diary entry.

Sensor modality Count Corresponding features
Activity 8 time spent doing following activities: still, in_vehicle, on_bicycle, on_foot, running, tilting, walking

and unknown (Google Activity Recognition API)
App usage 5 time spent on apps of each category: personalization, social, communication, tools and app not

found
Cellular [lte] 4 mean/std/min/max signal strength
Location 3 radius of gyration, sum of distance, altitude mean/min/max, speed mean/min/max
Notifications 4 notifications posted, notifications removed (with and without duplicates)
Proximity 4 mean/std/min/max
Screen events 6 touch events, user presence time, number of episodes, time per episode, min/max/std episode time,

total time
Steps 2 steps counter (since turned on), steps detected
WiFi 5 connected indicator, number of devices, mean/std/min/max rssi

Figure 1: Distribution of countries per activity. The x-axis is
the count of practiced activities.

window of 10 minutes centered around the current ADL report, in
order to capture the characteristics of the activity; then the window
data is discretized by applying various functionals to the continu-
ous stream. Some functionals are specific to the sensor modalities
(i.e. radius of gyration), while others are statistical functions like
the mean, standard deviation, minimum, and maximum. We also
decided to include some high-level features that represent the par-
ticipant movement, by using the Google Activity Recognition API.
This leaves us with nine modalities of sensors describing the ADL
report. Table 1 shows a full description of the sensor modalities with
their respective features. For more infomation about the feature
processing pipeline, please refer to [5, 23]. Note that the ‘Loca-
tion’ sensor modality here captures physical location (GPS), and
we derive various features from by considering a time window and
location traces that quantify the mobility.

4.2 Embedding-Based Representation
The raw extracted features, grouped by sensor modalities, differ in
terms of the range of values and are sparse, i.e., they contain many
zeros. Motivated by these two observations, we converted each sen-
sor modality raw data into a continuous and dense representation

using the fast.ai toolkit [14] tabular data recipe for auto-encoders3,
without the categorical input part. The number of layers for the
auto-encoders is chosen empirically to maximize the evaluation set
performance.

Regarding the embedding size, it is usally chosen in order to
perform well on a downstream task, but in our case, we would like
the embeddings to be as generic as possible, i.e., not depending on
a specific task. We selected the optimal embedding size empirically,
for each sensor modality, by using the elbow method [36] on the
evaluation set reconstruction scores (R2 scores [1]). Optimal embed-
ding R2 scores are close to one for all sensor modalities except for
the ‘Location’ sensor modality, which has a score of 0.56. Then, we
decided to choose the largest optimal embedding size across sensor
modalities as the common embedding size for all sensor modalities
(size of 22) to avoid dimensional bias in the statistical and visual
analyses and to facilitate their combination. Doing so is appro-
priate, as R2 scores empirically increase with higher embedding
dimensions.

To analyze diversity at the smartphone level, we added the 9
sensor modalities. The resulting embedding is a representation
of sensor data. We will use this term in the rest of the paper to
refer to this combined representation. An alternative way would
have been to concatenate them, but this would have yielded a
high-dimensional vector of size 198. We believe that keeping the
dimension smaller is beneficial in terms of dimensionality reduction
and statistical analysis. The resulting embedding can be thought of
as an approximation of embedding modeling all sensor modalities.
This technique is widely used in Graph Neural Network message
passing [11] and has also been used in past ubicomp literature [17].

5 METHODS
In our experimental setting, for all cases where an inference is per-
formed, the dataset was partitioned in a way that ensures similar
country distributions and no overlap of users across the training,
validation, and testing sets, similar to prior work that used leave-k-
participants-out strategy [5, 23]. Specifically, a test user is unseen
during the training phase. The use of this splitting strategy allows

3https://walkwithfastai.com/tab.ae
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for the exploration of country diversity in the testing set with no
bias toward particular users. To assess the generalization of the
approach, we utilized a 10-fold cross-validation [32]. In pairwise
country diversity analysis, all test embeddings from the ten folds
are employed. To implement the aforementioned splitting strategy,
we make ten train/validation/testing sets with respective propor-
tions of 80%, 10%, and 10%. First, we perform a ‘group stratified
split’ utilizing the ‘StratifiedGroupKFold’ class, from the scikit-learn
toolkit [30], with K=10. This gives us the ten sets. Then, for each
training set, we split it into training and validation using the ‘Group-
ShuffleSplit’ class. In both ‘group stratified splits’, the user ids are
serving as the grouping variable.

5.1 Inferring Country of Origin of Sensor Data
(RQ1)

The objective of this research question is to determine if the various
sensing modalities, individually or collectively, contain country-
level information, thereby enabling inference of country of origin
from data. To achieve this, a one-versus-all binary classification task
was set up for each country, and the performance of each sensor
modality, separately and combined, was evaluated. The approach
involved selecting one country for testing, and replacing labels
for all other countries with an ‘all’ label, resulting in two labels:
the country label and the ‘all’ label (e.g., Italy vs. All, Mongolia
vs. All, etc.). To mitigate class imbalance, an equivalent number of
samples as the number of samples for the selected country were
randomly sampled from the ‘all’ sample. A binary classifier was
trained using a random forest model on the sampled data, and the
resulting accuracies averaged across the 10 folds. We used different
models, such as multi-layer perceptron neural networks, XGboost,
and Support vector machines, for the evaluation. However, we
only report results for random forest models for brevity because
they performed the best. Mean accuracy per sensor modality was
determined by averaging all country accuracies.

5.2 Diversity Score (DS1) Considering Sensor
Modalities (RQ2)

This research question aims to quantify country-level diversity
based on various sensing modalities. We propose to assess a coun-
try’s diversity through a country-level diversity score (DS1) that
summarizes country differences across sensor modalities. To assess
the significance of these differences, we rely on statistical tests.
Each country pair for each modality and sensor data is tested. The
experiment consisted of a two-group assessment, evaluating the
country pairwise difference between the averages of the user em-
beddings across all activities. To accomplish this, each country pair
was tested using a PERMANOVA test in conjunction with a PER-
MDISP test [4]. The PERMDISP test was necessary to ensure that
a significant difference was not due to dispersion. It is important
to note that the PERMANOVA tests the null hypothesis that "the
centroids and dispersion of the groups as defined by measure space
are equivalent for all groups." Failure to do so could result in type I
errors, i.e., finding a difference in countries where there are none.

This is especially true since our design is unbalanced (i.e., the num-
ber of users in each country differs). The scikit-bio framework4
was utilized to conduct the tests, with 5000 permutations for the
PERMANOVA test and 1000 permutations for the PERMDISP test,
which tested the ‘centroid’. These numbers were chosen empirically,
to obtain results with high accuracy, while keeping performance
considerations acceptable. A significant threshold of 5% was set
for both tests, requiring the PERMANOVA p-value to be <= 0.05
and the PERMDISP test >= 0.05 for a test to be significant. Since
both PERMANOVA and PERMDISP tests are permutation tests
and have an element of randomness that can impact the results
between different runs, especially for p-values close to 0.05, our
strategy for almost reproducible results was to perform a series
of combined tests (PERMANOVA and PERMDISP) incrementally.
Each incremental test in the series contributed to the previous test
by adding missing significant values (or nothing), with the test-
ing procedure stopping when ten combined tests did not add new
significant values.

Next, we introduce the country-level diversity score (DS1) across
sensor modalities. This score is calculated for a given country by
considering both country and sensor modality differences. The
country count denotes the number of instances in which the given
country differs from another country across all modalities, while
the sensor modality count indicates the number of unique sensor
modalities involved in these differences. By adding both counts we
consider diversity originated from country and modality differences
and obtain the country-level diversity score (DS1). For instance,
according to Table 2, Denmark differs from Mexico only in terms
of the ‘App usage’ and ‘Location’ sensors, resulting in a diversity
score of 3 = 1 (country count) + 2 (modality count). Although this
measure is simple, it allows us to gain an understanding of where
distributional differences exist in multimodal sensor data across
countries. Depending on the research objective, it may be worth
considering a different approach to combining both counts that
places greater emphasis on one aspect over the other.

5.3 Diversity Score (DS2) Considering Sensor
Data and ADL (RQ3)

To assess the diversity of countries across the independent variable,
we propose a country-level diversity score (DS2), which summarizes
the differences between countries with respect to ADLs.

We employ pairwise statistical tests on sensor data (all modali-
ties) for a specific activity and two countries to identify how coun-
tries differ with respect to the target variable. The test provides
insights into how countries differ in terms of the target variable,
and a deeper analysis at the sensor modality level is left for future
work. To obtain reproducible results, we follow the same incremen-
tal procedure as in RQ2, and the same number of permutations is
used for both tests. The country-level diversity score (DS2) across
the target attribute is defined similarly to DS1, but this time across
activities. For instance, when examining Denmark, we found that
it differs from the UK and India in four unique activities, including
Online comm./Social media, Shopping, Studying, and Walking (Ta-
ble 4). Therefore, Denmark’s diversity score is 6 = 2 (country count)
+ 4 (activity count).
4http://scikit-bio.org

http://scikit-bio.org
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Figure 2: A comparison of the average of the 8 one-country-
vs.-all binary classification accuracies, by individual sensor
modalities. Random accuracy is 50%.

6 RESULTS
6.1 Inferring Country of Origin of Sensor Data

(RQ1)
In this section, we aim to examine whether each sensing modality
contains country-level information, and to determine the degree of
accuracy gained by combining all sensor modalities.

The results of the analysis are presented in Figure 2, which pro-
vides a breakdown of the accuracy levels achieved by each sensor
modality. The average accuracy attained in inferring the country of
origin from a single sensor modality is 64.5%, with two modalities
performing well above the average. However, the ‘Steps’ sensor
modality falls short of this mark. The ‘Location’ modality, on the
other hand, exhibits the best performance with an average accuracy
of 70.6%. It is worth noting that the standard deviation values are
moderate (less than 10% across all sensing modalities), indicating a
diversity of smartphone usage patterns across countries. These find-
ings underscore the importance of analyzing each sensor modality
separately to account for inference biases. Figure 3 presents the re-
sults obtained from combining all sensor modalities. On average, it
is possible to infer a country from smartphone sensor data with an
accuracy of 73.0%. The country with the highest inferred accuracy
is Mongolia, with an accuracy rate of 83.5%, while Paraguay has
the lowest inferred accuracy rate of 59.1%. The results suggest that
sensor modalities capture complementary country-level informa-
tion, thereby boosting the overall accuracy of smartphone sensor
data in identifying the country of origin.

Hence, in summary, regarding the first research question (RQ1),
our analysis has revealed that, on average, sensor modalities allow
for the inference of the country of origin of sensor data with an
accuracy of 64.5%. Furthermore, we have observed that when com-
bining sensor modalities, there is a relative gain in performance of
13.2% compared to the average accuracy of individual modalities.
Our results show that on average, a country can be inferred from
smartphone sensor data with an accuracy of 73.0%. Hence, these
results show that sensor data contains country-level information.
This again provides us a motivation into disentangling country-
level distributional shifts across different sensing modalities, rather
than just relying on inference performance of a target variable.

Figure 3: A comparison of the eight one-country-vs.-all bi-
nary classification accuracies with sensor data (all sensor
modalities). Random accuracy is 50%.

6.2 Diversity Score (DS1) Considering Sensor
Modalities (RQ2)

In this section, our objective is to quantify the diversity across
countries at the sensor modality level, with the aim of gaining
insights into the sensors that contribute to country differences.
Specifically, our analysis seeks to achieve two goals: 1) to identify
statistically significant pairwise differences between countries for
each sensor modality; 2) to rank countries based on a country-
level diversity score (Diversity Score 1—DS1) that combines both
country and sensor modality differences. It is important to note
that no distinction is made between activities in this analysis, as we
will explore the influence of activities in the next research question.

Table 2 displays the significant pairwise differences between
countries based on sensor modalities as part of our first goal. Please
note that as a result of this choice, not all country pairs appear in
the Table. The PERMANOVA F statistic is shown as an effect size in-
dicator if the PERMANOVA p-value < 0.05 (statistically significant)
and left empty if the PERMDISP p-value > 0.05 (not statistically
significant). We have omitted the ‘Activity’ and ‘Screen events’
sensor modalities as no significant differences were found among
countries regarding these sensors. Out of the 56 possible country
pairwise comparisons (e.g., Italy vs. India, Italy vs. Mongolia, etc.),
17 showed significant differences (as shown in the first column
of Table 2). Our analysis revealed that sensor modalities do not
capture an equal number of country differences. Specifically, ‘App
usage’ exhibited the highest number of differences (13), followed
by ‘Location’ (6). On the other hand, the ‘Cellular’ sensor modality
only captured one country difference, and ‘Activity’ (here we do not
refer to the ADL, our dependent variable, but to the simple activity
captured using the Google activity recognition API, which is an
independent variable used to infer ADL) and ‘Screen events’ did
not capture any, hence not shown on the table. We further observed
that country differences can be attributed to sensor modality differ-
ences. For instance, Mongolia and Paraguay differ in their readings
from the ‘App usage’, ‘Proximity’, and ‘Wifi’ sensors. Generally,
pairwise country differences are explained by 1-3 sensor modalities
(out of 9 possible), but the sensor modalities that contribute to such
differences vary for specific country pairs. Therefore, we can con-
clude that while differences between the two countries are limited,
there is a large diversity of country differences when considering
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Table 2: Statistically significant differences in smartphone usage by users of different countries per sensor modality. Tests are
performed on individual sensor modality embeddings. The PERMANOVA F statistic is shown if PERMANOVA p-value < 0.05
(statistically significant) and left empty if PERMDISP p-value > 0.05 (not statistically significant).

App usage Cellular Location Notifications Proximity Wifi Steps
China-Mexico 3.2
Denmark-Mexico 2.7 2.1
Italy-China 2.5
Italy-India 2.9 2.9
Italy-Mexico 3.4 1.9
Italy-Mongolia 2.4 4.0
Italy-UK 1.8 2.9
Mexico-India 2.3 2.2
Mongolia-China 1.9
Mongolia-India 2.0 2.7
Mongolia-Mexico 3.5
Mongolia-Paraguay 1.9 2.4 2.0
Mongolia-UK 1.9
Paraguay-Mexico 2.8 2.1
Paraguay-UK 2.2
UK-China 2.2 3.2
UK-Mexico 2.4 4.4

Table 3: Country-level diversity across sensor modalities. Country count corresponds to the number of pairwise differences for
the given country. The sensor modality count is the number of unique sensor modalities involved in these pairwise differences.

Country Diversity Score (DS1) Country count Sensor modality count Involved sensor modalities
Italy 11 5 6 App usage, Cellular, Location, Notifications, Steps, Wifi
Mongolia 10 6 4 App usage, Notifications, Proximity, Wifi
Mexico 10 7 3 App usage, Human Location, Steps
India 8 3 5 App usage, Cellular, Notifications, Steps, Wifi
UK 8 5 3 App usage, Location, Proximity
China 7 4 3 App usage, Location, Notifications
Paraguay 7 3 4 App usage, Location, Proximity, Wifi
Denmark 3 1 2 App usage, Location

all countries. We also noted that most of the differences involved
countries from different continents, except for ‘Italy-UK’, which
exhibited differences in ‘Location’ and ‘App usage’. This finding is
in agreement with the previous work of Meegahapola et al. [23],
which reported that on other inference tasks using the same dataset,
European countries performed better for other European countries
than for non-European ones.

Table 3 presents the country ordering based on the DS1. Italy
holds the highest score, followed by Mongolia and Mexico. Al-
though Italy and Mexico have almost the same DS1, Italy is distinct
in terms of its sensor modalities (i.e., sensor modality count: 6)
rather than its country differences (i.e., country count: 5). This
observation is interesting because it implies that country-level di-
versity of Mexico may be caused by only a few sensor modalities
(i.e., sensor modality count: 3). On the other hand, Denmark has
the lowest score with 1 country and 2 sensor modalities differences.
It is noteworthy that while differences often emerge between two
continents, this does not hold true for country-level diversity across
sensor modalities.

In summary, this research question provides insights into RQ2
by proposing a country-level diversity score that considers both
country and sensor modality differences. Our findings show that
country-level diversity across sensor modalities significantly varies

across different countries. Moreover, we observe that the ‘App
usage’ captures the highest country diversity, followed by the ‘Lo-
cation’ sensor. Additionally, we note that pairwise country differ-
ences can be explained by a maximum of 1-3 sensor modalities. For
example, as mentioned in Table 2, Italy-China have statistically sig-
nificant differences in terms of Notifications (1 modality); Mongolia-
Paraguay have statistically significant differences in terms of App
usage, Proximity, and Wifi (3 modalities), etc. Therefore, our results
indicate that a few specific sensor modalities play a crucial role in
capturing country differences.

6.3 Diversity Score (DS2) Considering Sensor
Data and ADL (RQ3)

In this section, we undertake an analysis that takes into account
both sensor data and the target attribute to gain a better under-
standing of country-level diversity across the classes of the target
variable as represented by the sensor data. For this, we specifically
used ADL Recognition, where target attributes contain 12 activity
classes (see Section 3 for the list of activities). Our analysis has
two goals: 1) to analyze country pairwise differences across ADL
statistically and 2) to rank countries using a country-level diversity
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Figure 4: A comparison of the average of the 12 one-activity-
vs.-all binary classification accuracies, by individual sensor
modalities.

Figure 5: A comparison of one-activity-vs.-all binary classi-
fication accuracies with sensor data (all sensor modalities).
Random accuracy is 50%.

score (Diversity Score 2—DS2) that considers both country and
activity differences.

First, we perform an analysis to investigate the extent to which
sensor modalities can be used to infer each activity. We follow the
same procedure as in RQ1, but this time, we focus on activities
instead of countries. Figure 4 shows that the practiced activity can
be inferred from each sensing modality separately with an average
activity accuracy of 52.4%. Furthermore, Figure 5 demonstrates
that combining sensor modalities is beneficial when inferring ADL,
indicating that sensor modalities are complementary. The average
activity accuracy improves to 55.3% when all sensor modalities
are combined. These results reveal that differentiating a practiced
activity from the other 11 ADLs using sensor data is a challenging
task, as compared to a random accuracy of 50%. Prior studies have
also shown that this is a challenging task, and personalization is
required to attain better performance [5].

Similar to RQ2, we conducted a test to determine significant dif-
ferences across countries, this time in relation to different ADL (goal
1). The results are presented in Table 4. The ‘Sport’ and ‘Working’
activities were excluded from the tables as no significant pairwise
differences were found between countries. We also discarded 4
significant differences involving one country with a sample size
(number of unique students) less than 15, assuming that this case
might not contain enough variability in the data that describes

the activity. Out of 56 possible pairwise comparisons, 18 showed
significant differences (as shown in the first column of Table 4).
Similar to the findings from the analysis of sensor modalities, it
was observed that different activities captured varying numbers of
pairwise differences between countries. Additionally, it was noted
that a pairwise difference between countries could be broken down
into differences in specific activities. Consequently, two countries
could exhibit differences in one activity while showing similarities
in another activity, as indicated by the sensor data (see Appendix
A). Unlike the analysis of sensor modalities, there was no specific
activity that stood out for its diversity across countries. However,
more than half of the activities had at least five pairwise differ-
ences between countries. Furthermore, a single pairwise difference
between countries could be broken down into as many as seven
activities out of the 12 possible, which is greater than the number
observed for modalities (1-3 out of 9 possible). Taken together, these
findings suggest that different countries may exhibit variations in
multiple ways while engaging in a particular activity. This could
pose a challenge to the generalization of ADL inference models and
may explain why country-specific models perform better in prior
work [5].

In response to RQ3, we have shown the relevance of taking into
account both sensor data and target attribute (ADL) when assessing
country diversity in mobile sensing datasets. Our proposed DS2
for countries revealed that significant differences exist between
countries in terms of activity diversity, and that these differences
are distinct from those observed in DS1, which captures sensor
modality diversity. We also noted that no activity particularly cap-
tured country diversity, but many exhibited a substantial number
of country pairwise differences (>= 5). Lastly, we found that up
to seven activities could account for significant country pairwise
differences. In summary, our results highlight the importance of
considering both target ADL and sensor data in evaluating country
diversity, as they provide complementary perspectives on the issue.

7 DISCUSSION
7.1 Summary of Results
In this study, we examined the country-level diversity of a multi-
modal, multi-country dataset collected from 689 participants across
eight countries in the context of a 12-class ADL inference task. Our
investigation aimed to disentangle the influence of sensor modali-
ties and the target attribute on cross-country generalization.

7.1.1 RQ1. We demonstrated that individual sensor modalities
could somewhat infer the country of origin of users and are comple-
mentary, indicating that sensors can capture significant country-
level information, enabling country-level comparisons. However,
the ADL inference from sensor data proved to be more challenging.
Overall, we provided motivation as to why sensor-level analysis
is needed for to understand cross-country model generalization
issues.

7.1.2 RQ2. Further analysis was conducted to assess the effective-
ness of different sensor modalities in capturing country differences.
Our findings indicate that the ‘App usage’ and ‘Location’ modalities
were particularly effective in this regard. This highlights the im-
portance of understanding country differences in these modalities
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Table 4: Statistically significant differences in sensing features by ADL by users of different countries. PERMANOVA F statistic
is shown if PERMANOVA p-value < 0.05 (statistically significant) and left empty if PERMDISP p-value > 0.05 (not statistically
significant).

Attend
class

Studying Sleeping Eating Online
com./
Social
media

Watching
some-
thing

Resting Shopping Reading Walking

China-India 2.7 2.4
China-Mexico 2.0
Italy-China 5.8 2.0 2.7 7.3 2.3 4.7
Italy-India 3.9 5.9
Italy-UK 2.0 2.4 2.0
Mexico-India 2.0 3.1
Mongolia-China 2.6
Mongolia-India 3.0 4.2
Mongolia-Paraguay 1.9 2.8
Mongolia-UK 3.2 4.5 1.9 2.1 2.0
Mongolia-Mexico 2.6
Paraguay-China 2.4 2.8 2.3
Paraguay-India 2.8 4.0 4.2
UK-China 5.7 3.5 2.7 6.6 5.2 5.9 2.1
UK-India 1.9 4.5 4.9 3.5
UK-Mexico 2.3
Denmark-India 3.2
Denmark-UK 2.0 1.9

Table 5: Country-level diversity across activities. The country count corresponds to the number of pairwise differences for the
given country. The activities count is the number of unique activities involved in these pairwise differences.

Country Diversity Score (DS2) Country count Activities count Involved activities
UK 15 6 9 Eating, Online comm./Social media, Reading, Resting, Shopping, Sleeping, Studying, Walking,

Watching something
China 13 6 7 Attending class, Eating, Online comm./Social media, Resting, Sleeping, Studying, Watching some-

thing
India 12 7 5 Attending class, Eating, Online comm./Social media, Sleeping, Studying
Mongolia 12 5 7 Eating, Online comm./Social media, Reading, Resting, Shopping, Sleeping, Studying
Italy 10 3 7 Attending class, Eating, Online comm./Social media, Sleeping, Studying, Walking, Watching some-

thing
Mexico 9 4 5 Online comm./Social media, Resting, Sleeping, Studying, Watching something
Paraguay 9 3 6 Attending class, Eating, Online comm./Social media, Resting, Sleeping, Studying
Denmark 5 2 3 Online comm./Social media, Shopping, Studying

for achieving better cross-country generalization. Interestingly, we
found that the two countries differ, at most, by only three sensor
modalities, but the specific sensors varied across different country
pairs. This suggests that country differences are captured by only a
few sensors and that investigating the content of these sensors could
provide a better understanding of the factors that make countries
distinct. Additionally, the country-level diversity scores for sensor
modalities (DS1) revealed that countries such as Italy and Den-
mark differ greatly in terms of diversity. Specifically, Italy exhibits
a high degree of diversity with respect to both sensor modalities
and country differences, while Denmark does not. Further analysis
of the impact of these differences could aid in understanding the
challenges of cross-country generalization.

7.1.3 RQ3. Furthermore, our analysis revealed that a large num-
ber of activities exhibited numerous pairwise country differences,
suggesting that there might be important variations in how users
in different countries carry out daily activities, as shown by all

sensors. Specifically, we found that two countries could differ in
as many as seven activities, further highlighting the challenges
in cross-country ADL inference. Moreover, the country-level di-
versity score for activities highlighted the existence of significant
diversity among countries, with highly diverse countries such as
the UK exhibiting a diversity score (DS2) of 16, while less diverse
countries such as Denmark had a diversity score of 6. This gap in
diversity scores is an important factor to consider when developing
cross-country models and merits further investigation.

In summary, our study highlights the importance of considering
both sensor modalities and target attributes when assessing country
diversity in mobile sensing datasets. We have provided evidence of
differences in country diversity across sensor modalities and activi-
ties, which have implications for the cross-country generalization
of models.
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7.2 Implications, Limitations, and Future Work
Our findings suggest potential implications for future research to
deepen the understanding of the relationship between country-level
diversity and performance/generalization. Can the proposed Diver-
sity Scores be used as a proxy for generalization in cross-country
datasets? Firstly, it would be valuable to investigate whether there
is a correlation between the ability of sensor modalities to capture
country differences and the performance of models trained on them.
For instance, one could study if a model, when trained on modali-
ties that capture a high number of country differences, generalizes
better. Secondly, our observation that the difference between two
countries can be explained by a limited number of sensor modalities
raises questions about whether accuracy differences between test
countries are primarily due to the modalities where the countries
differ or to other factors. In terms of practical implications, utilizing
the proposed diversity scores to design experiments could facilitate
a better understanding of how different countries generalize. For
example, one could investigate whether training with countries
that exhibit high country-level diversity scores (DS1) outperforms
training with countries that exhibit low country-level diversity
scores in terms of performance and generalization. Additionally,
examining the impact of the country-level diversity of a test set
on performance and generalization across sensor modalities and
activities could provide insights into how to design more robust
mobile sensing models. Finally, it may be worthwhile to explore
the potential benefits of adding a diverse country to an existing
dataset to improve performance and generalization.

This study has several limitations that should be taken into ac-
count. The first point to consider pertains to the dataset. The data
was collected in the Fall of 2020 during the COVID-19 pandemic, a
time when participants, who were university students from eight
different countries, spent a significant amount of time at home.
Therefore, we should not assume that this cohort represents the en-
tire university student population of these countries. It is important
to consider these aspects when interpreting the results. Addition-
ally, regarding sample sizes, the number of unique students per
country varied from 20 (Mexico) to 240 (Italy), with a median of 41
unique students. Although these numbers are statistically sufficient
for testing, larger sample sizes are necessary to draw more robust
conclusions at scale. Secondly, the proposed country-level diversity
score (DS2) across ADL relies on tests that evaluate country differ-
ences in sensor data for combined sensors. Although this provides
insights of the relationship between country differences and ADL at
the smartphone level, it would be interesting to explore further how
country differences relate to activities for each individual modality.
However, this analysis was not provided because the applicability of
the method on all sensor modalities needed to be tested first. These
analyses could help disentangle the relationship between countries,
sensor modalities, and target attributes. Thirdly, statistical tests
were used on the user embeddings of country pairs to assess coun-
try differences. By examining the embeddings (see Appendix A), it
was observed that assessing two-country differences is not always
straightforward. To facilitate the tests, it may be worth exploring
techniques that increase data separation prior to applying statistical
tests, such as applying Linear Discriminant Analysis (LDA) [15] on
embeddings prior to testing. Fourthly, this study focused solely on a

specific target attribute (ADL). It would be interesting to investigate
whether other target attributes, such as social context and mood,
produce the same country-level diversity scores (DS2) as ADL. Ex-
ploring different target attributes could provide additional insights
into country distributional shifts understanding. As a fifth point,
this work focused on investigating the differences captured by sen-
sor modalities and sensor data for the country of origin. It could be
worthwhile to investigate how different states or regions within a
country differ. Additionally, the proposed methodology could be
extended to inherent diversity attributes like gender and age to in-
vestigate their impact on sensor modalities, the target attribute, and
generalization. Understanding how differences exist across users,
how they are captured by sensor modalities, and how they can po-
tentially influence generalization is particularly important for the
health and well-being related mobile sensing-related applications.
Finally, for the country-level diversity scores, the choice was made
to add the count of pairwise country differences and individual
sensor modalities/target attribute differences. Future work could
explore other ways of computing these scores (e.g., a weighted av-
erage) that are more appropriate for understanding generalization
issues, depending on the requirement.

Our work adds to the important topic of generalization across
countries, which has been studied in images [9] and text [21], but
less on mobile datasets. Our work also contributes analysis of a
multi-country dataset that includes both Global North and South
countries with the goal of designing for all of them while taking
into account their specificities.

8 CONCLUSION
Our study, which focuses on ADL inference, utilized a large-scale,
multimodal, multi-country dataset to investigate country-level di-
versity across sensor modalities and activities, with the aim of
disentangling both in order to gain insights on how to achieve
better generalization in cross-country datasets. By proposing two
country-level diversity scores for sensor modalities and activities,
we identified statistically significant differences between countries
that can be explained by specific sensor modalities and ADL. Our
results indicate that Italy has the highest country-level diversity
across sensor modalities, the UK has the highest across activities,
and Denmark has the lowest for both country-level diversities.
However, we observe that these diversity scores do not seem to
correlate, except for Paraguay and Denmark, which have the same
score. In terms of country pairwise differences, our analysis shows
that the ‘App usage’ and ‘Location’ sensors have the highest ability
to distinguish between countries. On the other hand, we found that
no single activity stands out in terms of the ability to distinguish
between countries, but many activities have a high ability to do so.
Finally, we discovered that country pairwise differences could be
explained by only 1-3 sensor modalities and 1-7 activities, which
indicates that cross-country differences between two countries may
be captured by only a few sensors but many activities. As discussed,
our work opens several research directions towards diversity-aware
mobile sensing systems.
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A APPENDIX
In this Appendix, we present two visualization plots that depict country differences across all activities (Figure 6) and between ‘Eating’
and ‘Shopping’ (Figure 7), as revealed by sensor data from all modalities. When the p-value approaches the significance threshold, a closer
examination of the embeddings can aid in a better understanding of country differences. For example, when we inspect the differences
between Mongolia and the UK, which had a low PERMANOVA p-value and a low PERMDISP p-value (left plot in Figure 6), we observe
that the embeddings of both countries are mixed in one of the clusters, indicating that the significant PERMANOVA test might be due to
dispersion. Conversely, when we examine the UMAP plot for the UK and India (right plot in Figure 6), the separation between the two
countries’ embeddings is more distinct. Similarly, ADL differences can be visualized. For instance, the UK and China display differences in
‘Eating’ but not in ‘Shopping’ (see Figure 7).

Figure 6: On the left, UMAP plot comparing Mongolia and the UK users. On the right, UMAP plot comparing the UK and India
users. Each dot on a plot is the 2D projection of a user embedding capturing sensor data (all modalities) across all activities

Figure 7: On the left, UMAP plot comparing China and the UK users while ‘Eating’. On the right, UMAP plot comparing China
and the UK users while ‘Shopping’. Each dot on a plot is the 2D projection of a user embedding capturing sensor data (all
modalities) for a given activity
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