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Abstract— This paper discusses the robustness of executing
robot tasks in contact with the environment. For example, in
assembly, even the slightest error in the initial pose of the
assembled object or grasp uncertainties can lead to large contact
forces and, consequently, failure of the assembly operation.
Force control can help to improve the robustness only to a
certain extent. In this work, we propose using the position and
orientation invariant task representation to increase the robust-
ness of assembly and other tasks in continuous contact with the
environment. We developed a variable compliance controller
which constantly adapts the policy to environmental changes,
such as positional and rotational displacements and deviations
in the geometry of the assembled part. In addition, we combined
ergodic control and vision processing to improve the detection
of the assembled object’s initial pose. The proposed framework
has been experimentally validated in two challenging tasks; The
first example is a mock-up of an assembly operation, where the
object moves along a rigid wire, and the second is the insertion
of a car light bayonet bulb into the housing.

I. INTRODUCTION

Assembly is one of the most common tasks in industrial
robotics. However, assembly operations are not necessary
only in industrial environments but also in our homes, as
many of the daily tasks we perform are assembly tasks.
One of the problems in assembly is accurate calibration.
Consider, for example, the peg-in-a-hole (PiH) task depicted
in Fig 1. Even the smallest errors in the orientation of
the assembled object can result in large positional errors
and, consequently, large forces during the assembly using a
predefined assembly sequence. In automated robot assembly,
complex calibration procedures and specialized hardware are
usually applied to determine the position and orientation of
workpieces. On the contrary, this is often hard to achieve in
a domestic environment. The same applies to small series
and craft production. Therefore, developing procedures that
automatically adapt assembly tasks to environmental changes
is one of the main challenges for the faster introduction of
robotics in our homes and small-scale production [1].

This problem is not new and has been under investigation
since the beginning of robotics. Early approaches tend to
solve the problem by force control [2]. However, force
control is often slow in adaptation and can become unstable,
especially in admittance-based control schemes. Therefore,
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force control is often combined with various learning pro-
cedures that can effectively eliminate the stability problems
but are unsuccessful with stochastic error sources [3], [4],
[5]. One of the most successful approaches turned out to
be compliant control, which can naturally adapt to small
environmental deviations [6].

Alternatively, one can exploit the arising contact forces and
torques to create more robust assembly policies. Based on
this paradigm, we aim to develop an algorithm that can adapt
to larger deviations in object position where compliance and
force control become unsuccessful. The basic idea of our
approach is that while adapting to the environment, the robot
also updates the task according to the current position and
orientation. To adapt to the environment in real-time, we
use two techniques: firstly, the task formulation using a pose
invariant description and, secondly, the execution of the task
with a controller, which inherently adapts to the variable
environmental constraints. We have developed a new position
and orientation invariant trajectories method, distinguished
by its compact form and computational robustness. They
are specially adapted to describe assembly operations. The
proposed approach allows us to avoid lengthy and demanding
calibration procedures usually required in robotic assembly.

Fig. 1. The solid and the dashed outline show the real and the estimated
cylinder, which is subject to peg-in-hole operation. Arrows show the
corresponding true and estimated insertion trajectories.

However, the proposed framework requires at least a
coarse knowledge of the robot’s initial pose when assem-
bling. To this end, we propose a multimodal approach that
combines robotic vision and measured contact forces. The
appropriate initial pose is then explored with an ergodic
controller.

This paper consists of five sections. In Section II we
introduce an incremental policy representation for assembly
tasks based on position and orientation invariant descriptors.
Next, in Section III, we introduce Adaptive Impedance Con-
troller (AIC) as a basic enabler of our approach. It enables
following the desired policy and adaptation to the unknown
and variable environmental constraints. The search for the



initial assembly pose, which combines vision processing and
ergodic control, is explained in Section IV. Experimental
evaluation in Section V considers the validation using a
mockup, which comprises all assembly challenges consid-
ered in our approach, and, finally, the challenging task of
bayonet bulb insertion. A short discussion and conclusions
are provided in Section VI.

II. DESCRIBING CONTACT POLICY USING
POSE-INVARIANT TRAJECTORY NOTATION

Our approach aims to encode the task incrementally, i.e., at
any time, we specify the motion relative to the robot’s current
pose. The incremental task formulation is provided using a
task description where the position and orientation of the
resulting motion trajectory depend only on the initial pose
of the task. We refer to this formulation as pose invariant
task definition. This section proposes a novel approach
for formulating invariant trajectories applicable to assembly
tasks.

Different formulations have been developed for a position
and orientation invariant task description [7], [8]. They are
mainly used to recognize and understand human intentions
and actions in collaborative robotics. Some approaches aim to
compute invariant motion trajectories directly from the video
stream [9]. Others apply invariant geometrical properties
derived from the definition of curvature and torsion [8], [10]
and Frenet-Serret frames [11]. However, most approaches
based on differential geometrical properties suffer from the
limitations that they can only be applied to non-degenerate
trajectories. Roughly speaking, these are trajectories in which
the curvature is different from zero everywhere. As straight-
line motions are common in robot assembly, many assembly
trajectories are degenerate in this sense.

Our approach differs from all previously presented ones in
that it does not deal with the general 6-dimensional motion
of a rigid body. We consider tasks that allow only partial
positional and orientation freedom of motion. The border
between the region where the robot motion is constrained
by the environment and the region where motion is free
is called a C-surface [12]. The motion is possible along
the tangential direction of the C-surface and is constrained
in orthogonal directions. The dimension of the C-surface
determines the number of degrees of freedom of robot motion
in contact with the environment. A typical assembly task
is characterized by an at most two-dimensional C-surface.
Take, for example, a round peg in a hole problem, where the
hole is aligned with the x axis of the robot. Here, only two
coordinates are freely definable, x and the rotation around
x axis. Orientation often changes with position, such as
when screwing or assembling a BNC connector. Tasks can
be composed as a sequence of such movements, such as
inserting a bayonet bulb, composed of a translation followed
by a rotation. In such tasks, a maximum of two degrees of
freedom change simultaneously, one translational and one
rotational. On the other hand, during the execution of the
task, the robot follows environmental constraints. The robot

can follow them more accurately with prior knowledge of
these constraints.

For this reason, we have chosen a four-dimensional task
formulation. This formulation can describe most assembly
operations and operations where the robot is in physical
contact with the environment. In our approach, these degrees
of freedom are aligned with the x-axis of the local coordinate
system, named the object coordinate system. This way, one
can describe the motion as sliding a ring on a rigid wire, as
shown in Fig. 2. This problem comprises all assembly cases
considered in our research.

Fig. 2. A movement of a ring on a rigid wire. The coordinate system
attached to the ring is referred to as the object coordinate system.

Consider that a trajectory of an object (in our case, sliding
a ring on a rigid wire) can be represented by a series
of trajectory points, which are obtained as a sequence of
homogeneous transformation matrices applied to an initial
transformation matrix. Each point on the trajectory is char-
acterized as:

T(k) = T(0)∆T(1) · · ·∆T(k) = T(0)

k∏
i=1

∆T(i), (1)

where the homogeneous transformation matrices are calcu-
lated as

T (0) =

R(0)

x(0)y(0)

z(0)


0 1

 (2)

and

∆T (i) =

∆R(i)

∆x(i)

0

0


0 1

 (3)

=

RT (i-1)R(i)

x(i)-x(i-1)0

0


0 1


The trajectory is thus parameterized with the local coordinate
system R(k) and the displacement in the direction of the x
axis of R(k). Variable k denotes discrete time. It is related
to the continuous time by t = k∆t, ∆t being the sampling
interval. The main advantage of using the above formulation
is an incremental computation of the policy, which enables
adaptation to environmental changes. The next trajectory



sample depends only on the previous, as can be seen from
the relation

T(k) = T(k-1)∆T(k). (4)

This notation, however, is highly redundant, as it requires
10 variables to describe a 4 d.o.f motion. A more compact
representation can be achieved by utilizing the following
transformations

∆x(k) = ν(k)∆t (5)
∆R(k) = exp(ω(k)∆t) (6)

where the exponential mapping (exp : R3 7→ S3,∀ω ∈ R3,
∥ω∥ < 2π), which gives the rotation matrix, obtained using
the Rodrigues formula

exp(ω∆t) = I+sin(∥ω∥∆t)
[ω]×
∥ω∥ +(1−cos(∥ω∥∆t)

[ω]2×
∥ω∥2 , (7)

where [ω]× denotes a skew-symmetric matrix composed of
elements of vector ω. Scalar ν(k) and vector ω(k) constitute
a unique differential time-based description of a space curve
describing the assembled object position and orientation.
Moreover, the spatial position and orientation of the curve
depends only on the initial pose, given by T(0). For this
reason, we call this formulation a pose-invariant notation of
motion.

A more compact representation can be obtained using unit
quaternions. The desired pose passed to the robot controller
is often given with a generalized vector in a form

χ(k) =
[
pT (k) q(k)

]
(8)

where p ∈ R3 is the position vector composed of spatial
coordinates x, y and z, while q ∈ R4 is a unit quaternion,
describing object orientation. We use the notation q =
v + u, where v and u are the scalar and vector part of the
quaternion. The Eq. (4) can be represented in a form

χ(k)=
[
p(k-1)+ν(k)∆t∆q(k) ∗ [0+[1 0 0]T ] ∗∆q(k),

∆q(k) ∗ q(k-1)
]

(9)

Operator (.) stands for a conjugate quaternion. Applying the
well-known relation

∆q(k) = exp(ω(k)∆t) (10)

we obtain

χ(k)=
[
p(k-1)+ν(k)∆t exp(ω(k)∆t) ∗ [0+[1 0 0]T ] ∗

exp (ω(k)∆t(k)), exp(ω(k)∆t) ∗ q(k-1)
]
. (11)

For quaternions, the exponential map is defined as

exp(ω) =


cos (∥ω∥) + sin (∥ω∥) ω

∥ω∥
, ω ̸= 0

1+[0, 0, 0]T , otherwise

(12)

The new trajectory sample depends only on the previous
generalized vector χ(k − 1) and four properties, calculated
from ν(k) and ω(k), that are pose invariant. In the remainder
of the text we refer to them as invariances.

A. Learning of pose-invariant trajectory representation

Unlike other invariant trajectory representations, which
allow describing unconstrained 6 d.o.f motion, calculating
invariances is straightforward. Moreover, the solution always
exists, and it is unique. From a set of sampled trajectory
tuples [p(k) q(k)], k = 1 · · ·T , translational and angular
velocities of the object frame are calculated as

ν(k) = ∥p(k)− p(k − 1)∥/∆t (13)
ω(k) = 2 log(q(k) ∗ q(k − 1))/∆t (14)

The quaternion logarithm log : S3 7→ R3, that maps the
quaternion q to the angular velocity ωωω , is defined as

log(q) = log(v,u) =


arccos(v)

u

∥u∥
, u ̸= 0

[0, 0, 0]T, otherwise

(15)

Next, we define a path variable s as a weighted arc length

s(t) =

∫ tmax

0

(ν(t) + γ∥ω(t)∥)dt. (16)

Scalar γ compensates for the different translational and
rotational motion metrics. For the discrete-time, it turns to

s(k) =

T∑
1

∥p(k)−p(k-1)∥+2γ∥ log(q(k)∗q(k-1))∥, (17)

tmax = T∆t. Using s(k) as a phase variable, we encode
ν(k) and ω(k) with a sum of M Gaussian radial base
functions Ψ in the form

ν̂(s) = x(s)wν , (18)
ω̂(s) = X(s)Wω (19)

x(s) =
[Ψ1(s), . . . ,ΨN (s)]∑N

j=1 Ψj(s)
, (20)

X(s) =

x(s)x(s)

x(s)

 (21)

Ψj(s) = exp
(
−hj (s− cj)

2
)
, j = 1, . . . ,M. (22)

The vector wν ∈ RM and matrices Wω ∈ R3×M contain
free parameters that determine the shape of the encoded
variables ν̂(s) and ω̂(s), cj are the centers of RBFs and
hj their widths. Usually, they are selected so that RBFs
are evenly distributed along the trajectory. RBF weights are
learned after the trajectory demonstration by regression [13].

B. Reconstruction of robot policy from pose-invariant trajec-
tory representation

Invariant representations are very suitable for motion
recognition, as we can directly compare invariances of two
translated and rotated trajectories [11], [10], [14]. However,
invariant policy descriptions can also be used to control
a robot. The advantage of such a description is that the
policy is the same no matter how the trajectory has to be
translated and rotated in space. This is because the rotation



and translation are determined relative to the previous robot
pose. Another, perhaps more important benefit is that the
assembled object can move freely (with some limitations)
during the assembly. At the same time, the policy inherently
adapts to the geometric changes of the environment, e.g, the
base of an assembled object.

For proper execution of the invariant policies, it is ex-
tremely important to estimate proper values of invariances at
the robot’s current pose and, consequently, precise estimation
of the phase variable s. As we will see in the next section, we
allow the robot to adapt to environmental changes by setting
the controller compliant in all axes except in the tangential
direction of motion. For this reason, we can not apply Eq. 17
for phase calculation anymore. Let’s consider, for example,
the simplest possible case, where the robot has to follow
a straight rod (or insert a round peg into a hole, which is
the equivalent case). We allow the rod to change its position
and orientation constantly. In such a case, the robot performs
substantial position and rotational motion. On the other hand,
all that matters is the relative path along the rod. Relative
paths on the rod can be obtained by projecting the robot’s
motion to the vector aligned with the current rod orientation.
This vector can be calculated from the current object pose
and the predicted object pose, given by Eqs. (4–6). During the
online reconstruction of the robot policy, the phase variable
is thus calculated as

s(k) =

T∑
1

(p(k)-p(k-1)+2γ log(q(k)∗q(k-1))·a(k). (23)

In the above equation, the operator (·) denotes the scalar
product and a(k) = Ro(k)[1 0 0]T is the x axis of the object
frame. The calculation of the phase variable also reveals the
main limitation of our approach to robust assembly. Namely,
the assembled object must never move in the direction of the
current tangent of the assembly trajectory, as this results in
improper phase determination.

When controlling the robot, the robot’s actual position
lags behind the reference position due to uncompensated
friction in the joints and friction with the robot environment.
Therefore, in the incremental generation of the trajectory,
where we feed an offset from the current position, the robot
often may not move at all. To overcome the above-mentioned
problem, we propose adaptive lag compensation. The phase
error is defined as

es(s) = ∥ṗd(s)− ṗ(s)∥+ γ∥ωd(s)− ω(s)∥ (24)

Based on the estimated phase error, we calculate a new phase
variable

s∗ = s+ δ

∫
es(s)dt, (25)

which is used to encode ν̂(k) and ω̂(k) that are feed to the
robot controller

ν̂(s) = x(s∗)wν (26)
ω̂(s) = X(s∗)Wω. (27)

δ is a suitably chosen or learned positive constant. The pro-
posed lag compensation algorithm effectively compensates

for the unknown friction and assures the robot follows the
desired path with a given velocity.

Summarizing, during the reconstruction, the phase is cal-
culated by Eq. (23), translational and angular velocities ν̂(s)
and ω̂(s) are calculated using Eq. (26, 27) and the next
trajectory sample, which is passed to the robot controller,
is obtained using Eq. (9).

III. ADAPTIVE IMPEDANCE CONTROLLER (AIC)

This section presents a controller that can autonomously
adapt to environmental constraints. We assume that the
environment constrains the robot’s motion so that only one
direction is possible at any given time. Rotations are also
constrained so that the robot’s orientation can only change
around this direction. It is referred to as the tangential
direction of the assembly trajectory. We formalize this motion
control by utilizing the object frame Ro introduced in
the previous section, which is attached to the robot tool
center point (TCP). Given the object frame, we need a
control law enabling arbitrary compliance application along
the frame axes. In our experiments, we used the passivity-
based impedance control designed for manipulators with
flexible joints [15]. However, it was necessary to modify the
control law to freely set compliance in the object frame. The
commanded torque ρc ∈ RN , which is passed to the robot
motors, is calculated as 1

ρc = BB−1
Θ u+ (I−BB−1

Θ )ρ, (28)

u = JT(θ)

([
fc

mc

]
+

[
fa

ma

])
+ g(θ) +N(θ)θ̇0,

where N is the number of robot joints, θ ∈ RN is the
vector of joint angles estimated from the corresponding
motor angles Θ ∈ RN [16], J ∈ RN×6 is the manipulator
Jacobian, while B, BΘ ∈ R6×6 denote the positive definite
diagonal matrices of the actual and the desired joint inertia,
respectively. The aim of the term BB−1

Θ is to reduce the
joint inertia. ρ are the measured joint torques, and g(θ) is
the gravity vector [17]. N(θ) = (I−J+(θ)J(θ)) ∈ RN×N is
the null space projection operator, J+(θ) denotes the Moore-
Penrose pseudo-inverse of the Jacobian and θ̇0 ∈ RN is the
null space velocity vector. fa and ma are additional forces
and torque vectors in task coordinates, which are used to
override the effect of friction forces during the assembly.
The motor torque controller (28) reduces the motor inertia
and compensates for the robot’s non-linear dynamics. In
contrast, the second part of Eq. (28) provides for the desired
impedance and damping, additional task force, and null space
motion. The task command input [fTc ,m

T
c ]

T is chosen as

fc = −RoDpR
T
o ṗ+RoKpR

T
o ep, (29)

mc = −RoDoR
T
o ω +RoKoR

T
o eq, (30)

where position and orientation tracking errors are defined
as ep = pd − p and eq = 2 log(q ∗ qd). Kp and Ko ∈

1for the sake of simplicity, we omitted discrete time index k in the
following equations



R3×3 are the diagonal matrices that define the positional
and rotational stiffness along and around coordinate axes.
Dp and Do ∈ R3×3 are diagonal damping matrices, which
are set as diagonal elements of the block diagonal matrix
calculated so that the overall system is critically damped.
The null space velocity has to be controlled to prevent non-
conservative motion. An appropriate solution is to set the
desired null space velocities to zero, θ̇0 = −Knθ̇, which
results in an energy dissipation controller [18]. Kn ∈ RN×N

is a positive-definite diagonal gain matrix.
Next, it is essential to provide the necessary controller

stiffness when the robot is expected to change its direction
of motion, i.e, the controller should adapt its compliance ac-
cording to the commanded motion. We propose the following
formulation of variable compliance:

Kp =

kps |ν| 0 0

0 0 0

0 0 0

 (31)

ωo = Roω (32)

Ko =

kos |ωox | 0 0

0 kos |ωoy | 0

0 0 kos |ωoz |

 (33)

To preserve stability, the diagonal elements of Kp and Ko

are limited by an upper bound.
The variable compliance along the object frame ensures

the basic adaptation of the regulation law according to the
limitations of the environment. However, this adaptation
alone may not be enough. Such a control law might fail due
to uncompensated friction in the robot joints and/or friction
between individual objects during assembly, especially when
inserting pegs into very tight holes. Different measures
should be taken to avoid the above-mentioned problems.
Force control is often used to realize a remote center of
compliance [19]

fa = KfRo(fd − f), (34)
ma = KmRo(md −m). (35)

Kf and Km are force controllers gains, fd and md are
the desired forces and torques (usually set to 0), and f and
m are measured forces and torques from the sensor in tool
coordinates. Transformation Ro maps the measured forces
and torques from the tool coordinate system to the robot
coordinate system.

Another approach is to learn the appropriate additional
forces and torques fa,ma, as proposed in [20]. In their
work, the authors propose to superimpose force and torque
oscillations, where the meta parameters of the direction,
amplitude, and frequency of oscillating force are learned.
Others propose a dithering signal with predefined constant
parameters [21], [22]. In our approach, we also chose a
constant frequency of oscillations. In contrast, the direction
of the oscillations was adapted according to the tangent of
the movement, and the amplitude depended on the tracking

error. Thus, the superimposed forces are given by

fa(k) = Ro[1 0 0]Tκ(|ep(k)|)(sin(kπ/4) + 1) (36)

where κ is a constant that determines the superimposed
force amplitude and vectors pd,p denote commanded and
measured position, respectively.

The corresponding overall control scheme for real-time
adaptation of assembly policy is outlined in Fig. 3.

ADAPTIVE 
IMPEDANCE 
CONTROLLER

ROBOT
INCREMENTAL 
TRAJECTORY 
CONTROLLER

Invariant
trajectory

𝒑𝑑 , 𝒒𝑑 𝝆𝑐𝒘𝜈,𝑾𝜔

KINEMATIC 
TRANSFORMATIONS

𝜽, ሶ𝜽

𝒑, ሶ𝒑
𝒒,𝝎

Fig. 3. Incremental controller block scheme.

IV. INITIAL POSE SEARCH WITH ERGODIC CONTROL

For the robot to follow the environmental constraints
imposed by the assembly operation, it must reach the re-
quired initial pose with generally very low tolerances. Vi-
sion processing alone cannot assure the required accuracy;
therefore, we propose combining vision with an active search
algorithm. For active search, we apply a framework based on
ergodic search [23], [24]. In contrast to the standard control
problem, where the goal is to track the robot’s pose, the
goal of ergodic control is to track a distribution that needs to
be covered by the robot. Given the probability distribution,
the resulting system has natural exploration behaviors by
considering information about the regions that should be
explored.

Ergodic search can be viewed as a trajectory generator
whose input is the probability distribution. The output is a
smooth continuous trajectory that visits spatially distributed
locations according to the given probability distribution. The
original approach [23] is based on quadratic cost minimiza-
tion and representation of the trajectories with Fourier series.
The Fourier series coefficients are computed using multi-
dimensional integration over the spatial domain, which can
be computationally costly for high-dimensional state spaces.
Moreover, the control loop involves algebraic operations on
multi-dimensional arrays, making the original approach too
slow for real-time applications in high-dimensional tasks.
This problem was addressed in [24] by relying on tensor
trains, an approach for low-rank factorization of tensor
data, used to compute Fourier coefficients efficiently. Conse-
quently, the ergodic trajectory can be computed in real-time,
even for six DOF distributions. The proposed approach was
experimentally verified in a peg-in-hole task, demonstrating
the robustness of the approach to peg displacements within
the robot gripper. Comparison with traditional search meth-
ods such as Gaussian Mixture Model (GMM) sampling and
spiral search demonstrated that an ergodic controller exceeds
other methods in terms of speed (time to find the hole)
and success rate. Fig. 4 shows a typical trajectory generated
by ergodic control and a trajectory generated with random
sampling for a three-DOF problem.



Ergodic control is thus a perfect candidate for an active
search for the initial pose in assembly tasks. However, to limit
the search space, we apply vision processing. The assembled
object is captured with an RGB-D camera. The point cloud
P0 = {pi}Ni=1 consisting of N points on the object is asso-
ciated with a probability distribution for the initial assembly
pose. Point cloud and probability distributions are associated
by computing a homogeneous transformation Ta between
their centers. We assume that we obtained an assembly policy
for the object at a location giving rise to point cloud P0. Next
time we perform the assembly on a possibly translated and
rotated object, we capture the point cloud P1 and compute
the transformation matrix Tb between P0 and P1. In our
case, transformation matrix Tb was computed using the
CloudCompare [25] implementation of the Iterative Closest
point (ICP) algorithm [26].

To calculate the probability distribution for the assembled
object pose, we apply the transformation TaTbT

−1
a to

the probability distribution at the original pose. Next, we
calculate the corresponding ergodic trajectory and execute it.
When the robot finds the initial pose2 We start the assembly
by taking the current robot pose as the initial. Since the
trajectory is computed incrementally using Eq. (9), we do
not need to apply any other transformation.

V. EXPERIMENTAL EVALUATION

In this section, we experimentally verify the proposed
framework for the robust execution of contact policies,
applied to the seven degrees-of-freedom collaborative robot
Franka Research 3 equipped with a two fingers gripper.
The AIC controller was implemented using the libfranka
library and ros control framework in C++. The incremental
controller, ergodic controller, and vision processing were
implemented in Matlab and Python and communicated with
the AIC using ROS. Point clouds were captured using the
Intel RealSense D435i RGB-D camera.

The first experiments were done on a mockup covering
all the essential assembly problems. It consists of a curved
rod on which there is a sliding bearing. The sliding bearing
is equipped with a screw mechanism, which is used to fix

2Usually, we use position and force measurements to detect that the robot
has found the initial pose. This detection method is case-specific.

Ergodic exploration Sampling based search

Fig. 4. Example trajectories of ergodic exploration strategy (left) and the
sampling-based search (right). The GMM has six equally weighted mixture
components (red spheres). Blue sphere is the selected target region within
the reference probability distributions. Note that the target region is unknown
to the search algorithm.

Fig. 5. Left: A mockup for testing assembly operations Right: Phase
variable and commanded trajectory invariances.

it to the thread attached to the rod’s other end. The rod is
clamped at one end only; the other end can be moved freely.
The mockup is shown in Figure 5.

The initial policy was learned by kinesthetic teaching with
the robot in gravity compensation mode and recalculated in a
pose-invariant incremental representation. The corresponding
invariant variables are shown in Fig. 5. A simple replay of the
learned trajectory failed. The robot got stuck in the curved
part of the rod. The results are shown in Fig. 6 left, where
we can notice increased force in the local x direction as
the robot gets stuck. Next, we applied the AIC proposed in
Section III. The robot successfully accomplished the task, as
shown in Fig. 6 center. The increased force in x direction
is due to the contact with the thread attached at the rod end
during the screwing. However, it could not complete the task
if we randomly moved the other end of the rod extensively
during the task. Finally, we performed the same experiment
by applying incremental policy updates from pose invariances
(Subsection II-B) and AIC. The robot accomplished the
task successfully despite extensive disturbances induced by
randomly moving the free side of the rod, as long as the robot
joints stayed within physical limitations. The robot trajectory,
disturbed by the operator and the corresponding forces and
torques, are shown in Fig. 6 right. Note also that the contact
forces didn’t increase substantially despite the disturbances,
as AIC suppressed them effectively.

The next experiment was the bayonet bulb insertion for
experimental evaluation. The first part of the task is a peg-in-
hole task, where a gap in the bayonet bulb casing determines
the bulb’s orientation. The next part is the rotation of the bulb
to lock it in the final position. The car bulb and the casing
(see Fig. 8 left) were 3D printed and fit each other well 3. The
assembly policy was learned by demonstration. After learn-
ing, we captured the bulb casing point cloud P0. Next, we
captured 32 images of the bulb casing from 32 perspectives
and calculated the centers and principal axes of the gathered
point clouds using the CloudCompare framework. The point
clouds and the probability distributions for positions in a

3Please note that due to the low tolerances, assembly of the printed bulb
was more challenging than the assembly of the real bulb, considered in our
previous research [27]
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Fig. 6. Robot trajectories, contact forces, and torques obtained with different control algorithms and trajectory generation schemes.

GMM form are shown in Fig. 7, left. Finally, we encoded
the assembly policy in a position/orientation invariant form,
as described in Section II.

To test the robustness of assembly regarding the unknown
position and orientation of the bulb casing, we mounted
it on an inclined plate whose position and rotation were
unknown to the robot (see Fig. 8). We recorded the point
cloud P1 and displaced the GMM distribution associated with
P0 to the new pose (Fig. 7 right). Based on the displaced
distribution, the ergodic controller found a new initial pose
for the assembly in 9 seconds on average. After that, the robot
successfully inserted the bulb in a casing by incremental
policy updates from pose invariances and the proposed AIC.
The phase variable and invariances are shown in Fig. 8.
Finally, we repeated the same experiment, but this time the
case was held by a human performing random displacements
of the housing. Nevertheless, the robot successfully inserted
the bulb into the housing using the proposed framework. The
corresponding videos of all experiments illustrate the robust
assembly using invariant policy representation.

VI. CONCLUSION

In this research, we considered the problem of robust exe-
cution of the assembly tasks, where the pose of the assembled
object is not known in advance. Regardless of whether we
can precisely determine the starting point of the assembly,
even minimal changes in the orientation assessment can
cause large deviations, especially for extended objects. In
addition, the usual assembly procedures fail if the object’s
posture changes during assembly. Our main challenge was
developing a methodology for assembly policy generation
that seamlessly adapts to environmental changes.

We addressed two problems, a) how to generate an envi-
ronmentally adaptable assembly policy and b) determine the
starting point for implementing an assembly policy. To solve
the first problem, we proposed incremental execution of the
trajectory using AIC and pose-invariant formulation of the
policy. We combined point clouds and an ergodic controller
to solve the second problem.

The proposed approach is suitable for assembly operations
and can be used for many other tasks where the robot is in



Fig. 7. Left: Point cloud of the bulb casing P0 (grey) and the GMM
for the positional distribution used in ergodic controller (yellow-red); Right:
Displaced point cloud P1 (grey) and a positional trajectory for the ergodic
search (yellow).

Fig. 8. Left: Franka robot during the execution of the position and orien-
tation invariant policy for the bayonet bulb insertion into the casing. Right:
Phase and commanded trajectory invariances for bayonet bulb insertion.

constant contact with the environment. The requirement that
the assembled object never moves in the direction of the
current tangent of the assembly trajectory can be overridden
by additional sensors, e.g., vision. Further steps in our
research will extend our framework to assembly cases where
a component carried by the robot may shift in the gripper
due to imperfect grasping.
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N. Krüger, and A. Ude, “Adaptation of manipulation skills in physical
contact with the environment to reference force profiles,” Autonomous
Robots, vol. 39, no. 2, pp. 199–217, 2015.

[4] C. C. Beltran-Hernandez, D. Petit, I. G. Ramirez-Alpizar, and
K. Harada, “Variable compliance control for robotic peg-in-hole as-
sembly: A deep-reinforcement-learning approach,” Applied Sciences,
vol. 10, no. 19, p. 6923, 2020.

[5] M. Suomalainen, Y. Karayiannidis, and V. Kyrki, “A survey of robot
manipulation in contact,” Robotics and Autonomous Systems, vol. 156,
p. 104224, 2022.

[6] S. K. Yun, “Compliant manipulation for peg-in-hole: Is passive compli-
ance a key to learn contact motion?” Proceedings - IEEE International
Conference on Robotics and Automation, pp. 1647–1652, 2008.

[7] D. Aarno and D. Kragic, “Motion intention recognition in robot
assisted applications,” Robotics and Autonomous Systems, vol. 56,
no. 8, pp. 692–705, 2008.

[8] M. Saveriano and D. Lee, “Invariant representation for user indepen-
dent motion recognition,” in 2013 IEEE RO-MAN, 2013, pp. 650–655.

[9] Y. Piao, K. Hayakawa, and J. Sato, “Space-time invariants for rec-
ognizing 3D motions from arbitrary viewpoints under perspective
projection,” Third International Conference on Image and Graphics
(ICIG’04), pp. 200–203, 2004.

[10] M. Vochten, T. D. Laet, and J. De Schutter, “Generalizing demon-
strated motion trajectories using coordinate-free shape descriptors,”
Robotics and Autonomous Systems, vol. 122, p. 103291, 2019.

[11] R. Soloperto, M. Saveriano, and D. Lee, “A bidirectional invariant
representation of motion for gesture recognition and reproduction,” in
IEEE International Conference on Robotics and Automation (ICRA),
2015, pp. 6146–6152.

[12] M. T. Mason, “Compliance and force control for computer controlled
manipulators,” IEEE Transactions on Systems, Man, and Cybernetics,
vol. 11, no. 6, pp. 418–432, 1981.

[13] A. Ude, A. Gams, T. Asfour, and J. Morimoto, “Task-Specific Gen-
eralization of Discrete and Periodic Dynamic Movement Primitives,”
IEEE Transactions on Robotics, vol. 26, no. 5, pp. 800–815, oct 2010.

[14] Y. Li, R. Xia, and X. Liu, “Learning shape and motion representations
for view invariant skeleton-based action recognition,” Pattern Recog-
nition, vol. 103, p. 107293, 2020.

[15] A. Albu-Schaffer, C. Ott, and G. Hirzinger, “A unified passivity-
based control framework for position, torque and impedance control of
flexible joint robots,” The International Journal of Robotics Research,
vol. 26, no. 1, pp. 23–39, 2007.

[16] C. Ott, A. Albu-Schaffer, A. Kugi, and G. Hirzinger, “On the Passivity-
Based Impedance Control of Flexible Joint Robots,” IEEE Transac-
tions on Robotics, vol. 24, no. 2, pp. 416–429, 2008.

[17] C. Ott, A. Albu-Schaffer, A. Kugi, S. Stramigioli, and G. Hirzinger,
“A passivity based Cartesian impedance controller for flexible joint
robots - part I: torque feedback and gravity compensation,” in IEEE
International Conference on Robotics and Automation (ICRA), New
Orleans, LA, 2004, pp. 2659–2665.

[18] O. Khatib, “A unified approach for motion and force control of
robot manipulators: The operational space formulation,” Robotics and
Automation, IEEE Journal of, vol. 3, pp. 43–53, 1987.

[19] J. Jiang, Z. Huang, Z. Bi, X. Ma, and G. Yu, “State-of-the-art
control strategies for robotic PiH assembly,” Robotics and Computer-
Integrated Manufacturing, vol. 65, pp. 1–26, 2020.

[20] L. Johannsmeier, M. Gerchow, and S. Haddadin, “A framework
for robot manipulation: Skill formalism, meta learning and adaptive
control,” 2019 International Conference on Robotics and Automation
(ICRA), pp. 5844–5850, 2019.

[21] S. Ipri and H. Asada, “Tuned dither for friction suppression during
force-guided robotic assembly,” in Proceedings 1995 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems. Human Robot
Interaction and Cooperative Robots, vol. 1, 1995, pp. 310–315 vol.1.

[22] A. Stolt, A. Robertsson, and R. Johansson, “Robotic force estimation
using dithering to decrease the low velocity friction uncertainties,”
in 2015 IEEE International Conference on Robotics and Automation
(ICRA), 2015, pp. 3896–3902.
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