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Abstract—Applications of face recognition systems for authen-
tication purposes are growing rapidly. Although state-of-the-art
(SOTA) face recognition systems have high recognition accuracy,
the features which are extracted for each user and are stored
in the system’s database contain privacy-sensitive information.
Accordingly, compromising this data would jeopardize users’
privacy. In this paper, we propose a new cancelable template
protection method, dubbed MLP-hash, which generates protected
templates by passing the extracted features through a user-
specific randomly-weighted multi-layer perceptron (MLP) and
binarizing the MLP output. We evaluated the unlinkability, irre-
versibility, and recognition accuracy of our proposed biometric
template protection method to fulfill the ISO/IEC 30136 standard
requirements. Our experiments with SOTA face recognition sys-
tems on the MOBIO and LFW datasets show that our method has
competitive performance with the BioHashing and IoM Hashing
(IoM-GRP and IoM-URP) template protection algorithms. We
provide an open-source implementation of all the experiments
presented in this paper so that other researchers can verify our
findings and build upon our work.

Index Terms—Biometrics, Face recognition, Hashing, Multi-
Layer Perceptron (MLP), Template Protection.

I. INTRODUCTION

Face recognition has become a popular authentication tool
and has been widely used in recent years. The state-of-
the-art (SOTA) face recognition systems mainly use convo-
lutional neural networks (CNNs) to extract features, called
“embeddings”, from face images. In the enrollment stage,
these features are extracted from each user’s face and are
stored as reference templates in the database of the face
recognition system. Then, in the recognition stage, similar
features are extracted from the user, and the resulting probe
template is compared with the reference embedding stored in
the system’s database. These face features contain privacy-
sensitive information about the user’s identity [1], [2]. Hence,
data protection regulations, such as the EU General Data Pro-
tection Regulation (GDPR) [3], consider biometric templates
as sensitive data that must (legally) be protected.

To protect biometric templates, different methods have been
proposed in the literature [4], [5]. According to the ISO/IEC
30136 standard [6], each biometric template protection (BTP)
scheme generally should have four main properties:
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Fig. 1: Block diagram of MLP-Hash protected face recognition
system

• Cancelability: If a biometric template is compromised,
we should be able to cancel the enrolled protected tem-
plate and replace it with a new protected template.

• Unlinkability: Considering the cancelability property,
there should be no link between different protected tem-
plates from the same unprotected (original) biometric
template.

• Irreversibility: It should be computationally difficult or
impossible to recover the original biometric templates
from the protected templates.

• Recognition Accuracy: The protected templates should
allow for accurate recognition and should not result in
recognition accuracy degradation.

BTP methods can generally be categorized into cancelable
biometrics and biometric cryptosystems. In cancelable tem-
plate protection methods (such as BioHashing [7], Index-of-
Maximum (IoM) Hashing [8], etc.) a transformation function
is often used (which is dependent on a key) to generate
protected templates, and then for recognition the comparison
is performed in the transformed domain [4], [9]. However,
in biometric cryptosystems (such as fuzzy commitment [10],
fuzzy vault [11], etc.), a key is either bound with a biometric
template (called key binding schemes) or generated from a
biometric template (called key generation schemes). Then,
recognition is based upon correct retrieval or generation of
the key [12].

In this paper, we propose a new cancelable biometric
template protection scheme, dubbed MLP-Hash, which in-
cludes a non-linear projection step through a user-specific
randomly-weighted multi-layer perceptron (MLP), followed
by a binarization step. We employ the user’s private key to
initialize the MLP with random orthonormal values. Then, we
project the templates to a new space through the initialized



MLP, which contains nonlinear activation functions. Finally,
at the output layer, we binarize the final layer of the MLP to
generate the protected template.

We evaluate the unlinkability and irreversibility properties
of our template protection method to fulfill the ISO/IEC 30136
standard [6] requirements. We also consider two scenarios
when evaluating the method’s recognition accuracy: the nor-
mal scenario (which is the expected scenario in practice) and
the stolen token scenario (which is the case when the user’s
MLP-Hash key is stolen). Then, we evaluate the protected tem-
plates of three SOTA face recognition methods (i.e., ArcFace
[13], FaceNet [14], and InceptionResnetV2-CenterLoss [15])
on the Labeled Faced in the Wild (LFW) [16] and MOBIO
[17] datasets. Our experiments show that MLP-Hash achieves
promising performance in protecting SOTA face recognition
systems.

The rest of this paper is organized as follows. First, we
describe our biometric template protection method in section
II. Then, in section III, we evaluate MLP-Hash in terms of
unlinkability, irreversibility, and recognition accuracy. Finally,
the paper is concluded in section IV.

II. PROPOSED METHOD

Figure 1 represents the block diagram of an MLP-Hash
protected face recognition system. As depicted in this figure,
MLP-Hash uses unprotected features, which are extracted from
the user’s face image, along with the user’s key, to generate the
protected template. In section II-A, we describe the MLP-Hash
algorithm in detail. During the enrollment stage, the protected
templates are stored in the system’s database and are later
compared with the probe template during the recognition stage
as described in section II-B. We should note that compared to
BTP schemes which use neural networks and require training,
e.g. [18]–[20], our proposed method does not require training
and the weights are specified using the user’s key (as described
in section II-A).

A. MLP-Hash Algorithm

Let U indicate an unprotected biometric template (i.e.,
embedding) extracted by a face recognition model. The MLP-
Hash protected template, P , can be generated by algorithm 1
using the user’s key, k, and the unprotected template, U , in
two steps. First, U is fed into an MLP with H hidden layers,
activation function F (.)1, and the pseudo-random orthonormal
weights initialized with seed k. To generate pseudo-random
orthonormal matrix M⊥` in layer ` of the MLP, we first
generate a pseudo-random matrix M`, and then apply the
Gram-Schmidt orthonormalization process on the rows of M`.
After feeding the U into the MLP with the pseudo-random
orthonormal weights, in the second step, we binarize the output
of MLP to generate the protected template, P .

1In this paper, we use the Rectified Linear Unit (ReLU) activation function
which is a non-linear and many-to-one function.

Algorithm 1 MLP-Hash algorithm
1: Inputs:
2: U : unprotected biometric template (i.e., embedding)
3: H : number of MLP hidden layers
4: LMLP : set of lengths of MLP layers (L(`)

MLP), including input
layer (` = 0), hidden layers (1 ≤ ` ≤ H), and output layer
(` = H + 1)

5: F (.) : activation function
6: k : user’s key
7: Output:
8: P = {pi|i = 1, 2, ..., L

(H+1)
MLP } binary MLP-Hash protected

template
9: Procedure:

10: Step 1: Passing through pseudo-random MLP
11: Set initial value of Γ with U
12: for ` in {1, ..., H + 1} do
13: Generate a pseudo-random matrix M` based on the user’s

seed (k): M` ∈ RL
(`−1)
MLP ×L

(`)
MLP .

14: Apply the Gram-Schmidt process on the rows of the
generated pseudo-random matrix M` to transform it into an
orthonormal matrix M⊥`

15: Update value of Γ with matrix product of Γ and M⊥`

16: Update value of Γ by applying activation function F (Γ)
17: end for
18: Step 2: Binarizing the output of MLP
19: Compute L(H+1)

MLP bits MLP-Hash {pi|i = 1, 2, ..., L
(H+1)
MLP }

from

pi =

{
0 if Γi ≤ τ
1 if Γi > τ

, i = 1, ..., L
(H+1)
MLP ,

where τ is the average of Γ elements.
20: End Procedure

B. Comparing MLP-Hash Templates

In the enrollment stage, the reference MLP-Hash templates,
P , should be stored in the system database (ideally separately).
In the recognition stage, we use Hamming distance to calculate
the score between each pair of probe and reference MLP-
Hashed templates. In the subsequent experiments, we consider
the MLP-Hash protected face recognition systems operating in
verification mode only.

III. EXPERIMENTS

In this section, we describe our experiments and evaluate
the properties of MLP-Hash as a biometric template protection
scheme in accordance with the ISO/IEC 30136 standard. First,
in section III-A, we describe our experimental setup and the
baselines used. Next, we evaluate the unlinkability, irreversibil-
ity and recognition accuracy of MLP-Hash in sections III-B,
III-C, and III-D, respectively. We should note that cancelability
is inherently satisfied in the MLP-Hash algorithm, since like
other cancelable BTP methods, we can easily revoke the
compromised template in the database, assign a new key for
the user, and register the user with a new protected template.
Finally, we discuss our experiments in section III-E.

A. Experimental Setup and Baselines

As stated in section I, in our experiments we used the
MOBIO [17] and Labeled Faced in the Wild (LFW) [16]
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Fig. 2: Unlinkability evaluation of unprotected and MLP-
Hash protected ArcFace templates on the MOBIO dataset:
a)Unprotected templates, b)MLP-Hash protected templates.

databases to evaluate the recognition accuracy of MLP-Hash
on SOTA face recognition models. The MOBIO dataset is a
bimodal dataset including audio and face data acquired using
mobile devices from 152 people. We used the development
subset of the mobio-all protocol2 in our experiments. The LFW
database includes 13,233 images of 5,749 people, where 1,680
people have two or more images. We used the View 2 proto-
col3 to evaluate the models. We also used three SOTA face
recognition models4, including ArcFace [13], FaceNet [14],
and InceptionResnetV2-CenterLoss [15]. We compare the per-
formance of our template protection method on the same face
recognition systems with the BioHashing [7] method and two
methods based on Index-of-Maximum (IoM) Hashing [8] (i.e.,
Gaussian random projection-based hashing, shortly GRP, and
uniformly random permutation-based hashing, shortly URP).
In each case, we generate protected templates whose length is
equal to the length of the embedding (i.e., number of elements
in the embedding) for each face recognition model. We set all
the hidden layers of MLP-Hash to twice the length of the
embeddings for each face recognition model. The number of
hidden layers (H) was 3 in our experiments.

For our experiments, we used the Bob5 toolbox [21], [22].
To implement the BioHashing algorithm, we used the open-
source implementation of the BioHashing in Bob [23], [24].
The source code from our experiments is publicly available to
help reproduce our results6.

B. Unlinkability Evaluation

To evaluate the unlinkability criterion, we used the frame-
work proposed in [25]. This framework uses the score distri-
butions of the mated templates (i.e., different templates from
the same user) and non-mated templates (i.e., templates from
different users) to measure unlinkability with respect to the
overlap of these two distributions. More particularly, with this
evaluation, we expect that in the case of linkable templates,

2The implementation of the mobio-all protocol for the MOBIO dataset is
available at https://gitlab.idiap.ch/bob/bob.db.mobio

3The implementation of the View 2 protocol for the LFW dataset is available
at https://gitlab.idiap.ch/bob/bob.db.lfw

4The implementation of each face recognition model is available at https:
//gitlab.idiap.ch/bob/bob.bio.face

5Available at https://www.idiap.ch/software/bob/
6Source code: https://gitlab.idiap.ch/bob/bob.paper.eusipco2023 mlphash

TABLE I: Unlinkability evaluation of MLP-Hash, BioHash,
IoM-GRP, and IoM-URP protected templates of the ArcFace
embeddings in terms of the system’s global unlinkability
measure (Dsys

↔ ).

MLP-Hash BioHash IoM-GRP IoM-URP

0.010 0.009 0.011 0.007

TABLE II: Irreversibility evaluation of MLP-Hash, BioHash,
IoM-GRP, and IoM-URP protected templates of the ArcFace
embeddings in terms of Success Attack Rate (%) on the
MOBIO dataset at FMR of 10−2 and 10−3.

Configuration MLP-Hash BioHash IoM-GRP IoM-URP

FMR = 10−2 39.05 43.81 35.71 14.29

FMR = 10−3 9.05 10.48 7.14 1.43

the mated and non-mated templates score distributions will be
separated. However, in the case of unlinkable templates, these
distributions should completely overlap. Figure 2 compares
the unlinkability of original (unprotected) and MLP-Hash
protected ArcFace templates on the MOBIO dataset using
this evaluation framework7. To calculate the distribution of
mated scores in this figure, we generated different templates
for the same user using different keys, then calculated the
scores between these templates. However, for the distribution
of non-mated scores, we generated protected templates for
different users (with different keys) and computed the scores
between them. As shown in this figure, while the distributions
of mated scores and non-mated scores are fully separated
for unprotected templates, they almost completely overlap for
the MLP-Hash protected templates. Furthermore, the value of
the system’s global unlinkability measure (Dsys

↔ ) is reduced
from 1.0 (for the unprotected system) to 0.01 (for the MLP-
Hash protected system) by deploying our template protection
method, showing that the resulting protected templates are
almost fully unlinkable. Table I compares the unlinkability
of MLP-Hash, BioHash, IoM-GRP, and IoM-URP protected
templates of the ArcFace embeddings on the MOBIO database.
As this table shows, all these template protection schemes have
comparable unlinkability and they are almost fully unlinkable.

C. Irreversibility Evaluation

To evaluate the irreversibility of the proposed template
protection scheme, we consider the worst-case and most
difficult threat model in ISO/IEC 30136 standard (referred
to as full disclosure threat model), where the attacker knows
everything about the system, including algorithms, secret keys,
etc. We assume that the attacker would invert the protected
template, then use the inverted template to enter a similar
unprotected system. Accordingly, we evaluate the irreversibilty
in term of Success Attack Rate (SAR), which indicates the
attacker’s success rate in entering the unprotected system using

7The corresponding plots for other models are also available in the software
package of the paper.

https://gitlab.idiap.ch/bob/bob.db.mobio
https://gitlab.idiap.ch/bob/bob.db.lfw
https://gitlab.idiap.ch/bob/bob.bio.face
https://gitlab.idiap.ch/bob/bob.bio.face
https://www.idiap.ch/software/bob/
https://gitlab.idiap.ch/bob/bob.paper.eusipco2023_mlphash


TABLE III: Comparison of MLP-Hash-protected, BioHash-protected, IoM-GRP-protected, IoM-URP-protected, and unprotected
(Baseline) SOTA Face Recognition models, in terms of TMR (%) in the normal and the stolen scenarios on the MOBIO and
LFW datasets. The threshold in each system is selected individually at an FMR of 10−3. The results are reported as (mean±std)
for 10 different experimental trials.

Dataset Model Baseline normal scenario stolen scenario
MLP-Hash BioHash IoM-GRP IoM-URP MLP-Hash BioHash IoM-GRP IoM-URP

MOBIO
ArcFace 100.00 100.00± 0.00 100.00± 0.00 100.00± 0.00 99.59± 0.08 100.00± 0.00 99.95± 0.04 99.98± 0.03 98.88± 0.13

FaceNet 97.87 99.05± 0.48 99.93± 0.04 99.99± 0.01 95.56± 0.50 76.40± 6.19 89.38± 2.12 94.41± 0.83 87.51± 1.03

IncResNetV2 96.69 99.98± 0.04 99.99± 0.01 100.00± 0.00 99.96± 0.03 65.12± 5.07 76.46± 7.49 92.56± 2.73 91.38± 1.35

LFW
ArcFace 98.73 98.86± 0.13 98.84± 0.05 99.19± 0.06 88.78± 1.37 95.54± 0.54 98.56± 0.06 98.62± 0.06 84.79± 1.98

FaceNet 93.17 90.90± 0.90 96.81± 1.12 99.38± 0.09 69.29± 2.99 59.42± 5.02 83.19± 5.32 85.78± 4.92 50.77± 6.96

IncResNetV2 93.33 99.42± 0.44 99.95± 0.05 100.00± 0.00 98.06± 0.35 47.40± 14.22 64.13± 19.89 83.38± 6.27 81.38± 2.75

the inverted templates. Hence, a higher SAR shows that the
templates are more invertible, while a lower (or zero) SAR
indicates that the protected templates are harder to invert.

To evaluate such an attack, similar to [26], we used a
numerical solver (implemented in the SciPy package8) to find
an estimate of the original template, which is mapped to
the same output through the template protection module. The
solver starts from an initial guess, and through an iterative
process, tries to find an answer which gives the same output
(as the given protected template) when passed as the input
to the MLP-Hash with the same key. We also assumed that
the attacker knows the distribution of unprotected templates,
and uses this distribution to extract 10 samples as initial
guesses in separate attempts. In each attempt, in the case of
convergence of the solver, the inverted template is used to
enter an unprotected system with a match threshold at a False
Match Rate (FMR) of 10−3 (using the same feature extraction
module).

Table II compares the irreversibility of MLP-Hash, Bio-
Hash, IoM-GRP, and IoM-URP protected templates of the
ArcFace embeddings on the MOBIO database in terms of the
SAR. As this table shows, the irreversibility of MLP-Hash is
comparable to that of the BioHash and IoM-GRP methods.
However, IoM-URP protected templates are more difficult to
invert using our adopted inversion technique.

D. Recognition Accuracy Evaluation

To evaluate the recognition accuracy of MLP-Hash, we
considered two scenarios: the normal scenario and the stolen
token scenario. In the normal scenario, which is the expected
scenario for most cases, each user’s key is assumed to be
secret. However, in the stolen token scenario (or briefly stolen
scenario), we assume that the impostor has access to the
user’s secret key and uses this key with the impostor’s own
unprotected template. To implement the stolen scenario, in the
verification stage we used the same key as the genuine’s key
for other users in the database to generate their MLP-Hash
templates.

Table III compares the MLP-Hash-protected, BioHash-
protected, IoM-GRP-protected, IoM-URP-protected, and un-
protected (baseline) templates of the SOTA face recognition

8https://scipy.org/

TABLE IV: Complexity comparison of template protection
methods in terms of average execution time (milliseconds).
The results are reported as (mean±std) for 1000 different
experimental trials.

MLP-Hash BioHash IoM-GRP IoM-URP

61.9± 0.5 12.5± 0.5 77.6± 0.2 36.2± 0.9

models, in terms of True Match Rate (TMR) in the normal
and the stolen scenarios on the MOBIO and LFW datasets.
The threshold in each system is selected individually at an
FMR of 10−3. As this table shows, in the normal scenario,
all the protection schemes achieve comparable performance
on the MOBIO dataset. However, on the LFW dataset, IoM-
URP clearly has the worst performance. In the stolen scenario,
IoM-GRP appears to perform the best across all three face
recognition models and both evaluation datasets.

E. Discussion

Table I, Table II, and Table III compare the unlinkability,
irreversibility and recognition accuracy, respectively, of our
proposed template protection method with the BioHash, IoM-
GRP, and IoM-URP algorithms. Table IV also compares the
complexity of the aforementioned methods in generating pro-
tected templates from the ArcFace model in terms of average
execution time (milliseconds) on a system equipped with an
Intel(R) Core(TM) i7-7700K CPU @ 4.20GHz. Based on
these results, IoM-URP is the most irreversible algorithm,
however it clearly has the worst performance in the normal
scenario (which is the expected scenario in practice). IoM-
GRP has slightly better irreversibility than MLP-Hash, and its
recognition accuracy is the best in most cases. However, it
has the longest execution time amongst the studied protection
methods. BioHashing has comparable recognition accuracy
with MLP-Hash, and has slightly worse irreversibility. How-
ever, BioHashing has the shortest execution time. All in all,
our experiments show that while all these template protection
schemes have comparable unlinkability, there is a trade-off
between irreversibility, recognition accuracy, and complexity.

IV. CONCLUSION

In this paper, we proposed a new cancelable biomet-
ric template protection scheme, dubbed MLP-Hash, which

https://scipy.org/


uses a user-specific randomly-weighted multi-layer percep-
tron (MLP) with non-linear activation functions, followed by
binarization of the output. We evaluated the unlinkability,
irreversibility and recognition accuracy of MLP-Hash as per
the ISO/IEC 30136 standard requirements, using SOTA face
recognition models. Our protection method was found to
satisfy these criteria to a high degree. In addition, we compared
MLP-Hash with the BioHashing and IoM Hashing (IoM-GRP
and IoM-URP) protection algorithms on the same SOTA face
recognition systems, in terms of the recognition accuracy,
unlinkability, and irreversibility criteria. Our experiments in-
dicate that while all these template protection schemes are
almost unlinkable, there is a trade-off between irreversibility,
recognition accuracy, and complexity.
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