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Abstract

State-of-the-art face recognition networks are often com-
putationally expensive and cannot be used for mobile appli-
cations. Training lightweight face recognition models also
requires large identity-labeled datasets. Meanwhile, there
are privacy and ethical concerns with collecting and using
large face recognition datasets. While generating synthetic
datasets for training face recognition models is an alter-
native option, it is challenging to generate synthetic data
with sufficient intra-class variations. In addition, there is
still a considerable gap between the performance of models
trained on real and synthetic data. In this paper, we propose
a new framework (named SynthDistill) to train lightweight
face recognition models by distilling the knowledge of a pre-
trained teacher face recognition model using synthetic data.
We use a pretrained face generator network to generate syn-
thetic face images and use the synthesized images to learn
a lightweight student network. We use synthetic face im-
ages without identity labels, mitigating the problems in the
intra-class variation generation of synthetic datasets. In-
stead, we propose a novel dynamic sampling strategy from
the intermediate latent space of the face generator network
to include new variations of the challenging images while
further exploring new face images in the training batch. The
results on five different face recognition datasets demon-
strate the superiority of our lightweight model compared
to models trained on previous synthetic datasets, achiev-
ing a verification accuracy of 99.52% on the LFW dataset
with a lightweight network. The results also show that our
proposed framework significantly reduces the gap between
training with real and synthetic data. The source code for
replicating the experiments is publicly released.

1. Introduction

Recent advancements in face recognition systems have
been driven by deep neural networks trained on large-
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Figure 1. Schematic showing the proposed approach (SynthDis-
till). Latent space of StyleGAN is first sampled from Z space,
and then dynamically re-sampled from W space based on teacher-
student agreement. This dynamic re-sampling leads to the genera-
tion of challenging samples that facilitate efficient learning.

scale datasets, leading to remarkable progress in accu-
racy [16, 27]. However, the state-of-the-art face recogni-
tion networks are often computationally heavy and the de-
ployment of these networks on edge devices poses practi-
cal challenges. Nevertheless, it is possible to develop effi-
cient networks from these large models that achieve com-
parable accuracy with significantly reduced computational
load, making them suitable for edge device deployment.

One strategy is training lightweight and efficient net-
works on the large-scale face recognition datasets [1, 6,
9, 18, 30]. However, training an efficient face recogni-
tion model using large-scale face recognition datasets re-
quires access to such a dataset. Nonetheless, large-scale
face recognition datasets, such as VGGFace2 [11], MS-
Celeb [19], WebFace [56], etc., were collected by crawl-
ing images from the Internet, thus raising legal, ethical, and
privacy concerns [10]. To address such concerns, recently
several works proposed generating synthetic face datasets
and use the synthetic face images for training face recogni-



tion models [3, 7, 28]. However, generating synthetic face
datasets with sufficient inter-class and intra-class variations
is still a challenging problem. Our experimental results also
show that there is still a large gap in the recognition perfor-
mance when training a lightweight face recognition model
on real data and existing synthetic face datasets.

Another strategy to train a lightweight face recognition
model is to transfer the knowledge of a model trained on a
large dataset to a lightweight network through knowledge
distillation [21]. Notwithstanding, the knowledge distilla-
tion from a teacher model often requires access to the orig-
inal or another large-scale real dataset. Meanwhile, access
to a real dataset for knowledge distillation may not always
be feasible due to the size of the datasets. Even if there is
access to real large-scale dataset, there remain ethical and
legal concerns of using large-scale face recognition datasets
crawled from internet. In this work, we propose a new
framework to distill the knowledge of a pretrained teacher
using synthetic face images without identity labels, and thus
mitigating the need for real identity-labeled data during the
distillation phase. We propose dynamic sampling from the
intermediate latent space of a StyleGAN to generate new
images and enhance training.

In contrast to previous approaches that rely on static gen-
eration of synthetic face datasets [3, 7, 28] and then using
the generated dataset for training the FR model, we combine
these two steps with an online-generation of synthetic im-
ages and training the lightweight network in the image gen-
eration loop within a knowledge distillation based frame-
work. This avoids the requirements of hard identity labels
for the generated images, and further assists the generation
network to produce challenging samples though a feedback
mechanism while exploring more image variations, thus en-
abling the training of more robust models. In addition, com-
pared to previous works for the training of face recogni-
tion models on synthetic datasets, our proposed knowledge
distillation framework does not require identity labels in
the training, simplifying the process of generating synthetic
face images. We should also note that previous synthetic
datasets still used a face recognition model in the dataset
generation pipeline.

In our case, we also employ a pre-trained face recogni-
tion model in our pipeline, but with the role as a teacher.
However, instead of generating a static synthetic dataset
with identity labels, we dynamically create synthetic face
images during the knowledge distillation process. This
novel approach allows us to frame our knowledge distil-
lation as a label-free training paradigm, utilizing synthetic
data to effectively train lightweight face recognition mod-
els.

It is noteworthy that we do not need access to the com-
plete whitebox knowledge of the teacher network in our
proposed knowledge distillation approach, and thus our

method can also be used in case of a blackbox access to
the teacher model that can used to generate the embed-
dings, given the embeddings are available. We adapt the
TinyNet [20] architecture and train lightweight face recog-
nition models (called TinyFaR) in our knowledge distil-
lation approach. We provide an extensive experimental
evaluation on five different face recognition benchmark-
ing datasets, including LFW [23], CA-LFW [54], CP-LFW
[53], CFP-FP [40] and AgeDB-30 [36]. Our experimen-
tal results demonstrate the effectiveness of our approach in
achieving efficient face recognition systems with reduced
computational requirements, while avoiding the use of real
data for knowledge distillation. This opens new possi-
bilities for developing privacy-aware and resource-efficient
face recognition models suitable for edge devices. Fig. 1 il-
lustrates the general block diagram of our proposed knowl-
edge distillation framework with dynamic sampling.

The main contributions of this work are listed below:

• We propose a novel framework to train a lightweight
face recognition model using knowledge distillation.
The proposed knowledge distillation framework is
based on synthetic face images and does not require
real training data. In addition, we do not need identity-
labeled training data in our knowledge distillation
framework, mitigating problems in generating syn-
thetic face recognition datasets.

• Our proposed knowledge distillation framework is
based on a dynamic sampling of difficult samples dur-
ing training to enhance the training. Dynamic sam-
pling helps the student network to simultaneously learn
on new images (i.e., increase generalization), while fo-
cusing on difficult samples. Therefore, the training im-
ages are synthesized online and during the distillation
process.

• We provide extensive experimental results on differ-
ent face recognition datasets, showing superior recog-
nition accuracy for lightweight face recognition mod-
els trained in our framework compared to training
lightweight face recognition from scratch using other
synthetic datasets.

The remainder of the paper is organized as follows. In
Section 2 we review the related works in the literature.We
describe our proposed framework for knowledge distillation
with synthetic data using dynamic latent sampling in Sec-
tion 3. We report our experimental results in Section 4 and
also discuss our results in Section 5. Finally, the paper is
concluded in Section 6.

2. Related works
In this section, we discuss the relevant literature on syn-

thetic datasets, light-weight face recognition networks, and
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knowledge distillation in the context of face recognition.

2.1. Synthetic Datasets

Several works have explored the generation of synthetic
datasets for training face recognition. It is worth noting that
many large-scale datasets are typically collected through
web-crawling without explicit informed consent. By lever-
aging synthetic datasets, it becomes possible to mitigate
concerns regarding the privacy of individuals while also po-
tentially addressing issues such as bias [24, 41]. These syn-
thetic datasets are often generated using variations of Style-
GAN, 3D models, and diffusion models.

Several prior works, including FaceID-GAN [42],
identity-preserving face images [4] [51], have employed
synthesis techniques to generate facial images. Notably,
FF-GAN [51] (e.g., 3DMM [5]) and DiscoFaceGAN [17]
leverages 3D priors. In [37], authors proposed an ap-
proach called SynFace which incorporates the use of iden-
tity mixup (IM) and domain mixup (DM) techniques to ad-
dress the performance gap. They use a small portion of la-
beled real data in the training process to reduce the domain
gap between real and synthetic data to improve the perfor-
mance. Additionally, the controllable face synthesis model
provides a convenient means to manipulate various aspects
of synthetic face generation, such as pose, expression, illu-
mination, the number of identities, and samples per iden-
tity. Boutros et al. [7], presented a method to generate syn-
thetic data using a class conditional generative adversarial
network. The authors trained the StyleGAN2-ADA model
[25] on the CASIA-WebFace [49] datasets, using identities
as class labels. They have conducted experiments using the
generated SFace dataset to show its utility in training face
recognition models. Bae et al. [3], introduced a large-scale
synthetic dataset for face recognition named DigiFace-1M.
This dataset was created by utilizing a computer graphics
pipeline to render digital faces. Each identity within the
dataset is generated by incorporating randomized variations
in facial geometry, texture, and hairstyle. The rendered
faces exhibit diverse attributes such as different poses, ex-
pressions, hair color, hair thickness, and density, as well as
accessories. Through the implementation of aggressive data
augmentation techniques, they reduced the domain gap be-
tween the generated images and real face images leading
to gains in face recognition performance. In [28], authors
proposed a Dual Condition Face Generator (DCFace) utiliz-
ing a diffusion model. This approach incorporates a novel
Patch-wise style extractor and Time-step dependent ID loss,
enabling DCFace to consistently generate face images de-
picting the same individual in different styles, while main-
taining precise control over the process.

Despite the advantages of synthetic data in terms of pri-
vacy and consent, the performance of face recognition mod-
els trained on these datasets falls short when compared to

models trained on real data. This severely limits real-world
usage of models trained on synthetic datasets. To address
these challenges, we propose a novel strategy for train-
ing face recognition models using synthetic data within an
kowledge distillation framework. Our method generates
data online dynamically and eliminates the need for real
data during the distillation phase.

2.2. Efficient Face Recognition

As edge computing gained prevalence, there is an in-
creased focus on developing lightweight face recognition
models without compromising accuracy. In the initial phase
of efficient model development, Wu et al. introduced
LightCNN, a lightweight architecture [47]. MobileNets
[22, 39] employed depth-wise separable convolutions to im-
prove the performance. Building upon the MobileNet archi-
tecture, MobileFaceNets were designed for real-time face
verification tasks [15]. The concept of MixConv, which in-
corporates multiple kernel sizes in a single convolution, was
used to develop MixFaceNet networks for lightweight face
recognition [44, 6]. Inspired by ShuffleNetV2 [34], Shuf-
fleFaceNet models were proposed for face recognition, with
parameter counts ranging from 0.5M to 4.5M and verifica-
tion accuracies exceeding 99.20% on the LFW dataset [35].
Neural architecture search (NAS) was utilized in [9] to auto-
matically design an efficient network called PocketNet for
face recognition. The PocketNet architecture was learned
using the differential architecture search (DARTS) algo-
rithm on the CASIA-WebFace dataset, and knowledge dis-
tillation (KD) was employed during training. Yan et al. [48]
employed knowledge distillation (KD) and variable group
convolutions to address computational intensity imbalances
in face recognition networks. Alansari et al. proposed
GhostFaceNets, which exploit redundancy in convolutional
layers to create compact networks [1]. These modules gen-
erate a fixed percentage of convolutional feature maps using
computationally inexpensive depth-wise convolutions. Re-
cently, George et al. introduced EdgeFace, a combination
of CNN-Transformer architecture that achieved strong ver-
ification performance with minimal FLOP and parameter
complexity [18].

2.3. Knowledge Distillation

The concept of Knowledge Distillation was first intro-
duced by Hinton et al. [21]. The primary goal of knowledge
distillation is to transfer the knowledge from a pre-trained,
complex “teacher” model to a simpler, more efficient “stu-
dent” model. The methods for distillation in classification
tasks can primarily be learned through the utilization of soft
labels from a teacher and ground truth [21]. Another ap-
proach involves feature-based learning, where the student
aims to match the intermediate layers of the teacher [38].
Additionally, contrastive-based methods have also been em-
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Figure 2. Schematic showing the proposed approach (SynthDistill). In step 1, Z space of the StyleGAN is sampled to generate face images.
In step 2, the W space is re-sampled based on the teacher-student agreement to generate more challenging samples. The student model is
is updated based on the distillation loss LKD, all the other network blocks remains frozen.

ployed [45] for distilling the knowledge of a teacher to a
student.

Over the years, several methods have been proposed in
the literature [38, 31, 26, 14, 32, 55, 52, 12] to enhance
the efficiency of distillation. However, most of these meth-
ods rely on the availability of original or similar training
datasets, which can be limited due to security and privacy
concerns. Consequently, traditional data-dependent distil-
lation methods become impractical. To address this chal-
lenge, researchers have introduced Data-free knowledge
distillation (DFKD), without relying on the original or real
training data. DFKD aims to develop a distillation strategy
using a synthesis-based approach. These approaches utilize
either whitebox teacher model [33, 13, 50] or data augmen-
tation techniques [2] to generate synthetic samples. These
synthetic samples act as substitute training datasets for dis-
tillation. By training on such synthetic data, the student
model can effectively learn from the teacher model with-
out needing access to real training data making it privacy
friendly. Along the same lines, Boutros et al. [8] proposed
an unsupervised face recognition model based on unlabeled
synthetic data. They used contrastive learning to maximize
the similarity between two augmented images (using geo-
metric and color transformations) of the same synthetic im-
age. However, since the data augmentation cannot provide
enough inter-class variations, it affects the performance of
trained face recognition model when evaluating on bench-
mark datasets.

3. Proposed Framework

In this section, we describe our proposed framework for
training a lightweight face recognition model using syn-
thetic data using knowledge distillation. We describe the

architecture of lightweight face recognition model in Sec-
tion 3.1 and explain our knowledge distillation framework
using synthetic data in Section 3.2.

3.1. Lightweight Network Architecture

As discussed in Section 2, lightweight face recognition
models in the literature usually adapt lightweight neural
network models for face recognition tasks. However, our
knowledge distillation framework can be applied to any
lightweight model with only the condition that the output of
the lightweight network should have the same dimensions
as the embedding of the teacher model. To eliminate this
condition so that the proposed framework can be used for
any lightweight network with different output sizes, we use
a fully connected layer at the output of the lightweight net-
work to have output with the same size as the teacher model.

In this paper, we use TinyNet [20] as the backbone for
the lightweight FR model. The TinyNet is an optimized
version of EfficientNet [43], which uses a structure that si-
multaneously enlarges the resolution, depth, and width in
a Rubik’s cube for neural networks and find networks with
high efficiency by changing these three dimensions. How-
ever, authors in [20] show that the resolution and depth are
more important than width for small networks, and propose
smaller models derived from the EfficientNet-B0 as differ-
ent variations of TinyNet, which are efficient and achieve
high accuracy in recognition tasks. The feature layer of
TinyNet has 1280 dimensions and the embedding of our
teacher network has 512 dimensions. Therefore, we add
a fully connected layer to generate 512-length feature at the
output of TinyNet and call our lightweight face recognition
network based on TinyNet TinyFaR. We should note that to
our knowledge, TinyNet lightweight network structure has
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Figure 3. Schematic showing the re-sampling strategy in the pro-
posed approach. When teacher-student agreement is high, the re-
sampling method generates diverse images. Conversely, when the
similarity is low, i.e, when the given sample is challenging, re-
sampling generates similar (challenging) samples facilitating the
learning.

not been used before for face recognition in the literature.

3.2. Knowledge Distillation with Synthetic Data

Let FT and FS denote the teacher1 and student
(lightweight) face recognition models, respectively. In this
paper, we consider StyleGAN [25] as a pretrained face gen-
erator model, which consists of a mapping network M and a
generator network G. The mapping network takes a a noise
z ∈ Z ∼ N(0, I) from input latent space Z with Gaus-
sian distribution and generates an intermediate latent code
w ∈ W . Then, the intermediate latent code w is used by
the generator network to generate a face image I = G(w).
In our knowledge distillation framework, we first generate a
batch of synthetic face images and extract the teacher’s em-
beddings eT = FT(I). Then, we train the student network
by minimizing the mean squared error (MSE) of the teacher
and student’s embeddings as follows:

LKD = ∥eT − FS(I)∥22 . (1)

Minimizing the MSE of embeddings helps the student
network to extract embeddings similar to the teacher’s em-
beddings from a given face image.

After updating the weights of student network with our
knowledge distillation loss LKD (as in Eq. 1), we sample
around the intermediate latent codes based on the similar-
ity of embeddings extracted by the student eS and teacher
eT networks in our batch. To this end, we use the cosine

1Note that the teacher model can be blackbox and we do not use
teacher’s gradients in our method.

Algorithm 1 Our proposed knowledge distillation approach
Require: nepoch: number of epochs, niteration: number of it-

erations in each epoch, α: learning rate, c: re-sampling
coefficient.

1: procedure TRAINING
2: Initialize weights θS of the student network
3: for epoch = 1, ..., nepoch do
4: for itr = 1, ..., niteration do
5: Step 1: Train with random samples
6: Sample a batch of random noise vectors:
7: z ∈ Z ∼ N (0, I)
8: Generate synthetic face images:
9: w = M(z)

10: I = G(w)
11: Extract teacher’s embeddings eT:
12: eT = FT(I)
13: Calculate loss LKD and optimize θS:
14: gθS ← ∇θSLKD
15: θS ← θS − α · Adam(θS, gθS)
16: Step 2: Train with dynamic re-sampling
17: Calculate similarity of eT and eS:
18: ssim = SIM(eT, eS)
19: Re-sample based on similarity:
20: wresample = w + c× ssim × n,
21: where n ∼ N (0, I)
22: Generate synthetic face images:
23: I = G(wresample)
24: Extract teacher’s embeddings eT:
25: eT = FT(I)
26: Calculate loss LKD and optimize θS:
27: gθS ← ∇θSLKD
28: θS ← θS − α · Adam(θS, gθS)
29: end for
30: end for
31: end procedure

similarity and normalize it in (0,1) interval as follows:

SIM(eT, eS) = 0.5× (1 +
eS · eT

∥eS∥2 · ∥eT∥2
). (2)

Having normalized similarity score ssim = SIM(eT, eS), we
re-sample around each latent code:

wresample = w + c× ssim × n, (3)

where n ∼ N (0, I) is a random noise with Gaussian dis-
tribution and c is a constant coefficient. As a matter of
fact, in our re-sampling based on similarity score ssim as
in Eq. 3, we sample with higher standard deviation values
around the latent codes which achieved higher similarity
in our initial sampling, and thus letting more variation in
re-sampling. While, for the lower similarity between em-
beddings extracted by the student and teacher networks, the

5



standard deviation values for re-sampling are smaller so that
during re-sampling we can sample around the same latent
codes. Therefore, our dynamic re-sampling approach helps
us further sample difficult images while exploring the latent
space. Fig. 3 illustrates our re-sampling strategy. After re-
sampling new latent codes, we generate synthetic face im-
ages and optimize our student network with our knowledge
distillation loss LKD (as in Eq. 1). Our knowledge distilla-
tion framework using synthetic data (named SynthDistill) is
depicted in Fig. 2 and summarized in Algorithm 1.

4. Experiments
In this section, we report our experiments and discuss

our results. First, in Section 4.1 we describe our evalu-
ation datasets, and in Section 4.2 we explain our training
details. In Section 4.3, we compare our method with pre-
vious methods based on synthetic data for face recognition
in the literature. Then, we report different ablation studies
and discuss effect of each part in our proposed framework
in Section 4.4.

4.1. Datasets

We evaluate our trained student models using five differ-
ent benchmarking datasets. The datasets chosen for eval-
uation comprised Labeled Faces in the Wild (LFW) [23],
Cross-age LFW (CA-LFW) [54], CrossPose LFW (CP-
LFW) [53], Celebrities in Frontal-Profile in the Wild (CFP-
FP) [40], AgeDB-30 [36]. To maintain consistency with
previous work, we present recognition accuracy values on
these datasets.

Table 1. Complexity of different network structures
Role in our KD Network M FLOPS M Params

Teacher IResNet100 24,179.2 65.2

Student
TinyFaR-A 254.3 5.6
TinyFaR-B 151.3 3.1
TinyFaR-C 76.8 1.8

4.2. Training Details

For the teacher network, we use the pretrained ArcFace
model2 with IResnet100 backbone from Insightface [16]
trained on the MS-Celeb dataset [19]. The embedding of
our teacher network has 512 dimensions, but the feature
layer of TinyNet has 1280 dimensions. Therefore, as dis-
cussed in Section 3 we use a fully connected layer at the
output of our TinyNet model so that it can generate em-
beddings with the same dimension as the teacher’s embed-
dings and call it TinyFaR. In our experiments, we use dif-

2The performance of our teacher network on our benchmarking
datasets in terms of recognition accuracy is as follows: LFW (99.77 ±
0.28), CA-LFW (96.10 ± 1.10), CP-LFW (92.88 ± 1.52), CFP-FP (96.27
± 1.10), and AgeDB-30 (98.25 ± 0.71).

Table 2. Synthetic and real face datasets
Dataset #Images #Subjects Data Method

WebFace-4M [56] 4,235,242 205,990 Real Web-crawled
SFace [7] (IJCB 2022) 1,885,877 10,572 Synthetic StyleGAN model
DigiFace [3] (WACV 2023) 1,219,995 109,999 Synthetic Rendering
DCFace [28] (CVPR 2023) 1,300,000 60,000 Synthetic Diffusion model

ferent variations of TinyNet [20] and build corresponding
version of TinyFaR with 512-length feature as our student
(lightweight) network. Table 1 compares IResnet100 with
different variations of TinyFaR in terms of computation
complexity and number of parameters. We use StyleGAN2-
ADA model [25] to generate synthetic face images with
256 × 256 resolution and crop and resize images to have
112 × 112 face images for our knowledge distillation. We
train our student networks with 17 epochs, where in each
epoch we sampled one million images in step 1 of our al-
gorithm 1 and re-sampled the same number of images with
the re-sampling coefficient of c = 1. We trained our student
networks using Adam optimizer [29] on a system equipped
with a single NVIDIA GeForce RTXTM 3090. For training
face recognition from scratch in our experiments, we used
CosFace [46] loss function. The source codes of our exper-
iments are publicly available3.

4.3. Comparison

We compare the performance of our proposed knowl-
edge distillation framework with training the same network
using synthetic datasets in the literature, including Digi-
Face [3], SFace [7], and DCFace [28]. In addition, we
also consider training with real data using WebFace-4M
[56] as our baseline. Table 2 compares these datasets in
terms of the number of images and samples and their gen-
eration method. All these datasets are generated to have
inter-class and intra-class variation, and thus have identity
labels. Therefore, these datasets can be used for training
lightweight face recognition from scratch using the classifi-
cation training. In contrast, our proposed framework based
on dynamic sampling approach does not provide idenity la-
bels and can be used within a knowledge distillation train-
ing. Table 3 reports the recognition performance of differ-
ent variations of TinyFaR when training with datasets. As
the results in this table show, our knowledge distillation ap-
proach with synthetic data (and no identity labels) far out-
performs training from scratch using synthetic data and has
comparable performance with training using real data.

4.4. Ablation studies

Effect of dynamic sampling: To evaluate the effect of
dynamic sampling in our proposed framework, we compare
the performance network trained with knowledge distilla-
tion using our dynamic sampling (sampling + re-sampling)

3Source code: https://gitlab.idiap.ch/bob/bob.paper.ijcb2023 synthdistill

6

https://gitlab.idiap.ch/bob/bob.paper.ijcb2023_synthdistill


Table 3. Comparison of our knowledge distillation approach with training from scratch using other synthetic datasets
Network Training Dataset LFW CA-LFW CP-LFW CFP-FP AgeDB-30

TinyFaR-A
Classification

WebFace-4M (real) 99.58 ± 0.37 95.02 ± 1.00 91.82 ± 1.29 95.09 ± 1.15 94.62 ± 1.21
DCFace (synthetic) 97.35 ± 0.66 90.08 ± 1.27 79.63 ± 2.08 82.01 ± 1.62 85.12 ± 2.05
SFace (synthetic) 90.48 ± 1.54 75.48 ± 2.27 71.40 ± 1.89 72.07 ± 2.38 68.65 ± 2.53

DigiFace (synthetic) 89.12 ± 1.30 71.65 ± 2.14 69.63 ± 1.70 76.24 ± 1.34 68.60 ± 1.23
Knowledge Distillation SynthDistill (synthetic) [ours] 99.52 ± 0.31 94.57 ± 1.01 87.00 ± 1.64 90.89 ± 1.54 94.93 ± 1.35

TinyFaR-B
Classification

WebFace-4M (real) 99.55 ± 0.40 94.73 ± 0.88 90.95 ± 1.43 94.00 ± 1.23 93.72 ± 1.37
DCFace (synthetic) 97.40 ± 0.75 89.62 ± 1.37 78.93 ± 1.74 82.47 ± 1.74 85.03 ± 1.97
SFace (synthetic) 91.10 ± 1.22 76.15 ± 1.46 72.02 ± 1.34 71.13 ± 2.43 68.73 ± 1.68

DigiFace (synthetic) 88.03 ± 1.05 70.27 ± 2.17 68.22 ± 1.74 75.29 ± 2.14 66.38 ± 1.82
Knowledge Distillation SynthDistill (synthetic) [ours] 99.20 ± 0.41 93.78 ± 0.78 84.93 ± 2.10 88.19 ± 1.34 93.02 ± 1.30

TinyFaR-C
Classification

WebFace-4M (real) 99.37 ± 0.26 93.08 ± 1.11 88.98 ± 1.12 92.30 ± 1.74 91.18 ± 1.80
DCFace (synthetic) 96.78 ± 0.73 88.48 ± 1.02 77.22 ± 1.80 80.59 ± 1.80 83.65 ± 2.14
SFace (synthetic) 91.12 ± 1.01 76.70 ± 1.25 71.27 ± 1.98 72.24 ± 1.53 71.13 ± 1.35

DigiFace (synthetic) 87.47 ± 0.87 69.18 ± 1.94 68.05 ± 1.94 74.16 ± 2.68 67.23 ± 1.85
Knowledge Distillation SynthDistill (synthetic) [ours] 98.58 ± 0.44 91.80 ± 1.04 82.00 ± 2.14 84.54 ± 1.57 88.98 ± 1.49

Table 4. Ablation study on the effect of dynamic sampling
Sampling # Samples/epoch LFW CA-LFW CP-LFW CFP-FP AgeDB-30

static 1 M 98.87 ± 0.39 92.93 ± 0.94 83.52 ± 1.63 87.60 ± 1.44 91.25 ± 2.18
static 2 M 98.95 ± 0.47 93.67 ± 0.78 84.75 ± 1.94 88.51 ± 1.63 92.83 ± 1.76
dynamic (re-sampling in Z) 1M + 1M 99.28 ± 0.30 93.88 ± 1.09 84.45 ± 1.95 87.59 ± 1.20 92.45 ± 1.69
dynamic (re-sampling inW) 1M + 1M 99.52 ± 0.31 94.57 ± 1.01 87.00 ± 1.64 90.89 ± 1.54 94.93 ± 1.35

using static sampling (with no re-sampling). Table 4 com-
pares the performance of TinyFaR-A trained with knowl-
edge distillation using our dynamic sampling (sampling +
re-sampling in W space) with one million samples plus
one million re-sampling (1M+1M) in each epoch as well
as static sampling with one million and two million sam-
ples in each epoch. As the results in this table show knowl-
edge distillation using our dynamic sampling with one mil-
lion iterations in each epoch outperforms the same number
of iterations or sample total samples with static sampling.
This table also compares our dynamic re-sampling in W
space to dynamic re-sampling in Z space. As the results
show dynamic re-sampling in both spaces achieves better
performance than static sampling. In addition, comparing
dynamic re-sampling space, the results show that dynamic
re-sampling inW leads to superior performance.

Table 5. Ablation study on the effect of number of sampling
# Itr LFW CA-LFW CP-LFW CFP-FP AgeDB-30

0.5 M 99.43 ± 0.37 93.90 ± 1.11 86.13 ± 1.81 89.46 ± 1.48 93.53 ± 1.36
1 M 99.52 ± 0.31 94.57 ± 1.01 87.00 ± 1.64 90.89 ± 1.54 94.93 ± 1.35
2 M 99.48 ± 0.39 95.07 ± 0.97 87.78 ± 1.64 91.31 ± 1.99 95.25 ± 1.19

Effect of number of sampled images: To evaluate the
effect of the number of sample images in our dynamic sam-
pling, we train TinyFaR-A with different numbers of itera-
tions (sampling and re-sampling) per epoch in our knowl-
edge distillation approach. Table 6 reports the performance
of the trained model with different numbers of iterations.

As the results in this table show, higher iterations help our
knowledge distillation with the cost of more training com-
putation. However, to reduce computations in our exper-
iments we use one million iterations (1M sampling + 1M
re-sampling) in our experiments.

Table 6. Ablation study on the effect of re-sampling coefficient
coef. (c) LFW CA-LFW CP-LFW CFP-FP AgeDB-30

0.8 99.45 ± 0.32 94.58 ± 0.95 86.10 ± 2.23 90.23 ± 1.68 94.82 ± 1.15
0.9 99.40 ± 0.41 94.90 ± 1.09 87.23 ± 2.02 90.36 ± 1.45 94.72 ± 1.07
1 99.52 ± 0.31 94.57 ± 1.01 87.00 ± 1.64 90.89 ± 1.54 94.93 ± 1.35

1.1 99.47 ± 0.44 94.95 ± 0.84 87.53 ± 1.78 90.81 ± 1.61 95.13 ± 1.08
1.2 99.53 ± 0.32 94.95 ± 0.90 87.47 ± 1.27 90.94 ± 1.63 94.52 ± 1.47
1.3 99.52 ± 0.31 94.50 ± 0.97 87.58 ± 1.84 91.17 ± 1.50 95.05 ± 1.28
1.4 99.48 ± 0.32 94.77 ± 0.97 87.40 ± 1.74 90.56 ± 1.49 94.78 ± 1.29
1.5 99.47 ± 0.32 94.58 ± 1.00 88.17 ± 1.64 90.84 ± 1.24 94.80 ± 1.07

Effect of re-sampling coefficient: As another ablation
study, we evaluate the effect of re-sampling coefficient c
in our dynamic sampling. Table 6 reports the performance
of TinyFaR-A trained with our knowledge distillation us-
ing different re-sampling coefficient values. As the results
in this table show, with a higher re-sampling coefficient our
dynamic re-sampling can generate more diverse images and
achieve higher recognition performance. However, a very
high re-sampling coefficient can also cause wresample to be
out of the distribution ofW , and thus drop the performance.
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5. Discussions

The results in Table 3 show that our proposed knowledge
distillation framework outperforms training using synthetic
datasets in the literature and achieves comparable perfor-
mance with training using real face images. Comparing the
performance of networks trained with previous synthetic
datasets to networks trained with real data, we observe a
considerable gap in the performance of trained face recog-
nition models with synthetic and real data. Meanwhile, our
proposed knowledge distillation method still achieves lower
but is very close to the performance of training with real
data.

Unlike previous synthetic face datasets, our method does
not require identity labels, and thus does not have many is-
sues in generating synthetic datasets with inter-class and
intra-class variations. Instead, our knowledge distillation
approach with dynamic sampling leverages the most ca-
pacity of StyleGAN to generate training samples, which
helps to achieve comparable performance to training with
real data. Our proposed framework avoids the requirements
of hard identity labels for the generated images, which fur-
ther assists the generation network to produce challenging
samples though a feedback mechanism during our knowl-
edge distillation, thus enabling the training of much robust
models. We should also note that, for generation of syn-
thetic face datsets in the literature, a pretrained face recog-
nition model (which has been trained on a large-scale real
face recognition dataset) is used in the process of genera-
tion of synthetic dataset. Therefore, training with synthetic
face datasets in the literature indirectly benefits from the
information and knowledge of the pretrained face recogni-
tion model (trained on real images) used for generating the
synthetic dataset. In our proposed framework, we also use
the pretrained face recognition model, but instead of fol-
lowing common two-step approach (generation of dataset
and training with new dataset), we use the pretrained face
recognition model as a teacher in our knowledge distilla-
tion approach and generate synthetic face images used in
our training with no identity label.

Our ablation studies show the effect of each part in our
knowledge distillation framework. In particular, the re-
sults demonstrate that our dynamic sampling improves our
knowledge distillation compared to static sampling. In ad-
dition, using our dynamic sampling and with more number
of iterations or higher re-sampling coefficient can improve
the knowledge distillation, as it helps our student to learn
embeddings of more face images from the teacher.

6. Conclusions

In this paper, we proposed a data-free framework (named
SynthDistill) to train lightweight face recognition models
based on knowledge distillation using synthetic data. We

combined the two steps of data generation and training
the lightweight network and have an online-generation and
training in the loop using a distillation framework. We dy-
namically generated synthetic face images during training
and distilled the knowledge of a pretrained and blackbox
face recognition model. Our dynamic sampling helps our
student network to further see difficult samples while ex-
ploring new samples, leading to more robust training. Our
knowledge distillation framework does not require identity-
labeled training data, and thus mitigates challenges in gen-
erating intra-class variations in synthesized datasets. We
adapted the TinyNet architecture to use in our knowl-
edge distillation framework and trained lightweight face
recognition models (called TinyFaR). We reported exten-
sive experimental evaluation on five different face recogni-
tion benchmarking datasets, including LFW, CA-LFW, CP-
LFW, CFP-FP, and AgeDB-30. The experimental results
demonstrate the superiority of our proposed knowledge dis-
tillation approach compared to training previous synthetic
datasets.

Our experimental results also showed that while there is
a considerable gap between training with synthetic datasets
and real data, our knowledge distillation framework based
on synthetic data achieves comparable performance with
training with real data and significantly reduces the gap be-
tween models trained on synthetic data and models trained
on real data. Achieving such an improvement in training
using synthetic data within our proposed framework shows
more potential in training with synthetic data and moti-
vates further research on training with synthetic data. Fur-
thermore, our results for lightweight student networks pave
the way for developing privacy-aware and resource-efficient
face recognition models.

Acknowledgments
This research is based upon work supported by the

H2020 TReSPAsS-ETN Marie Skłodowska-Curie early
training network (grant agreement 860813).

This research is also based upon work supported in
part by the Office of the Director of National Intelligence
(ODNI), Intelligence Advanced Research Projects Activity
(IARPA), via [2022-21102100007]. The views and conclu-
sions contained herein are those of the authors and should
not be interpreted as necessarily representing the official
policies, either expressed or implied, of ODNI, IARPA, or
the U.S. Government. The U.S. Government is authorized
to reproduce and distribute reprints for governmental pur-
poses notwithstanding any copyright annotation therein.

References
[1] M. Alansari, O. A. Hay, S. Javed, A. Shoufan, Y. Zweiri,

and N. Werghi. Ghostfacenets: Lightweight face recognition
model from cheap operations. IEEE Access, 2023.

8



[2] Y. M. Asano and A. Saeed. The augmented image prior:
Distilling 1000 classes by extrapolating from a single image.
arXiv preprint arXiv:2112.00725, 2021.

[3] G. Bae, M. de La Gorce, T. Baltrušaitis, C. Hewitt, D. Chen,
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