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Abstract—Coded aperture cameras can be manufactured cheaply, have a very thin form-factor, and may be transparent
and flexible; thus providing easy-to-integrate and compact image sensors. However, limitations in reconstructed image
quality and resolution have impeded the growth of their applications. We propose a method to generate high-resolution
face images from low-resolution coded aperture sensor snapshots. Using the point spread function of the coded aperture
camera, we generate a set of training images to train an image enhancement network. We then apply a face recognition
model to extract facial templates and project them into the intermediate latent space of a face generator network to
generate high-resolution (i.e., 1024×1024) face images. Our experimental results show significant retention of the subject’s
identity in the generated high-resolution face images. Our cross-dataset evaluation shows the generalization of our method
on other datasets for generating high-resolution face images. To our knowledge, this is the first paper for generating high-
resolution face images from coded-aperture imaging. The source code of our experiments is publicly available to facilitate
the reproducibility of our work.

Index Terms—coded aperture camera, deep neural networks, face generation, high-resolution, lensless imaging, machine vision

I. INTRODUCTION

Coded aperture imaging was initially developed for astronomical
imaging in X-ray and gamma-ray wavelengths [1]–[5], where optical
elements, such as lenses and mirrors, are impossible or prohibitively
expensive to manufacture. By their construction, coded aperture
(lensless) cameras have several advantages over traditional cameras.
Coded aperture masks are far simpler to manufacture than lenses or
stacks of lenses, and the flatness of the assembled device results in
a more compact package. Furthermore, flexibility and transparency
can even be obtained with a selective choice of material [6], allowing
integration in bidirectional (sensing and emitting) displays. In addition
to visible imaging, the propagation of light through the mask and
resulting multiplexing offers the possibility of encoding additional
scene content, such as depth or spectral information.

On the other hand, coded aperture imaging also suffers from some
limitations. The light collection is reduced by the blocking elements of
the masks. In addition, the reconstructed images have low resolution
caused by several parameters in these sensors, including: mask feature
size, camera pixel pitch, mask-to-sensor distance, and object size,
some of which may be fixed by use-case constraints. Moreover, the
reconstructed images are also subject to visual artefacts and result in
low-contrast images. For these limitations, coded aperture sensors are
not best seen as direct replacements for traditional cameras. However,
using light multiplexing properties in coded aperture cameras along
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Fig. 1: Samples from FFHQ and their reconstructed versions

with deep-learning-based models enables new possibilities for visible
or near-infrared imaging [7]–[11].

Recent works have shown face recognition as a realistic application
for coded aperture cameras [12], [13]. For example, [12] performed
high-accuracy face detection and verification with FlatCam [14], by
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Fig. 2: Block diagram of our proposed method: we first reconstruct the image with deconvolution by the PSF of the coded aperture camera.
Then, we use our image enhancement network to enhance the reconstructed image (low-resolution). Next, we extract facial templates using
a face recognition model and use a mapping network to project to the intermediate latent space of a face generator network. We further
optimize the latent code and generate the final high-resolution face image.

using deep-learning-based methods on coded images. They generated
training images by capturing face images on displays with the lensless
camera, or by applying the forward model equation to face images
directly. While training on directly obtained images shows a 3%
accuracy loss compared to training on display captures, they showed
the feasibility of generating large-scale training databases for deep
learning tasks without any hardware image acquisitions. They showed
the generalization to real lensless images with a database of 88 subjects
collected with a FlatCam device. In [13], a privacy-preserving face
recognition system is proposed based on lensless cameras without
reconstruction, where the coding effect of the camera is considered
as a privacy-protection mechanism which makes template inversion
difficult for an attacker.

In this paper, we propose a method to generate high-resolution (i.e.,
1024×1024) face images of subjects captured with a coded aperture
camera, where the output images retain the identity of the subjects.
We first reconstruct the camera image by applying deconvolution with
the point spread function (PSF) of the camera, and then train an image
enhancement network to enhance the reconstructed image. We then
extract facial templates using a face recognition model and project
them to the intermediate latent space of a face generator network.
We further optimize the latent codes through iterative optimization.
Finally, using the face generator network, we can generate high-
resolution 1024 × 1024 face images, where the identity information
of the subjects is preserved in the high-resolution reconstructed face
images. In our experiments, we synthesize sensor images with a
known PSF. Fig. 1 shows sample face images from the FFHQ [15]
dataset and their high-resolution reconstruction using our method.
To our knowledge, this work is the first work for high-resolution
face generation from coded aperture images.

The remainder of the paper is organized as follows. We explain our
methodology in detail in Section II. Experiments are also presented
and discussed in Section III. Finally. the paper is concluded in
Section IV.

II. METHODOLOGY

In Section II-A, we describe the simulation of the coded aperture
camera, to synthesize a sensor measurement 𝑦 from the Point Spread
Function (PSF) of the camera. To generate high-resolution face
images from the sensor measurement 𝑦, we first generate an initial
reconstruction 𝑥 by applying deconvolution of PSF and sensor
measurement as described in Section II-B. Then, as described in
Section II-C, we train an image enhancement network based on the
UNet structure to improve the initial reconstruction 𝑥 in the same
resolution, 𝑥UNet. Next, as described in Section II-D, we use a pre-
trained face recognition model to extract facial templates 𝑡UNet from

𝑥UNet and then map the facial templates 𝑡UNet to the intermediate
latent space W of StyleGAN [16]. In Section II-E, we apply an
optimization to further improve the mapping in the intermediate latent
spaceW of StyleGAN, and finally generate the high-resolution face
image through the remaining network of StyleGAN. Fig 2 depicts
the block diagram of the proposed method.

A. Simulating Coded Aperture Images

Large experimental databases (hundreds of thousands of images)
are costly to collect from scratch and the workaround of capturing
a display is very time-consuming. As shown by [12], synthetically
generating training databases for training deep-learning-based models
by applying the forward camera model on clean images can be a viable
option. In this case, the forward model is a simple 2D convolution of
the face picture with the Point Spread Function (PSF) of the optical
system:

𝑦 = 𝑥 ∗ 𝑃𝑆𝐹, (1)

where 𝑦 is the sensor measurement, 𝑃𝑆𝐹 is the PSF of the camera
and 𝑥 is the scene, and ∗ denotes a 2D convolution. The PSF of a
camera can be obtained by measuring the impulse response of the
optical system by placing a point-like source at the plane of interest.

B. Image Reconstruction via Deconvolution

Thanks to the convolution theorem, we can generate encoded face
sensor images by multiplying in the Fourier domain:

𝑦 = F −1 (F (𝑃𝑆𝐹)F (𝑥)). (2)

To obtain the reconstructed face images 𝑥, we apply deconvolution
by inverting (2), which in theory corresponds to a division by the
𝑃𝑆𝐹 in the Fourier domain. In practice, however, division in Fourier
significantly amplifies the high-frequency noise. Therefore, we replace
division with multiplication by the conjugate to have a reconstructed
image:

𝑥 = F −1 (F (𝑦)F (𝑃𝑆𝐹)). (3)

C. Image Enhancement Network

Let {𝑥𝑖}𝑁𝑖=0 denote a dataset of 𝑁 face images (i.e., RGB images). We
generate a dataset of sensor measurement D = {(𝑥𝑖 , 𝑦𝑖 , 𝑥)𝑖}𝑁𝑖=0 using
Eqs. 2,3, where 𝑦𝑖 and 𝑥𝑖 are sensor measurement and reconstructed
images using deconvolution in Eq. 3, respectively. We use this dataset
to train our image enhancement network, based on the UNet [17]
structure. Our image enhancement networkU takes the reconstructed



images using deconvolution 𝑥 as input and generates an enhanced
image 𝑥UNet = U(𝑥). We train our image enhancement network by
minimizing the reconstruction error by the network using the mean
squared error loss function as follows:

L(𝑥, 𝑥UNet) = | |𝑥 − 𝑥UNet | |22 (4)

We train our image enhancement network using the Adam [18]
optimizer with the initial learning rate of 0.1.

D. Mapping to the Latent Space of StyleGAN

After we trained our image enhancement network U, we can use
it to generate an enhanced image 𝑥UNet = U(𝑥). Then, we use a face
recognition network T to extract facial templates 𝑡 = T (𝑥UNet) from
enhanced image 𝑥UNet. Next, we use our pretrained mapping network
Mt2w proposed in [19] to map facial templates to the intermediate
latent space W of StyleGAN [16]. We can use the mapped latent
code 𝑤 = Mt2w (𝑡) as an input to the synthetic network SStyleGAN

of StyleGAN and generate high-resolution face image 𝑥high-res =

SStyleGAN (𝑤). Moreover, we can further optimize the intermediate
latent code 𝑤 as described in Section II-E.

E. Optimizing Latent Code

After mapping facial templates to the intermediate latent space
W of StyleGAN, we can further optimize the intermediate latent
code in the extended space W+ for generating the high-resolution
face image by solving the following optimization:

𝑤+ = argmin𝑤 | |T (SStyleGAN (𝑤)) − T (𝑥UNet) | |1 (5)

We solve this optimization with an iterative gradient-descend-based
algorithm using the Adam [18] optimizer with the learning rate
of 1 × 10−2 and for 20 iterations, which experimentally yield the
best performance. After solving this optimization, we can generate
an optimized high-resolution face image 𝑥high-res,+ = SStyleGAN (𝑤+).
Algorithm 1 summarises our proposed method for high-resolution
face generation in the inference stage.

III. EXPERIMENTS

To synthesize sensor images in our experiments, we used a purely
random pattern design and opted for 256 × 256 image resolution.
We should note that mask alignment to sensor pixels is a sensitive
process when using real coded aperture cameras. In our synthetic
approach, we design the mask to have 256 × 256 features, such
that one feature matches one pixel on the sensor. Furthermore, we
chose 50% sparsity in the mask features, which represents a good
compromise between light input and invertibility.

In our experiments, we use the Flickr-Faces-HQ Dataset (FFHQ)
dataset [15] as our dataset of RGB face images {𝑥𝑖}𝑁𝑖=0, and generate
our dataset of sensor measurement D = {(𝑥𝑖 , 𝑦𝑖 , 𝑥)𝑖}𝑁𝑖=0 using Eqs. 2,
as described in Section II-C. The FFHQ dataset consists of 70,000
face images with variations in terms of age, ethnicity, etc. We
randomly split this dataset into training and validation sets and train
our image enhancement network. We use the same training set to
train the mapping from the ArcFace [20] face recognition model
to the intermediate latent space of StyleGAN [16] based on [19].
Fig 1 shows sample face images from the validation set of the FFHQ

Algorithm 1 High-resolution face image generation (inference)

1: Inputs:
2: 𝑦 : sensor measurement
3: 𝑛itr : number of iteration, 𝜆 : learning rate
4: Output:
5: �̂�high-res,+ : High-resolution reconstructed face image
6: Procedure:
7: Step 1: Image Reconstruction via Deconvolution
8: �̂� = F−1 (F(𝑦) F(𝑃𝑆𝐹 ) )
9: Step 2: Applying Image Enhancement Network

10: �̂�UNet = U( �̂� )
11: Step 3: Extracting Facial Templates
12: 𝑡 = T( �̂�UNet )
13: Step 4: Mapping to Latent Space of StyleGAN
14: 𝑤 = Mt2w (𝑡 )
15: Step 5: Optimizing Latent Code
16: Set initial value of 𝑤+ with 𝑤

17: for itr in {1, ..., 𝑛itr} do
18: cost = | | T (SStyleGAN (𝑤+ ) ) − T ( �̂�UNet ) | |1
19: 𝑤+ ← 𝑤+ − Adam(∇cost, 𝜆)
20: end for
21: Step 6: Generating High-resolution Face Image
22: �̂�high-res,+ = SStyleGAN (𝑤+ )
23: End Procedure
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Fig. 3: Samples from FERET and their reconstructed versions.

dataset and their corresponding high-resolution (i.e., 1024 × 1024)
reconstructed face images with our proposed method.

In addition to the FFHQ dataset and as a cross-dataset evaluation,
we used FERET [21] dataset and similarly generated coded aperture
camera images for the frontal images in this dataset. Then, we
reconstructed high-resolution (i.e., 1024 × 1024) face images using
our proposed method (and trained models on FFHQ). Fig.3 illustrates
sample face images from the FERET dataset and their corresponding
high-resolution reconstructed face images with our proposed method.
In addition, Fig. 4 shows the histogram of cosine similarity of ArcFace
templates of deconvolution and the reconstructed face images using
our method as well as the ArcFace templates of original RGB
images. This histogram also shows the cosine similarity of mated
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Fig. 4: Histogram of face recognition similarity scores on FERET

Table 1: Ablation Study.

Image
Reconstruction Cosine Similarity

Resolution FFHQ FERET
Mated RGB Images (baseline) - N/A 0.84
Deconv (�̂�) 256 × 256 0.30 0.17
Enhanced (�̂�UNet) 256 × 256 0.56 0.34
High Res (�̂�high-res) 1024 × 1024 0.35 0.17
Optimized High Res (�̂�high-res,+) 1024 × 1024 0.51 0.27

(different images of same subject) and non-mated (images of different
subjects) pairs in this dataset. As the results in this histogram show our
method improves the identity information of face images compared
to deconvolution while generating high-resolution face images.

To further investigate the effect of each part in our proposed method,
as an ablation study we calculate the average cosine similarity of face
recognition templates extracted from images in each step in our method
with the templates of original images. As the results in Table 1 show,
the image enhancement network improves the identity information
in the enhanced images. However, the resolution of the images is low
and the images still have some artifacts (i.e., not realistic). When we
generate high-resolution images 𝑥high-res, the identity information is
reduced, but in our final optimized high-resolution images 𝑥high-res,+

we observe that we have comparable cosine similarity with realistic
and high-resolution reconstructed images with our enhanced images.
Compared to reconstruction via deconvolution, our method generates
high-resolution images with more identity information. The same
trend holds for our reconstruction of FFHQ (validation) and FERET
datasets, which shows the generalization of our proposed method.

We should note that the source code of our experiments is publicly
available1 to facilitate the reproducibility of our work.

IV. CONCLUSION

We proposed a method to generate high-resolution (i.e., 1024 ×
1024) face images from raw sensor images from a coded aperture
camera. While direct reconstruction quality is far from traditional
lensed cameras, enough information is retained in the reconstruction
of sensor images, and that information can be used to generate high-
resolution face images of the same subject. In this paper, we used the
PSF of the coded aperture camera to generate sensor images. Then, to
reconstruct images, we first used deconvolution of PSF, and enhanced
our reconstruction with a neural network. Finally, we extracted facial
templates from enhanced images by our image enhancement network
and mapped them into the intermediate space of a face generator
network. We further optimized the mapped latent codes and used
them to generate high-resolution face images. To our knowledge,
this is the first work on the reconstruction of high-resolution face
images from coded aperture camera.

1https://gitlab.idiap.ch/bob/bob.paper.sensl2023_hires_codedaperture
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