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ABSTRACT

Graph Neural Networks (GNNs) have become a popular tool for
learning on graphs, but their widespread use raises privacy con-
cerns as graph data can contain personal or sensitive information.
Differentially private GNN models have been recently proposed
to preserve privacy while still allowing for effective learning over
graph-structured datasets. However, achieving an ideal balance
between accuracy and privacy in GNNs remains challenging due
to the intrinsic structural connectivity of graphs. In this paper, we
propose a new differentially private GNN called ProGAP that uses
a progressive training scheme to improve such accuracy-privacy
trade-offs. Combined with the aggregation perturbation technique
to ensure differential privacy, ProGAP splits a GNN into a sequence
of overlapping submodels that are trained progressively, expanding
from the first submodel to the complete model. Specifically, each
submodel is trained over the privately aggregated node embed-
dings learned and cached by the previous submodels, leading to
an increased expressive power compared to previous approaches
while limiting the incurred privacy costs. We formally prove that
ProGAP ensures edge-level and node-level privacy guarantees for
both training and inference stages, and evaluate its performance on
benchmark graph datasets. Experimental results demonstrate that
ProGAP can achieve up to 5-10% higher accuracy than existing
state-of-the-art differentially private GNNs. Our code is available
at https://github.com/sisaman/ProGAP.

1 INTRODUCTION

Graph Neural Networks (GNNs) have emerged as a powerful tool
for learning from graph-structured data, and their popularity has
surged due to their ability to achieve impressive performance in a
wide range of applications, including social network analysis, drug
discovery, recommendation systems, and traffic prediction [2, 5, 14,
23, 50]. GNNs excel at learning from the structural connectivity
of graphs by iteratively updating node embeddings through infor-
mation aggregation and transformation from neighboring nodes,
making themwell-suited for tasks such as node classification, graph
classification, and link prediction [7, 16, 26, 48, 52, 53]. However, as
with many data-driven approaches, GNNs can expose individuals
to privacy risks when applied to graph data containing sensitive
information, such as social connections, medical records, and finan-
cial transactions [38, 44]. Recent studies have shown that various
attacks, such as link stealing, membership inference, and node
attribute inference, can successfully break the privacy of graph
datasets [18, 19, 36, 46], posing a significant challenge for the prac-
tical use of GNNs in privacy-sensitive applications.

To address the privacy concerns associatedwithGNNs, researchers
have recently studied differential privacy (DP), a well-established

mathematical framework that provides strong privacy guarantees,
usually by adding random noise to the data [9, 10]. However, apply-
ing DP to GNNs is very challenging due to the complex structural
connectivity of graphs, rendering traditional private learning meth-
ods, such as differentially private stochastic gradient descent (DP-
SGD) [1], infeasible [3, 8, 41]. Recently, the aggregation perturbation
(AP) approach [41] has emerged as a state-of-the-art technique for
ensuring DP in GNNs. Rather than perturbing the model gradients
as done in the standard DP-SGD algorithm and its variants, this
method perturbs the aggregate information obtained from the GNN
neighborhood aggregation step. Consequently, such perturbations
can obfuscate the presence of a single edge, which is called edge-
level privacy, or a single node and all its adjacent edges, referred to
as node-level privacy [39].

The key limitation of AP is its incompatibility with standard
GNN architectures due to the high privacy costs it entails [41]. This
is because conventional GNN models constantly query the aggrega-
tion functions with every update to the model parameters, which
necessitates the re-perturbation of all aggregate outputs at every
training iteration to ensure DP, leading to a significant increase in
privacy costs. To mitigate this issue, Sajadmanesh et al. [41] pro-
posed a method called GAP, which decouples the aggregation steps
from the model parameters. In GAP, node features are recursively
aggregated first, and then a classifier is learned over the result-
ing perturbed aggregations, enabling DP to be maintained without
incurring excessive privacy costs. Due to having non-trainable
aggregations, however, such decoupling approaches reduce the
representational power of the GNN [12], leading to suboptimal
accuracy-privacy trade-offs.

In the face of these challenges, we present a novel differentially
private GNN, called “ProgressiveGNNwithAggregationPerturbation”
(ProGAP). Our new method uses the same AP technique as in GAP
to ensure DP. However, instead of decoupling the aggregation steps
from the learnable modules, ProGAP adopts a multi-stage, progres-
sive training paradigm to surmount the formidable privacy costs
associated with AP. Specifically, ProGAP converts a 𝐾-layer GNN
model into a sequence of overlapping submodels, where the 𝑖-th
submodel comprises the first 𝑖 layers of the model, followed by a
lightweight supervision head layer with softmax activation that
utilizes node labels to guide the submodel’s training. Starting with
the shallowest submodel, ProGAP then proceeds progressively to
train deeper submodels, each of which is referred to as a training
stage. At every stage, the learned node embeddings from the pre-
ceding stage are aggregated, perturbed, and then cached to save
privacy budget, allowing ProGAP to learn a new set of private
node embeddings. Ultimately, the last stage’s embeddings are used
to generate final node-wise predictions.
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The proposed progressive training approach overcomes the high
privacy costs of AP by allowing the perturbations to be applied only
once per stage rather than at every training iteration. ProGAP also
maintains a higher level of representational power compared to
GAP, as the aggregation steps now operate on the learned embed-
dings from the preceding stages, which are more expressive than
the raw node features. Moreover, we prove that ProGAP retains all
the benefits of GAP, such as edge- and node-level privacy guaran-
tees and zero-cost privacy at inference time. We evaluate ProGAP
on five node classification datasets, including Facebook, Amazon,
and Reddit, and demonstrate that it can achieve up to 10.4% and
5.5% higher accuracy compared to GAP under edge- and node-level
DP with an epsilon of 1 and 8, respectively.

2 RELATEDWORK

Several recent studies have investigated differential privacy (DP) to
provide formal privacy guarantees in various GNN learning settings.
For example, Sajadmanesh and Gatica-Perez [40] propose a locally
private GNN for a distributed learning environment, where node
features and labels remain private, while the GNN training is feder-
ated by a central server with access to graph edges. Lin et al. [30]
also introduce a locally private GNN, called Solitude, that pre-
serves edge privacy in a decentralized graph, where each node keeps
its own private connections. However, both of these approaches
use local differential privacy [25], which operates under a different
problem setting from our method.

Other approaches propose edge-level DP algorithms for GNNs.
Wu et al. [46] developed an edge-level private method that modi-
fies the input graph directly through randomized response or the
Laplace mechanism, followed by training a GNN on the resulting
noisy graph. In contrast, Kolluri et al. [28] propose LPGNet, which
adopts a tailored neural network architecture. Instead of directly
using the graph edges, they encode graph adjacency information
in the form of low-sensitivity cluster vectors, which are then per-
turbed using the Laplace mechanism to preserve edge-level privacy.
Unlike our approach, however, neither of these methods provides
node-level privacy guarantees.

Olatunji et al. [35] propose the first node-level private GNN by
adapting the framework of PATE [37]. In their approach, a student
GNNmodel is trained on public graph data, with each node privately
labeled using teacher GNN models that are trained exclusively for
the corresponding query node. Nevertheless, their approach relies
on public graph data and may not be applicable in all situations.
Daigavane et al. [8] extend the standard DP-SGD algorithm and
privacy amplification by subsampling to bounded-degree graph
data to achieve node-level DP, but their method fails to provide
inference privacy. Finally, Sajadmanesh et al. [41] propose GAP, a
private GNN learning framework that provides both edge-level and
node-level privacy guarantees using the aggregation perturbation
approach. They decouple the aggregation steps from the neural
network model to manage the privacy costs of their method. Al-
though our method leverages the same aggregation perturbation
technique, we take a different approach to limit the privacy costs
using a progressive training scheme.

The main concept behind progressive learning is to train the
model on simpler tasks first and then gradually move towards

more challenging tasks. It was originally introduced to stabilize
the training of deep learning models and has been widely adopted
in various computer vision applications, such as facial attribute
editing [47], image super-resolution [45], image synthesis [24], and
representation learning [29]. This technique has also been extended
to federated learning, mainly to minimize the communication over-
head between clients and the central server [4, 17, 43]. However,
the potential benefit of progressive learning in DP applications has
not been explored yet. In this paper, we are first to examine the
advantages of progressive learning in the context of private GNNs.

3 BACKGROUND

3.1 Differential Privacy

Differential privacy (DP) is a widely accepted framework for mea-
suring the privacy guarantees of algorithms that operate on sen-
sitive data. The main idea of DP is to ensure that the output of an
algorithm is not significantly affected by the presence or absence
of any particular individual’s data in the input. This means that
even if an attacker has access to all but one individual’s data, they
cannot determine whether that individual’s data was used in the
computation. The formal definition of DP is as follows [10]:

Definition 3.1. Given 𝜖 > 0 and 𝛿 ∈ [0, 1], a randomized al-
gorithm A satisfies (𝜖, 𝛿)-differential privacy, if for all adjacent
datasets D and D′ differing by at most one record and for all
possible subsets of A’s outputs 𝑆 ⊆ 𝑅𝑎𝑛𝑔𝑒 (A):

Pr[A(D) ∈ 𝑆] ≤ 𝑒𝜖 Pr[A(D′) ∈ 𝑆] + 𝛿.

The value of epsilon, which is often called privacy budget or
privacy cost parameter, determines the strength of the privacy guar-
antee provided by the algorithm, with smaller values of epsilon
indicating stronger privacy protection but potentially lower utility
of the algorithm. The parameter 𝛿 represents the maximum allow-
able failure probability, i.e., the probability that the algorithm may
violate the privacy guarantee, and is usually set to a small value.

The guarantee of differential privacy depends on the notion of
adjacency between datasets. In the case of tabular datasets, differ-
ential privacy defines adjacency between two datasets as being able
to obtain one dataset from the other by removing (or replacing) a
single record. However, for graph datasets, adjacency needs to be
defined differently due to the presence of links between data records.
To adapt the definition of DP for graphs, two different notions of
adjacency are defined: edge-level and node-level adjacency. In the
former, two graphs are adjacent if they differ only in the presence of
a single edge, whereas in the latter, the two graphs differ by a single
node with its features, labels, and all attached edges. Accordingly,
the definitions of edge-level and node-level DP are derived from
these definitions [39]. Specifically, an algorithm A provides edge-
/node-level (𝜖, 𝛿)-DP if for every two edge-/node-level adjacent
graph datasets G and G′ and any set of outputs 𝑆 ⊆ 𝑅𝑎𝑛𝑔𝑒 (A), we
have Pr[A(G) ∈ 𝑆] ≤ 𝑒𝜖 Pr[A(G′) ∈ 𝑆] + 𝛿.

The concepts of edge-level and node-level differential privacy
can be intuitively understood as providing privacy protection at
different levels of granularity in graph datasets. Edge-level differ-
ential privacy is focused on protecting the privacy of edges, which
may represent connections between individuals. In contrast, node-
level differential privacy aims to protect the privacy of nodes and
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their adjacent edges, thus safeguarding all information related to
an individual, including their features, labels, and connections.

The difference in granularity between edge-level and node-level
DP is crucial because the level of privacy protection needed may
depend on the sensitivity of the information being disclosed. For
example, protecting only the privacy of individual edges may be
sufficient for some applications, while others may require more
stringent privacy guarantees that protect the privacy of entire nodes.
Our proposed method, which we discuss in detail in Section 4, is
capable of providing both edge-level and node-level privacy guar-
antees.

3.2 Graph Neural Networks

The goal of GNNs is to learn a vector representation, also known as
an embedding, for each node in a given graph. These embeddings
are learned by taking into account the initial features of the nodes
and the structure of the graph (i.e., its edges). The learned embed-
dings can be applied to various downstreammachine learning tasks,
such as node classification and link prediction.

A common 𝐾-layer GNN is composed of 𝐾 layers of graph con-
volution that are applied sequentially. Specifically, layer 𝑘 takes as
input the adjacency matrix A and the node embeddings produced
by layer 𝑘−1, denoted by X(𝑘−1) , and outputs a new embedding for
each node by aggregating the embeddings of its adjacent neighbors,
followed by a neural network transformation. In its simplest form,
the formal update rule for layer 𝑘 can be written as follows:

X(𝑘 ) = Upd
(
Agg(A,X(𝑘−1) );Θ(𝑘 )

)
, (1)

where Agg is a differentiable permutation-invariant neighborhood
aggregation function, such as mean, sum, or max pooling, and Upd
denotes a learnable transformation, such as a multilayer perceptron
(MLP), parameterized by Θ(𝑘 ) that takes the aggregated embed-
dings as input and produces a new embedding for each node.

3.3 Problem Definition

Consistent with prior work [8, 41], we focus on the node classifi-
cation task. Let G = (V, E) be a directed, unweighted graph with
a set of nodes V = {𝑣1, . . . , 𝑣𝑁 } and edges E represented by an
adjacency matrix A ∈ {0, 1}𝑁×𝑁 . The graph is associated with a set
of node features and ground-truth labels. Node features are repre-
sented by a matrix X ∈ R𝑁×𝑑 , where X𝑖 denotes the 𝑑-dimensional
feature vector of node 𝑣𝑖 . Node labels are denoted by Y ∈ {0, 1}𝑁×𝐶 ,
where𝐶 is the number of classes, and Y𝑖 is a one-hot vector indicat-
ing the label of node 𝑣𝑖 . We assume that the node labels are known
only for a subset of nodesV𝐿 ⊂ V . This reflects the transductive
(semi-supervised) learning setting, where the goal is to predict the
labels of the remaining nodes inV \V𝐿 .

Consider a GNN-based node classification modelM(A,X;Θ)
with parameter set Θ that takes the adjacency matrix A and the
node features X, and outputs the corresponding predicted node
labels Ŷ:

Ŷ =M(A,X;Θ). (2)
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Figure 1: An example ProGAP architecture with three stages

(depth = 2). MLP and JK represent multi-layer perceptron and

Jumping Knowledge [49]modules, respectively. NAP denotes

the normalize-aggregate-perturb module used to ensure the

privacy of the adjacency matrix, with its output cached im-

mediately after computation to save privacy budget. Training

is done progressively, starting with the first stage and then

expanding to the second and third stages, each using its own

head MLP. The final prediction is obtained by the head MLP

of the last stage.

We seek to minimize a standard classification loss function L with
respect to the set of model parameters Θ over the labeled nodesV𝐿 :

Θ★ = argmin
Θ
L(Ŷ,Y)

= argmin
Θ

©«
∑︁
𝑣𝑖 ∈V𝐿

ℓ (Ŷ𝑖 ,Y𝑖 )ª®¬ , (3)

where ℓ : R𝐶 × R𝐶 → R is a loss function, such as cross-entropy,
and Θ★ denotes the optimal set of parameters.

Our goal is to ensure the privacy of G at both the training (Eq. 3)
and inference (Eq. 2) phases of the modelM, using the differential
privacy notions defined for graphs, i.e., edge-level and node-level
DP. Note that preserving privacy during the inference stage is of
utmost importance since the adjacency information of the graph
is still used at inference time to generate the predicted labels, and
thus sensitive information about the graph could potentially be
leaked even with Θ being differentially private [41].

4 PROPOSED METHOD

In this section, we present our proposed ProGAP method, which
leverages the aggregation perturbation (AP) technique [41] to en-
sure differential privacy but introduces a novel progressive learning
scheme to restrain the privacy costs of AP incurred during training.
The overview of ProGAP architecture is illustrated in Figure 1,
and its forward propagation (inference) and training algorithms
are presented in Algorithm 1 and Algorithm 2, respectively. In the
following, we first describe our method in detail and then analyze
its privacy guarantees.
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Algorithm 1: ProGAP Forward Propagation
M𝑠 (A,X;𝜎,𝔓𝑠 )
Input :Stage 𝑠 , adjacency matrix A; node features X; noise

standard deviation 𝜎 ; model parameters
𝔓𝑠 =

⋃𝑠
𝑘=0{Θ

(𝑘 )
𝑏𝑎𝑠𝑒
} ∪ {Θ(𝑠 )

𝑗𝑢𝑚𝑝
,Θ(𝑠 )
ℎ𝑒𝑎𝑑

}
Output :Predicated node labels Ŷ(𝑠 )

1 X̃(0) ← X
2 for 𝑘 ∈ {0, . . . , 𝑠 } do
3 if 𝑘 > 0 and X̃(𝑘 ) is not cached then
4 X̃(𝑘 ) ← NAP(A,X(𝑘−1) ;𝜎 )
5 Cache X̃(𝑘 )

6 end

7 X(𝑘 ) ← MLP(𝑘 )
𝑏𝑎𝑠𝑒

(
X̃(𝑘 ) ;Θ(𝑘 )

𝑏𝑎𝑠𝑒

)
8 end

9 Ŷ(𝑠 ) ← MLP(𝑠 )
ℎ𝑒𝑎𝑑

(
JK(𝑠 ) ({X(0) , . . . ,X(𝑠 ) };Θ(𝑠 )

𝑗𝑢𝑚𝑝
) ;Θ(𝑠 )

ℎ𝑒𝑎𝑑

)
10 return Ŷ(𝑠 )

Algorithm 2: ProGAP Training
Input :Adjacency matrix A; node features X; node labels Y;

model depth 𝐾 ; noise standard deviation 𝜎 ;
Output :Trained model parameters𝔓★

𝐾

1 initialize Θ(0)
𝑏𝑎𝑠𝑒

,Θ(0)
𝑗𝑢𝑚𝑝

,Θ(0)
ℎ𝑒𝑎𝑑

randomly

2 𝔓0 ← {Θ(0)𝑏𝑎𝑠𝑒 ,Θ
(0)
𝑗𝑢𝑚𝑝

,Θ(0)
ℎ𝑒𝑎𝑑

}
3 for 𝑠 ∈ {0, . . . , 𝐾 } do
4 𝔓★

𝑠 ← argmin𝔓 L
(
M𝑠 (A,X;𝜎,𝔓𝑠 ) ,Y

)
5 if 𝑠 < 𝐾 then

6 initialize Θ(𝑠+1)
𝑏𝑎𝑠𝑒

,Θ(𝑠+1)
𝑗𝑢𝑚𝑝

,Θ(𝑠+1)
ℎ𝑒𝑎𝑑

randomly
7 𝔓𝑠+1 ←

𝔓★
𝑠 ∪ {Θ

(𝑠+1)
𝑏𝑎𝑠𝑒

,Θ(𝑠+1)
𝑗𝑢𝑚𝑝

,Θ(𝑠+1)
ℎ𝑒𝑎𝑑

} \ {Θ★ (𝑠 )
𝑗𝑢𝑚𝑝

,Θ★ (𝑠 )
ℎ𝑒𝑎𝑑

}
8 end

9 end

10 return𝔓★
𝐾

4.1 Model Architecture and Training

We start by considering a simple non-private sequential GNNmodel
M with 𝐾 aggregation layers as the following:

X(0) = MLP(0)
𝑏𝑎𝑠𝑒

(
X;Θ(0)

𝑏𝑎𝑠𝑒

)
, (4)

X(𝑘 ) = MLP(𝑘 )
𝑏𝑎𝑠𝑒

(
Agg(A,X(𝑘−1) );Θ(𝑘 )

𝑏𝑎𝑠𝑒

)
(5)

∀𝑘 ∈ {1, . . . , 𝐾},

Ŷ = MLPℎ𝑒𝑎𝑑
(
X(𝐾 ) ;Θℎ𝑒𝑎𝑑

)
, (6)

whereX(𝑘 ) is the node embeddings generated at layer𝑘 byMLP(𝑘 )
𝑏𝑎𝑠𝑒

having parameters Θ(𝑘 )
𝑏𝑎𝑠𝑒

, and MLPℎ𝑒𝑎𝑑 is a multi-layer perceptron
parameterized by Θℎ𝑒𝑎𝑑 with the softmax activation function that
maps the final embeddings X(𝐾 ) to the predicted class probabilities
Ŷ.

To make this model differentially private, we follow the aggre-
gation perturbation technique proposed by Sajadmaneshet al. [41]
and add noise to the output of the aggregation function. Specifically,

we replace the original aggregation function Agg in Eq. 5 with a
Normalize-Aggregate-Perturb mechanism defined as:

NAP (A,X;𝜎) =
𝑁∑︁
𝑗=1

X𝑗

∥X𝑗 ∥2
A𝑗,𝑖 + N(0, 𝜎2I𝑑 ) | ∀𝑖 ∈ {1, . . . , 𝑁 }

 , (7)

where 𝑁 is the number of nodes, 𝑑 is the dimension of the input
node embeddings, and 𝜎 is the standard deviation of the Gaussian
noise. Concretely, the NAP mechanism row-normalizes the input
embeddings to limit the contribution of each node to the aggregated
output, then applies the sum aggregation function followed by
adding Gaussian noise to the results.

It can be easily shown that the resulting model provides edge-
level DP as every query to the adjacency matrix A is immediately
perturbed with noise. However, training such a model comes at the
cost of a significant increase in the privacy budget, which is propor-
tional to the number of queries to the adjacency matrix. Concretely,
with𝑇 training iterations, the NAPmechanism is queried 𝐾𝑇 times
(at each forward pass and each layer), leading to an excessive accu-
mulated privacy cost of 𝑂 (

√
𝐾𝑇 ).

To reduce this cost, we propose a progressive training approach
as the following: We first split the modelM into 𝐾 + 1 overlapping
submodels, where submodelM𝑠 , 𝑠 ∈ {0, 1, . . . , 𝐾}, is defined as:

X̃(𝑠 ) = NAP
(
A,X(𝑠−1) ;𝜎

)
, (8)

X(𝑠 ) = MLP(𝑠 )
𝑏𝑎𝑠𝑒

(
X̃(𝑠 ) ;Θ(𝑠 )

𝑏𝑎𝑠𝑒

)
, (9)

Ŷ(𝑠 ) = MLP(𝑠 )
ℎ𝑒𝑎𝑑

(
JK(𝑠 ) (

𝑠⋃
𝑘=0
{X(𝑘 ) };Θ(𝑠 )

𝑗𝑢𝑚𝑝
);Θ(𝑠 )

ℎ𝑒𝑎𝑑

)
, (10)

where X̃(𝑠 ) is the noisy aggregate embeddings ofM𝑠 , with X̃(0) =
X. JK(𝑠 ) is a Jumping Knowledge module [49] with parameters
Θ(𝑠 )
𝑗𝑢𝑚𝑝

that combines the embeddings generated by submodelsM0

toM𝑠 , andMLP(𝑠 )
ℎ𝑒𝑎𝑑

is a lightweight, 1-layer headMLPwith param-

eters Θ(𝑠 )
ℎ𝑒𝑎𝑑

used to trainM𝑠 . Finally, Ŷ(𝑠 ) is the output predictions
of M𝑠 . Then, we progressively train the model in 𝐾 + 1 stages,
starting from the shallowest submodelM0 and gradually expand-
ing to the deepest submodelM𝐾 (which is equivalent to the full
modelM) as explained by Algorithm 2. For the final inference after
training, we simply use the labels predicted by the last submodel
M𝐾 , i.e., Ŷ = Ŷ(𝐾 ) .

The key point in this training strategy is that we immediately
save the outputs of NAP modules on their first query and reuse them
throughout the training.More specifically, at each stage 𝑠 , the per-
turbed aggregate embedding matrix X̃(𝑠 ) computed in the first
forward pass ofM𝑠 (via Eq. 8) is stored in the cache and reused in
all further queries. This caching mechanism allows us to reduce
the privacy costs of the model by a factor of 𝑇 , as the NAP module
in this case is only queried 𝐾 times (once per stage) instead of 𝐾𝑇
times. At the same time, the aggregations X̃(𝑠 ) are computed over
the embeddings X(𝑠−1) that are already learned in the preceding
stage 𝑠 − 1, which provide more expressive power than the raw
node features as they also encode information from the adjacency
matrix and node labels, and thus lead to better performance.
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4.2 Privacy Analysis

With the following theorem, we show that the proposed training
strategy provides edge-level DP. The proof is provided in the sup-
plementary material.

Theorem 4.1. Given the model depth 𝐾 ≥ 0 and noise variance
𝜎2, for any 𝛿 ∈ (0, 1) Algorithm 2 satisfies edge-level (𝜖, 𝛿)-DP with
𝜖 = 𝐾

2𝜎2 +
√
2𝐾 log (1/𝛿 )/𝜎 .

To ensure node-level DP, however, wemust train every submodel
using DP-SGD or its variants, as in this case node features and
labels are also private and can be leaked with non-private training.
Theorem 4.2 establishes the node-level DP guarantee of ProGAP’s
training algorithm when combined with DP-SGD:

Theorem 4.2. Given the number of nodes 𝑁 , batch-size 𝐵 < 𝑁 ,
number of per-stage training iterations𝑇 , gradient clipping threshold
𝐶 > 0, model depth 𝐾 ≥ 0, maximum cut-off degree 𝐷 ≥ 1, noise
variance for aggregation perturbation 𝜎2

𝐴𝑃
> 0, and noise variance

for gradient perturbation 𝜎2
𝐺𝑃

> 0, Algorithm 2 satisfies node-level
(𝜖, 𝛿)-DP for any 𝛿 ∈ (0, 1) with:

𝜖 ≤ min
𝛼>1

(𝐾 + 1)𝑇
𝛼 − 1 log

{(
1 − 𝐵

𝑁

)𝛼−1 (
𝛼
𝐵

𝑁
− 𝐵

𝑁
+ 1

)
+
(
𝛼

2

) (
𝐵

𝑁
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𝛼 − 1 , (11)

providing that the optimization in line 4 of Algorithm 2 is done using
DP-SGD.

The proof is available in the supplementary material. Note that
to decrease the node-level sensitivity of the NAP mechanism (i.e.,
the impact of adding/removing a node on the output of the NAP
mechanism), we assume an upper bound 𝐷 on node degrees, and
randomly sample edges from the graph to ensure that each node
has no more than 𝐷 outgoing edges. This is a standard technique
to ensure bounded-degree graphs [8, 41].

In addition to training privacy, ProGAP also guarantees privacy
during inference at both edge and node levels without any further
privacy costs. This is because the entire noisy aggregate matrices
X̃(𝑘 ) corresponding to all the nodes –both training and test ones–
are already computed and cached during training and reused for
inference (i.e., lines 4 and 5 of Algorithm 1 is not executed at infer-
ence time). Therefore, the inference for a node 𝑖 no longer depends
on the adjacency matrix and neighboring node features, but only
on its own aggregated features X̃(𝑘 )

𝑖
for all 𝑘 ∈ {0, . . . , 𝐾}, which

are already computed with DP during training. As a result, the
inference only post-processes differentially private outputs, which
does not incur any additional privacy costs.

Table 1: Dataset Statistics

Dataset # Nodes # Edges # Features # Classes Degree

Facebook 26,406 2,117,924 501 6 62

Reddit 116,713 46,233,380 602 8 209

Amazon 1,790,731 80,966,832 100 10 22

FB-100 1,120,280 86,304,478 537 6 57

WeNet 37,576 22,684,206 44 4 286

5 EXPERIMENTAL SETUP

We test our proposed method on node-wise classification tasks and
evaluate its effectiveness in terms of classification accuracy and
privacy guarantees.

5.1 Datasets

We conduct experiments on three real-world datasets that have
been used in previous work [8, 35, 41], namely Facebook [42], Red-
dit [16], and Amazon [6], and also two new datasets: FB-100 [42] and
WeNet [13, 31]. The Facebook dataset is a collection of anonymized
social network data from UIUC students, where nodes represent
users, edges indicate friendships, and the task is to predict students’
class year. The Reddit dataset comprises a set of Reddit posts as
nodes, where edges represent if the same user commented on both
posts, and the goal is to predict the posts’ subreddit. The Amazon
dataset is a product co-purchasing network, with nodes represent-
ing products and edges indicating if two products are purchased
together, and the objective is to predict product category. FB-100 is
an extended version of the Facebook dataset combining the social
network of 100 different American universities. WeNet is a mobile
sensing dataset collected from university students in four different
countries. Nodes represent eating events, which are linked based on
the similarity of location and Wi-Fi sensor readings. Node features
are extracted based on cellular and application sensors, and the goal
is to predict the country of the events.A summary of the datasets is
provided in Table 1.

5.2 Baselines

We compare ProGAP against the following baselines:

GraphSAGE [16]. This is one of the most popular GNN models,
which we use for non-private performance comparison with our
method. Moreover, it serves as the backbonemodel for the following
EdgeRand andDP-GNN baselines. The number of message-passing
layers is tuned in the range of 1 to 5 for each dataset.We also use one
preprocessing and one postprocessing layer, and equip the model
with jumping knowledge modules [49] to get better performance.
MLP andDP-MLP.We use a simple 3-layer MLPmodel which does
not use any graph structural information and therefore is perfectly
edge-level private. DP-MLP is the node-level private variant of
MLP, which is trained using the DP version of the Adam optimizer
(DP-Adam).
EdgeRand [46]. This edge-level private method directly adds
noise to the adjacency matrix. We use the enhanced version of
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Table 2: Comparison of Experimental Results (Mean Accuracy ± 95% CI)

Privacy Level Method 𝜖 Facebook Reddit Amazon FB-100 WeNet

Non-Private

GraphSAGE [16] ∞ 84.7 ± 0.09 99.4 ± 0.01 93.2 ± 0.07 74.0 ± 0.80 71.6 ± 0.54

GAP [41] ∞ 80.5 ± 0.42 99.5 ± 0.01 92.0 ± 0.10 66.4 ± 0.35 69.7 ± 0.14

ProGAP (Ours) ∞ 84.5 ± 0.24 99.3 ± 0.03 93.3 ± 0.04 74.4 ± 0.14 73.9 ± 0.25

Edge-Level
Private

MLP 0.0 50.8 ± 0.20 82.5 ± 0.08 71.1 ± 0.18 34.9 ± 0.02 51.5 ± 0.22

EdgeRand [46] 1.0 50.2 ± 0.50 82.8 ± 0.05 72.7 ± 0.1 34.9 ± 0.05 52.1 ± 0.48

GAP [41] 1.0 69.4 ± 0.39 97.5 ± 0.06 78.8 ± 0.26 46.5 ± 0.58 62.4 ± 0.28

ProGAP (Ours) 1.0 77.2 ± 0.33 97.8 ± 0.05 84.2 ± 0.07 56.9 ± 0.30 68.8 ± 0.23

Node-Level
Private

DP-MLP [1] 8.0 50.2 ± 0.25 81.5 ± 0.12 73.6 ± 0.05 34.5 ± 0.13 50.8 ± 0.37

DP-GNN [8] 8.0 62.6 ± 0.86 95.6 ± 0.31 78.5 ± 0.86 46.5 ± 0.57 54.2 ± 0.73

GAP [41] 8.0 63.9 ± 0.49 93.9 ± 0.09 77.6 ± 0.07 43.0 ± 0.20 58.2 ± 0.39

ProGAP (Ours) 8.0 69.3 ± 0.33 94.0 ± 0.04 79.1 ± 0.10 48.5 ± 0.36 61.0 ± 0.34

EdgeRand from [41] that uses the Asymmetric Randomized Re-
sponse [20] with the GraphSAGE model as the backbone GNN.
DP-GNN [8]. This node-level private approach extends the DP-
SGD algorithm to GNNs. Note, however, that this method does not
support inference privacy, but we nevertheless include it in our
comparison. Similar to EdgeRand, we use the GraphSAGEmodel
as the backbone GNN for this method as well.
GAP [41]. GAP is the state-of-the-art approach that supports both
edge-level and node-level DP.We use GAP’s official implementation
on GitHub1 and follow the same experimental setup as reported in
the original paper.

We do not include other available differentially private GNN
baselines (e.g., [3, 33, 36, 40]) as they have different problem settings
that make them not directly comparable to our method.

5.3 Implementation Details

We follow the same experimental setup as GAP [41], and ran-
domly split the nodes in all the datasets into training, validation,
and test sets with 75/10/15% ratio, respectively. We vary 𝜖 within
{0.25, 0.5, 1, 2, 4,∞} for the edge-level privacy (𝜖 = ∞ corresponds
to the non-private setting) and within {2, 4, 8, 16, 32} for the node-
level privacy setting. For each 𝜖 value, we tune the following hyper-
parameters based on the mean validation set accuracy computed
over 10 runs:MLP𝑏𝑎𝑠𝑒 layers in {1, 2}, model depth𝐾 in {1, 2, 3, 4, 5},
and learning rate in {0.01, 0.05}. The value of 𝛿 is fixed per each
dataset to be smaller than the inverse number of private units (i.e.,
edges for edge-level privacy, nodes for node-level privacy). For
all cases, we set the number of MLPℎ𝑒𝑎𝑑 layers to 1 and use con-
catenation for the JK modules. Additionally, we set the number of
hidden units to 16 and use the SeLU activation function [27]. We
use batch normalization except for the node-level setting, for which
we use group normalization with one group. Under the edge-level
setting, we train the models with full-sized batches for 100 epochs
using the Adam optimizer and perform early stopping based on
the validation set accuracy. For the node-level setting, we use ran-
domized neighbor sampling to bound the maximum degree 𝐷 to

1https://github.com/sisaman/GAP

50 for Amazon, 100 for Facebook and FB-100, and 400 for Reddit
and WeNet. We use DP-Adam [15] with a clipping threshold of
1.0. We tune the number of per-stage epochs in {5, 10} and set the
batch size to 256, 1024, 2048, 4096, and 4096 for Facebook, WeNet,
Reddit, Amazon, and FB-100, respectively. Finally, we report the
average test accuracy over 10 runs with 95% confidence intervals
calculated by bootstrapping with 1000 samples. We open-source
our implementation on GitHub.2

5.4 Software and Hardware

We use PyTorch Geometric [11] for implementing the models,
autodp3 for privacy accounting, and Opacus [51] for DP training.
We run all the experiments on an HPC cluster with NVIDIA Tesla
V100 and GeForce RTX 3090 GPUs with maximum 32GB memory.

6 RESULTS AND DISCUSSION

6.1 Accuracy-Privacy Trade-off

Table 2 presents the test accuracy of ProGAP against other base-
lines at three different privacy levels: non-private with 𝜖 = ∞,
edge-level privacy with 𝜖 = 1, and node-level privacy with 𝜖 = 8.
The results are reported as mean accuracy ± 95% confidence in-
terval. We observe that ProGAP outperforms other approaches
most of the time, and often by a substantial margin. In the non-
private setting, ProGAP performs comparably with GraphSAGE,
but achieves higher test accuracies than GAP on all datasets except
Reddit, where GAP performs only slightly better. This shows that
our ProGAP method is also a strong predictor in the non-private
learning setting.

Moving to edge-level privacy, ProGAP consistently outperforms
other approaches across all datasets, with the largest performance
gap of 10.4% accuracy points compared to GAP observed on FB-100.
Under node-level DP, ProGAP is still superior to the other baselines
across all datasets except Reddit, where DP-GNN achieves a slightly
higher accuracy. Note, however, that DP-GNN only guarantees
node-level privacy for the model parameters and fails to provide
2https://github.com/sisaman/ProGAP
3https://github.com/yuxiangw/autodp

https://github.com/sisaman/GAP
https://github.com/sisaman/ProGAP
https://github.com/yuxiangw/autodp
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Figure 2: Accuracy-privacy trade-off of edge-level (top) and node-level (bottom) private methods. The dotted line represents the

accuracy of the non-private ProGAP.

inference privacy, while our ProGAPmethod provides both training
and inference privacy guarantees. Compared to GAP, the largest
margin in this category is also observed on FB-100, where ProGAP
achieves 5.5% more accuracy points.

To examine the performance of ProGAP at different privacy
budgets, we varied 𝜖 between 0.25 to 4 for edge-level privacy and
2 to 32 for node-level private algorithms. We then recorded the
accuracy of ProGAP for each privacy budget and compare it with
GAP as the most similar baseline. The outcome for both edge-level
and node-level privacy settings is depicted in Figure 2. Notably, we
observe that ProGAP achieves higher accuracies than GAP across
all 𝜖 values tested and approaches the non-private accuracy more
quickly under both privacy settings. This is because in ProGAP,
each aggregation step is computed on the node embeddings learned
in the previous stage, providing greater representational power
than GAP, which just recursively computes the aggregations on
the initial node representations.

It is worth noting that the performance discrepancy between
ProGAP and GAP is not consistent across all datasets. For instance,
this gap in accuracy is less pronounced with the Reddit dataset
compared to FB-100. This is due to the specific characteristics and
the learning task of each dataset, which require different levels
of graph representational power. In Reddit, where the goal is to
predict the community of nodes (representing Reddit posts), most
of the pertinent information needed is already present in the node
features, making the relationships between the posts less crucial
for this prediction task. In contrast, the learning task of the FB-100
dataset (predicting students’ class year) relies more heavily on the
graph structure, necessitating more powerful graph representations.
Therefore, the performance difference between ProGAP and GAP
is more noticeable in this dataset. This connection between the
learning task and the graph structure will be revisited in Section 6.3.

6.2 Convergence Analysis

We examine the convergence of ProGAP to further understand its
behavior under the two privacy settings. We report the training
and validation accuracy of ProGAP per training step under edge-
level privacy with 𝜖 = 1 and node-level privacy with 𝜖 = 8. For

all datasets, ProGAP is trained for 100 and 10 epochs per stage
under edge and node-level privacy, respectively. We fix 𝐾 = 5 in
all settings. The results are shown in Figure 3. We observe that
both training and validation accuracies increase as ProGAP moves
from stage 0 to 5, with diminishing returns for more stages, which
indicates the higher importance of the nearby neighbors to each
node, since the receptive field of nodes grows with the number
of stages. Moreover, we observe negligible discrepancies between
training and validation accuracy when the model converges, which
suggests higher resilience to privacy attacks, such as membership
inference, which typically rely on large generalization gaps. This
result is in line with previous work showing the effectiveness of
DP against privacy attacks [21, 22, 34, 41].

6.3 Effect of the Model Depth

We explore how the performance of ProGAP is influenced by mod-
ifying the model depth 𝐾 , or equivalently, the number of stages
𝐾 + 1. We experiment with different values of 𝐾 ranging from 1 to
5 and evaluate ProGAP’s accuracy under varying privacy budgets
of 𝜖 ∈ {0.25, 1, 4} for edge-level DP and 𝜖 ∈ {2, 8, 32} for node-level
privacy. The results are demonstrated in Figure 4. We observe that
ProGAP can generally gain advantages from increasing the depth,
but there is a compromise depending on the privacy budget: deeper
models lead to better accuracy under higher privacy budgets, while
lower privacy budgets require shallower models to achieve optimal
performance. This is because ProGAP can leverage data from more
remote nodes with a higher value of𝐾 , which can boost the final ac-
curacy, but it also increases the amount of noise in the aggregations,
which has a detrimental effect on the model’s accuracy. When the
privacy budget is lower and the amount of noise is greater, ProGAP
has the best performance at smaller values of 𝐾 . But as the privacy
budget grows, the magnitude of the noise is lowered, enabling the
model to take advantage of greater 𝐾 values.

An intriguing aspect to note is the potential improvement in
ProGAP’s accuracy across various datasets as its depth increases.
Observing the Reddit and FB-100 datasets as an example, it is clear
that the boost in performance from increasing the parameter 𝐾
is considerable for FB-100 under moderate privacy budgets, while
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Figure 3: Convergence of ProGAP with 𝐾 = 5 under edge-level (top) and node-level (bottom) privacy, with 𝜖 = 1 and 𝜖 = 8,
respectively.
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Figure 4: Effect of the model depth on ProGAP’s accuracy under edge-level (top) and node-level (bottom) privacy.

for Reddit, the gain in accuracy is minimal. This discrepancy can
again be explained by the nature and the specific learning tasks of
the datasets. In Reddit, where the task is less reliant on the graph
structure and the node features hold more predictive value, the
depth of ProGAP doesn’t significantly influence its performance.
On the contrary, in FB-100, where the learning task heavily depends
on the graph structure, ProGAP’s performance is more sensitive
to the model’s depth. These observations align with the previous
discussion about the wider performance gap between ProGAP and
GAP in FB-100 compared to Reddit.

7 CONCLUSION

In this paper, we introduced ProGAP, a novel differentially private
GNN that improves the challenging accuracy-privacy trade-off in
learning from graph data. Our approach uses a progressive training
scheme that splits the GNN into a sequence of overlapping sub-
models, each of which is trained over privately aggregated node
embeddings learned and cached by the previous submodels. By com-
bining this technique with the aggregation perturbation method,
we formally proved that ProGAP can ensure edge-level and node-
level privacy guarantees for both training and inference stages.

Empirical evaluations on benchmark graph datasets demonstrated
that ProGAP can achieve state-of-the-art accuracy by outperform-
ing existing methods. Future work could include exploring new
architectures or training strategies to further improve the accuracy-
privacy trade-off of differentially private GNNs, especially in the
more challenging node-level privacy setting.
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A RÉNYI DIFFERENTIAL PRIVACY

The proofs presented in the following section are based on Rényi
Differential Privacy (RDP) [32], which is an alternative definition
of DP that gives tighter sequential composition results. The formal
definition of RDP is as follows:

Definition A.1 (Rényi Differential Privacy [32]). Given 𝛼 > 1 and
𝜖 > 0, a randomized algorithm A satisfies (𝛼, 𝜖)-RDP if for every
adjacent datasets 𝑋 and 𝑋 ′, we have:

𝐷𝛼
(
A(D)∥A(D′)

)
≤ 𝜖, (12)

where 𝐷𝛼 (𝑃 ∥𝑄) is the Rényi divergence of order 𝛼 between proba-
bility distributions 𝑃 and 𝑄 defined as:

𝐷𝛼 (𝑃 ∥𝑄) =
1

𝛼 − 1 logE𝑥∼𝑄
[
𝑃 (𝑥)
𝑄 (𝑥)

]𝛼
.

Proposition 3 of [32] measures the privacy guarantee of the
composition of RDP algorithms as the following:

Proposition A.2 (Composition of RDP mechanisms [32]). Let
𝑓 be (𝛼, 𝜖1)-RDP and𝑔 be (𝛼, 𝜖2)-RDP, then the mechanism defined as
(𝑋,𝑌 ), where𝑋 ∼ 𝑓 (D) and 𝑌 ∼ 𝑔(𝑋,D), satisfies (𝛼, 𝜖1 +𝜖2)-RDP.

A key property of RDP is that it can be converted to standard
(𝜖, 𝛿)-DP using the Proposition 3 of [32], as follows:

Proposition A.3 (From RDP to (𝜖, 𝛿)-DP [32]). IfA is an (𝛼, 𝜖)-
RDP algorithm, then it also satisfies (𝜖 + log(1/𝛿 )/𝛼−1, 𝛿)-DP for any
𝛿 ∈ (0, 1).

B DEFERRED THEORETICAL ARGUMENTS

B.1 Proof of Theorem 4.1

Proof. In Algorithm 2, the graph’s adjacency is only used when
the NAP mechanism is invoked during the forward propagation
of submodelsM1 toM𝐾 . According to Lemma 1 of [41], the edge-
level sensitivity of the NAP mechanism is 1, and thus based on
Corollary 3 of [32], each individual query to the NAP mechanism is
(𝛼, 𝛼/2𝜎2)-RDP. Due to ProGAP’s caching system, the NAP mecha-
nism is only invoked 𝐾 times during training (once for each sub-
model), and the rest of the training process does not query the graph
edges. As a result, Algorithm 2 can be seen as an adaptive compo-
sition of 𝐾 NAP mechanisms, which based on Proposition A.2, is
(𝛼,𝐾𝛼/2𝜎2)-RDP. According to Proposition A.3, this is equivalent
to edge-level (𝜖, 𝛿)-DP with 𝜖 = 𝐾𝛼

2𝜎2 +
log(1/𝛿 )
𝛼−1 . Minimizing this

expression over 𝛼 > 1 gives 𝜖 = 𝐾
2𝜎2 +

√
2𝐾 log (1/𝛿 )/𝜎 . □

B.2 Proof of Theorem 4.2

Proof. Algorithm 2 is composed of 𝐾 + 1 stages, where each
stage 𝑠 ∈ {1, . . . , 𝐾} starts by computing and perturbing the aggre-
gate embeddings (Eq. 8), which is the only part where the graph
adjacency information is involved. As this part is privatized by
the NAP mechanism, the rest of the process in stage 𝑠 ≥ 1 is just
normal graph-agnostic training over tabular-like data, which is
made private using DP-SGD. The exception is stage 0, which does
not use the graph’s adjacency at all, and thus it is just privatized
using DP-SGD. Therefore, Algorithm 2 can be seen as an adaptive
composition of 𝐾 NAP mechanisms and 𝐾 + 1 DP-SGD algorithms.
According to Lemma 3 of [41], the NAP mechanism is node-level
(𝛼,𝐷𝛼/2𝜎2

𝐴𝑃
)-RDP. The DP-SGD algorithm itself is a composition of

𝑇 subsampled Gaussian mechanisms, which according to Theorem
11 of [54] and Proposition A.2 is (𝛼, 𝜖DPSGD)-RDP, where:

𝜖DPSGD ≤
𝑇

𝛼 − 1 log

{(
1 − 𝐵

𝑁

)𝛼−1 (
𝛼
𝐵

𝑁
− 𝐵

𝑁
+ 1

)
+
(
𝛼

2

) (
𝐵

𝑁

)2 (
1 − 𝐵

𝑁

)𝛼−2
𝑒

𝐶2
𝜎2
𝐺𝑃

+
𝛼∑︁
𝑙=3

(
𝛼

𝑙

) (
1 − 𝐵

𝑁

)𝛼−𝑙 (
𝐵

𝑁

)𝑙
𝑒
(𝑙−1) ( 𝐶2𝑙

2𝜎2
𝐺𝑃

)
}
.

Overall, according to Proposition A.2, the composition of 𝐾 NAP
mechanisms and𝐾 +1DP-SGD algorithms is (𝛼, 𝜖total)-RDP, where:

𝜖total ≤
(𝐾 + 1)𝑇
𝛼 − 1 log

{(
1 − 𝐵

𝑁

)𝛼−1 (
𝛼
𝐵

𝑁
− 𝐵

𝑁
+ 1

)
+
(
𝛼

2

) (
𝐵

𝑁

)2 (
1 − 𝐵

𝑁

)𝛼−2
𝑒

𝐶2
𝜎2
𝐺𝑃

+
𝛼∑︁
𝑙=3

(
𝛼

𝑙

) (
1 − 𝐵

𝑁

)𝛼−𝑙 (
𝐵

𝑁

)𝑙
𝑒
(𝑙−1) ( 𝐶2𝑙

2𝜎2
𝐺𝑃

)
}
+ 𝐷𝐾𝛼
2𝜎2
𝐴𝑃

.
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The proof is completed by applying Proposition A.3 to the above
expression and minimizing the upper bound over 𝛼 > 1:

𝜖 ≤ min
𝛼>1

(𝐾 + 1)𝑇
𝛼 − 1 log

{(
1 − 𝐵

𝑁

)𝛼−1 (
𝛼
𝐵

𝑁
− 𝐵

𝑁
+ 1

)
+
(
𝛼

2

) (
𝐵

𝑁

)2 (
1 − 𝐵

𝑁

)𝛼−2
𝑒

𝐶2
𝜎2
𝐺𝑃

+
𝛼∑︁
𝑙=3

(
𝛼

𝑙

) (
1 − 𝐵

𝑁

)𝛼−𝑙 (
𝐵

𝑁

)𝑙
𝑒
(𝑙−1) ( 𝐶2𝑙

2𝜎2
𝐺𝑃

)
}

+ 𝐷𝐾𝛼
2𝜎2
𝐴𝑃

+ log(1/𝛿)
𝛼 − 1 ,

□
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