
EFFECTIVENESS OF TEXT, ACOUSTIC, AND LATTICE-BASED REPRESENTATIONS IN
SPOKEN LANGUAGE UNDERSTANDING TASKS
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ABSTRACT

In this paper, we perform an exhaustive evaluation of different
representations to address the intent classification problem in a
Spoken Language Understanding (SLU) setup. We benchmark
three types of systems to perform the SLU intent detection task: 1)
text-based, 2) lattice-based, and a novel 3) multimodal approach.
Our work provides a comprehensive analysis of what could be the
achievable performance of different state-of-the-art SLU systems
under different circumstances, e.g., automatically- vs. manually-
generated transcripts. We evaluate the systems on the publicly
available SLURP spoken language resource corpus. Our results
indicate that using richer forms of Automatic Speech Recognition
(ASR) outputs, namely word-consensus-networks, allows the SLU
system to improve in comparison to the 1-best setup (5.5% rela-
tive improvement). However, crossmodal approaches, i.e., learning
from acoustic and text embeddings, obtains performance similar to
the oracle setup, a relative improvement of 17.8% over the 1-best
configuration, being a recommended alternative to overcome the
limitations of working with automatically generated transcripts.

Index Terms— Speech Recognition, Human-computer Interac-
tion, Spoken Language Understanding, Word Consensus Networks,
Cross-modal Attention

1. INTRODUCTION

Spoken Language Understanding (SLU) is the underlying key com-
ponent of interactive smart devices such as voice assistants, social
bots, and intelligent home devices. Effectively interpreting human
interactions through classification of intent and slot filling plays a
crucial role in SLU. Therefore, it is not surprising that the SLU prob-
lem has received substantial attention in industry and academia.

Typically, SLU aims at parsing spoken utterances into corre-
sponding structured semantic concepts through a pipeline approach.
First, the spoken utterances are transcribed by an automatic speech
recognition (ASR) system, and the transcribed audio is subsequently
processed by a natural language understanding (NLU) module to
identify the intent and extract slots from the utterance.1 The main
disadvantages of the pipeline approach include: (1) errors in the
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1In practice, the 1-best transcript representation is the one sent to the nat-
ural language understanding (NLU) model for intent detection.

ASR transcripts are directly propagated to the NLU module, nor-
mally trained only on correct transcriptions; (2) prosodical and non-
phonetic aspects present in the spoken utterance are not taken into
account. Even though, the classical text-based approach is mostly
used in industrial applications and is still an active research area [1].

More recently, end-to-end (E2E) SLU systems have gained pop-
ularity [2–4]. E2E SLU acts as an individual single model, and it
directly predicts the intent from speech without exploiting an in-
termediate text representation. In particular, it directly optimizes
the performance metrics of SLU. Due to the complex structure of
speech signals, a large SLU database along with high-end computa-
tional resources are required for training E2E models. In [4], several
E2E SLU encoder-decoder solutions are investigated. For instance,
instead of directly mapping speech to SLU target [2], pre-trained
acoustic and language models can be used for downstream SLU
tasks, showing to be an effective paradigm [5, 6]. Similarly, there
have been efforts to design tighter integration of ASR and NLU sys-
tems beyond 1-best ASR results, e.g., by means of encoding several
ASR hypotheses through lattice-based representations. A lattice is a
compact representation encoding multiple ASR hypotheses obtained
at the decoding step. Its use has shown to be key in boosting the per-
formance of IR systems [7]. In this direction, there are several works
adopting word confusion networks (WCNs) as input to NLU systems
to preserve information in possible hypotheses [8–10]. The main ad-
vantage of WCN-based approaches is that they are less sensitive to
the ASR errors. Finally, recent approaches based on multi-modal in-
formation have been proposed [3]. The main motivation behind this
idea is founded on how humans interpret, in the real world, the mean-
ing of an utterance and corresponding semantics from various cues,
thus, assuming that the acoustic and linguistic content of a speech
signal may carry complementary information for deriving robust se-
mantic information of an utterance.

Overall, despite the promising results, there still exists a gap be-
tween the demonstrated capability of SLU systems and the require-
ments of an industrial application, e.g., a generalized voice assistant.
For instance, E2E approaches mostly focus on databases with lim-
ited semantic complexity and structural diversity [11]. Additionally,
most of the current benchmarks on SLU are widely saturated, where
the obtained performances (F1-scores) are near perfect. Examples
of such cases are results reported on ATIS [12], Fluent Speech Com-
mands [6], or SNIPS [13] datasets. Hence, in order to validate the
robustness of recent SLU approaches under a more realistic scenario,
it becomes necessary to focus on SLU tasks that incorporate more
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Fig. 1. Overview of the considered NLU/SLU methodologies for our performed experiments.

complex semantics and numerous intent classes and slots. To the
best of our knowledge, such benchmarking, comparing the wide va-
riety of SLU approaches, has not been performed recently.

In this paper, we present an extensive analysis of different SLU
techniques, ranging from pure text-based alternatives to methods that
are able to process richer forms of ASR outputs. Overall, our work
has three salient features: (1) we evaluate and compare under the
same circumstances four big families of SLU approaches, namely:
text-based, lattice-based, multimodal, and end-to-end, (2) our per-
formed evaluation is done considering a more realistic scenario, i.e.,
where no access to manual transcriptions exists, but instead, ASR
transcripts are given as input to the SLU systems, and (3) we de-
scribe several inconsistencies found in the SLURP [14] dataset, one
of the most challenging test beds for SLU systems.2

2. METHODOLOGY

Figure 1 depicts an overview of the considered SLU techniques in
our experiments: (a) conventional or pipeline-oriented NLU/SLU
approaches, (b) Lattice-based SLU architectures, and (c) multimodal
(text+acoustic) architectures. Although not shown in the figure, we
also report the performance of very recent E2E methods.

2.1. Conventional NLU/SLU systems

We selected the HERMIT architecture [15] as the representative
approach for this category of systems. HERMIT, a HiERarchical
MultI-Task Natural Language Understanding architecture, was de-
signed for effective semantic parsing of domain-independent user
utterances, extracting meaning representations in terms of high-
level intents and frame-like semantic structures. According to the
authors, HERMIT stands out for being a cross-domain, multi-task
architecture, capable of recognizing multiple intents in human-
machine interactions. The central motivation behind the design of
the HERMIT architecture is the modeling of the dependence among
three tasks, namely, dialogue acts identification, intents, and slots.
For this, the authors addressed the NLU problem using a seq2seq
model employing BiLSTM encoders and self-attention mechanisms,
followed by CRF tagging layers. HERMIT was validated in two
large datasets with a high number of intent labels (58 to 68 classes),
reporting a performance of F1=86%.

We re-implemented HERMIT in PyTorch [16], with the follow-
ing changes: we exchanged the encoder layer based on ELMO em-

2Our code is publicly available: https://github.com/idiap/
slu_representations

beddings with a BERT [17] encoder, we replace the BiLTSM en-
coders by GRU modules and used the AdamW optimizer. We eval-
uate the performance of our implementation of HERMIT when ei-
ther, manual transcriptions (1-best) ASR outputs (extracted from the
XLS-R model, see Section 2.4) are given as inputs (see Figure 1.a).

2.2. Lattice-based SLU

As described earlier, one main limitation of pipeline SLU systems is
their sensitivity to the errors present in the ASR transcriptions. Con-
sequently, there have been proposed several approaches for build-
ing SLU systems robust against ASR errors based on lattices and
WCNs [9, 10]. Although both, word lattices and WCNs contain
more information than N-best lists, WCNs have been proven more
efficient in terms of size and structure, thus representing a more plau-
sible alternative when designing SLU systems that receive as input a
graph-based structure.

We re-implemented a very recent WCN-based approach, namely
WCN-BERT [9]. Originally, the WCN-BERT architecture consists
of three parts: a BERT encoder for jointly encoding, an utterance
representation model, and an output layer for predicting seman-
tic tuples. The BERT encoder exploits posterior probabilities of
word candidates in WCNs to inject ASR confidences. Multi-head
self-attention is applied over both WCNs and system acts to learn
context-aware hidden states. The utterance representation model
produces an utterance-level vector by aggregating final hidden vec-
tors. Finally, WCN-BERT adds both discriminative and generative
output layers to predict semantic tuples. WCN-BERT stands out for
being able to leverage the timing information and confidence scores
that are part of standard WCNs. Authors evaluated the performance
of WCN-BERT on DSTC2 dataset [18], a corpus of dialogs in the
restaurant search domain between a human and automatic agent (i.e.,
human-machine conversations) reporting and overall F1=87.91%.

For our experiments, we dropped the semantic tuple classi-
fier and the transformer-based hierarchical decoder proposed in
the original WCN-BERT paper [9]. We only preserve the WCN-
BERT encoder and the multi-head attention layers to generate the
utterance-level representation. On top of this, we concatenate a
fully-connected layer to perform intent classification.

2.3. Multimodal SLU

Multimodal SLU refers to the process of embeddings alignment for
explicitly minimizing the distance between speech embeddings and
the text embeddings from state-of-the-art text encoders like BERT
[17]. Thus, the speech embeddings that are used for downstream
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tasks are made to share a common embedding space with the tex-
tual embeddings, leading to better performance in SLU tasks, e.g.,
intent detection. However, there are a few challenges involved in the
process of modeling such multimodal human language time-series,
namely: 1) inherent non-aligned data due to variable sampling rates
for the sequences from each modality; and 2) long-range dependen-
cies between elements across modalities.

In order to address these problems, we implemented a solu-
tion based on a recent approach named Multimodal Transformer
(MulT) [19]. MulT depicts an end-to-end model that extends the
standard Transformer network [20] to learn representations directly
from unaligned multimodal streams. At the heart of MulT, there is
a cross-modal attention module, which attends to the crossmodal in-
teractions at the scale of the entire utterances. It merges multimodal
time-series via a feed-forward fusion process from multiple direc-
tional pairwise crossmodal transformers. Specifically, each cross-
modal transformer serves to repeatedly reinforce a target modality
with the low-level features from another source modality by learn-
ing the attention across the two modalities’ features.

In our experiments, we adopted the ideas proposed in MulT
[19]. Hence, given two input modalities, each crossmodal trans-
former block (one for each modality) keeps updating its sequence.
Thus, the crossmodal transformer learns to correlate meaningful el-
ements across modalities. As a final step, outputs are concatenated
and passed through a self-attention module to collect temporal infor-
mation to make predictions. The last elements of the sequence are
passed through fully-connected layers to make the intent prediction.

2.4. XLSR-53: Automatic Speech Recognition Module

As shown in Figure 1, we consider as main ASR component the
XLSR-53 pre-trained acoustic model [21]. XLSR-53 learns cross-
lingual speech embeddings by pretraining a single generic model
from raw waveform of speech in multiple languages. The struc-
ture of XLSR is similar to Wav2Vec 2.0 [22], which is trained
using contrastive loss over masked latent speech representations
and jointly learns a quantization of the latent embeddings shared
across languages. XLSR-53 model is trained using 56,000 hours
of untranscribed audio data from 53 languages. We then fine-tune
XLSR-53 model [21] with 390 hours of English data from AMI and
Switchboard datasets using E2E-LFMMI loss function [23, 24] with
biphone units [25–27]. A grapheme-based lexicon of size 1M was
used, and the language model (LM) was trained with 34M utterances
from publicly available English datasets including People’s speech,
Fisher, Switchboard, AMI, Wikitext103, and subsets of Common
Crawl and Reddit datasets. For improving the generalization of
XLSR-53 model to conversational speech in English language, we
fine-tuned it using 560 hours of untranscribed data crawled from
YouTube. This subset was selected from conversational video calls
in English language. On the YouTube data, we followed an incre-
mental semi-supervised learning approach with four iterations [28].
For decoding, we use the WFST decoder from Kaldi [29] toolkit
with a beam width of 15.

3. EXPERIMENTS AND RESULTS

3.1. SLURP Dataset

To perform our experiments we used the SLURP dataset [14], a pub-
licly available multi-domain dataset for E2E-SLU, which is substan-
tially bigger and more diverse than other SLU resources. SLURP is

Table 1. SLURP statistics. SLURPO the original dataset, while
SLURPF a cleaner version of the original SLURP data.

Statistics SLURPO SLURPF

Audio Files 72,277 50,568
↪→ Close range 34,603 25,799
↪→ Far range 37,674 24,769

Duration [hr] 58 37.2
Av. length [s] 2.9 2.6
Nb. of intents 48 47

a collection of audio recordings of single-turn user interactions with
a home assistant. Table 1 contains a few statistics about SLURP.

During a manual analysis, we found many inconsistencies in
SLURP annotations. Basically, we identified cases where the manual
transcription does not correspond to what is being said in its corre-
sponding audio file. Thus, we considered as erroneous those audio
files for which the manual transcription did not match with the auto-
matic transcription, or whose transcripts were inconsistent (i.e., not
the same) in the corresponding metadata files. By following this ap-
proach, we detected that nearly 30% (20 hours) of the original data
contains some type of inconsistency. We refer as SLURPF to the
subset of SLURP without these inconsistent files (see Table 1).

3.2. Experiments

Experiments from EXP1 - EXP7 correspond to the results of con-
ventional NLU/SLU techniques. As described in Section 2.1, these
experiments use our implementation of the HERMIT architecture
[15]. As can be observed in Table 2, differences among these ex-
periments are on the type of data used for training and evaluating
the HERMIT model, i.e., combinations of either manual transcripts
or 1-best ASR outputs. EXP8 - EXP9 correspond to the experi-
ments done using WCN-based representations (Section 2.2). No-
tice that for both set of experiments, i.e., conventional NLU and
WCN-based, we usde the XLS-R model, not-adapted and adapted
to SLURP, to obtain the transcripts and WCNs respectively. Fi-
nally, EXP10-EXP12 corresponds to the experiments done using the
crossmodal transformer described in Section 2.3. Similarly, we eval-
uate the performance of this approach under circumstances where
the XLS-R model is not adapted to the target domain (EXP10), and
when adapted to SLURP (EXP11), and one last experiment using
acoustic embeddings obtained from HuBERT (EXP12) model.3

3.3. Results

Table 2 shows the obtained experimental results for all the bench-
marked architectures. Column “Exp” indicates the name of the
experiment, “Input Type” describes what type of data was used
for training and evaluating (dev and test) the corresponding ex-
periment. For those experiments with the tag manual it means
ground truth transcriptions were used, while 1-best refers to the
automatically generated transcriptions using the XLSR-53 model.
Column “XLSR-53 adaptation” indicates whether or not the XLSR-
53 model was fine-tuned to the SLURP dataset. In order to do the
XLSR-53 adaptation, the English ASR model described in Section
2.4 was fine-tuned with the train subset of the SLURPF data without
changing the LM. ASR performances before and after fine-tuning to

3To generate the acoustic embeddings we followed the SpeechBrain [31]
SLURP recipe: https://github.com/speechbrain/
speechbrain/tree/develop/recipes/SLURP
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Table 2. Accuracy (ACC) and F1-scores (F1) on intent classification for different representations. We test our approach with either man-
ual or 1-best approaches. Manual refers to ground truth evaluation, while 1-best is obtained by using our ASR module XLSR-53. Thus,
manual → manual represents the oracle scenario (upper bound), while 1-best → 1-best depicts a more real-world case scenario.

Exp. Input Type XLSR-53
SLURPO SLURPF

Dev (↑) Test (↑) Dev (↑) Test (↑)

train→dev-test adaptation ACC F1 ACC F1 ACC F1 ACC F1

Conventional NLU/SLU

EXP1 manual → manual NA 0.89 0.88 0.85 0.84 0.88 0.87 0.82 0.82
EXP2 manual → 1-best % 0.70 0.65 0.69 0.65 0.74 0.69 0.71 0.67
EXP3 1-best → manual % 0.85 0.85 0.86 0.85 0.86 0.86 0.85 0.83
EXP4 1-best → 1-best % 0.72 0.68 0.73 0.69 0.76 0.71 0.77 0.73

EXP5 manual → 1-best ✓ 0.82 0.81 0.80 0.79 0.84 0.82 0.86 0.84
EXP6 1-best → manual ✓ 0.88 0.87 0.87 0.86 0.88 0.87 0.88 0.87
EXP7 1-best → 1-best ✓ 0.84 0.83 0.83 0.83 0.85 0.84 0.85 0.84

Lattice-based SLU

EXP8 WCN % 0.68 0.67 0.68 0.68 0.69 0.68 0.68 0.68
EXP9 WCN ✓ 0.78 0.77 0.79 0.79 0.80 0.80 0.78 0.77

Multimodal SLU

EXP10 multimodal % 0.75 0.75 0.74 0.73 0.75 0.74 0.76 0.76
EXP11 multimodal ✓ 0.82 0.82 0.83 0.83 0.83 0.83 0.82 0.82
EXP12 multimodal (HuBERT [30]) ✓ 0.87 0.88 0.84 0.84 0.88 0.88 0.86 0.86

Table 3. WER% on SLURP Test sets with the XLSR-53 English
model before and after adaptation with SLURPF train subset.

System Dev (WER%) Test (WER%)

Headset All Headset all

No adaptation 23.4 34.0 23.0 34.4
Adapted to SLURP 13.3 16.1 13.0 15.5

SLURP are given in Table 3. And finally, SLURPO and SLURPF

depict what version of the SLURP dataset was used.
Notice that the results obtained in the test partition from the

cleaned version of the data, i.e., SLURPF , are usually better than
those obtained in the original version of the SLURP dataset. To
some extent, this is an indicator that the identified inconsistencies
in the original SLURP dataset were affecting the benchmarked mod-
els, resulting in a miss classification of some intents types.

Experiments EXP1, EXP3, and EXP6 represent artificial scenar-
ios, as in a real-world application we do not expect to have manual
transcripts for test partitions. Nevertheless, the best performance un-
der this configuration, e.g., F1=87% in the SLURPF for EXP6, rep-
resents an upper bound value. Interestingly, this value is even better
than the performance obtained in the EXP1, i.e., considering only
ground truth data. This may be due to an (unexpected) regularization
effect caused by the noise contained in the 1-best transcripts from all
the audios of the SLURP. Thus, it becomes really relevant that WCN-
based approaches (EXP8 & EXP9) are able to obtain a competitive
performance against the pipeline 1-best → 1-best NLU experiments
(EXP4). Even though the not-adapted WCN model (EXP8) does not
outperform EXP4, this result validates the existence and the impact
of richer ASR hypotheses in the lattice, which helps improve the per-
formance of the SLU system, especially in noisy data (SLURPO).

Although WCN experiment EXP9 showed a good improve-
ment against the 1-best scenario, multimodal experiments obtain a

remarkable performance, comparable to the performance of the or-
acle experiment (EXP1). The main difference between EXP11 and
EXP12 is that the former uses XLSR-53 adapted to SLUPR, while
the latter fine-tunes HuBERT toward intent and slot classification
in SLURP. This is the explanation for why EXP12 performance is
slightly better than EXP11 (XLSR-53 adapted). Finally, as reference
results from an E2E approach, the SLURP recipe reports F1 values
of F1= 0.77 and F1= 0.88 under configurations referred to as di-
rect and direct Hubert respectively. More details can be found in the
respective repository.3 Overall, using a multi-modal approach seems
to be the recommended option as it guarantees the best performance.
Although it should be considered that it represents a costly solu-
tion in terms of computational power. On the contrary, if access to
manual transcripts is guaranteed for training an NLU/SLU system,
independently of having (or not) the possibility to adapt the ASR
model toward the target domain, the recommended solution would
be to follow a traditional NLU pipeline.

4. CONCLUSIONS

In this work, we successfully benchmark several neural architectures
to perform NLU, pipeline SLU and multi-modal SLU. Our analysis
includes SOTA NLU/SLU techniques and compares them in more
realistic scenarios. The presented analysis shed light on state-of-the-
art architectures in the SLU domain, helping future researchers to
define more clearly the application scenario of their proposed solu-
tions. As an additional contribution, we also put together a cleaner
version of the well-known SLURP dataset. During our experimen-
tation process, we found many inconsistencies between the manual
annotations and what was really spoken in the audio files. This rise
concern on the SLU field, as several papers have already reported re-
sults on this dataset without being aware of it. We release the filtered
version of SLURP in our git repository, in order to allow others to
replicate our experiments.2



5. REFERENCES

[1] Edwin Simonnet, Sahar Ghannay, Nathalie Camelin, Yannick
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