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Abstract. Adversarial examples crafted in black-box scenarios are af-
fected by unrealistic colors or spatial artifacts. To prevent these short-
comings, we propose a novel strategy that generates adversarial images
with low detectability and high transferability. The proposed black-box
strategy, GLoFool, introduces global and local perturbations iteratively.
First, a combination of image enhancement filters is applied globally
to the clean image. Then, local color perturbations are generated on
segmented image regions. These local perturbations are dynamically in-
creased for each region over the iterations by sampling new colors on an
expanding disc around the initial global enhancement. We propose a ver-
sion of the method optimized for quality, GLoFool-Q, and one for trans-
ferability, GLoFool-T. Compared to state-of-the-art attacks that perturb
colors, GLoFool-Q generates adversarial images with better color fidelity
and perceptual quality. GLoFool-T outperforms all the black-box meth-
ods in terms of success rate and robustness, with a performance compa-
rable to the best white-box methods.

Keywords: Adversarial images · Black-box attack · Color perturbation

1 Introduction

Adversarial attacks perturb the intensity of image pixels to mislead classifiers.
Adversarial images are crafted with imperceptible texture perturbations [2, 17,
33], color perturbations or content manipulations [3, 23]. However, to test the
vulnerability of state-of-the-art Deep Neural Networks (DNNs) [23,30], the per-
turbations should become stronger thus causing visible artifacts (see Fig. 1). Sig-
nificant amount of perturbations, which deceive unseen classifiers and are less de-
tectable by defenses, include repeated textural adversarial patterns [5,16,31] and
heavy modifications of image colors that may result in a shift towards monochro-
matic colors [30, 32, 34]. Therefore the applicability of these adversarial attacks
is restricted to scenarios where the perturbation visibility and the chromatic va-
riety of filters are not critical factors [23]. Methods that introduce imperceptible
or sparse textural noise require access to model parameters [15, 33]. Methods
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Clean NCF ACE ACF CF SAE GLoFool-Q GLoFool-T

Fig. 1: Adversarial images generated by state-of-the-art methods that perturb col-
ors to fool a ResNet-18 classifier: Natural Color Fool (NCF [30]), Adversarial Color
Enhancement (ACE [32]), Adversarial Color Filter (ACF [34]), ColorFool (CF [23]),
Semantic Adversarial Examples (SAE [8]), and our method optimized for quality and
transferability, GLoFool-Q and GLoFool-T, respectively.

that alter the colors of specific semantic categories [23] lack transferability [30]
or may be easily detectable by defense methods [13]. To address these limitations
about quality, transferability, and robustness, we propose GLoFool4, a black-box
attack method that generates visually appealing adversarial images without ac-
cess to the internal parameters of the targeted classifier. GLoFool achieves color
naturalness by sampling modified pixel values, starting from a global enhance-
ment of the clean image and then dynamically expanding the search space to
increase the adversarial region perturbations. We evaluate the effectiveness of
GLoFool based on image quality [20, 21] against the most robust classifiers in
terms of success rate (SR), transferability, and robustness. The source code of
GLoFool is publicly available at https://github.com/idiap/GLoFool.

2 Related works

We discuss adversarial attacks that introduce color perturbations. Tab. 1 summa-
rizes these attacks based on the type, location of the perturbation, and attacked
classifier(s)5.

Black-box attacks use only the label of the targeted classifier to generate an
adversarial image, and the attacker has no access to the internal parameters of
the targeted classifier. Semantic Adversarial Examples (SAE) [8] converts the
RGB image into the HSV color space and randomly shifts the hue, thus main-
taining a natural appearance while introducing significant perturbations. SAE
exploits the fact that hue variations can drastically affect the classifier deci-
sions without significantly altering the image quality as perceived by humans.
ColorFool [23] leverages the characteristics of the human visual system to al-
ter colors selectively. This attack introduces perturbations within a predefined
natural color range for particular semantic categories (i.e. humans, plants, sky,
and water) and alters only the a and b channels of the perceptually uniform Lab
color space [22]. Wei et al. [27] generate adversarial examples by manipulating
brightness, contrast, sharpness, and chroma. Black-box attacks often generate

4 This research was conducted as part of an internship program at Idiap.
5 Note that we categorize attacks as white-box if they exploit the model parameters,

even if the authors present some of them as black-box, e.g. NCF [30].

https://github.com/idiap/GLoFool
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Table 1: Adversarial attacks based on colors perturbations: Natural Color Fool
(NCF [30]), Adversarial Color Enhancement (ACE [32]), Adversarial Color Filter
(ACF [34]), RetouchUAA (RUAA [28]), Semantic Adversarial Examples (SAE [8]) and
ColorFool (CF [23]). Key – WB: White-Box attack, BB: Black-Box attack, DN121:
DenseNet121, DN201: DenseNet201, R18: ResNet-18, R50: ResNet-50, R152: ResNet-
152, V16: VGG-16, V19: VGG-19, IV3: Inception-v3, IV4: Inception-v4, MN2: Mo-
bileNetV2, AN: AlexNet, CXL: ConvNeXt-L, and DTB: DeiT-B.

Ref. Method Type Pert. location Attacked Classifier(s)

[15] NCF WB Global R18, V19, MN2, IV4
[32] ACE WB Global IV3, AN, R50, V19, DN121
[34] ACF WB Global IV3, AN, R50, V19, DN121
[28] RUAA WB Global IV3, DN121, MN3
[26] AdvST WB Global R50, AN, DN201, V19
[8] SAE BB Global V16
[27] Wei et.al BB Global VGG-16, AN R50, IV3
[23] CF BB Sensitive regions R50, R18, AN

ours GLoFool-Q
GLoFool-T BB Global+Regions R18, IV3, CXL, DTB

adversarial images by relying on random color changes, leading to a high num-
ber of classifier queries. Images crafted in the black-box scenario can result in
significant alterations and therefore higher detectability.

White-box attacks use the full knowledge of the targeted classifier (e.g. model
parameters and gradients) to target the classifier’s parameters (e.g. the last fully
connected layer [30] or an intermediate layer [31]). Most methods like Adversar-
ial Color Enhancement (ACE) [32], Adversarial Color Filter (ACF) [34] and
translation-invariant method [5] that target the final fully connected layer ex-
ploit the Carlini & Wagner loss [2]. ACE [32] uses color filters optimized through
a differentiable approximation [9] via gradient descent to manipulate the image
with minimal impact on image quality. Natural Color Fool (NCF) [30] applies
color mapping from the color distributions of ADE20K dataset [35] and gradi-
ents to generate a set of adversarial variants. ACF [34] extends ACE to produce
adversarial images through an explicitly defined color filter space commonly used
in photo retouching procedures. RetouchUAA (RUAA) [28] mimics the human
retouching style to generate adversarial images. The retouching module is opti-
mized through gradient back-propagation and then constrained by a style guid-
ance module performed using a U-Net network. AdvST [26] is an unrestricted
attack that exploits the model’s gradients during the style transfer process from
a reference image onto the original image. The attacks above leverage the access
to model parameters and perturb the image using filters or color manipulation.
These models generate adversarial images with minimal impact on image quality
while maximizing the probability of misleading the target classifier [15]. Calcu-
lating gradients and optimising perturbations can be computationally expensive,
especially for large models. These attacks are often tailored to a specific model,
and may not be effective on others architectures or with different training data.
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Fig. 2: Main steps of the GLoFool process for adversarial image generation. GLoFool
modifies the clean image with a global enhancement using a random combination of
enhancement filters (Sec. 3.1), and then it applies a different color perturbation on
each region (Sec. 3.2). The global enhancement and the region color perturbation are
repeated for up to N iterations, increasing the size of the region perturbation disc
until the generated image successfully fools the classifier. Pred: prediction of ResNet-
18 classifier.

3 GLoFool

Let M(X) be a DNN classifier that provides the most probable class label for a
given RGB image, X. The proposed approach, GLoFool, iteratively perturbs X
to create an adversarial image, Ẋ, until M(Ẋ) ̸= M(X). Fig. 2 shows the main
processing steps of GLoFool, which are detailed in the following sections.

3.1 Global enhancement

The global color enhancement filters the clean image to obtain an adversarial
image that is visually appealing and more effective against machine learning clas-
sifiers. For each iteration, the global color enhancement alters X with a function,
G(·), that applies a sequence of image enhancement filters fi(·), with i = 1, . . . , e
to obtain a globally enhanced image E. We set the number of filters to e = 6.
These filters are contrast, saturation, curve (shadows and mid-tones), sharpen-
ing, vibrance, and sepia. Contrast makes images more vivid and enhances dis-
tinctions between elements [18]. Saturation intensifies colors for a more appealing
image [19]. Curve adjustments control brightness and contrast, preserving the
overall color balance. Sharpening makes the image clearer and more defined [10].
Vibrance focuses on less saturated regions, while maintaining the existing bal-
ance within the image. Finally, the sepia filter adds warm tones [1]. We present
experiments about the number of global enhancement filters in Appendix A.

In each iteration, a globally enhanced image is obtained by applying, in
random order, all e filters to the clean image X. This strategy enables the explo-
ration of wider aesthetic enhancements for the final image. Applying the filters
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in a non-deterministic sequence generates diverse enhancements for the clean
image. Each filter is applied once to the image resulting from the application of
the previous filter:

G(X, τ) = (⃝e
i=1fi(τi)) (X) (1)

where ⃝ denotes the sequential composition of the filters and each τi is indepen-
dently sampled from [−τ,+τ ] that represents the intensity value of each filter.
The curve filtering involves adjusting a Bezier curve using four control points:
p0, p1, p2, and p3. To maintain the full dynamic range of the image, the points
p0 and p3 correspond to input values 0 and 255, respectively. Point p1 is chosen
from the shadow range of [75, 150] and is mapped to a random value between
[50, 125], ensuring that shadows can be either deepened or slightly brightened, en-
hancing contrast and detail without over-darkening. Point p2 is selected from the
mid-tone range of [150, 225] and mapped to a random value between [175, 250],
ensuring that mid-tones can be either brightened or slightly dimmed, improving
overall image brightness and mid-tone separation. These points are used to cal-
culate the Bezier curve, and the remaining values are interpolated to create a
smooth adjustment curve.

The resulting globally enhanced image, E, is the initial point for the subse-
quent region perturbation.

3.2 Region color perturbation

We partition the input image into regions to apply perturbations with varying
intensities to individual regions of the globally enhanced image.

We operate on the Lab color space, a perceptually uniform color space that
mimics human vision and separates the color information from brightness, en-
abling color adjustments without affecting overall brightness. We convert X and
E from the RGB to the Lab color space obtaining XLab and ELab, respectively.
In the following notations, we selectively access the color components of both
variables using the notations Xab and Eab, respectively.

Region segmentation partitions X into K regions, o1, o2, . . . , oK . The union
of these regions equals the original image and the intersection of any two regions
is the empty set:

S(X, s) = {oi}Ki=1, where X =

K⋃
i=1

oi and oi ∩ oj = ∅ for all i ̸= j. (2)

where j ∈ {1, . . . ,K}. We select as segmentation algorithm S(·) that automati-
cally determines the optimal K based on a stability score threshold s [11]. This
threshold controls the number of segmented regions within the image, where a
value close to 1 returns only high-confidence regions. A lower threshold will re-
turn more regions as the confidence decreases. We set the stability score threshold
to 0.97 to avoid obtaining many small regions and only retain regions exceeding
this threshold.

We alter only the color components, a and b, of each region Eoi while main-
taining the lightness L unaltered, equal to that of the respective region of the



6 M. Agarla and A. Cavallaro

enhanced image Eoi . We perturb the color components of E with the function
ϕ(·) that shifts the ab color components of each region i, Eoi , by a randomly
sampled offset within a disc constrained by d:

ϕ(Eab, d) =

K⋃
i=1

(
Eoi + ri ·

[
cos(θi)
sin(θi)

])
, (3)

where θi ∈ [0, 2π] is the randomly sampled angle and ri ∈ [0, d] is the shift of
the ab color components, randomly sampled in a disc constrained by the higher
bound radius, d.

By gradually increasing d during each iteration, the method expands the
search space for new colors. At each iteration, n, the search space d is increased
by an increment step r:

r =
c

N

d =

{
r, if n = 0,

r · n, otherwise.

(4)

where N is the maximum number of iterations, and c is the upper bound for the
maximum color perturbation. c represents the maximum shift for the ab color
components, achieved at the last iteration following the definition of Eq. (4).
This process allows for exploring different perturbations, resulting in regions with
different degrees of color deviation compared to the globally enhanced image.

At each iteration, the region color perturbation modifies (see Eq. (3)) the
segmented regions of the globally enhanced image (see Eq. (1)) to generate a
perturbed image:

Ẋ(n) =
[
EL, λ

(
ϕ(E

(n)
ab , d(n))

)]
(5)

where the region perturbation, ϕ(Eab, d), is crafted on the globally enhanced
image, ELab = G(X, τ). We apply the clipping function λ(·) to limit the final
perturbed image to the range allowed by the color space. The clipping function
limits the pixel values of ϕ(·) to the interval of ab channels. Note that in this
transformation, the lightness component of the perturbed image is preserved
from the enhanced image and concatenated with the perturbed ab values. At the
end of this stage we obtain an image Ẋ, converted into the RGB color space,
wherein the colors of each region are perturbed within specific perturbation
bounds.

Fig. 3 (c) shows from the first row, the images generated using the global
enhancement (a) plus the region color perturbation (e) denoted by ri (Eq. (3)).
To produce an adversarial image, we apply a global color enhancement to the
clean image for each iteration, Fig. 3 (a). Then, to subsequently reduce the clas-
sifier accuracy, a region color perturbation is added to the globally enhanced
image, Fig. 3 (c). These steps are repeated, incrementing the region color per-
turbation through the iterations, until the resulting image Ẋ fools the classifier
M(·), or the maximum number of iterations N = 1500 is reached. The gradual
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(a) (b) (c) (d) (e) (f)

iterations
−−−−−−→

Global enhancement Global + region perturbation

Fig. 3: Global and global+local perturbations by GLoFool attacking a ResNet-18 clas-
sifier. The clean image (label: library) is shown in Fig. 4 (first row, first column). (a)
Global enhancement. (b) ∆E76 [21] perceptual color difference between the globally
enhanced images and the clean image. (c) Region perturbations lead to the following
misclassified labels: church (first row), cinema (second row), and pool table (third row).
(d) Activation map [7] of (c). (e) Color shift offset (Eq. (3)). (f): ∆E76 [21] perceptual
color difference between the globally+locally perturbed images and the clean image.

increase in the region color perturbation across iterations systematically changes
the classifier’s activation map [7], Fig. 3 (d), which leads to misclassification and
an increase in ∆E76, Fig. 3 (f), in regions with high perturbations. Experiments
of GLoFool-T with a limited number of iterations are presented in Appendix B.

We propose two variations of the proposed method, namely GLoFool-T and
GLoFool-Q, to meet different requirements regarding transferability and qual-
ity, respectively. GLoFool-T (Transferability) generates adversarial images with
improved transferability and defensive capabilities (robustness). This improved
version is configured with τ = 45, c = 128, and amplifies the image generation
process by utilising the third generated adversarial image. GLoFool-Q (Quality)
is configured with τ = 30 and c = 64 to improve the quality score and perceptual
color difference compared to GLoFool-T.

4 Evaluation

We compare GLoFool against the most competitive state-of-the-art attacks that
offer accessible source code: Natural Color Fool [30], Adversarial Color Enhance-
ment (ACE) [32] and Adversarial Color Filter (ACF) [34] as white-box attacks;
and ColorFool [23] and Semantic Adversarial Examples (SAE) [8] as black-box
attacks. We use the authors’ implementations for all adversarial attacks. To en-
sure the comparability of results, we generate adversarial images using the same
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framework and software versions as PyTorch and OpenCV. We follow the same
evaluation protocol as Natural Color Fool [30], evaluating the adversarial attacks
on the ImageNet-compatible Dataset composed of 1,000 images [12].
Classifiers. To assess the behavior of the methods on different perturbation re-
quirements, we evaluate them on two common classifiers, ResNet-18 and Inception-
v3, and two robust classifiers, ConvNeXt-L [14] and the Vision Transformer
DeiT-B [25], pre-trained on ImageNet [4] for a classification task involving 1,000
classes. The accuracy (top-1) of ResNet-18, Inception-v3, ConvNeXt-L, and
DeiT-B on clean images is 83.9%, 81.0%, 96.4%, and 94.1%, respectively.
Quality measures. We evaluate the quality of the generated images with the
Haar-based Perceptual Similarity Index (HaarPSI) [20], a full reference metric
with a high correlation with human opinion scores. The larger HaarPSI, the
higher the perceptual similarity between the adversarial image and its respective
clean image. We measure the perceptual color difference between the generated
and clean images using ∆E76 [21]. Fidelity to the clean image is assessed based
on these metrics, where high HaarPSI and low ∆E76 values indicate high fidelity.
Effectiveness of an attack. We compare the methods in terms of success
rate, transferability, and robustness to defenses. We quantify the ability to fool
a classifier as success rate, defined as the number of successful adversarial images
that fool the classifier divided by the number of dataset images, D:

SR =

∑D
i=1 I[M(Ẋi) ̸= M(Xi)]

D
, (6)

where I is the indicator function that outputs 1 if the condition is true and
0 otherwise. To quantify transferability, we evaluate the ability to fool unseen
classifiers (i.e. the test classifier differs from the one used to craft the adversarial
images). We quantify the robustness to defenses as the ratio of adversarial images
that fool the classifier into predicting a different class than the clean images, to
the total number of images after applying the defense filter. We consider several
defense filtering techniques, including re-quantization [29] to 32 and 8 colors,
median filtering with a square kernel of size 5 [29], and JPEG compression with
quality degradation [6] with quality parameters 75 and 50. Regarding neural-
based defense approaches, we adopt High-level representation Guided Denoiser
(HGD) [13] and adversarially trained ConvNext-S-CvSt (CNS) [24].
Success Rate and Transferability. Tab. 2 compares the success rate of mis-
leading seen and unseen classifiers. All the adversarial methods achieve high
SR with seen classifiers (gray cells). In particular, methods that significantly
decrease the color fidelity to the clean image (high ∆E76), such as ACE and
ACF, achieve high SR while, reducing also the perceived image quality (low
HaarPSI). Fig. 4 shows sample images generated by state-of-the-art methods
and our proposed attack. The methods that obtain high SR in transferability in-
troduce noticeable color artifacts. Thanks to the incremental region perturbation
applied over the global enhancement, GLoFool produces images with the min-
imum perturbation required to fool the classifier. All state-of-the-art methods
find it challenging to generate adversarial images with high color fidelity when
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Table 2: Success rate (SR) of adversarial attacks against ResNet-18 (R18), Inception-
v3 (IV3), ConvNeXt-L (CXL) and DeiT-B (DTB). Key – NCF: Natural Color Fool,
ACE: Adversarial Color Enhancement, ACF: Adversarial Color Filter, CF: ColorFool,
SAE: Semantic Adversarial Examples, AC: Attacked classifier, BB: Black box, WB:
White box. The best and second-best results are marked in boldface and underlined,
respectively. Seen classifiers are highlighted in gray.

SR Test Classifier↑
AC Type Method HaarPSI↑ ∆E76 ↓ R18 IV3 CXL DTB

R18

WB
NCF [30] 0.44 34.8 92.7 44.1 18.3 32.7
ACE [32] 0.49 38.2 99.5 31.6 5.6 13.0
ACF [34] 0.46 43.2 97.5 34.9 7.2 15.2

BB

CF [23] 0.59 27.3 93.0 16.1 3.3 6.8
SAE [8] 0.64 35.2 92.3 24.7 11.1 22.3
GLoFool-Q 0.56 22.4 93.6 31.9 5.0 11.3
GLoFool-T 0.52 25.1 99.6 36.3 7.7 14.9

IV3

WB
NCF [30] 0.47 33.4 57.4 84.0 13.1 25.2
ACE [32] 0.51 34.2 40.3 96.6 6.5 12.7
ACF [34] 0.49 35.9 43.2 92.9 6.3 14.2

BB

CF [23] 0.58 28.9 31.3 82.3 4.3 9.2
SAE [8] 0.64 36.7 44.7 74.9 12.3 23.3
GLoFool-Q 0.57 21.5 37.0 88.1 5.1 12.1
GLoFool-T 0.51 26.4 50.1 98.2 7.9 19.5

CXL

WB
NCF [30] 0.46 34.6 58.3 39.4 56.8 36.4
ACE [32] 0.48 38.2 49.1 38.2 97.2 23.1
ACF [34] 0.50 36.8 40.2 30.4 75.8 19.8

BB

CF [23] 0.45 43.9 52.2 32.1 50.7 25.9
SAE [8] 0.59 40.6 46.7 31.9 48.7 31.5
GLoFool-Q 0.50 24.7 42.7 39.4 64.2 24.7
GLoFool-T 0.41 34.3 65.7 56.0 90.6 48.3

DTB

WB
NCF [30] 0.45 34.9 60.1 42.6 23.6 72.5
ACE [32] 0.48 38.6 47.5 35.6 11.6 98.1
ACF [34] 0.49 38.1 46.9 35.0 10.6 84.6

BB

CF [23] 0.47 41.4 47.1 31.2 8.5 75.8
SAE [8] 0.59 41.1 51.5 29.4 14.7 73.3
GLoFool-Q 0.52 23.7 47.3 42.9 9.7 79.6
GLoFool-T 0.45 30.7 60.7 52.9 15.7 98.0

attacking robust networks such as ConvNeXt-L and DeiT-B. Herein, GLoFool-
T generates images with low ∆E76, obtaining the highest transferability SR,
surpassing the second-best method, NCF, by 13%. In small(er) networks like
ResNet-18 and Inception-v3, SAE obtains a high value of HaarPSI and a very
low value of ∆E76, maintaining a high level of transferability in unseen classi-
fiers at the cost of achieving the worst SR in all the seen classifiers compared
to the other methods. GLoFool-Q generates images with high quality and high
color fidelity, sacrificing the transferability SR in small(er) networks. GLoFool-T
improves the transferability of GLoFool-Q in terms of SR in seen and unseen
classifiers, while slightly increasing the perceptual color difference compared to
clean images.

Fig. 5 compares the likelihood L of the clean images with the SR and the
∆E76 of the respective generated adversarial images against the Vision Trans-
former DeiT-B [25]. Methods like NCF, ACF, SAE and ACE introduce too much
perturbation when the required perturbation to fool the classifier is low, i.e. low
clean likelihood. While the algorithms based on incremental perturbation, such
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White box Black box

Clean NCF ACE ACF ColorFool SAE GLoFool-Q GLoFool-T

Fig. 4: Sample adversarial images generated for the ResNet-18 classifier. From left to
right: clean image, images generated by Natural Color Fool (NCF), Adversarial Color
Enhancement (ACE), Adversarial Color Filter (ACF), ColorFool, Semantic Adversarial
Examples (SAE), and our methods, GLoFool-Q and GLoFool-T.

as ColorFool, GLoFool-Q, and GLoFool-T generate high-quality images with col-
ors more faithful to the clean image even when no high perturbation is required.
However, the quality of images generated by ColorFool is significantly reduced
when the images are subject to high perturbations.
Robustness to defenses. Tab. 3 shows the robustness results of state-of-the-
art methods. NCF and GLoFool-T are the most robust methods against de-
fenses. The defense performance decreases when attacking a robust classifier like
ConvNeXt-L. For example, considering the median filtering (MF5) defense, NCF
and ACF drop from a SR of 92.1 and 82.8 for the ResNet-18 to a SR of 75.5
and 55.8 for the ConvNeXt-L, respectively. GLoFool-T obtains a more constant
defense SR of 70.2 and 72.7 for the ResNet-18 and ConvNeXt-L. The HGD
defense method successfully reduces the most adversarial perturbations within
the generated images. In this setup, after attacking ConvNeXt-L and DeiT-B,
GLoFool-T improves the defense SR of SAE by 3%. Methods that incrementally
introduce perturbation to generate a natural-looking adversarial image, such as
GLoFool-Q and CF, demonstrate reduced robustness against defenses.

5 Analysis

In this section we analyze the effect of the global enhancement threshold τ
(Eq. (1)), color perturbation threshold c (Eq. (4)), the stability score threshold s
(Eq. (2)), and the impact of the main components of the proposed method.

The impact of τ is shown in the first row in Fig. 6. We start from τ = 10 and
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Fig. 5: Success rate (SR) and ∆E76 with respect to the likelihood L of the clean images
for state-of-the-art attacks against the Vision Transformer DeiT-B [25].

Table 3: Robustness of adversarial attacks to defenses: quantization to 32 and 8 colors
(Q32, Q8), median filtering with a kernel size 5 (MF5), lossy JPEG compression with
quality 75 and 50 (J75, J50), High-level representation Guided Denoiser (HGD), and
adversarially trained ConvNext-S-CvSt (CNS). Key – R18: ResNet-18, IV3: Inception-
v3, CXL: ConvNeXt-L, DTB: DeiT-B, NCF: Natural Color Fool, ACE: Adversarial
Color Enhancement, ACF: Adversarial Color Filter, CF: ColorFool, SAE: Semantic
Adversarial Examples, AC: Attacked classifier, WB: White box, BB: Black box. The
best and second-best results are marked in boldface and underlined, respectively.

AC Type Method J75 J50 MF5 Q32 Q8 HGD CNS

R18

WB
NCF [30] 93.0 91.9 92.1 98.5 93.3 29.6 53.6
ACE [32] 72.0 68.3 79.4 86.9 69.1 8.4 28.2
ACF [34] 78.8 74.2 82.8 91.8 77.0 13.1 33.0

BB

CF [23] 55.1 55.5 60.0 69.1 61.3 1.8 22.7
SAE [8] 70.2 66.6 77.1 84.0 69.7 7.5 29.0
GLoFool-Q 60.9 55.3 60.0 70.5 60.0 5.5 28.0
GLoFool-T 73.8 70.5 70.2 84.5 80.7 6.5 37.4

IV3

WB
NCF [30] 80.9 76.4 76.1 95.5 77.0 28.3 44.9
ACE [32] 56.3 49.9 62.2 79.4 56.4 9.5 23.1
ACF [34] 67.6 61.7 70.7 88.5 62.9 14.5 28.1

BB

CF [23] 47.8 45.9 50.8 65.0 51.4 6.1 29.6
SAE [8] 58.1 57.3 61.5 73.2 57.0 13.8 35.1
GLoFool-Q 60.9 55.3 60.0 70.5 60.0 5.5 28.0
GLoFool-T 72.3 70.2 71.3 78.1 71.6 10.7 42.5

CXL

WB
NCF [30] 65.0 64.0 75.5 88.8 73.6 40.2 59.8
ACE [32] 37.4 39.8 53.7 49.6 30.5 17.1 34.6
ACF [34] 43.0 43.7 55.8 64.9 44.2 21.5 36.9

BB

CF [23] 52.1 52.1 64.5 65.9 59.2 23.5 45.0
SAE [8] 59.5 61.4 71.3 74.5 62.8 28.7 54.0
GLoFool-Q 41.1 43.2 60.8 51.3 42.5 22.3 49.3
GLoFool-T 50.6 56.7 72.7 59.7 58.5 37.2 70.3

DTB

WB
NCF [30] 85.3 80.6 83.2 96.3 81.7 37.6 59.8
ACE [32] 52.7 47.6 56.8 70.4 40.5 14.0 31.8
ACF [34] 64.8 58.6 66.0 84.0 51.5 18.8 38.2

BB

CF [23] 60.6 59.2 69.7 75.7 52.2 12.0 53.0
SAE [8] 67.1 65.1 78.3 82.0 61.1 15.7 45.7
GLoFool-Q 60.2 58.9 62.3 72.8 53.5 11.4 40.6
GLoFool-T 69.9 68.9 73.9 74.4 70.6 20.6 57.9

increment by 5 until τ = 50. Lower values of τ lead to better image quality at
the cost of a lower SR. High τ values significantly increase the robustness and



12 M. Agarla and A. Cavallaro

30 40 50 60
10
20
30
40
50

τ

ResNet-18 Inception-v3 ConvNeXt-L DeiT-B

40 50 60
10
20
30
40
50

0.4 0.5 0.6 0.7
10
20
30
40
50

20 25 30
10
20
30
40
50

30 40 50 60
16
32

64

128

SR

c

40 50 60
16
32

64

128

Defense SR

0.4 0.5 0.6 0.7
16
32

64

128

HaarPSI
20 25 30

16
32

64

128

∆E76

Fig. 6: First row: performance of GLoFool with different global enhancement thresh-
olds τ , when the maximum color perturbation threshold c is set to 128. Second row:
performance of GLoFool with different color perturbation thresholds, c, when the global
enhancement threshold τ is set to 40. SR is the average SR across the seen and unseen
classifiers. The defense SR is the average defense SR across all defenses.
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Fig. 7: Performance of GLoFool-T with different transfer-optimized values, T , for the
generated adversarial images. E.g., T = 3 means that the 3rd generated adversarial
image is proposed as an adversarial image. GLoFool-T is configured with τ = 45 and
c = 128. The SR results are averaged across all the seen and unseen classifiers. The
defense SR results are averaged across all the defenses.

the SR of the generated images. Higher τ values are measured as distortions by
HaarPSI that is sensitive to low frequencies, whereas they have a lower impact
on ∆E76. The impact of c ∈ {16, 32, 64, 128} is shown in Fig. 6, second row.
The higher c, the farther away the perturbed ab color components are from the
original colors of the clean image. This deviation results in a higher ∆E76 and
HaarPSI, and an increment of the average SR, especially for the large models
such as ConvNeXt-L and DeiT-B.

Motivated by the analysis of Fig. 6, we designed GLoFool-T, a method that
optimizes τ and c to improve the transferability and defense capabilities without
significantly compromising image quality and color fidelity. In Fig. 7 we show the
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Table 4: Performance of GLoFool-T with different stability score threshold s after at-
tacking, ResNet-18 (R18), Inception-v3 (IV3), ConvNeXt-L (CXL) and DeiT-B (DTB).
Key – AC: Attacked Classifier, SR: success rate, SR def: average success rate over all
the defensive algorithms. Seen classifiers are highlighted in gray.

SR Test Classifier↑
AC s HaarPSI↑ ∆E76↓ R18 IV3 CXL DTB SR def↑

R18

99 0.514 25.0 99.6 36.7 7.0 15.2 61.0
98.5 0.520 25.2 99.5 36.6 8.3 15.4 59.5
98 0.516 25.2 99.7 35.8 6.8 16.3 61.3

97.5 0.518 25.3 99.6 35.8 8.4 15.1 60.1
97 0.520 25.2 99.6 36.3 7.7 14.9 60.5

IV3

99 0.499 26.5 50.9 98.2 9.3 19.3 59.3
98.5 0.503 26.4 49.5 98.4 9.3 20.7 58.7
98 0.510 26.1 49.7 98.3 8.7 16.0 58.7

97.5 0.511 25.9 46.0 98.2 7.4 19.1 57.7
97 0.509 26.4 50.1 98.2 7.9 19.5 59.5

CXL

99 0.401 35.0 68.0 57.3 91.2 46.9 58.2
98.5 0.407 34.6 65.4 55.9 91.0 44.6 57.2
98 0.412 34.1 66.9 54.7 91.8 45.7 57.2

97.5 0.407 34.7 66.1 55.4 91.3 45.3 57.1
97 0.409 34.3 65.7 56.0 90.6 48.3 58.0

DTB

99 0.448 30.3 60.9 54.9 15.5 98.1 62.6
98.5 0.446 30.7 62.9 52.9 16.2 98.0 62.1
98 0.449 30.5 61.4 50.9 14.3 97.5 62.1

97.5 0.446 30.6 61.9 53.0 15.8 97.9 62.4
97 0.449 30.7 60.7 52.9 15.7 98.0 62.3

performance of GLoFool-T using τ = 45 and c = 128 using the nth generated
adversarial image as the final proposal. When progressively using subsequent
adversarial images as proposals, i.e. increasing the T threshold, our method
improves the SR, especially in the defensive setup. A high value of T also reduces
the quality of generated images for ConvNeXt-L, whereas for the other models,
the quality remains unaffected. We selected the third adversarial image because
it provides the best balance between improvements in SR, defensive SR, and
image quality.

Tab. 4 shows the impact of s ∈ {99, 98.5, 98, 97.5, 97} on GLoFool-T. The
higher s, the fewer segmented regions per image are detected. On average, the
number of regions per image is {18, 26, 35, 44, 52} for each threshold value, re-
spectively. Increasing the number of segmented regions does not lead to pro-
portional improvements in performance. We use s = 97 because, on average, it
slightly improves the success rate on both seen and unseen classifiers and leads
to better image quality.

In Tab. 5 we present the ablation study for the global and/or region perturba-
tions and the transfer-optimized configuration. The configuration for enhancing
the transferability, GLoFool-T, combines global and local perturbations and se-
lects the third generated adversarial image. Compared to the configuration with
only the region perturbation, exploiting both the global and region perturba-
tions decreases by 40% the number of required iterations to fool the classifier
and significantly increases the transferability and robustness. The configuration
with both global and region perturbation increases the SR and slightly reduces
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Table 5: Ablation study for the main components (global enhancement, region per-
turbation, transfer-optimized) of the proposed method, configured with τ = 45 and
c = 128. Key – R18: ResNet-18, IV3: Inception-v3, CXL: ConvNeXt-L, DTB: DeiT-B,
AC: Attacked Classifier, T: transfer-optimized configuration, Iter: average iterations
for the successful attacks, SR: success rate, SR def: average success rate over all the
defenses. The best and second-best results are marked in boldface and underlined,
respectively. Seen classifiers are highlighted in gray.

SR Test Classifier↑
AC Global Region T Iter↓ HaarPSI↑ ∆E76↓ R18 IV3 CXL DTB SR def↑

R18

✓ - - 56 0.60 20.3 89.5 27.6 4.3 10.5 55.7
- ✓ - 358 0.70 17.2 93.8 18.2 4.0 8.5 40.6
✓ ✓ - 82 0.51 25.1 99.6 36.8 6.5 14.4 60.1
✓ ✓ ✓ 131 0.52 25.1 99.6 36.3 7.7 14.9 60.5

IV3

✓ - - 78 0.61 19.2 33.8 80.0 4.8 10.5 53.1
- ✓ - 346 0.72 15.9 21.8 87.5 2.9 10.1 36.5
✓ ✓ - 119 0.50 25.6 49.2 98.2 7.2 15.5 57.2
✓ ✓ ✓ 180 0.51 26.4 50.1 98.2 7.9 19.5 59.5

CXL

✓ - - 203 0.58 20.1 32.3 27.1 37.2 15.8 49.0
- ✓ - 632 0.57 27.8 44.8 36.2 58.1 32.8 48.8
✓ ✓ - 320 0.42 31.4 63.7 51.4 90.6 42.1 52.2
✓ ✓ ✓ 457 0.41 34.3 65.7 56.0 90.6 48.3 58.0

DTB

✓ - - 153 0.58 20.7 38.0 29.8 8.3 56.6 53.8
- ✓ - 508 0.63 22.6 34.4 28.7 6.3 86.8 44.7
✓ ✓ - 222 0.45 28.7 59.4 50.4 13.3 98.0 58.7
✓ ✓ ✓ 324 0.45 30.7 60.7 52.9 15.7 98.0 62.3

the quality of the generated image. In this configuration, the global enhance-
ment improves the transferability and robustness against defenses. In contrast,
the region perturbation increases the SR in seen classifiers without a significant
impact on the image quality. Combining the transfer-optimized configuration
with the global and region perturbations significantly improves the SR in seen
and unseen classifiers and the average robustness.

6 Conclusion

We presented GLoFool, a black-box method designed to generate adversarial
images that are robust against unseen classifiers and exhibit a high degree of un-
detectability against defense methods. GLoFool perturbs the colors of individual
regions within an image, starting from a global enhancement. We proposed two
versions of the method to improve the transferability (GLoFool-T) or the qual-
ity of the generated images (GLoFool-Q). GLoFool-T outperforms the average
SR of seen and unseen classifiers of all state-of-the-art methods by 18% and
30%, respectively. GLoFool-Q obtains a competitive SR against the black-box
state-of-the-art methods, outperforming the average HaarPSI and ∆E76 of all
state-of-the-art methods by 5% and 21%, respectively. In for future work, we will
study how to strengthen classifiers by analysing the relationship between color
perturbations in specific image regions.
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