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Abstract

The computer vision community has explored dyadic in-
teractions for atomic actions such as pushing, carrying-
object, etc. However, with the advancement in deep learn-
ing models, there is a need to explore more complex dyadic
situations such as loose interactions. These are interac-
tions where two people perform certain atomic activities to
complete a global action irrespective of temporal synchro-
nisation and physical engagement, like cooking-together
for example. Analysing these types of dyadic-interactions
has several useful applications in the medical domain for
social-skills development and mental health diagnosis.

To achieve this, we propose a novel dual-path architec-
ture to capture the loose interaction between two individu-
als. Our model learns global abstract features from each
stream via a CNNs backbone and fuses them using a new
Global-Layer-Attention module based on a cross-attention
strategy. We evaluate our model on real-world autism diag-
noses such as our Loose-Interaction dataset, and the pub-
licly available Autism dataset for loose interactions. Our
network achieves baseline results on the Loose-Interaction
and SOTA results on the Autism datasets. Moreover, we
study different social interactions by experimenting on a
publicly available dataset i.e. NTU-RGB+D (interactive
classes from both NTU-60 and NTU-120). We have found
that different interactions require different network designs.
We also compare a slightly different version of our method
(details in Section 3.6) by incorporating time information to
address tight interactions achieving SOTA results.

1. Introduction
Human activity recognition has been an active research

area in the computer vision community for a wide range of
applications, including health care, video surveillance, per-
sonality development, sports analytics, robotics, and so on.
In this domain, the analysis of human-human interaction
and, more specifically, of dyadic interaction plays a central
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Figure 1. Different dyadic interaction types.

role. Dyadic interaction recognition has useful applications
in the medical domain for social skills development, parent-
child interaction therapy (PCIT), autism spectrum disorder
(ASD) diagnosis, mental health diagnosis, education, etc.

Dyadic interactions can be categorised into three types
i) tight interactions, ii) conversational interactions, and iii)
loose interactions as illustrated in Figure 1. Tight interac-
tions are synchronised atomic actions with physical contact
involved, such as shaking hands, hugging, etc. Moreover,
tight interactive activities are composed of a few seconds
with limited intra-class variance and high temporal syn-
chronisation. They have been thoroughly studied in com-
puter vision research. In the past decade, several high-
performing Deep Convolutional Neural Networks (CNNs)
models [17, 30, 38] have been designed to classify tight
interactive actions with more than 90% accuracy on lab-
simulated public datasets such as SBU [37], ShakeFive [32],
NTU-RGB+D [20]. Similarly, conversational interactions,
such as engaging with one or more people during a meet-
ing, a debate, or a talk, have been investigated in the liter-
ature for several purposes, including personality modelling
[1, 4, 6, 25]. A characteristic of such conversation-based in-
teractions is that people have little mobility, and are primar-
ily shot from front-facing cameras, and the main analysis
goal is to detect and model the streams of conversational
activities they exhibit like talking, eye-gaze aversion or con-
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tacts, facial expressions, and minimal hand gestures.
In contrast, loose interactions are complex dyadic in-

teractions, where two people individually perform a combi-
nation of asynchronous and asymmetric atomic actions that
complete the global task without direct physical involve-
ment. Loose dyadic interactions are long actions (more than
one minute long) representing complex real-world scenar-
ios such as compound social interactions (individuals per-
forming different atomic actions within an activity), spon-
taneous acting (subjects acting freely without any specific
guidance), asynchronous and asymmetrical events (both
people performing independent and different atomic actions
of their own, but together they complete an interactive ac-
tivity such as celebrating a birthday), and without physi-
cal engagement. This type of activity usually consists of
a leader and an assistant or helper. For example, in the
activity of cooking, there is a leader (chef) who performs
the main activity (cooking) by interacting in a loose man-
ner with an assistant or helper (for instance, the assistant
helps in chopping vegetables, providing required ingredi-
ents, etc.). The combination of such asynchronous and
asymmetrical atomic actions generally has a global interac-
tion for cooking activity. This type of weak interaction has
not been explored much in the computer vision community
to date. Therefore, there is a lack of research on recognis-
ing these complex activities that have loose asynchronous
human-human interactions.

Additionally, in autism diagnosis, each ADOS [22]
module corresponds to different tasks (actions of Loose-
Interaction dataset) for severity evaluation. For example,
the activity of imitation responds to an analysis of child at-
tention, gaze, and social skills. Classifying these loose in-
teractions helps us to use each module for its appropriate
task.

Existing deep learning models such as I3D [5], X3D
[10], and SlowFast [11] etc. perform flawlessly on such
tight interactive activities as they are atomic and tempo-
rally synchronised (kissing or hugging each other). On the
contrary, as discussed above, loose interactions are com-
plex, having no such temporal synchronisation, neither are
they symmetrical, and therefore are challenging for exist-
ing methods. Such interactions require a model that can
exchange abstract-level information between the two indi-
viduals at different levels. This limits the capabilities of
current models to be applied to such activities.

Furthermore, existing two-stream models, with early-
fusion struggle to handle asynchronous and asymmetrical
interactions (needs well-defined temporal synchronisation
like the ones we see in tight interactions to perform well),
while late-fusion models do not exchange sufficient in-
formation between the two streams. Therefore, mid-level
global feature modelling is necessary to recognise loose in-
teractions.

Taking into account the above challenges, we propose a
new architecture for loose-interaction recognition in social
activities. The main contributions of this paper are as fol-
lows.

• To our knowledge, we are the first to propose a new
task of collaborative loose interactions, to focus on the
recognition of asynchronous and asymmetrical loose
social interactions in dyadic situations.

• We propose a novel dual-path network for joint ac-
tion recognition (composite social-interactive activi-
ties). The dual paths learn high-low-level multiscale
visual features individually from two distinct inputs
(leader and assistant) using 3D-CNNs. The global ab-
stract features are obtained through Abstract Projec-
tion. The action is recognised by performing a fusion
via a novel Global Layers Attention (GLA) mecha-
nism.

• We validate our method on a real-world dataset, de-
picting the loose social interactions of a clinician with
a child during an autism diagnosis. Autism diagno-
sis data are recorded during the assessment of young
children with ASD following the ADOS-2 protocols
[22]. Besides this real-world dataset, we perform ex-
periments on other datasets e.g., Autism, and NTU-
RGB+D.

2. Related Work
Video Classification: CNNs have been very successful

in learning 3D spatio-temporal representations for human
activity recognition [5]. Two-stream methods commonly
used in combination of RGB and optical flow [12], with
a special emphasis on video classification. SlowFast net-
work [11] has demonstrated the possibility of combining
representations of different temporal resolutions (i.e. frame
rates) to improve action recognition. Recently, with the
advent of Transformers, several methods improved action
recognition by incorporating attention. MViT [9] proposed
pooling attention to learn spatio-temporal features at dif-
ferent scale. Video-Swin [21] improved MViT using 3D
shifted window modules for self-attention with patch merg-
ing after each spatial downsampling.

Furthermore, Foundation models such as CLIP [29], DI-
NOV2 [24], and VideoMAE [31] has been very useful for
down-stream tasks such as action recognition, and action
localisation [27]. However, these methods are focused on
general action recognition with little or no attention towards
human-human interactions. Therefore, we adapt 3DCNN
backbone to model pyramid of spatio-temporal features at
higher spatial resolution (early layers) to low-level visual
information (deeper layers) from two individual RGB in-
puts. On top of that we utilise cross-attention mechanism
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of transformers to build our interaction recognition archi-
tecture.

Human Interaction Recognition is a subdomain of
recognition of actions. Lately, researchers combine CNN,
RNN and GCN to recognise interactions from skeleton data
[28, 36]. For instance, DR-GCN [38] learns geometric and
relative attention features from the two skeletons using their
dyadic relational graph module. [14] uses mid-fusion of 3-
stream GCNs using inter and intra-body graphs to recog-
nise interactions between two skeletons. Dyadformer [6]
proposed cross-subject layers using audio video inputs from
two individuals to predict the personality of both individuals
in long videos. However, most of these methods are focused
on dyadic short interactions with proper temporal synchro-
nisation. A good skeleton input can effectively recognise
short actions such as shaking hands but could not model
more complex loose interaction.

ASD Recognition: The Autism Diagnostic Observa-
tion Schedule (ADOS) [22], a standard semi-structured test,
was created by psychologists to identify ASD. The aim of
ADOS, which can last up to two hours (four 30-minute ses-
sions) and requires expert skills to carry out, is to assess the
degree of social insufficiency in children. They designed in-
dividual modules to evaluate gaze, face gestures, body ges-
tures and social-interactions of child during each session. In
recent years, researchers have developed computer vision
algorithms to address ASD behaviour recognition. Action
recognition systems can use articulated posture structures,
appearance, and motion information to study behavioural
cues to address ASD diagnosis [2, 8, 23, 26]. [2] uses two-
stream I3D in a late-fusion manner to recognise autistic ac-
tions. Recently, [26] proposed a guided weakly supervised
method. They augment target autistic action classes with
a general video dataset using posterior maximum likeli-
hood for better behavioural posture learning. Unfortunately,
these techniques focus primarily on repetitive or stemming
behaviours of the child, ignoring the social complexity that
occurs in interaction circumstances, which is a crucial com-
ponent of ASD diagnosis.

3. Proposed Method
In this section, we discuss our proposed architecture

for recognising complex social activities that have asyn-
chronous loose interactions. Our network addresses the key
challenge: How to effectively model interactive activities
that are asymmetrical and have no temporal synchronisa-
tion at the frame-level? To handle this situation, we came
up with a dual path architecture. The network consists of
four parts: i) Convolution Backbone, ii) Abstract Projec-
tion Module, iii) Global Layers-Attention Module, and
iv) Classification Head, as shown in Figure 2. This is an
end-to-end learning architecture. Each module is explained
in the following.

3.1. Terminology description

Prior to modelling loose asynchronous interactions, we
need to establish the roles of each individual involved in the
interaction. Asynchronous loose interactions usually have a
leader (focused on completing the whole action/task) and an
assistant or helper (helping with minimal atomic actions).
These roles could be reversed if the child is autistic (less
socially active). Therefore, our input terms are defined as
”Leader” and ”Assistant” in the architecture.

3.2. Convolution Backbone

Our backbone learns the spatio-temporal multi-scale fea-
tures of two distinct individual inputs in a dual-stream fash-
ion. Both paths shares style design and parameters of con-
volution backbone reducing computation costs. We adapt
a multi-scale 3D-CNNs having a pyramid of features with
early layers operating at high spatio-temopral resolution
modelling low-level visual features, and deeper layers at
spatio-temporally coarse, but complex high-dimensional in-
formation. Let X be the video snippet; then Xb×c×t×h×w

leader

and Xb×c×t×h×w
assistant are the cropped images of the leader and

assistant to extract gb×c×t×h×w coarse-fine features from
the convolution backbone at different levels (block3, block4,
and block5).

For each input Xleader, Xassistant we extract the
gleader, and gassistant, respectively. As both individu-
als perform these actions interactively (asynchronously and
asymmetrically), the idea is to extract different symbolic
spatio-temopral features in different blocks for fusion. As,
the two individuals interact in a loose manner, fusing them
locally (spatio-temporal level) does not benefit. Therefore,
we need to compute global abstract information of each
block for fusion, as shown in Figure 2(b). Experimentally,
we find that utilising features from the last three blocks can
efficiently recognise a complex activity (details in Section
5).

3.3. Abstract Projection

Before concatenating, coarse-fine block-level features
needs to be encoded to a common embeddings. First, we
average-pool the spatio-temporal dimensions of each block
to obtain a global context. As these loose actions are ex-
ecuted jointly, both individuals perform separate tasks to
complete the entire activity regardless of time synchronisa-
tion at the frame-level: for instance, in the Joint-game1 ac-
tivity, the clinician (leader) assembles different toys such as
a dollhouse and plays with the child (assistant), where the
child sets up a toy-lounge-furniture that involves pick and
place small chair, and desk, etc. and the clinician pick and
move around a small doll. Therefore, extracting a global
context of the spatio-temporal features can better recognise

1The activity is a part of ADOS assessment
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Figure 2. Our proposed architecture consists of (a) the Convolution backbone, (b) the Abstract Projection module, and (c) the GLA module.
The model takes the input (leader and assistant) and outputs the action prediction score through the classification head.

these types of action. Second, we project these block-level
features through MLP layer to learn abstract features of
higher order at coarse-fine (blocks) level for each input as
in Eq. 1. We use GELU as activation function.

L = MLP (activation(AvgPool3D(X))) (1)

The three projected layers are fused, obtaining Gb×n×d,
where n represents the number of layers, which is three in
our case, and d is the embedded feature vector of size 768.
At this point, we concatenate a learnable classification to-
ken clfTokenb×1×768 in dimension n along with the addi-
tion of a 1-D positional encoding PE1×4×d as shown in Eq.
2. The same process is performed for gleader and gassistant
individually.

Gb×(n+1)×d = LNorm(fuse(Lb×d ∗ n, clf) +PE) (2)

where G is the projected embedding of the blocks features
for each stream, LNorm, L, n, clf, and PE represent layer
normalisation [3], embedded encoding, the number of lay-
ers, class-token, Positional Encoding, respectively. The ab-
stract projection G is executed separately for both paths
gleader, and gassistant, obtaining an embedding Gleader,
and Gassistant (as illustrated in Figure 2(b)).

3.4. Global-Layer-Attention

So far, the dual-paths independently learn abstract con-
text and encode them through the abstract projection mod-
ule as embeddings. Now, we need to integrate these embed-
dings from Gleader, and Gassistant in such a way that we
capture the asynchronous loose interaction between the two
participants. To this end, we rely on an attention mecha-
nism.

Q = LNorm(Gleader +MHSA(Gleader)) (3)

K = V = MLP (Gassistant)) (4)

In particular, let Q be the query from Gleader (in Eq. 3)
and the key and value {K,V } (defined in Eq. 4) from
Gassistant to perform a cross-attention in between the two
inputs as in Eq. 5. MHSA [33] stands for multi-head self-
attention, MLP indicates multilayer perceptron.

Our intuition is that the global high-level information
(key-value pairs) of one person can be used to attend to
the global context of the other person for better loose in-
teraction recognition (as illustrated in Figure 2(c)) in an
asynchronous and asymmetrical manner. We implement
this intuition with the help of the proposed Global-Layer-
Attention. This module takes an input Gleader and the cor-
responding vector from the interacted person Gassistant and
uses the multi-head cross attention mechanism to obtain the
refined vector ŵb×n+2×d (as in Eq. 5), where b, n, 2, d
defines the batch-size, the number of layers, classification
tokens, and the embedded dimensions (as illustrated in Fig-
ure 2)(c). T stands for transpose in Eq. 5.

ŵ = softmax(
Q ∗KT

√
dk

) ∗ V (5)

In our implementations, we use eight tokens, including two
classification tokens and three abstract feature layers of
each stream (obtained in Section 3.3) to perform cross at-
tention between Gleader, and Gassistant. First, we apply a
single MHSA layer with eight attention heads in Gleader

followed by layer-normalisation to get Q. Before per-
forming a cross-attention between Gleader and Gassistant

we obtained {K,V } by applying a single MLP layer on
Gassistant. Finally, a cross-attention is performed between
Q and {K,V }. We use layer normalisation and add skip-
connections at certain positions, as shown in Figure 2(c).
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3.5. Classification Head

The output is taken by applying an MLP layer to the clas-
sification token of Ŷ b×2×D taken from the final output of
the Global-Layer-Attention module, where b is the batch
size, 2 denotes the two classification tokens (one for each
stream) and D is the 768 embeddings.

3.6. Temporal Synchronisation Modelling

To best accommodate temporally synchronised tight in-
teractive actions, we made slight changes to our existing ar-
chitecture. This slightly different design of our model cap-
tures frame-level temporal information in a synchronised
and symmetrical manner. The main difference is, how we
project the CNN layers, with specific changes in the Ab-
stract Projection module. This variant of our model uses
only the last CNN-block block5 by pooling only spatial fea-
tures, preserving the temporal information for both streams.
The feature token is generated from Gb×t×d, where b is the
batch-size, t represents the temporal frames (32 for NTU)
and d are the embedded features as in Eq. 6. The rest of the
model is the same.

G = MLP (Relu(AvgPool2D(block 5 layer))) (6)

4. Experiments
We have studied two types of interaction, i) loose inter-

actions, and ii) tight interactions, and explored which mod-
elling strategy (global abstract context, or temporal mod-
elling) is effective for them.

In Section 4.4 we experiment with the Loose-Interaction
and the Autism [26] datasets to study interactions in so-
cial therapy situations. We have found that global abstract
features from the CNNs backbone can effectively address
asymmetrical and temporally asynchronous interactions.

On top of that, we study the NTU-RGB+D [20] dataset
for tight interactions. Our study concludes that tight inter-
active actions are temporally synchronised and that a global
abstract feature approach is not helpful. Tight interactions
can be addressed with a slight change in the proposed ar-
chitecture to model temporal information, as explained in
Section 3.6.

4.1. Loose-Interaction Dataset

The Loose-Interaction dataset is actual children’s assess-
ment sessions recorded with clinicians at the hospital. 132-
hour sessions were recorded following the ADOS-2 proto-
col to study the visual behaviour of children with the sever-
ity of autism. Each child was diagnosed with a possible
autism disorder during different interactive ADOS-2 activ-
ities. Long videos were classified into nine (9) interaction
classes i.e., anniversary, playing with bubbles, playing with
ball, construction, demonstration, describing-image, imita-
tion, joint-game, and puzzle. Each action video is 2 - 4

minutes long, depending on the activity. Blurred, distorted,
and out-of-frame videos were discarded, yielding a total of
845 trimmed videos, with 9 classes, captured with an HD
camera at 30 fps. Some subjects did not perform the same
activity; therefore, the dataset is not subject-oriented and
highly imbalanced. In this paper, a total of 87 unique chil-
dren’s hour-long videos were used out of 132 videos. The
statistics of the dataset are given in Table 1

Action # of clips # of unique children
Anniversary 118 63
playing with bubbles 110 63
playing with ball 67 45
construction 253 38
demonstration 45 27
describing image 43 36
imitation 121 57
joint game 41 26
puzzle 47 30
Total 845 87(overlap exists)

Table 1. Loose-Interaction dataset statistics.

We intend to release the dataset in multiple modalities
after ethical approval.

4.2. Public Datasets

Currently, there is no publicly available dataset for asyn-
chronous loose interactions that fits our needs. Therefore,
we evaluated our model on other closely related public
datasets such as Autism [26] and NTU-RGB+D [20].

The Autism dataset was designed for the behavioural
study of children with ASD under stress. It is more focused
on the child and their autistic (repetitive) actions. It has
some sort of loose interactions (in most videos, the clini-
cian performs the activity with the child in a weak interac-
tive manner), but not asynchronous. Furthermore, the ac-
tions are fine-grained, short. There are 1333 clips with a
total of 8 action classes. More description provided in the
supplementary materials.

In the NTU-RGB+D [20] dataset we consider only the
interactive actions from both NTU-RGB+D 60 and 120
datasets achieving a total of 26 action classes in 13k video
clips. Although actions fall into the category of tight-
interactive activities, they could be useful for the validation
of our model and for studying different methods that work
for tight-interaction recognition.

4.3. Experimental Details

Complex loose interactions videos are temporally long
and require higher temporal modelling (more than 60
frames) to capture the action completely. We have found
that global abstract features from the CNNs backbone can
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Methods Input
Acc.%
Mean

2S-DRAGCN [38] 2P skeleton 33.84
GWSDRrgb+flow [26]

scene
52.33

Mvit [9] 56.37
X3D [10] 63.50
DinoV2+TCN [24] 63.98
VideoMAEfinetuned [31] 64.50
SlowFast [11]

2P tracklets

20.06
X3Dearlyfusion [10] 30.03
GWSDRrgb [26] 41.43
CoarseFine [16] 46.06
Mvitlatefusion [9] 58.01
X3Dlatefusion [10] 64.01
DinoV2+TCNlatefusion [24] 65.86
VideoMAEfine−tuned [31] 66.71
Proposed † 2P tracklets 37.03
Proposed 72.04

Table 2. Baseline results on the Loose-Interaction dataset. † de-
fines our temporal model, 2P: means cropped tracklets of both per-
sons, separately.

effectively address such long complex (asymmetrical and
temporally asynchronous) interactions. Utilising 3D-CNNs
as our backbone has 2 main benefits. First, 3D-CNNs such
as X3D [10] have longer temporal modelling capabilities
due to multiscale temporal pooling compared to Transform-
ers (Mvit, VideoSwin) [9, 33]. X3D can operate at 64 -
120 frames input with a low computational cost compared
to VideoSwin. Second, training 3D-CNNs with a smaller
dataset is comparatively better compared to Transformers
without requiring additional training strategies.

All networks were pre-trained on the kinetics-400 [5]
dataset. We kept the same training protocols for all ex-
periments with a batch size of 8 and trained them for 100
epochs. For the proposed architecture, we have used the
SGD optimiser with an initial learning rate of 0.003 and a
momentum of 0.9 at training time.

Method Acc.%
ECO [39] 61.4
TSN [34] 68.0
R(2+1)D [13] 69.8
I3D [5] 69.3
TSM [19] 69.8
TSN+DRrgb+flow [26] 70.1
TSN+GWS+DRrgb+flow [26] 72.5
GWSDRrgb+flow [26] 75.1
Proposed 76.3
Proposedrgb+flow 78.6

Table 3. Results and comparison with SOTA on the Autism
dataset.

Methods Input Modality
Acc. %
(CS)

ST-LSTM [28]

2P
Skeleton

63.00
IRNinter+intra [28] 77.70
GCA-LSTM [28] 73.00
ST-GCN [38] 80.20
AS-GCN [38] 73.13
2S-AGCNuni joint [38] 83.19
2S-AGCNuni−bone [38] 85.25
2S-DRAGCN [38] 90.56
PoseC3Dlimb [7] scene 94.91
PoseC3Djoint [7] 95.85
I3D [5] scene

RGB

82.00
Swin-Transformer [21] 92.52
SlowFast [11] 93.70
Proposed 2P 95.02
Proposed † 96.25

Table 4. Results in the NTU-RGB+D dataset for interactive ac-
tions and comparison with the SOTA methods. P1 and P2 rep-
resent the results of using a single-person tracklet without interac-
tions. †: means our temporal variant model. 1P (single), 2P (both)
tracklets.

We use pre-processing explained in the supplementary
materials to extract tracklets (individual bounding boxes)
for the Loose-Interaction dataset. We used skeleton infor-
mation for the extraction of tracklets in NTU-RGB+D, and
Yolov5 [15] with DeepSORT [35] for the Autism dataset.
Additional details are provided in the Supplementary Mate-
rials.

4.4. Experiments on ASD datasets

Experiments on Loose-Interactions: we first eval-
uate our proposed dual-path architecture on the Loose-
Interaction dataset, the results are reported in Table 2. Han-
dling the long temporal duration of the Loose-Interaction
dataset, we perform several experiments with different tem-
poral sizes, including 32, 64, 80, and 120 frames. The best
results were achieved with the 80-frame snippet. All base-
line models follow the same protocols. For a fair compar-
ison, an additional TCN layer is used for longer temporal
modelling in transformer-based baselines such as Mvit [9]
and VideoMAE [31].

We compare our proposed method with existing 3D-
CNNs, GCN, and Transformer-based architectures.

GWSDR [26] uses an additional optical-flow modality
to capture motion. Interestingly, this method did not per-
form well on Loose-Interaction dataset. We notice, their
model greatly benefits from a weak co-learning strategy
by training on other similar atomic actions found in large
datasets (Kinetics). However, the loose-Interaction dataset
has unique and composite actions, different from the Kinet-
ics action classes. Thus, pretraining in such a manner does
not fully help the model to converge. Secondly, the actions
are longer, asymmetrical, and temporally asynchronous for
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Input Acc. %
MHSA(Gassistant), MLP(Gleader) 71.3
MLP(Gassistant), MHSA(Gleader) 72.0

Table 5. Impact of swapping the inputs of the GLA module.

this method to capture well. 2S-DRAGCN [38] uses skele-
tons for dyadic-interactions. However, the model is de-
signed to better capture synchronised atomic interactions
(as in the case of NTU-RGB+D) compared to complex ac-
tions in Loose-Interaction dataset.

We further investigate SOTA transformers-based action
classification architectures for loose-interaction tasks. We
experiment with MViT [18] (multiscale design), Video-
MAE [31] (general mask learning model) and DINOV2 [24]
(foundation model). We use MViT-small with an addi-
tional TCN layer for longer temporal pooling. However, the
model did not converge due to the size of the dataset. Next,
we use fine-tuning strategies by freezing a few layers at a
time to let the model learn and converge for each input sep-
arately. Later, we use a latefusion strategy as shown in Ta-
ble 2. We experiment with the same strategy for VideoMAE
[31]. A common problem with these methods is the small
size of the dataset and higher computational costs. Further-
more, they works well on atomic actions compared to long
complex activities. Also, the architectures perform poorly if
trained separately, reducing computational costs, but could
not converge fully if both inputs are jointly trained.

Lastly, we use a multilayer TCN model for temporal
modelling of spatial features extracted from DinoV2 [24]
and MLP layers for classification. DINOV2+TCN performs
well with only temporal modelling but is unable to capture
more complex actions due to no spatial interaction learning.

Experiments on Autism: in this section, we perform ex-
periments on the Autism dataset where we use 32 frames as
input snippets. Our proposed network achieves new SOTA
results (Table 3) in the Autism dataset with an increase in
accuracy of 1.2%. The existing methods in Table 3 use
full-frame in their experiments. GWSDR [26] utilises an
additional optical flow stream in conjunction with the rgb
scene to capture atomic actions in this dataset. Furthermore,
they greatly benefited from other large-scale datasets using
their guided weak supervision technique. However, our pro-
posed method achieves higher accuracy by just using rgb
tracklets of the two individuals. To make a fair comparison
with them, we further use an additional optical flow stream
for this experiment in latefusion manner, achieving an addi-
tional 2.3% increase in accuracy.

4.5. Experiments on tight interactions

On the NTU-RGB+D dataset, we only used interactive
action classes. For this reason, we compare our method with
the SOTA methods in interactive action classes, as shown

Network streams Acc.%
leader 55.62

assistant 51.84
leader+assistantLF 64.02

Proposed 72.04

Table 6. Importance of each stream in our design choice. LF:
stands for late-fusion

Layer Selection Acc.%
conv5 60.0

All (block1 – block5) 48.0
block2, block3, block4, block5 66.0

block3, block4, block5 72.0

Table 7. Experimenting with the number of layers to model ab-
stract features.

Attention Acc.% GLA modules Acc.%
Self-attention 38.5 2 44.2
Cross-Attention 72.0 1 72.0

Table 8. Ablation study on attention mechanism and analysing the
number of GLA modules used.

Components Acc.%
W/o AP, W/o GLA 64.0
W AP, W/o GLA 66.5
W AP, W GLA 72.0

Table 9. Experiments with and without the Abstract Projection
(AP), and GLA module. W and W/o means with and without,
respectively.

in Table 4. Our main network achieves results compara-
ble to those of the SOTA. We further extend our network to
model temporal synchronisation. Our slightly changed net-
work achieves SOTA results in the NTU-RGB+D dataset as
reported in Table 4. Our original proposed method is also
comparable to that of SOTA. The validation of these two
designs on the loose and tight interactive datasets shows the
usability of different network design strategies for different
synchronisations and symmetry.

5. Ablation Study

Here, we discuss several ablation experiments that vali-
date our design choices, using the Loose-Interaction dataset
as it is the most relevant one. More specifically, we anal-
yse i) the influence of the network inputs swapping; ii) the
CNNs embedding layers; iii) the attention type; iv) the num-
ber of GLA modules used for attention; v) the importance
of each component used.

To evaluate the impact of leader and assistant on model
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performance, we swapped the input of the GLA module.
Table 5 validates that there is an asymmetric and asyn-
chronous behaviour, where the leader is interested in com-
pleting the activity by having a loose interaction with the
assistant. The small drop in accuracy we observe is due to
the fact that when the child is autistic, they are not fully
involved in the activity, as shown in Table 6. Thus, the in-
formation he/she carries is smaller compared to that of their
partner. This validates our proposed way of processing the
leader and assistant streams as in Figure 2(c).

Furthermore, to understand the usefulness of each in-
put, we experiment with training the X3D [10] model sep-
arately for both the leader and the assistant. The results
in Table 6 show that the leader stream is more accurate
in recognising activity than the assistant. Combining both
streams using our proposed GLA module can greatly im-
prove the prediction of such loose interactions. In addition,
we provide more ablation study about the number of atten-
tion heads used in GLA module and depth of backbone in
the Supplementary Materials Section 4.1.

Device
Flops
(G)

Param
(M)

Infer. Time
Data (ms)

Infer. Time
Model (ms)

CPU - - 1760 3830
GPU 76.99 10.54 1560 80.90

Table 10. (Computational complexity analysis. We use a 10 clips
testing strategy. We show computational complexity in GFLOPs
for a single clip input and inference time of the model and data
in milliseconds. Provided inference time is on both CPU (Xeon
Silver 4215) and Tesla v100 GPU for a single batch size. Infer. is
short for Inference)

Next, we analyse the pyramid of high- and low-level fea-
tures extracted from the 3D-CNN backbone for further pro-
jection. Specifically, features of block3, block4, and block5
of the 3D-CNNs backbone. We compare this design choice
with other experimental approaches from using only the
block5 block to utilising all blocks, block1 − block5, from
both streams. The results of these experiments are given in
Table 7. This analysis demonstrates that earlier low-level
features are not as important compared to deep-layer fea-
tures.

Moreover, the proposed method is based on cross-
attention strategy to perform attention using the novel GLA
module. A cross-attention between two different input
streams can emphasise the correlation between them effi-
ciently. We compared this design choice with self-attention
to validate its importance. Table 8 defines this compari-
son between different attention approaches. Next, our net-
work has only one GLA module for this fusion between the
two paths using attention. However, we have noticed a drop
in the efficiency of our network when increasing the com-
plexity of the model (increasing the number of GLA mod-

ules). One possible reason for this is the small size of the
dataset to fully use a more dense architecture. This analysis
is reported in Table 8. Additionally, we have evaluated the
usefulness of the Abstract Projection module and the GLA
module by experimenting without each of them. Results are
described in Table 9.

5.1. Computational Complexity Analysis

We evaluate our model’s computational complexity us-
ing GLOPs and inference time for a single input to validate
its use for devices with limited resources in real-time, as
shown in Table 10. Our model is light-weight as the back-
bone and abstract projection modules are shared between
the two paths, thus our model uses only 10.54M parame-
ters having 76.99 GFLOPs. Furthermore, it takes only 3.8
seconds to run a single input video on the CPU (Xeon Sil-
ver 4215) and 1.76 seconds to process a single batch input.
Similarly, with a single Tesla v100 GPU our model takes
0.80 seconds to run a single input video. This validates our
model is efficient in terms of computational complexity and
can work on resource-constrained devices in real-time.

6. Conclusion and Future Work

Recognising complex social-interaction between two in-
dividuals performing an action is a challenging task. We
propose a new direction for human-human action recogni-
tion having loose interactions. To address this challeng-
ing task, we design a new architecture that attends to tem-
porally unsynchronised loose-interactive actions using our
novel Global-Layer-Attention module. We validate our net-
work in social therapy scenarios for Loose-Interactions and
Autism datasets. Our model achieves SOTA results on these
two datasets. To demonstrate our network generalisability
in tight-interactive actions, we experiment with the NTU-
RGB+D dataset. Our model achieves higher results by
slightly changing the model design to capture synchronised
interactions. Our proposed method has certain limitations
to handle all types of social interactions. One possible solu-
tion would be to design an adaptive temporal synchronisa-
tion module that can model symmetrical and asymmetrical
time synchronisation between two people.

In the future, our next goal is to detect the activities of
autistic children in untrimmed videos. With the help of ac-
tion detection and recognition methods, the final goal will
be to generate severity reports for autistic children by au-
tomating the autism diagnosis process.
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