
Test-Time Adaptation for Automatic Pathological
Speech Detection in Noisy Environments

Mahdi Amiri
Signal Processing for Communication Group

Idiap Research Institute
Martigny, Switzerland
mahdi.amiri@idiap.ch

Ina Kodrasi
Signal Processing for Communication Group

Idiap Research Institute
Martigny, Switzerland
ina.kodrasi@idiap.ch

Abstract—Deep learning-based pathological speech detection
approaches are gaining popularity as a diagnostic tool to support
time-consuming and subjective clinical assessments. While these
approaches perform well in controlled environments with clean
recordings, their performance significantly degrades in realistic
scenarios with background noise. In this paper, we propose a test-
time adaptation framework to increase the robustness of such
approaches to background noise during inference. To this end,
we use a voice activity detector to extract noise-only segments
from the test signal. These segments are used to augment a
portion of the training/validation data, which is then exploited
to fine-tune the classification models. Extensive experimental
results demonstrate the effectiveness of the proposed framework
in increasing robustness to noise for state-of-the-art automatic
pathological speech detection approaches.

Index Terms—pathological speech detection, robustness, noise,
data augmentation, adaptation

I. INTRODUCTION

Pathological speech can be caused by neurological dam-
age from diseases such as Cerebral Palsy, Amyotrophic Lat-
eral Sclerosis, or Parkinson’s disease. Traditionally, speech
and language pathologists diagnose speech disorders through
costly and time-consuming auditory-perceptual assessments.
To address this challenge, there is a growing interest in de-
veloping automatic pathological speech detection approaches
to support clinical assessments. Previously, such approaches
typically relied on classical machine learning classifiers and
handcrafted acoustic features [1]–[5]. With the advent of deep
learning (DL) algorithms and their remarkable success in
various domains such as computer vision [6], natural language
processing [7], and speech processing [8], recent automatic
pathological speech detection approaches focus on exploiting
DL. The vast majority of DL-based approaches aim to learn
pathology-discriminant cues from time-frequency input repre-
sentations such as the short-time Fourier transform (STFT) [9],
Mel frequency cepstral coefficients [10], [11], or Mel spectro-
grams [12], using architectures such as convolutional neural
networks (CNNs) [9], recurrent neural networks [13], or
autoencoders [12]. With the promising performance achieved
by using self-supervised embeddings from transformer-based
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models such as wav2vec2 [14], [15] for several downstream
tasks [16], researchers have also used such embeddings as
input representations for automatic pathological speech detec-
tion [17], [18].

Despite DL-based approaches exhibiting a promising per-
formance for automatic pathological speech detection using
recordings collected in clean acoustic environments, their
performance significantly decreases in the presence of additive
noise [19]. This limitation hinders the deployment of these
approaches in realistic clinical settings. While the robustness to
noise has been extensively investigated in many speech appli-
cations such as automatic speech recognition [20]–[22], audio
event detection [23], or speaker identification [24], the robust-
ness to noise of pathological speech detection approaches has
received significantly less attention. The investigation in [25]
explores the applicability of using pitch and Mel frequency
cepstral coefficients (MFCCs) in detecting dysarthria in the
presence of additive Gaussian noise. Results indicate that
in this artificial Gaussian noise scenario, pitch demonstrates
greater resilience compared to MFCCs. In [26], domain adver-
sarial training is used to increase the robustness of pathological
speech detection approaches in scenarios where training and
testing recordings come from different devices. Results show
that domain adversarial training is useful in addressing minor
discrepancies between training and testing data that arise from
different recording devices. In [27], it is proposed to use a
single-channel speech enhancement module before extracting
input features from signals recorded in non-controlled noisy
environments. However, specific information regarding the
types of noise present in the signals or their signal-to-noise
ratios (SNRs) is not provided. Furthermore, it should be
noted that conventional single-channel speech enhancement
methods introduce distortions to the original signals, which
is problematic in the context of pathological speech detection.
This is especially true as these distortions can be mistaken as
pathology-discriminant cues.

This paper proposes a test-time adaptation framework aimed
at increasing the robustness of pathological speech detection
approaches against noise present in test signals. The proposed
framework involves initially extracting noise-only segments
from the test recordings using a voice activity detector (VAD)
module [28]. Following this, the pathological speech detection
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model under consideration is fine-tuned on training/validation
data augmented with the extracted noise-only segments and the
test recording is processed using the adapted model. It should
be noted that such a framework is general and applicable
to any DL-based pathological speech detection approach. In
this paper, we apply the proposed framework to increase
robustness of the CNN-based approach from [9] and the
wav2vec2-based approach from [17]. Extensive experimental
results demonstrate the advantages of the proposed framework.

II. DL-BASED PATHOLOGICAL SPEECH DETECTION

In this paper, we consider increasing the robustness to
noise of the CNN-based approach operating on STFT input
representations from [9] and of the wav2vec2-based approach
from [17]. In the following, these approaches are briefly
reviewed.

CNN-based approach. The CNN-based approach accepts
fixed-size inputs, hence, we consider fixed-size segments
of speech and compute their STFT. After calculating the
logarithm of the magnitude of the STFT coefficients, these
representations undergo normalization before being encoded
using two convolutional layers. Each layer consists of 64
channels and uses kernels sized 2 × 2 and 3 × 3, respectively.
Following each convolutional layer, there’s a sequence of
operations: ReLU activation function, batch normalization, and
max-pooling with a kernel size of 2 × 2. Subsequently, the
second convolutional layer is followed by a dropout module
with a dropout probability of 0.5. After the dropout module,
a linear layer is employed for pathological speech detection,
with an input size of 13376 and an output size of 2.

wav2vec2-based approach. The wav2vec2-based approach
accepts variable length audio as input. Therefore, we consider
full utterances as input to the wav2vec2 base model [14] and
obtain their embeddings. After extracting embedings from a
user-selected transformer layer, we compute their mean across
time. Subsequently, we utilize two linear layers (layer 1 - input
size: 768, output size: 256; layer 2 - input size: 256, output
size: 2) for the classification task. The first linear layer is also
followed by a dropout module with a dropout probability of
0.5. It should be noted that the wav2vec2 base model is frozen
and not trained/fine-tuned, with only the linear layers trained
for pathological speech detection.

III. TEST-TIME ADAPTATION FRAMEWORK

Fig. 1 presents a schematic illustration of the proposed
test-time adaptation framework to enhance the robustness of
pathological speech detection approaches to noise. As shown,
we consider a pathological speech detection model trained
on the available training utterances, with hyperparameters
tuned on the available validation utterances. The training and
validation utterances can either be clean or augmented with
noise, with the latter resulting in a more robust initial model.
Given a noisy test signal, we extract the noise-only segments
using a VAD. These extracted noise-only segments are then
concatenated and replicated as necessary to augment a subset
of the utterances from the training and/or validation sets.

Training set

Validation set

Augmented
validation set

VAD

Adapted
model

Trained
model

Test signal

Test noise

Decision

Fig. 1. Schematic illustration of the proposed test-time adaptation framework.
During inference, we adapt the initial trained model for each specific test
signal based on the extracted noise-only segments using a VAD.

Finally, the augmented utterances are used for fine-tuning the
initial model, enhancing its robustness against the particular
noise in the test signal. This model adaptation procedure is
repeated for each test signal. In Section V and as depicted
in Fig. 1, we augment the utterances from the validation set,
such that the initial model is adapted with previously unseen
data. It should be noted that during this adaptation procedure,
the model learns solely from the noise characteristics extracted
using the VAD, since we do not utilize labels from the test
signal. The effectiveness of the proposed framework depends
on the duration of the noise-only segments within the test
signal, the accuracy of the VAD in isolating these segments,
and the stationarity of the noise. In Section V we demonstrate
that the proposed framework is highly effective for many noise
types even with very short noise-only segments available, with
the median length being 18.6 ms for our data and the minimum
length being 8 ms. Additionally, our initial findings indicate
that the overall performance of this framework is relatively
unaffected by the specific VAD used. Therefore, for the results
presented in Section V, we employ the VAD proposed in [28].

IV. EXPERIMENTAL SETTINGS

A. Clean speech dataset

In this paper, we use the PC-GITA dataset [29] which
contains clean Spanish recordings from a group of 50 patients
diagnosed with Parkinson’s disease and 50 neurotypical speak-
ers. This dataset contains 25 male and 25 female speakers in
each group. Each speaker is recorded with a sampling fre-
quency of 44.1 kHz uttering 10 sentences and 1 phonetically-
balanced text. Recordings are downsampled to 16 kHz prior to
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using them for the considered approaches. The average length
of all utterances combined for each speaker is 55.37 s.

B. Noise datasets and augmentation

To generate noisy utterances, we use the QUT-NOISE
dataset (KITCHEN, LIVINGB, and CITY noises) [30] as
well as the DEMAND dataset (DKITCHEN, NPARK, DLIV-
ING, SPSQUARE, OMEETING, OOFICE, and PCAFETER
noises) [31]. To generate a noisy utterance with a specific
SNR, we select a random part from the noise of interest and
add it to the clean utterance after scaling the noise with the
coefficient α given by

α = 10
SNR
20 ×

√∑
i x

2
i√∑

i n
2
i

, (1)

where xi denotes the i-the sample of the clean utterance and
ni denotes the i-th sample of the noise. For testing models
trained on clean data, we use the QUT-NOISE dataset. To
train initial robust models with noise augmentation, we use the
QUT-NOISE dataset and SNR ∈ {5, 10, 15, 20} dB. Since we
need an additional dataset to evaluate the performance when
models are trained with noise augmentation, we test these
models using the DEMAND dataset, both on similar noise
types as the training noises (i.e., DKITCHEN, DLIVLING,
and SPSQUARE) and on different noise types from the
training noises (i.e., NPARK, OMEETING, OOFICE, and
PCAFETER). Please note that all tests are done for SNR
∈ {5.0, 7.5, 10.0, . . . , 22.5} dB.

C. Input Representation

As previously mentioned, the CNN-based approach accepts
fixed-size segments of speech as input. For this purpose, we
split each utterance into 500 ms segments with an overlap of
250 ms. The STFT of these segments is computed using a
10 ms Hanning window without overlap and the logarithm of
the STFT magnitude is used as input representation.

Since transformer-based networks accept full utterances as
input, full utterances are used as input to the wav2vec2-based
approach. Initial investigations show that using embeddings
from the 10th transformer layer of the wav2vec2 base model
yields a better pathological speech detection performance than
embeddings from other layers. Hence, for the results presented
in the following, wav2vec2 embeddings are extracted from the
10th transformer layer.

D. Training

A 10-fold cross validation framework is used for training
and evaluating the considered approaches. At each fold, we
split the data into utterances from 80, 10, and 10 different
speakers for training, validation, and testing, respectively. Each
of the sets contains the same number of gender-matched neu-
rotypical and pathological speakers. To train the initial CNN-
based model, we use the stochastic gradient decent (SGD)
optimizer with a learning rate of 0.001 and a weight decay of
5 × 10−4. To train the inital wav2vec2-based model, we use
the Adam optimiser with a learning rate of 0.1 and a weight

decay of 5×10−4. In addition, we use the ReduceLROnPlateau
learning rate scheduler with patience = 5 and factor = 0.5
for all models. Training stops if the learning rate decreases
below 10−4 of the initial value or the maximum number of
epochs of 100 is reached.

Using this training procedure and the data outlined in
Sections IV-A and IV-B, we train four initial models, i.e., the
CNN-based model using clean data, the CNN-based model
using noise augmented data, the wav2vec2-based model us-
ing clean data, and the wav2vec2-based model using noise
augmented data. The models trained using noise augmented
data are expected to be more robust to noise than the models
trained using only clean data.

E. Adaptation

For adaptation, we fine-tune the previously trained models
on the validation set augmented with the noise extracted from
the test signal. It should be noted that adaptation is done
for each individual test signal. The CNN-based models are
adapted for 1 epoch using the SGD optimizer with a learning
rate of 0.0001. The wav2ec2-based models are adapted for
1 epoch using the Adam optimiser with a learning rate of
0.01. A weight decay of 5 × 10−4 is used for all models. It
should be noted that we did not optimize these hyperparam-
eters (i.e., number of epochs, portion of the augmented data,
learning rate, or weight decay) to achieve a better performance.
Hence, while the proposed adaptation framework already
demonstrates a considerable performance improvement (cf.
Section V), one can optimise these hyperparameters to further
improve the performance.

F. Performance

To assess the performance of the considered approaches, we
compute speaker-level accuracy. Soft labels are first generated
by passing the networks’ output through a softmax function
for all the segments/utterances belonging to each speaker. The
final speaker classification decision is done through soft voting
of all the segment-/utterance-level labels. To account for ran-
domness when initializing the models during training, we train
all models for 5 different random seeds. The reported speaker-
accuracy values reflect the mean values obtained across these
different seeds.

V. EXPERIMENTAL RESULTS

In this section, we investigate the performance obtained us-
ing the initial models and the proposed adaptation framework
for different scenarios. To investigate the effect of the length of
the available noise-only segments on the proposed adaptation
framework, we analyze two scenarios: i) the realistic scenario
where the test signal is not altered and used as it is available
to extract noise-only segments (yielding a median length of
noisy-only segments of 18.6 ms across all signals) and ii) the
non-realistic scenario where noise-only segments with a 1 s
duration are appended at the beginning and end of the test
signal and used for the adaptation.
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Fig. 2. Performance of the considered models without and with adaptation on noisy test signals: (a) CNN-based model trained on clean samples and tested
on noisy samples (QUT-NOISE), (b) CNN-based model trained on noise augmented samples (QUT-NOISE) and tested on noisy samples with similar noise
characteristics as the training samples (DEMAND), (c) CNN-based model trained on noise augmented samples (QUT-NOISE) and tested on noisy samples
with different noise characteristics from training samples (DEMAND), (d) wav2vec2-based model trained on clean samples and tested on noisy samples
(QUT-NOISE), (e) wav2vec2-based model trained on noise augmented samples (QUT-NOISE) and tested on noisy samples with similar noise characteristics
as the training samples (DEMAND), (f) wav2vec2-based model trained on noise augmented samples (QUT-NOISE) and tested on noisy samples with different
noise characteristics from training samples (DEMAND).

A. Performance for Initial Models Trained on Clean Data

In the following, we analyse the effectiveness of the
proposed adaptation framework when the initial models are
trained on clean data. The reported performance values are
averaged across different seeds and different noise types
present in the test data. Figs. 2(a) and (d) depicts the obtained
performance values for different SNRs for the CNN-based and
wav2vec2-based approaches, respectively. As illustrated, while
the models trained on clean data have a poor performance
when the testing data is noisy (particularly at low SNRs), the
proposed adaptation framework improves the performance by
a considerable margin. Further, it can be observed that using
the available noise-only segments for the proposed adaptation
framework yields a similar performance to using longer noise-
only segments. This confirms the effectiveness of the proposed
adaptation framework even when the available noise-only
segments are short.

B. Performance for Initial Models Trained on Augmented
Noisy Data

In the following, we analyse the effectiveness of the
proposed adaptation framework when the initial models are
trained on noisy data (and hence, are already more robust
to noise in the test data). The reported performance values
are averaged across different seeds and different noise types
present in the test data. Figs. 2(b) and (e) depict the perfor-
mance of the considered models when the noise type in the
testing data is similar to the noise type in the training data

(although from different databases), whereas Figs. 2(c) and
(f) depict the performance when the noise type in the testing
data is different from the noise type in the training data. As
illustrated, while the models trained on noisy data have a better
performance when the testing data is noisy (in comparison
to models trained on clean data), the proposed adaptation
framework still improves the performance further, particularly
at low SNRs and regardless of the similarity of the noise types
in the training and testing data. Similarly to before, it can be
observed that using the available noise-only segments for the
proposed adaptation framework yields a similar performance
to using longer noise-only segments.

VI. CONCLUSION

In this paper, we have proposed a general adaptation
framework to increase robustness to additive noise of DL-
based pathological speech detection approaches. The proposed
framework relies on extracting noise-only segments from the
test signal using a VAD, and exploiting these segments to fine-
tune models and increase their robustness to the specific noise
present in the test signal. Although the proposed framework
is simple, results demonstrate a considerable improvement
in robsutness for pathological speech detection approaches.
The proposed framework is applied to the pathological speech
detection task, however, it is a general framework applicable
to increase robustness to noise in other audio tasks.
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