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2École polytechnique fédérale de Lausanne (EPFL), Switzerland

3University of Zurich (UZH), Switzerland
{ibmahmoud, esarkar, mathew}@idiap.ch, marta.manser@ieu.uzh.ch

Abstract
Understanding evolution of vocal communication in social an-
imals is an important research problem. In that context, be-
yond humans, there is an interest in analyzing vocalizations of
other social animals such as, meerkats, marmosets, apes. While
existing approaches address vocalizations of certain species, a
reliable method tailored for meerkat calls is lacking. To that
extent, this paper investigates feature representations for au-
tomatic meerkat vocalization analysis. Both traditional sig-
nal processing-based representations and data-driven represen-
tations facilitated by advances in deep learning are explored.
Call type classification studies conducted on two data sets reveal
that feature extraction methods developed for human speech
processing can be effectively employed for automatic meerkat
call analysis.
Index Terms: bioacoustics, feature representations, self-
supervised learning, call type classification

1. Introduction
Meerkats are highly social animals with a complex social struc-
ture [1]. Featuring a dominant breeding pair and cooperative be-
haviors, they dig safe places through their foraging areas. Com-
munication among a clan occurs through various vocalizations
including barks, chirps, trills, and growls. They are essential
in coordinating group activities, warning of potential dangers,
and maintaining social cohesion. Researchers have identified
and classified around 30 types of vocalizations in meerkats [2].
These vocalizations can be categorized into alarm calls emitted
when a potential predator is encountered [3], contact calls used
to maintain group cohesion [4], and dominance calls employed
during a conflict to assert social hierarchy. Additional vocaliza-
tions serve to express various other emotions. These vocaliza-
tions are part of a complex communication system, influenced
by the group’s social organization and ecology [5].

Over the past two decades, there has been a notable im-
provement in understanding this communication system, par-
ticularly in decoding the context of calls. For example, in [6],
it is demonstrated that meerkat alarm calls encode information
about both predator type and the signaler’s perception of ur-
gency simultaneously. Additionally, in [7], it was found that
close calls are used to adjust movement direction and maintain
group cohesion, especially in low-visibility environments and
during continuous movement. However, understanding the con-
text precedes contextual analysis. The process of categorizing
calls is mainly conducted by human listeners, who rely on their
expertise. Nonetheless, even among these experts, varying in-
terpretations may arise, highlighting the complexity inherent in
the classification task [8].

Although previous research has provided insights into the

social and contextual aspects of meerkat vocalizations, there re-
mains a lack of computational methods for the automatic analy-
sis of this language. Specifically, to the best of our knowledge,
there has not been a formal study on the automatic classifica-
tion of meerkat vocalizations. One of the main reasons being
that biological level and linguistic level analysis of meerkat vo-
calizations has evolved more recently, leading to the availabil-
ity of reliable data sets for automatic analysis. As a first step,
the present paper aims to investigate feature representations for
automatic meerkat vocalization analysis. The motivation for
this arises from the important role feature representation plays
in pattern analysis and classification systems. In the past, in
the field of speech and audio processing, these representations
were largely obtained by combining prior knowledge with sig-
nal processing. Even though meerkat vocalizations have been
analyzed using signal processing, there is still a lack of reliable
prior knowledge to extract feature representations for automatic
analysis. In recent years, with advances in deep learning, data-
driven feature representations have become more prominent and
have been demonstrated useful for bioacoustic analysis. In this
paper, we investigate both types of feature representations.

The remainder of the paper is organized as follows: Sec-
tion 2 introduces the two types of feature representations, pro-
viding a detailed overview of the methods used. Section 3 delin-
eates the experimental setup and workflow, including the dataset
used during the study, the classification setup, and the evalua-
tion metric. Section 4 presents the classification results with a
comprehensive analysis of the findings. Finally, Section 5 con-
cludes our study.

2. Feature representations
This section motivates and presents the different feature repre-
sentations investigated in this paper. These representations are
grouped as (a) knowledge-based/hand-crafted feature represen-
tations and (b) neural-based data-driven feature representations.

2.1. Knowledge-based/hand-crafted feature representa-
tions

Catch22: Highly Comparable Time-Series Analysis (HCTSA)
is an interpretable signal processing-based framework, where a
set of 7700 features are extracted by characterizing the signal
by different time series analysis methods, such as linear cor-
relation, modeling fitting (e.g., autoregressive moving average
analysis, GARCH), wavelet analysis, and extraction of infor-
mation theoretic measures. It is then combined with feature
selection to build statistical models for the end task [9]. The
efficacy of this framework has been demonstrated for bioacous-
tic analysis. For instance, these features have been investigated
for behavioral birdsong discrimination [10], automated acoustic



monitoring of ecosystems [11], as well as marmoset caller iden-
tification [12]. One of the limitations of the HCTSA approach is
computational complexity, as it involves the evaluation of many
similar features. In recent work, CAnonical Time-series CHar-
acteristics (Catch22) features, a subset of 22 HCTSA features
that are minimally redundant has been proposed, and its utility
has been demonstrated across 93 real-world time-series classifi-
cation problems [13]. These features fall into different concep-
tual grouping such as distribution shape, linear autocorrelation,
incremental differences, and self-affine scaling. The dimension
of the feature set is 24 including the mean and the standard de-
viation.
COMPARE: COMPARE features have been developed for par-
alinguistic speech processing. The COMPARE feature set of
length 6373 consist of functionals of (a) energy related low level
descriptors (LLDs), (b) spectral LLDs, and (c) voicing related
LLDs estimated over an utterance [14].
eGeMAPS: extended Geneva Minimalistic Acoustic Parame-
ter Set (eGeMAPS) is yet another feature set developed for
paralinguistic speech processing [15]. The feature set consists
of 88 different features. They are obtained by extracting (a)
LLDs, namely, frequency-related parameters, energy/amplitude
related parameters, and spectral (balance) parameters, and (b)
temporal features consisting of the rate of loudness peaks, mean
length and standard deviation of voiced and unvoiced regions,
and number of continuous voices regions per second from the
acoustic signal.

2.2. Neural-based data-driven feature representations

Self-supervised learning-based: In traditional supervised
learning, models rely on labeled data, which is expensive
and time-consuming to obtain. Thus, the emergence of self-
supervised learning (SSL) techniques offers a powerful alterna-
tive to these learning methods by leveraging unlabeled data and
designing pretext tasks involving human speech. By doing so, it
allows models to learn meaningful representations without rely-
ing on explicit human annotations. In [16], the authors explored
leveraging embedding spaces focusing on the Marmoset caller
discrimination. The study demonstrated that representations
pre-trained on human speech could be effectively applied to the
bio-acoustics domain. Motivated by that study, we chose three
popular SSL models, namely, WavLM [17], wav2vec2 [18] and
HuBERT [19], pre-trained with 960 hours of audio from Lib-
rispeech corpus [20]. We extract embeddings from one of the
layers or all layers of the SSL model and model it for call clas-
sification.
Supervised-learning based (denoted as CNN-crafted): In this
part, we focus on the feature extraction phase within a classi-
fication framework. This involves directly inputting waveform
data into a neural network using an end-to-end Convolutional
Neural Network (CNN) architecture. The architecture is in-
spired by [21] and is presented in Table 4. The model is trained
to perform call type classification. After training, we derive a
feature set of dimension 80 from each call by extracting the out-
put of the penultimate layer of the model, referred to as CNN
handcrafted features throughout the study.

3. Experiments
This section presents the dataset of our study, consisting of two
Sets ( A and B ) of meerkat calls used during the study, followed
by a detailed breakdown of the study’s workflow.

3.1. Meerkat calls dataset

Set A consists of 90 audio recordings of 9 different meerkat call
types collected and labeled by Prof. Marta Manser, University
of Zurich, following ethical approval: Aggression (agg), Sen-
tinel (sen), Alarm (al), Chatter (ch), Grooming (gr), Close-call
(cc), Submission (sub), Lead (ld) and Sunning (su). Every file
was manually segmented using Koe [22]; an open-source soft-
ware to visualize, segment, and classify acoustic units in animal
vocalizations, amounting to a total of 1795 vocalization seg-
ments at a sampling rate of 44.1 kHz, with a mean and median
length of 161±118ms and 102ms respectively. Table 1 shows
the distribution of the different call types of Set A. It is crucial to
emphasize that this table reveals a significant imbalance within
the dataset, mirroring the real-world scenario.

Table 1: Distribution of the different call types present in Set A.

agg sen al ch gr cc sub ld su
125 411 609 108 12 81 99 28 322

Set B is a public dataset [23]. The corpus consists of 6428
individual files, categorized into 7 call types, sampled at 48 kHz
with a mean of 148 ± 96ms and a median of 124ms. Four
classes seen previously in Set A are also present in Set B, with
three additional ones: Short note (sn), Social call (sc), and Move
(mv). Table 2 displays the distribution of the different call types
in Set B.

Table 2: Distribution of the different call types present in Set B.

agg cc al ld sn soc mo
375 1477 645 164 1854 1154 759

3.2. Experimental set-up

As a preprocessig step, we downsampled all waveforms to
16 kHz and vocalizations shorter than 100ms were systemat-
ically replicated until they reached the desired minimum du-
ration of 100 ms. To compare the feature representations, we
adopted a 5-fold cross-validation strategy by employing 80:20
train-test split. Figure 1 shows the call classification framework.
As illustrated in the figure, a call-level fixed length representa-
tion is obtained for each feature type and fed as input to a sup-
port vector machine (SVM) based classifier. We compare the
feature representations by evaluating the respective call classi-
fiers in terms of unweighted average recall (UAR). We chose
UAR as metric due to class imbalance in the datasets. Unlike
weighted average accuracy (classification accuracy), UAR mea-
sure gives importance to recognition of all classes. Higher UAR
means higher recall across classes. When training the SVM
classifier, we applied a grid search methodology on the training
set of each fold with the Unweighted Average Recall (UAR) as
the optimization criterion to search space of the hyperparame-
ters (presented in Table 3). In the reminder of the section, we
explain the call-level fixed length representation obtained for
each feature representation type.

In the case of knowledge-based feature representation, (a)
pycatch22 toolkit was employed for extracting 24 dimensional
call-level Catch22 features and (b) openSMILE [24] tool is used
to extract 6373 dimensional call-level COMPARE feature rep-
resentation and to extract 88 dimensional call-level eGeMAPS
feature representations.
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Figure 1: Diagram of the workflow of the study. N denotes num-
ber of frames.

Table 3: SVM hyperparameters grid

Parameter Values
C 1e[-1, 0, 1, 2]

Gamma 1e[-3,-2,-1,0]
Kernel [‘Linear’, ‘RBF’, ‘Polynomial’, ‘Sigmoid’]

In the case of SSL feature representations, the call-level 768
dimensional feature representation is obtained as follows: (a)
768 dimension output of CNN encoder, 1st, 2nd, 6th or the
last transformer layer is obtained per frame and averaged over
frames, (b) the 768 dimension output of each of the 12 trans-
former layers are averaged per frame and then the resulting
per frame representation is averaged over frames. The S3PRL
toolkit [25] was used to extract the embeddings.

In the case of CNN-crafted feature representation, there is
a need to train a CNN-based call classifier for feature extrac-
tion. As the data sets were small in size with severe class imbal-
ance, as opposed to training a CNN feature extractor per fold,
we employed stratified k-folds cross-validation strategy to get
a single CNN feature extractor. This method constructs folds
while maintaining class proportion integrity, i.e., ensuring con-
sistent class proportions in both training and test sets, mirroring
those of the original dataset. We set the number of folds to
5 and trained CNNs for each fold using the architecture pre-
sented in Table 4 using PyTorch. The adaptive average layer
target size was set to one. This allows the network to han-
dle variable length waveform inputs and yield fixed-length (80-
dimensional) call level feature representation. We employed
the cross-entropy error criterion to train the CNN. The CNN of
the best performing fold was selected to extract 80 dimensional
call-level CNN-crafted feature representation (from the output
of the fully connected hidden layer).

4. Results and discussion
Table 5 presents an analysis of SSL neural embeddings. It
can be observed the that lower layer transformer layer embed-
dings and CNN encoder representations yield better systems
than higher layer transformer layer embeddings. Averaging the
embeddings across the transformer layers, although yields bet-
ter system than layer 6 and last layer embeddings, is not helpful
when compared to layer 1 embedding, layer 2 embedding or
CNN encoder output alone. Taken together, this indicates that
lower transformer layer embeddings of SSLs pre-trained on hu-
man speech are more informative than higher transformer layer
embeddings for meerkat call classification.

Table 6 compares the systems across different feature repre-
sentations. For SSL feature representation wav2vec2, WavLM
and HuBERT, we have reported the best system performance

Table 4: CNN architecture for CNN-crafted feature extraction.
nf denotes number of filters. HU denotes number of hidden
units.

Block Operation Kernel Stride Padding nf /HU

Convolution 40 30 0 40
1 Max Pooling 2 2 0 -

ReLU Activation - - - -

Convolution 7 1 0 40
2 Max Pooling 2 2 0 -

ReLU Activation - - - -

Convolution 3 1 0 80
3 Max Pooling 2 2 0 -

ReLU Activation - - - -

Adaptive Avg Pooling - - - -
4 Flatten - - - -

Fully Connected - - - 80

Table 5: UAR scores of chosen representations using wav2vec2
(W2), WavLM (WL) and HuBERT (HT) models on Test set of Set
A and B

Set A Set B
Model W2 WL HT W2 WL HT
CNN 0.71 0.68 0.74 0.78 0.77 0.78

1st Transformer 0.71 0.72 0.73 0.79 0.82 0.78
2nd Transformer 0.73 0.71 0.72 0.79 0.82 0.79
6th Transformer 0.54 0.50 0.64 0.69 0.70 0.76
Last Transformer 0.35 0.38 0.55 0.52 0.53 0.67

Average of Transformers 0.63 0.59 0.61 0.75 0.72 0.76

from Table 5. In the case of hand-crafted features, it is ob-
served that eGeMAPS and COMPARE feature based systems
yield better system than Catch22 feature representation. In the
case of SSL feature representations, the systems are compara-
ble. The CNN-crafted feature representation yields the best sys-
tems. When comparing hand-crafted features and neural em-
beddings, COMPARE feature outperforms SSL features on Set
A and performs slightly worse when compared to wav2vec2 and
HuBERT. It is worth pointing out that the COMPARE feature
largely outperforms higher transformer layer embedding based
systems (layer 6 and last layer in Table 6). This indicates that,
similar to neural embeddings from networks pre-trained on hu-
man speech, hand-crafted representations developed for speech
processing applications can be useful for meerkat call classifi-
cation.

Table 6: UAR scores on Test set of Set A and B with 5-fold CV
for call types classification

Model Set A Set B

eGeMAPS 0.61 0.66
COMPARE 0.80 0.75

Catch22 0.61 0.56
wav2vec2 0.73 0.79
WavLM 0.72 0.82
HuBERT 0.74 0.79

CNN-crafted 0.84 0.84

The main distinction between Set A and Set B lies in the
number of classes, the number of samples, and the class dis-



Figure 2: Confusion matrices for SVM classifier using, from left to right, WavLM, CNN-crafted, COMPARE and Catch22 embeddings
on the test set of Set A.

Figure 3: Confusion matrices for SVM classifier using, from left to right, WavLM, CNN-crafted, COMPARE and Catch22 embeddings
on the test set of Set B.

tribution within the datasets. As discussed previously, Set B
comprises more samples, fewer number of classes and exhibits
better class balance than Set A. Therefore, our initial expecta-
tion was that Set B would yield superior performance. This hy-
pothesis is confirmed with the SSL models, eGeMAPS, and the
CNN model, where results with Set B perform better than Set
A. Confusion matrices for WavLM, CNN-crafted, COMPARE
and Catch22 are presented for Set A and Set B in Figure 2 and
Figure 3. It can be observed that all the call types are mostly
classified well except for ”gr” in Set A which has the lowest
amount of data.

For the case of CNN-crafted, Figure 4 shows the cumula-
tive frequency response of the 40 first layer convolution filters.
This is estimated by applying a DFT of 1024 points on filters of
length 40 samples and taking logarithm of the summed magni-
tude responses. Although Set A and Set B have been collected
independently and labeled, it can be observed that the cumula-
tive filter responses of the CNNs of Set A and Set B are similar
with a major emphasis between 0-2 kHz. This indicates that the
CNNs are capturing information systematically for class classi-
fication across the two data sets. In our future work, we will in-
vestigate what kind of acoustic information does that frequency
range carries in meerkat vocalizations for call analysis.

5. Conclusions
Meerkats with their highly social nature and diverse vocal reper-
toire, provide an intriguing model system for investigating an-
imal communication and, as an extension could help us better
understand the evolution of human communication. One of the
challenges in that direction is the lack of methods for automatic
meerkat call analysis. In that direction, this paper explored fea-
ture representations for automatic analysis of meerkat vocal-
izations. We compared time-series analysis-based hand-crafted
feature representation, hand-crafted feature representations de-
veloped for human speech processing, SSL-based feature rep-
resentations obtained from neural networks trained on human
speech, and feature representations automatically learned in a

Figure 4: Cumulative frequency responses of first layer filters of
CNN

task-dependent manner from meerkat calls using CNNs. Our
studies show that hand-crafted feature extractors and SSL fea-
ture extractors developed for human speech processing can be
used for meerkat call classification. Similarly, we observe that
the CNN-based method developed for automatic feature learn-
ing in a task-dependent manner for human speech processing
can be scaled for meerkat call classification task (CNN-crafted).
Our future work will focus on analyzing these diverse feature
representations to tease out and explain the acoustic informa-
tion that is relevant for meerkat call analysis.
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