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Abstract—TIn this article, we present a feedback control method
for tactile coverage tasks, such as cleaning or surface inspection.
These tasks are challenging to plan due to complex continuous
physical interactions. In these tasks, the coverage target and
progress can be easily measured using a camera and encoded
in a point cloud. We propose an ergodic coverage method that
operates directly on point clouds, guiding the robot to spend
more time on regions requiring more coverage. For robot control
and contact behavior, we use geometric algebra to formulate
a task-space impedance controller that tracks a line while
simultaneously exerting a desired force along that line. We
evaluate the performance of our method in kinematic simulations
and demonstrate its applicability in real-world experiments on
kitchenware. Qur source codes, experimental data, and videos
are available as open access at https:/sites.google.com/view/
tactile-ergodic-control/.

Index Terms—Tactile Robotics, Ergodic Coverage, Geometric
Algebra

[. INTRODUCTION

The longterm vision of robotics is to assist humans with
daily tasks. Especially the success of robot vacuum cleaners
and lawnmowers as consumer products demonstrates the po-
tential of robot assistance with the most common household
chores [1]. These tasks involve the coverage of a region in a
repetitive and exhaustive fashion. Currently, the application of
these robots is limited to relatively large and planar surfaces
and even their use on slopes poses a challenge [2], [3].
Other daily tasks, such as washing the dishes or grocery
items present an even more challenging problem due to
the complex physical interactions with intricate and curved
surfaces. Similarly, there are numerous coverage tasks on
curved surfaces that have industrial or medical applications.
In industrial settings, these problems manifest in two forms:
surface operations that involve the removal of material, such
as sanding [4], polishing [5], [6] or deburring [7] and surface
inspection tasks that leverage contacts [8]. In medical settings,
similar applications range from mechanical palpation [9], [10]
and ultrasound imaging [11], [12] to massaging [13], [14] and
bed bathing [15], [16]. Last but not least, datasets combining
tactile properties of objects with their shape and visual ap-
pearance are extremely scarce and expensive to collect, since
they are based on teleoperation [17]. Hence, tactile coverage is
of paramount importance for automating the collection of the
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Fig. 1: Overview of our feedback control method for tactile
coverage. Left: We measure the surface and the red target using
the camera and encode them in a point cloud. Bottom-right:
We diffuse the target and use its gradient field to guide the
coverage. Then, we close the loop by measuring the actual
coverage with the camera and use it as the next target. Top-
right: We measure the tactile interaction forces using the force
sensor and the tool orientation using the joint positions. We
solve the geometric task-space impedance control problem
using a line target and a force target along the line.

tactile datasets complementing the visual ones. The problem
definitions of this diverse range of settings and applications
can be broken down to two simple requirements: (i) tactile
interactions with a possibly non-planar surface and (ii) a
continuous trajectory of contact points covering a region of
interest on the surface. Accordingly, the overarching problem
that is tackled in this article is posed as tactile coverage on
curved surfaces. Tactile interaction tasks, by definition, involve
multiple contact interactions with the environment, making
these systems notoriously difficult to control [18]. While
these tasks are easily solved by humans, they are extremely
challenging for robots. For instance, when cleaning an object,
coverage depends on recognizing the dirt, the object’s material,
and their interaction to determine the required contact force to
remove it. Consequently, the success of coverage depends on
unknown or difficult-to-measure parameters, making it hard to
model all interactions, and motion planning without a proper
model is prone to fail. By analyzing previous research [19] and
how humans address these challenges, we argue that, instead of
planning humans solve the easier closed-loop control problem
by leveraging visual and tactile feedback for online adaptation.
Similar to humans, robots can also measure progress in tactile
coverage tasks using vision. Determining which regions of the
surface have already been covered and which have not then
becomes an image segmentation problem, that was addressed
by leveraging various model [20], [21] or learning-based
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algorithms [16], [22]. Still, the question remains on how to
control the robot to cover these target regions on the surface.

Existing research on coverage has primarily focused on
coverage path planning, which involves optimizing a path to
ensure that a specified region of interest is covered within
a set time frame. Traditionally, the underlying assumption
is that visiting each point in the region of interest only
once is sufficient for full coverage. An assumption that is
reasonable for robust interactions but not for many tactile
tasks. Because many tactile interactions are too complex to
model deterministically, hence the full coverage cannot be
guaranteed after a single visit. Instead, for a cleaning task,
a relatively dirty region requires more visits compared to a
less dirty region. Similarly, in a surface inspection task, a
region where we require a lower variance requires more visits
to compensate for the uncertainty of the sensor. Furthermore,
the robot is expected to keep in contact with the surface while
moving, which significantly increases the cost of movement,
since it depends on the geodesic distance on the surface
and not on the Euclidean distance. Therefore, naive sampling
strategies that do not consider the cost or constraints of the
movement and/or the surface geometry are not suited for tactile
coverage tasks. In contrast, ergodic coverage [23] controls the
trajectories of dynamical systems for ergodicity, correlating the
average time spent in a region to the target spatial distribution.
Therefore, ergodic coverage can incorporate the motion model
as the system dynamics and control the coverage trajectories
by directly using the spatial distribution measured by the
vision system.

Considering these challenges, we present a closed-loop
tactile ergodic control method that operates on point clouds for
tactile coverage tasks. Using point clouds not only allows us
to acquire the target object and spatial distribution at runtime
using vision, but to also measure the coverage progress and to
compensate for unmodeled dynamics of the tactile coverage
tasks. Our method then constrains the ergodic control problem
to arbitrary surfaces to cover a target spatial distribution
on the surface. We propagate the coverage information by
solving the diffusion equation on point clouds. We solve
the diffusion in real-time by exploiting the surface intrinsic
basis functions called Laplacian eigenfunctions, generalizing
the Fourier series to manifolds (i.e., curved spaces). In order
to exert a desired force on the surface while moving, we
then formulate a geometric task-space impedance controller
using geometric algebra. This controller utilizes the surface
information to track a line target that is orthogonal to the
surface, while simultaneously exerting the desired force in
the direction of that line. Notably, the geometric formulation
ensures that these two objectives do not compete with each
other and can therefore be included in the same control loop,
without the need for complex parameter tuning. In summary,
our proposed closed-loop tactile ergodic control method has
the following contributions:

o formulating the tactile coverage as closed-loop ergodic
control problem on curved surfaces

o closing the coverage loop by solving ergodic control
problem on point clouds using diffusion

« achieving real-time frequencies by computing the diffu-
sion using Laplacian eigenfunctions

« contact line and force tracking without conflicting objec-
tives

The rest of the article is organized as follows. Section II
describes work related to our method. Section III presents the
mathematical background. Section IV presents our method. In
Section V, we demonstrate the effectiveness of our method in
simulated and real-work experiments. Finally, we discuss our
results in Section VI.

II. RELATED WORK

In this article we address the problem of tactile coverage on
curved surfaces. There are various approaches that consider
the coverage problem from the planning perspective and
are generally known as coverage path planning (CPP) [24]-
[26]. Although, these methods can consider different types
of boundaries for planar regions [27]-[29], their extension
to curved surfaces imposes limiting assumptions, such as
projectively planar [30] or pseudo-extruded surfaces [31].
Additionally, CPP methods assume the coverage target is
uniformly distributed in space. Extension of the CPP methods
that consider the spatial correlation of the information are
known as informative path planning [32]. Most IPP and CPP
approaches solve a variant of the NP-hard traveling salesman
problem [33], limiting the scalability with the complexity
of the domain. Therefore existing methods are either open-
loop [34] or pose limiting assumptions on the domain for
online planning updates [32] such as convexity.

In this article we focus on tactile coverage scenarios, in
which visiting a region once does not guarantee it is fully
covered. Thus, it is hard to predict how many times the robot
should pass over a certain spot. Consequently, we cannot
define a time horizon for an optimization, since the quality
of the result would be greatly affected by that hard-to-make
choice. In this work, we address this issue by using an
approach called ergodic control. In this context, the term
ergodic describes a dynamical system for which the time
averages of functions along its trajectories are equal to their
spatial averages [35]. The important consequence of this is
that it allows us to use arbitrary spatial target distributions
without having to define a time horizon, since, by construction,
regions with higher spatial probabilities will be visited more
frequently. Recent findings have demonstrated that ergodicity
is not merely a heuristic [36]; it is the optimal method for
collecting independent and identically distributed data while
accounting for system dynamics. Seminal work on ergodic
control, presented the spectral multiscale coverage (SMC)
algorithm [23] that provides a feedback control law based
on the Fourier decomposition of the target distribution and
robot trajectories. Here, multiscale coverage refers to the
prioritization of the low-frequency components over high-
frequency ones, which intuitively corresponds to first using
large spatial motions in the coverage before getting into the
details. Since this behavior is obtained through a myopic
feedback controller, unlike an offline planner, the ergodic
controller would not fail if the motion is obstructed [37].



Formulating the SMC objective as trajectory optimization then
allowed the explicit consideration of obstacle avoidance [38]
and other additional objectives such as time-optimality [39]
and energy-awareness [40]. These formulations are limited
to rectangular domains on the Euclidean space, since they
are based on the Fourier decomposition. Later, SMC was
extended to homogeneous Riemannian manifolds using the
Laplacian eigenfunctions [41]. Nevertheless, this work was
limited to highly structured manifolds such as sphere and
torus, due to the requirement of the analytical expressions
for the Laplacian eigenfunctions. More recently, the kernel
ergodic metric was proposed as an alternative to SMC’s
ergodic metric to increase the computational efficiency and
for extension to Lie groups [42]. Another alternative to SMC
is the heat equation-driven area coverage (HEDAC) [43].
HEDAC uses the diffusion equation to propagate information
regarding the uncovered regions to agents across the domain.
Like SMC, the original HEDAC implementation was limited
to rectangular domains and lacked collision avoidance. It has
since been extended to planar meshes with obstacles [44],
maze exploration [45], and CPP on non-planar meshes [46].
However, the implementation on curved surfaces is limited to
offline planning on meshes and demands heavy pre-processing
in terms of time and computation.

Our method is inspired by both HEDAC and SMC. We
use the diffusion equation for the information propagation
over the surface and we use the Laplacian eigenfunctions,
which generalize the Fourier series to manifolds for efficient
computation. The diffusion equation is a canonical second-
order partial differential equation (PDE), which propagates
information on a domain by considering its geometry, while
agnostic to underlying representation and discretization [47].
Therefore, the diffusion equation and its spectrum are used
in various geometry processing tasks on meshes and point
clouds, ranging from geodesic computation [48] to learning on
surfaces [47]. Although various approaches exists for solving
the diffusion, the most common one is to use the Laplace-
Beltrami operator, extending the Laplacian from Euclidean
space to curved spaces. For a given point cloud, there are
various methods for computing the Laplace-Beltrami oper-
ator [49]-[51]. Sharp et al. provide a robust and efficient
implementation [52], even in the case of partial and noisy
point clouds. We use this approach for solving the ergodic
control problem on arbitrary point clouds for tactile coverage.

Closely related to coverage is the problem of exploration,
which involves scenarios where the environment is initially
unknown and robots collect information about the environment
using onboard sensors [53], [54]. Tactile ergodic exploration
was employed for non-parametric shape estimation [55] and
whole-body coverage using all the link surfaces [56]. However,
these works were limited to rectangular domains in the Eu-
clidean space. Tactile exploration is also needed for gathering
the information on surfaces that can only be acquired through
contact [57], unlike surface reconstruction or localization. A
prime example of this is non-invasive probing (palpation) of
tissue stiffness, which can aid in disease diagnosis or surgery
by providing additional information about anatomical features.
For that purpose, Gaussian processes (GP) were employed

for discrete [58] or continuous [59] probing to map tissue
stiffness. While GP-based formulations provide guidance on
where to sample, they are unaware of the robot’s dynamics.
This was addressed by using trajectory optimization to actively
search for tissue abnormalities [60]. However, the critical
aspect of tactile interactions is that they not only depend on
the contact position but also on other contact conditions such
as relative velocity and contact pressure [61]. Therefore, there
are also methods modeling the force [62] and more complex
interactions between robotic tools and surfaces [63].

The complexity of the problem increases further if we
consider scenarios with a robot physically interacting with
the environment. For example, in tasks like surface finishing
(e.g., polishing, sanding, grinding), the surface itself undergoes
changes, as material is removed [64]. Similarly, in cleaning
tasks, the robot’s actions affect the distribution of dirt on the
surface [65]. To avoid complex modeling, there are approaches
either relying on reinforcement learning [66] or deep learn-
ing [67]. Learning from demonstration has also been used
by also leveraging ergodicity for table cleaning [68], where
different motion trajectories can achieve the same task as
long as they result in the same ergodic coverage. In a very
similar setting to ours, a manipulator was used to clean the
stains on a curved surface by performing multiple passes [20].
However, this work used a sampling-based planner, which
required to predefine the maximum number of cleaning passes.
In contrast, we relate the target distribution (e.g., stain) directly
to feedback control through ergodicity without requiring any
task-specific assumptions.

I1I. BACKGROUND
A. Ergodic Control using Diffusion

The ergodic control objective correlates the time that a
coverage agent spends in a region to the probability density
specified in that region. The HEDAC method [43] encodes the
coverage objective using a virtual source term

S(wat) = max (p(:])) 7C(wat)70)27 (D
where p(x) is the probability distribution corresponding to the
coverage target and c¢(x,t) is the normalized coverage of the
N virtual coverage agents over the domain 2

é(x,t)
oz, t) = ——F—. 2
(@1) Jo célx, t)da @
A single agent’s coverage is the convolution of its footprint
o(r) with its trajectory x;(7). Then, the total coverage be-
comes the time-averaged sum of these convolutions
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HEDAC diffuses the source to the whole domain by computing
the resulting potential field w(x,t) using the stationary (i =
(z,t)0) diffusion (heat) equation with the diffusion coefficient
a>0

aAu(z,t) — u(z,t) + s(x,t) = 0. 4)



In order to have a unique solution, we need to prescribe the
initial and boundary conditions

and on 0f). 5)

u(z,0) = p(x)

In the diffusion equation, (4) A denotes the second-order
differential operator. In Euclidean spaces (isotropic) the Lapla-
cian is the sum of the second partial derivatives

0
8—nu(w,t) =0,

2

Af:Z% for x; € R". (6)
=1 ?

To guide the i-th coverage agent, HEDAC uses the smooth
gradient field of the diffused potential u(x,t) and by simulat-
ing first-order dynamics [69]

B. Conformal Geometric Algebra

Here, we introduce conformal geometric algebra (CGA)
with a focus on the mathematical background necessary to
understand the methods used in this article. We will use the
following notation throughout the paper: x to denote scalars,
x for vectors, X for matrices, X for multivectors and X for
matrices of multivectors.

The inherent algebraic product of geometric algebra is
called the geometric product

ab=a-b+aANb, (8)

which (for vectors) is the sum of an inner - and an outer A
product. The inner product is the metric product and therefore
depends on the metric of the underlying vector space over
which the geometric algebra is built. The underlying vector
space of CGA is Ry ;, which means there are four basis vectors
squaring to 1 and one to -1. The outer product, on the other
hand, is a spanning operation that effectively makes subspaces
of the vector space elements of computation. These subspaces
are called blades. In the case of CGA, there are 32 basis blades
of grades 0 to 5. The term grade refers to the number of basis
vectors in a blade that are factorizable under the outer product.
Vectors, consequently, are of grade 1 and the outer product of
two independent vectors, called bivectors, are of grade 2. A
general element of geometric algebra is called a multivector.

In practice, CGA actually applies a change of basis by
introducing the two null vectors ey and e.,, which can be
thought of as a point at the origin and at infinity, respectively.
Since the Euclidean space is embedded in CGA, we can embed
Euclidean points @ to conformal points P via the conformal
embedding

1
P:C(a:):eOerJria:Qeoo. )

In general, geometric primitives in geometric algebra are
defined as nullspaces of either the inner or the outer product,

which are dual to each other. The outer product nullspace

(OPNYS) is defined as
NOg(X)={z e R*: C(z) A X =0} . (10)

A similar expression can be found for the inner product
nullspace. The conformal points are the basic building blocks

to construct other geometric primitives in their OPNS repre-
sentation. The relevant primitives for this work are lines

L=P/ AP\ ew, (11)

which can be constructed from two points and a point at
infinity, planes

E=P,AP,AP;Aes, (12)

which can be constructed from three points and a point at
infinity and spheres

S =P, APy NP3 Py, (13)

which can be constructed from four points.

Rigid body transformations in CGA are achieved using
motors M, which are exponential mappings of dual lines, i.e.
bivectors (essentially, the screw axis of the motion). Note that
motors can be used to transform any object in the algebra,
i.e. they can directly be used to transform the previously
introduced points, lines, planes and spheres, by a sandwiching
operation

X' = MXM, (14)
where is M is the reverse of a motor.

The forward kinematics of serial kinematic chains can be
found as the product of motors, i.e.

N N
M(q) = HMi(Qi> = HeXp(quZ‘), 15)
i=1 i=1

where q is the current joint configuration and B; are screw
axes of the joints. The geometric Jacobian J(g) € BN ¢
G}lxlN is a bivector valued multivector matrix and can be found
as

Ja = [Bj By], (16)
where the bivector elements can be found as
B; =[] M;(a)B: [ M;(ay)- (17)
j=1 j=1

Twists V and wrenches W are also part of the algebra and
hence both can be transformed in the same manner as the
geometric primitives using Equation (14). Note that, contrary
to classic matrix Lie algebra, no dual adjoint operation is
needed to transform wrenches. There is, however, still a
duality relationship between twists and wrenches, which can
be found via multiplication with the conjugate pseudoscalar
I. = Ieqg [70]. Both twists and wrenches are bivectors and
the space of wrenches can be found as

W € span{ess, €13, €12, €01, €02, €03 }- (18)
The inner product of twists and wrenches V- W = —p yields
a scalar, where p is the power of the motion. Similarly, the
inner product of a screw axis and a wrench B-W = —7 yields

a torque 7, which we will use for the task-space impedance
control in this article.



IV. METHOD

We present our closed-loop tactile ergodic coverage method
in three parts: (i) surface preprocessing; (ii) tactile coverage;
and (iii) robot control. The surface preprocessing computes
the quantities that need to be calculated only once when the
surface is captured. Tactile coverage generates the motion
commands for the virtual coverage agent using the precom-
puted quantities from the surface preprocessing and the robot
controller tracks the generated motion commands with a
manipulator using impedance control.

A. Problem Statement

We formulate a tactile ergodic controller that covers a target
spatial distribution on arbitrary surfaces. Similar to HEDAC,
we propagate the information encoding the coverage objective
by solving the diffusion equation on the manifold M

ﬁu = A\mu,

where we refer to u as the potential field. Note that we use here
A pq, which generalizes the Laplacian for Euclidean spaces
A to non-Euclidean manifolds M. This operator A x4 is also
known as Laplace-Beltrami operator but for conciseness we
will use the term Laplacian. In general, our coverage domains
are curved surfaces (i.e. 2-manifolds). Here, we capture the
underlying manifold M as a point cloud P composed of np
points using an RGB-D camera

; €R?, ¢; €{0,...,255}°
mi € R e e P o)
fori=1,...,np

19)

P = {(.’Bi, Ci)

where x; is the position of the i-th surface point in Euclidean
space and c; is the vector of RGB color intensities. We assume
there is a processing pipeline (i.e., such as [20], [47], [71])
which maps the point positions and colors to the probability
mass p; of the spatial distribution encoding the coverage
objective. Accordingly, our coverage target becomes a discrete
spatial distribution p(x;) = p; on the point cloud P.

In order to solve (19) on irregular and discrete domains,
such as point clouds, we discretize the problem in space and
time. Hence, we use u;; to denote the value of the potential
field at the i-th point at the ¢-th timestep. We omit the subscript
1 if we refer to all points.

B. Surface Preprocessing

First, we compute the spatial discretization of the Laplacian
A p. Note that there are various approaches for discretizing
the Laplacian on point clouds [49]-[52]. In this work, we
follow the approach presented in [52] and show a simplified
version of it here, but refer the readers to the original work
for more details. Using this method, the discrete Laplacian is
represented by the matrix L € R"»*"7

L=M"'C, 1)

where M is the diagonal mass matrix and C' is a sparse
symmetric matrix called the weak Laplacian. The entries of
M correspond to the Voronoi cell areas in the local tangent

plane around the each point of P. Similarly, the entries of C
are determined by the connectivity of the points on the local
tangent space and the distance between the connected points.
Note that the local tangent space structure also identifies the
boundary points. For a given point, the lines between the
original point and its neighbors are constructed. If the angle
between two consecutive lines is greater than 7 /2, the point is
a boundary and its boundary condition is set as zero-Neumann,
ie., Vu -n = 0 where n is the outward normal of the
boundary.

Next, we discretize the diffusion equation (19) in time and
insert the discrete Laplacian L. Using the backward Euler

method, we obtain the implicit equation
1

5—(ut —up) = Luy,

t

which is stable for any timestep J;. Then, combining Equations
(21) and (22) and solving for u;, we obtain the linear system

w, = (M — §; C)™* Muy. (23)

(22)

Note that solving (23) requires inverting a large sparse matrix,
which might be computationally expensive depending on the
size of the point cloud and requires the timestep to be set
before the inversion. Alternatively, we can solve the problem
in the spectral domain by projecting the original problem
and reprojecting the solution back to the point cloud. This
procedure generalizes using the Fourier transform for solv-
ing the diffusion equation on a rectangular domain in R"
to arbitrary manifolds. Note that the Fourier series are the
eigenfunctions of the Laplacian A in R". Therefore we can
use the eigenvectors of the discrete Laplacian L for solving
the diffusion equation on point clouds.

We can write the generalized (i.e., M # I) eigenvalue
problem for the Laplacian as

where {\,, ¢, } are the eigenvalue/eigenvector pairs. Since
M is diagonal and C' is symmetric positive definite, by the
spectral theorem, we know that the eigenvalues are real, non-
negative and in ascending order analogous to the frequency.
Therefore, we can use the first n,; eigenvalue/eigenvector
pairs as a low-frequency approximation of the whole spectrum.
Furthermore, the eigenvectors are orthonormal with respect to
the inner product defined by the mass matrix M. Accordingly,
we can stack the first ny; eigenvectors ¢, as column vectors
to construct the matrix ® € R"”*"M encoding an orthonor-
mal transformation ® " M ® = I. Then, we can transform the
coordinates (shown with superscripts) from the point cloud to
the spectral domain

u® = & Mu®. (25)

Note that this step is equivalent to computing the Fourier
series coefficients of a target distribution in SMC. Due to
the orthonormal transformation, the PDE on the point cloud
becomes a system of decoupled ODEs in the spectral domain.
It is well known that the solution of a first-order linear ODE
#(t) = —cz(t) is given by z(t) = e “'z(0), where c is a
constant and x(0) is the initial value. Therefore, the solution



of the system of ODEs in the spectral domain is given in
matrix form as

=1 e N (26)

_ T
uf = e Am 0 ] @ug”

where ® denotes the Hadamard product. We observe from (26)
that the exponential terms with larger eigenvalues (i.e., higher
frequencies) will decay faster. Therefore, approximating the
diffusion using the first ny; components introduces minimal
error. Secondly, similar to the mixed norm used in SMC,
the low-frequency spatial features are prioritized. Next, we
transform the solution back to the point cloud to get the
diffused potential field

u® = du®. 27

We can combine (25), (26) and (27) into a unified spectral
scheme

uy = [ e Mo e Mm% 176 (@7 Mug).  (28)

We omit the superscripts when working on the point cloud for
brevity. Note that J; is the only free parameter in the diffusion
computation. However, its value should be adapted according
to the mean spacing between the adjacent points h on the
point cloud. For that purpose, we introduce the hyperparameter
o > 0 and embed it into the timestep calculation

5, = ah®. (29)

Accordingly, we can control the diffusion behavior indepen-
dently of the point cloud size. Increasing « results in longer
diffusion times and attenuates the high-frequency spatial fea-
tures (see (26) for details). This corresponds to a more global
coverage [56]. Conversely, decreasing « results in shorter
diffusion times, which leads to preserving the high-frequency
spatial features, hence more local coverage behavior.

Note that the Laplacian is determined completely by the
connectivity on the local tangent space and the distance
between these connected points. Therefore, it is invariant to
distance preserving (i.e., isometric) transformations such as
rigid body motion or deformation without stretching. Accord-
ingly, we compute C, M and derived quantities only once
in the preprocessing step for a given surface. Recomputation
is not necessary if the object stays still, moves rigidly, or the
target distribution p; changes.

C. Tactile Ergodic Coverage

We model the actual coverage tool/sensor as a compliant
virtual coverage agent shaped as a disk with radius r,.
Notably, one can represent arbitrary tool/sensor footprints as
a combination of disks [56]. We position our agent at the end-
effector of our manipulator. Thus, for a given kinematic chain
and joint configuration g, we can use the forward kinematics
to compute the position of our agent as a conformal point P,

P, = M(q)eoM(q). (30)

Since the point cloud is discrete and the agent should move
continuously on the surface, we project our agent P, and its
footprint to the closest local tangent space on the point cloud.

1) Local Tangent Space and Coverage Computation: Given
the agent’s position P,, we first compute the closest tangent
space on the point cloud. For that, we query a K-D tree T (P)
for the points ®; € P that are within the radius r, of the
agent. Then, we compute the conformal embeddings P; of the
neighboring Euclidean points x; using (9). We refer to the set
composed of points P; as the local neighborhood. Then, we
fit a tangent space to the local neighborhood by minimizing
the classical least squares objective

nN
minZ(R; LX), (31)
i=1

where X* is the dual representation of either a plane or
a sphere and the inner product - is a distance measure. In
CGA, planes can be seen as limit cases of spheres, i.e. planes
are spheres with infinite radius. This is also easy to observe
by looking at Equations (12) and (13) which construct these
geometric primitives. Note that fitting a local tangent sphere
with the radius determined by the local curvature would always
result in smaller or equal residuals than fitting a plane.

It has been shown in [72] that the solution to the least
squares problem given in (31) is the eigenvector corresponding
to the smallest eigenvalue of the 5 X 5 matrix

nn
bjx = Zwi,jwi,k7 (32)
=1
where
pi if k€ {1,2,3)
wip=4—-1 ifk=4 (33)
—ip? ifk=5.

Using the five components v; of this eigenvector we can find
the geometric primitive as

X = (voeg + vie; + veey + v3es + vies)” . (34)

Note that if X is a plane then vy = 0, otherwise X is a
sphere. Next, we want to project P, to X by using the general
subspace projection formula of CGA

Poair = (PaNew) - X)X (35)

Here we first construct the pointpair P, A e, where e
corresponds to the point at infinity. P, A e is also called a
flat point. Note that the projection essentially amounts to first
constructing the dual line (P, A e,) - X that passes through
the point P, and is orthogonal to X, then intersecting this line
with the primitive X.

If X is a sphere, then the intersection of the line and the
sphere will result in two points on the sphere. If X is a plane,
it will result in another flat point, i.e. one point on the plane
and one at infinity. In any case, we can retrieve the closer one
to the agent position P, using the split operation

P. = split[P,]. (36)

Here, P! is the projected agent position on the tangent space
X. Next, we compute our agent’s footprint (i.e., instantaneous
coverage) by projecting its surface to the point cloud. If the
target surface was flat, all the points within the radius r, of



our agent P, would be covered by the footprint. However,
in the general case, both the tool and the surface can be
curved and deformable. For simplicity, we assume that the
surface is rigid and it deforms the tool with a constant bending
radius. We use the radius of the local tangent sphere that we
computed using CGA as an approximation for the bending
radius. Accordingly, we can quantify the error of the local
tangent space approximation for the i-th neighbor P; by the
normalized residuals e; of the least squares computation (31).
We encode this approximation error into the footprint by
weighting the i-th neighbor by the Gaussian kernel () using
the normalized residuals r; = e;/ max(e)
p(ri) = exp (—*r7), (37)
where the hyperparameter ¢ > 0 controls the coverage
falloff. Next, we plug the Gaussian kernel weighted footprint
in (3) for computing the coverage c;, which then allows us to
calculate the virtual source term s; using (1).

The coverage objective at the t-th timestep is embedded
in the source term s;. Therefore, we set it as the initial
condition of the diffusion equation (19), i.e., ug = s; and use
either the implicit (23) or spectral (28) formula to diffuse the
resulting potential field. Note that at each iteration of the tactile
coverage loop, we solve an independent diffusion problem
starting from ¢ = 0.

2) Gradient of the Diffused Potential Field: We guide the
coverage agent using the gradient of the diffused potential field
as the acceleration command

Pt; = V'u/pé,t, (38)

where Vup: ; denotes the gradient of the diffused potential
field at the projected agent position P.. However, computing
the gradient on the point cloud is more involved than a
regular grid or a mesh. Recall that in Section IV-Cl1, we
already computed the projected agent position P,, the local
neighborhood and the tangent space X™*. As the first step, we
compute the tangent plane E, ; at P,, namely

Eay=Li, APy Aew, (39)

using the line L, |, which is orthogonal to the surface and
passes through P!. It is found by wedging the dual primitive
X with P! to infinity with

Lot =X"AP.Aec. (40)

Then, we project the points F; in the local neighborhood to
the tangent plane F, ; using (35) and (36), by setting F, ; as
the primitive X. Next, we use the values of the potential field
at the neighbor locations as the height h; = u;; of a second
surface from the tangent plane. Then, we fit a 3-rd degree
polynomial to this surface as shown by using the weighted
least squares objective

A:argmf}ntr((Y—XA)TW(Y—XA)), (41)
with the diagonal weight matrix W
W = diag (p(r1),o(r1), ... o(rm)) , 42)

whose entries are given by the Gaussian kernel (37). One can
refer to [73] for the details. Lastly, we calculate the gradient at
the projected agent’s position using the analytical gradients of
the polynomial. We depict the approach visually in Figure 2.

Le.d ..h

Fig. 2: Blue-red points show the value of the potential field u;
on the pointcloud P and the yellow point is the projected agent
position P.. We also project the agent’s neighbors P; to the
tangent plane E, ;, shown in green. Next, we use the height
function h; = w;, which uses the values of the potential
field to lift the projected points in the normal direction of the
tangent plane. We show the lifted points with large blue-red
points. We fit a polynomial to this lifted surface and compute
its analytical gradients at the neighbor locations Vu, ., as
shown with arrows in the detail view.

D. Robot Control

There are several aspects that the control of the physical
robot needs to achieve. The first is to track the virtual coverage
agent on the target surface, while keeping the end-effector nor-
mal to the surface. The second is to exert a desired force on the
surface. To do so, we design a task-space impedance controller
while further exploiting geometric algebra for efficiency and
compactness. The control law is of the following form

T==-J" W, (43)

where J € BN C GV is the Jacobian multivector
matrix with elements corresponding to bivectors, WV is the
desired task-space wrench and 7T are the resulting joint torques.
Before composing the final control law, we will explain its
components individually.

1) Surface Orientation: From Equation (40), we obtained
a line L,  that is orthogonal to the surface that we wish to
track. In [74], it was shown how the motor between conformal
objects can be obtained. We use this formulation to find the
motor between the target orthogonal line and the line that
corresponds to the z-axis of the end-effector of the robot in

its current configuration, which is found as
Lee = M(q)(eg A e3 A exs)M(q). (44)

Then, the motor My, 1,
can be found as

« 1> which transforms L., into L, |

1
MLeeLa,L = 6 (1 + La,J_Lee) ; (45)

where C' is a normalization constant. Note that C' does not
simply correspond to the norm of 1 + L, | L., but requires



a more involved computation. We therefore omit its exact
computation here for brevity and refer readers to [74].

We can now use the motor My, r,  in order to find a
control command for the robot via the logarithmic map of
motors, 1.e.

VL@,L = log (MLaaLa,L) :

Of course, if the lines are equal, My, ., , = 1 and conse-
quently Vi, , = 0. Note that V, , is still a command in task
space (we will explain how to transform it to a joint torque
command once we have derived all the necessary components).
Another issue is that algebraically, Vp,  corresponds to
a twist, not a wrench. Hence, we need to transform it
accordingly. From physics, we know that twists transform
to wrenches via an inertial map, which we could use here
as well. In the context of control, this inertia tensor is,
however, a tuning parameter and does not actually correspond
to a physical quantity. Thus, in order to simplify the final
expression, we will use a scalar matrix valued inertia, instead
of a geometric algebra inertia tensor and choose to transform
the twist command to wrench command purely algebraically.
As it has been shown before, this can be achieved by the
conjugate pseudoscalar I, = Ieq [70]. It follows that

Wr,. =V, I,

and Wr,_ | now algebraically corresponds to a wrench.

2) Target Surface Force: Since this article describes a
method for tactile surface coverage, the goal of the robot
control is to not simply stay in contact with the surface, but
to actively exert a desired force on the surface. First of all, we
denote the current measured wrench as W,, (t) and the desired
wrench as WW;. Both are bivectors as defined by Equation (18).
We use Wy w.r.t. end-effector in order to make it more intuitive
to define. Hence, we need to transform W,,(t) to the same
coordinate frame, i.e.

Wi (t) = M(q)W, (t) M (q).

In order to achieve the desired, we simply apply a standard
PID controller in wrench space, i.e.

(40)

(47)

(48)

T d
We = prwwe + Ki,W/ We(T)dT + I(vd,y\;f]/ve(t)7
0

dt
(49)
where the wrench error is

We(t) = Wd - W;w(t%

where K, w, K;y and Kg )y, are the corresponding gain
matrices, and W¢ is the resulting control wrench.

3) Task-Space Impedance Control: Recalling the control
law from Equation (43), we now collect the terms from the
previous subsections into a unified task-space impedance con-
trol law. We start by looking in more detail at the Jacobian J.
Previously, we mentioned that we are using the current end-
effector motor as the reference, hence, we require the Jacobian
to be computed w.r.t. that reference. This is therefore not the
geometric Jacobian that was presented in Equation (16), but
a variation of it. The end-effector frame geometric Jacobian
J & can be found as

7% = B8

(50)

B§f], (51)

where the bivector elements can be found as

Bf® = M;*(q)B;M;", (52)
with )
Mee = T Mi(a). (53)
j=N

Hence, the relationship between J ¢ and J¢& can be found
as

TE = M(q)TcM(q).

The wrench in the control law is composed of the three
wrenches that we defined in the previous subsections. As
commonly done, we add a damping term that corresponds to
the current end-effector twist and as before, we transform it
to an algebraic wrench, i.e.

WV = \72;646000-

With this, we now have everything in place to compose our
final control law as

T=-J5" (KL, ,Wr.. - DyWy+Wc),

(54)

(55)

(56)

where K, | is a stiffness and Dy, a damping gain.

V. EXPERIMENTS

Our experimental setup comprises a BotaSys SensOne 6-
axis force torque (F/T) sensor attached to the wrist of a 7-axis
Franka Emika robot manipulator and a custom 3-D printed
part attached to the F/T sensor. The custom part interfaces
an Intel Realsense D415 depth camera and a sponge at its
tip. We consider the sponge’s center point to be the coverage
agent’s position P,. Before the operation, we perform extrinsic
calibration of the camera to combine the depth and RGB feeds
from the camera and to obtain its transformation with respect
to the robot joints. Additionally, we calibrate the F/T sensor
to compensate for the weight of the 3-D printed part and
the camera. We show the experimental setup on the left of
Figure 1.

A. Implementation Details

The pipeline of our tactile ergodic coverage method consists
of three modules: (i) surface acquisition, (ii) surface coverage
and (iii) robot control. Figure 3 summarizes the information
flow between the components.

1) Surface Acquisition: The surface acquisition node is
responsible for collecting the point cloud and performing
preprocessing operations described in Section IV-B. We use
scipy' for the nearest neighbor queries and for solving the
eigenproblem in (24). The matrices C' and M composing
the discrete Laplacian in (21) are computed with the ro-
bust_laplacian package® [52].

2) Surface Coverage: The surface coverage node per-
forms the computations based on the procedure given in
Section IV-C. It uses the information provided by the surface
acquisition node and produces the target line for the robot
control node.

Uhttps://scipy.org
Zhttps://github.com/nmwsharp/robust-laplacians-py


https://scipy.org
https://github.com/nmwsharp/robust-laplacians-py

Outer loop

Force target Wy

Inner loop

/

Target, K-D Tree, Laplacian eigenbasis
Surface Acquisition
p,T(P),®,M

A

Actual coverage

Surface Coverage
L1

Line object

‘| Robot Control

Actual agent position

¢ \

P,

Fig. 3: Information flow between the three components. The pipeline is composed of an outer loop responsible for controlling
the coverage progress with the feedback from the camera, whereas the inner loop compensates for the mismatch due to the

robot dynamics.

3) Robot control: On a high level, the robot control can
be seen as a state machine with three discrete states. The
first two states are essentially two pre-recorded joint positions
in which the robot is waiting for other parts of the pipeline
to be completed. One of these positions corresponds to the
picture-taking position, i.e., a joint position where the camera
has the full object in its frame and the point cloud can be
obtained. The robot is waiting in this position until the point
cloud has been obtained, afterwards it changes its position
to hover shortly over the object. In this second position, it is
waiting for the computation of the Laplacian eigenfunctions to
be completed, such that the coverage can start. The switching
between those two positions is achieved using a simple joint
impedance controller.

The third, and most important, state is when robot is
actually controlled to be in contact with the surface and
to follow the target corresponding to the coverage agent.
This behaviour is achieved using the controller that we
described in Section IV-D. The relevant parameters, that
were chosen empirically for the real-world experiments, are
the stiffness and damping of the line tracking controller,
ie. Kp,, = diag(30,30,30,750,750,300) and Dy =
diag(10, 10, 10, 150, 150, 50), as well as the gains of the
wrench PID controller, ie. K,y = 0.5, K;w = 5 and
Kaw = 0.5. The controller has been implemented using our
open-source geometric algebra for robotics library gafro® that
we first presented in [75]. Note that in some cases, matrix-
vector products of geometric algebra quantities have been used
for the implementation, where the mathematical structure of
the geometric product actually simplifies to this, which can be
exploited for more efficient computation.

B. Simulated Experiments

1) Computation Performance: In order to assess the com-
putational performance, we investigated the two main opera-
tions of our method: (i) preprocessing by solving either the
eigenproblem (24) or matrix inversion in (23) (ii) integrating
the diffusion at runtime using either the spectral (28) or
implicit (23) formulations. In this experiment, we used the
Stanford Bunny as the reference point cloud and performed
voxel filtering to set the point cloud resolution. We present the

3https://gitlab.com/gafro

results for the preprocessing in Figure 4 and for the runtime
in Figure 5.
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Fig. 4: Computational complexity of the preprocessing step
for different np and nj;. Legend shows nys values. The time
axis is logarithmic and the legend shows nj,; values.
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Fig. 5: Computational complexity of integrating the diffusion
equation at runtime for different np and n,s. The time axis
is logarithmic and the legend shows nj; values.

2) Coverage Performance: We tested the coverage perfor-
mance in a series of kinematic simulations. As the coverage
metric, we used the normalized ergodicity over the target
distribution, which compares the time-averaged statistics of
agent trajectories to the target distribution

_ [max (p — e, 0) |

2?21 Di

(67
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We ran the experiments for three different objects: a partial
point cloud of the Stanford Bunny and two point clouds
of a cup and a plate and their target distributions that we
collected using the RGB-D camera. For the Stanford bunny,
we projected an ‘X’ shape as the target distribution. For
each object, we sampled ten different initial positions for the
coverage agent and kinematically simulated the coverage using
different numbers of eigencomponents n,; = 25, 50, 100, 200
and diffusion timestep scalar o = 1,5, 10, 50, 100. Since the
plate is larger compared to the Bunny and the cup, we used a
larger agent radius 7, = 15 [mm)] for the plate and a smaller
value r, = 7.5 [mm)] for the cup and the Bunny. The other
parameters that we kept constant in all of the experiments are
Fmax = 3 [mm/s%], imax = 3 [mm/s]. We selected six repre-
sentative experiment runs to show the coverage performance
qualitatively, and present them in Figure 6.

We show the quantitative results with respect to n; and « in
Figures 7 and 8, respectively. Note that, in order to better show
performance trend in these plots, we have excluded parameter
combinations leading to failure cases. We will discuss those
in Section VI

As the last experiment, we chose the best-performing pair
(nar, ) and show the time evolution of the coverage perfor-
mance for different objects in Figure 9.

C. Real-world Experiment

In the real-world experiments, we tested the whole pipeline
presented in Section V-A. We used three different kitchen uten-
sils (plate, bowl, and cup) with different target distributions
(shapes, RLI, X). For these experiments, we fixed the objects
to the table so that they could not move when the robot was in
contact. At the beginning of the experiments, we moved the
robot to a predefined joint configuration that fully captured
the target distribution. Since we collected the point cloud data
from a single image frame, our method only had access to a
partial and noisy point cloud. We summarize the results of the
real-world experiments in Figure 10 and share all the recorded
experiment data and the videos on the accompanying website.

D. Comparisons

We present the first tactile ergodic coverage method in the
literature that works on curved surfaces. Therefore, there are
no methods that we can directly compare to quantitatively.
For this reason, we selected three related state-of-the-art
methods and compared them to our method qualitatively. As
the first method, we selected the finite element based HEDAC
planner [46], since it is the only other ergodic control approach
working on curved surfaces. For the tactile interaction aspect,
we selected two methods, the unified force-impedance con-
trol [76] and the sampling-based informative path planner [20].
We specified six criteria for comparison and summarized the
results in Table I.

VI. DISCUSSION
A. Computational Performance

We investigated the computational performance of our
method for the preprocessing and for the runtime.

The preprocessing step is only required, when the robot sees
an object for the first time or when the object undergoes a non-
isometric transformation. First thing to note from Figure 4
is that computing the eigenbasis is significantly faster than
inverting the large sparse matrix. Secondly, the advantage
of the spectral approach becomes more significant as the
number of points increases. This is because the computational
complexity of the spectral approach is linear O(npn ;) with
the number of points, whereas the matrix inversion of the
implicit solution has quadratic complexity O(n%).

If we compare our method with the state-of-the-art in
ergodic coverage on curved surfaces [46], our preprocessing
step is significantly faster. They reported a computation time of
19.7 s for a mesh with 2315 points using a finite-element-based
method. In contrast, our method takes 278 ms for a point cloud
with ~ 3000 points with nj; = 100. Therefore, in comparison,
our method promises an increase in computation speed of more
than 90 times. Note that, as the number of points increases,
our gains in computation time become even more significant
due to the difference in the computational complexity of the
spectral and implicit formulations as mentioned above.

As Figure 5 shows the spectral approach also results in
a significant performance increase at runtime. The implicit
solution is also efficient in runtime, since it reduces to matrix-
vector multiplication after inverting the sparse matrix at the
preprocessing step. Nevertheless, the spectral formulation is
still significantly faster than the implicit formulation, espe-
cially for large point clouds.

Obviously, an unnecessarily large eigenbasis for small point
clouds, i.e. ny; — np, would cause the spectral approach to
be slower than the implicit one.

B. Coverage Performance

A close investigation of the failure scenarios in Figure 6
revealed that they stem from the bad coupling of the parame-
ters and from an initialization of the agent far away from the
source. If the agent is not far away from the source, setting low
values for o might actually lead to desirable properties such as
prioritizing local coverage which would in turn minimize the
distance traveled during coverage. Hence, for getting the best
behavior, o can be set adaptively or sequentially. For instance,
it is better to use high « values at the start for robustness to
bad initializations and to decrease it as the coverage advances
to prioritize local coverage and to increase the performance.

We measured the effect of our method parameters on the
coverage performance in Figures 7 and 8. Interestingly, the
parameters influencing the agent’s speed, i.e. &4z, nas and
«, have a coupled effect on the coverage performance in some
of the scenarios. The first thing to note here is that the value
of the « is lower-bounded by the speed of the coverage agent
Tmaz- Otherwise the method cannot guide the agent since it
moves faster than the diffusion. For instance, we observe from
Figure 6 a) and f) that with a diffusion coefficient o = 1, the
source information does not propagate fast enough to the agent
if it is too far from the source. Even for a small eigenbasis
ny < 50 and moderate diffusion coefficient values 1 < o <
10, it still results in a low coverage performance &, > 0.5.
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Fig. 6: Qualitative results of the coverage experiments showcasing the effect of different parameters. The red points designate
the spatial target distribution p; > 0. The agent starts at the green point, the trajectory is shown in black, and the final position
after 1000 timesteps is shown with the purple point. The tuples given on top of the figures show the parameters nx, a, and
r, of the experiments. We provide the interactive point clouds and the experiment data on our website.

TABLE I: Comparison of the proposed method with state-of-the-art methods.

Method Domain Approach  Online  Purpose Multiscale ~ Multisetup ¢
Finite element-based HEDAC [46] Mesh Planning No Visual Inspection Yes No
Sampling-based Planner [20] Mesh Planning Yes Tactile Coverage No Yes
Unified Force-Impedance Control [76]  None Control Yes Surface Exploration ~ No No
Tactile Ergodic Control (Ours) Point Cloud »  Control Yes Tactile Coverage Yes No

“Multisetup used by [20] refers to planning the configuration of the target object to reach otherwise unreachable regions.
bSince point clouds are the most general representation, our methoud can seamlessly be used on grids/meshes with only minor

changes to the computation of the discrete Laplacian.
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Fig. 7: Coverage performance measured by the ergodic metric
€y (57) with respect to njs used in the spectral formulation
(26).

On the contrary, if the eigenbasis is chosen to be sufficiently
large nj; > 100, we have more freedom in choosing a.

With this in mind, we removed the infeasible parameter
combinations (ny; = 50, = {5,10}) from the experiment
results in Figures 7 and 8 to better observe the performance
trend for n); and . It is easy to see that increasing n s results
in increased performance and higher freedom in choosing .
However, this benefit becomes marginal after ny; > 100.
Therefore, choosing np; = 100 becomes a good trade-off
between coverage performance and computational complexity.
This observation is in line with the value of n); = 128
reported in [47].

In Figure 8, however, we observed minor differences in
performance for different o. Considering the spread and the
mean, choosing o = 10 would be a good fit for most
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Fig. 8: Coverage performance measured by the normalized
ergodic metric €; (57) with respect to the parameter a.

scenarios. Nevertheless, we must admit that the ergodic metric
falls short in distinguishing the most significant differences
between « values. Hence, the qualitative performance shown
in Figure 6 becomes much more explanatory. The first thing
to note here is that the lower values of « result in more local
coverage, whereas higher values lead to prioritizing global
coverage. Accordingly, the tuning of this parameter depends
on the task itself. For example, suppose the goal is to collect
measurements from different modes of a target distribution as
quickly as possible, in which case we would recommend using
a > 50. On the other hand, if the surface motion is costly,
because for example, the surface is prone to damage, moving
less frequently between the modes can be achieved by setting
5 < a < 50.

In scenarios where the physical interactions are complex,
stopping the coverage prematurely and observing the actual
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Fig. 9: Time evolution of the ergodic metric (57) for three
different objects with ny; = 200 and o = 10. The semi-
transparent lines show ten different experiment runs, the center
line shows the mean, and the shaded regions correspond to the
standard deviation.

Fig. 10: Real-world experiment of the robot cleaning a plate, a
bowl, and a cup. For the first three columns we give snapshots
from the initial, intermediate, and final states from top to the
bottom. In the last column, we show the target distribution p,
the simulated potential field u; and the coverage c; from top
to the bottom.

coverage might be preferable instead of continuing the cov-
erage. To decide when to actually pause and measure the
current coverage, we investigated the time evolution of the
coverage performance in Figure 9. For the cup and the bunny,
we see that the coverage reaches a steady state around the
200-th timestep, while for the plate, this occurs around the
500-th timestep. Still, we can identify the steepest increase in
the coverage occurring until the 150-th timestep. Accordingly,
we recommend the strategy to pause the coverage at roughly
200 timesteps, measure the actual coverage, and continue the
coverage. This would potentially help in the cases where we
have unconnected regions (various modes), because discontin-
uous jumps between the disjoint regions might be quicker and
easier than following the surface. All that said, these claims
require further testing and experimentation, which are left to
be investigated in future work.

C. Force Control

We demonstrated that the proposed method can perform
closed-loop tactile ergodic control in the real world with
unknown objects and target distributions, as depicted in Fig-
ure 10. The primary challenge, however, is to be keeping
in contact with the surface without applying excessive force.
This is mainly due to the insufficient depth accuracy of the
camera, and uncertain dimensions of the mechanical system. A
suboptimal solution is to use a compliant controller and adjust
the penetration depth of the impedance target. A too compliant
controller would, however, reduce the tracking precision and
the uncertainty in the penetration depth could lead to unneces-
sarily high contact forces that might damage the object. More
importantly, high contact forces result in high friction that
further reduces the reference tracking performance.

Our solution to this problem was to introduce tactile feed-
back from the wrist-mounted force and torque sensor and
closed-loop tracking of a reference contact force. In general,
the commands generated by the force controllers conflict with
the position controllers and result in competing objectives. We
overcome this problem by posing the objective as line tracking
instead of position tracking. This forces the agent to be on the
line but free to move along the line. Accordingly, the force
and the line controller can simultaneously be active without
conflicting objectives or rigorous parameter tuning.

D. Comparisons

We compared our method with state-of-the-art approaches
in Table I. Since the methods are not comparable in all aspects,
we discuss the advantages and disadvantages of our method in
three parts: (i) ergodic coverage; (ii) tactile interactions; and
(iii) tactile coverage.

1) Ergodic Coverage: In the literature, the only other
ergodic coverage method on curved surfaces is the finite
element-based HEDAC [46]. This work presents an offline
planning method on meshes for visual inspection using multi-
ple aerial vehicles. Accordingly, our method extends the state
of the art in ergodic coverage on curved surfaces by being the
first formulation (i) working on point clouds, (ii) providing
closed-loop coverage using vision, and (iii) performing tactile
coverage. Furthermore, as we showed in the experiments
in Section V-B1, our approach vastly outscales the finite
element-based HEDAC in terms of computation time for the
preprocessing step. It is also important to note that, due to the
generality of the underlying ergodic control formulation that
we are using, our method could be applied to their use-case
as well.

2) Tactile Interactions: To ensure contact during tactile
exploration, the usage of a unified force-impedance control
scheme was proposed [76]. The general idea is similar to ours,
in the sense that the controller is required to track a given refer-
ence while exerting a force on the surface. The main difference
stems from the formulation of the reference for the impedance
behavior. While their method tracks a full Cartesian pose, our
impedance controller tracks a line. The main difference here
is that our method imposes less constraints on the reference
tracking, which leaves more degrees of freedom for secondary



tasks, such as tracking the force objective. Hence, we require
no additional tuning to integrate these objectives, whereas their
method uses a passivity-based design to ensure the stability of
the combined controller.

3) Tactile Coverage: Concerning the problem of using
a manipulator for tactile coverage on curved surfaces, we
compare our method to the online sampling-based planner
presented in [20]. Unlike the more general point cloud repre-
sentation that we are using, this method operates on meshes.
However, it includes the planning of the configuration of the
target object. This is currently a limitation of our approach,
since we assume the object to be fixed and consider only
a single viewpoint. Although this configuration planner is
considered to be independent of the coverage at a given
configuration, it could be easily combined with our method. In
contrast to our myopic feedback controller, they use trajectory
planning, which requires a predefined planning horizon using
a number of passes for covering discrete patches. For tactile
coverage tasks, this can be extremely challenging to estimate
beforehand. Our method does not suffer from this limitation,
since ergodicity guarantees revisiting continuous areas accord-
ing to the target distribution over an infinite time horizon. In
addition, their approach is based on generating splines that
connect the waypoints. This has two issues: if the points are
not densely sampled, there is no guarantee that the resulting
spline would be on the surface; and conversely, if the points
are densely sampled, then the spline would be very complex
and not smooth. Accordingly, this approach would not scale to
complex surfaces and target distributions. Our approach, on the
other hand, uses a feedback controller to stay in contact with
the surface, where the local references are coming from the
surface-constrained ergodic controller. Hence, our approach is
mainly limited by the robot’s geometry with respect to the
complexity of the object, which could also be mitigated by
changing its configuration online.

VII. CONCLUSION AND FUTURE WORK

In this paper, we presented the first closed-loop ergodic
coverage method on point clouds to address the tactile cov-
erage tasks on curved surfaces. Tactile coverage tasks are
challenging to model due to complex physical interactions.
We use vision to jointly capture the surface geometry and
the target distribution as a point cloud and directly use this
representation as input. Then, we propagate the information
regarding the coverage target to our robot using a diffusion
process on the point cloud. Here, we use ergodicity to relate
the spatial distribution to the number of visits required for
coverage in an infinite-horizon formulation. We leverage a
spectral formulation to trade-off the accuracy of the diffusion
computation with its computational complexity. To find a
favorable compromise between the two, we tested the depen-
dency of the coverage performance to the hyperparameters in
kinematic simulation experiments. Next, we demonstrated the
method in a real-world setting by cleaning previously unknown
curved surfaces with arbitrary human-drawn distributions. We
observed that our method can indeed adapt and generalize to
different objects and distributions on the fly.

In some scenarios, such as surface inspection, sanding, or
mechanical palpation, measuring the actual coverage is not
straightforward using an RGB-D camera. Still, we can use
cleaning as a proxy task such that a human expert can mark
the regions that need to be inspected with an easy-to-remove
marker. Then, the robot’s progress would be detectable by
a camera. Accordingly, our method provides an interesting
human-robot interaction modality using annotations and mark-
ings of an expert for tactile robotics tasks.

As discussed in Section VI-D3, the primary limitation of our
work is fixing the object pose during the operation. Therefore,
we plan to extend our method to scenarios where the object is
grasped by a second manipulator and can be reconfigured for
covering regions that otherwise would be unreachable due to
either collisions or joint limits. Although this problem is easy
to address by sampling discrete configurations, as previously
done in [20], our goal is to extend our method to handle this
problem in a continuous manner using a control approach.

Another promising extension of our method is automating
the collection of visuotactile datasets. In this setting, one
can combine our method with a vision-based active learning
module such as [61], which estimate high tactile-information
regions on the surface. Then, our controller could be used
to collect data from these regions with a multi-modal tactile
Sensor.
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