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Abstract
Biological neural networks, driving cognitive processes in the human brain, have long
been a source of inspiration for computational models. Drawing from the physiology
of neural dynamics, spiking neural networks stand out as prominent candidates for
replicating and understanding the brain’s functionality through efficient information
processing.
In this thesis, we investigate spiking neural networks during sequential processing by
leveraging deep learning frameworks to train and evaluate them on speech recognition
tasks. Focusing on the acoustic model, our approach captures the temporal patterns and
phonetic features inherent to speech signals, providing insights into speech processing
throughout the human auditory pathway.
A first part is dedicated to conventional artificial neural networks and their utilisation
of recurrence to address context dependencies and develop a form of working memory.
Building upon a recent probabilistic derivation of recurrent neural networks, our research
extends the approach and yields novel interpretable deep learning modules. While the
main contributions remain theoretical, the resulting lightweight Bayesian recurrent units
are shown to improve speech recognition performance compared to standard recurrent
neural networks.
In a second part, we shift to the main focus of spiking neural networks that encode and
transmit information via sparse and binary spike sequences. Using the surrogate gradient
method, we formulate physiologically inspired architectures as a special case of recurrent
neural networks. This enables us to bootstrap a study of spiking neural networks from
existing deep learning frameworks. Here we also explore the role of recurrence and
memory in the form of different feedback mechanisms including layer-wise recurrent
connections and unit-wise spike frequency adaptation in the neuron model. While the
main aim is to develop the understanding of physiological processes, our results on
speech recognition tasks also contribute to the field of energy-efficient neuromorphic
technology.
Lastly, an analysis of our trained spiking architectures reveals the replication of key
features observed in biological networks, offering a novel and scalable approach for their
study. In particular, we explore the phenomenon of neural oscillations, characteristic of
cognitive processes in the brain. Our analysis confirms the presence of cross-frequency
couplings in the trained networks during speech processing, notably between theta and
gamma frequency bands. This synchronisation of the spiking activity is shown to arise
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naturally, simply through gradient descent training, and is enhanced by the incorporation
of recurrent mechanisms.
In summary, this thesis contributes to the field of neural network research by offering
insights into the concepts of recurrence and spiking dynamics during sequential pro-
cessing tasks, particularly in the context of speech recognition. Through a combination
of theoretical analysis and practical experimentation, we develop novel methods, deep
learning modules, and physiologically inspired architectures that advance our under-
standing of neural computation and its applications. By replicating key features observed
in biological networks, our research contributes to future developments in neuromorphic
computing and cognitive science.

Keywords: spiking neural networks, speech recognition, surrogate gradient, Bayesian
recurrent units, neural oscillations, neuromorphic technology, recurrent neural networks
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Résumé
Les réseaux de neurones biologiques, dirigeant les processus cognitifs du cerveau humain,
ont longtemps été une source d’inspiration pour les modèles informatiques. S’appuyant
sur la physiologie de la dynamique neuronale, les réseaux de neurones à impulsions
se distinguent comme candidats de premier plan pour reproduire et comprendre les
fonctionalités cérébrales à travers un traitement efficace de l’information.
Dans cette thèse, nous étudions les réseaux de neurones à impulsions appliqués à du
traitement séquentiel, en utilisant des environnements d’apprentissage profond pour les
entraîner et les évaluer sur des tâches de reconnaissance vocale. En se concentrant sur le
modèle acoustique, notre approche capture les motifs temporels et les caractéristiques
phonétiques inhérentes aux signaux vocaux, fournissant des informations sur le traitement
vocal ayant lieu dans le système auditif humain.
Une première partie est consacrée aux réseaux de neurones artificiels conventionnels et à
leur utilisation de la récurrence pour gérer les dépendances contextuelles et développer
une forme de mémoire de travail. En s’appuyant sur une récente dérivation probabiliste
des réseaux de neurones récurrents, notre recherche étend l’approche et produit de
nouveaux modules d’apprentissage profond interprétables. Bien que les principales
contributions restent théoriques, les unités récurrentes bayésiennes qui en résultent ont
une faible charge de paramètres et améliorent les performances de reconnaissance vocale
par rapport aux réseaux de neurones récurrents standard.
Dans une deuxième partie, nous passons au principal focus de notre recherche sur les
réseaux de neurones à impulsions qui encodent et transmettent l’information à travers
des séquences d’impulsions éparses et binaires. En utilisant la méthode du gradient de
substitution, nous formulons des architectures inspirées de la physiologie comme un cas
particulier des réseaux de neurones récurrents. Cela nous permet d’amorcer une étude
des réseaux de neurones à impulsions à partir d’environnements d’apprentissage profond
existants. Ici, nous explorons également le rôle de la récurrence et de la mémoire à
travers différents mécanismes de rétroaction, comprenant les connexions récurrentes au
sein d’une couche de neurones ainsi que les mécanismes d’adaptation aux fréquences
d’impulsions présentes au sein du modèle de neurone. Bien que l’objectif principal soit
de développer la compréhension des processus physiologiques, nos résultats sur des
tâches de reconnaissance vocale contribuent également au domaine des technologies
neuromorphiques économes en énergie.
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Enfin, une analyse de nos architectures à impulsions entraînées met en évidence la
réplication de caractéristiques clés observées dans les réseaux biologiques, offrant une
approche nouvelle pour leur étude, adaptée à des architectures de plus grande envergure.
En particulier, nous explorons le phénomène des oscillations neuronales, caractéristique
de processus cognitifs cérébraux. Notre analyse confirme la présence de couplages entre
différentes bandes de fréquences d’activité dans les réseaux entraînés lors du traitement
vocal, notamment entre les bandes de fréquences thêta et gamma. Nous montrons que
cette synchronisation de l’activité des impulsions apparaît naturellement, simplement
grâce à l’entraînement par descente de gradient, et est renforcée par l’incorporation de
mécanismes récurrents.
En résumé, cette thèse contribue au domaine de la recherche sur les réseaux de neu-
rones en offrant des éclaircissements sur les concepts de récurrence et de dynamique
des impulsions pendant les tâches de traitement séquentiel, en particulier dans le con-
texte de la reconnaissance vocale. Grâce à une combinaison d’analyses théoriques et
d’expérimentations pratiques, nous développons des méthodes, des modules d’apprentissage
profond et des architectures inspirées de la physiologie qui font progresser notre com-
préhension de la computation neuronale et de ses applications. En reproduisant des
caractéristiques clés observées dans les réseaux biologiques, notre recherche contribue
aux développements futurs en informatique neuromorphique et en sciences cognitives.

Mots-clés : réseaux de neurones à impulsions, reconaissance vocale, méthode du gradient
de substitution, unités récurrentes bayésiennes, oscillations neuronales, technologie
neuromorphique, réseaux de neurones récurrents
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1 Introduction

1.1 Motivation

Biological neurons encode and transmit information in the form of sparse sequences of
binary events called spike trains. To replicate these dynamics, researchers have developed
mathematical models of single neurons that can produce realistic responses to stimuli
(Gerstner and Kistler, 2002; Izhikevich, 2003; Brette and Gerstner, 2005). Despite
these advancements, understanding the mechanisms through which large populations
of neurons, especially across different brain regions, process information remains a
key area of research. One prominent focus is the study of neural oscillations, a macro-
scale phenomenon that plays a critical role in driving cognitive processes in the brain.
Neuroscientists explore these oscillations by analysing brain data directly or by applying
physiologically inspired models to various tasks. On top of understanding fundamental
properties of physiological processes, this field also enables practical applications in the
biomedical domain.

In contrast, the field of machine learning has demonstrated the impressive capabilities
of Artificial Neural Networks (ANNs), often approaching or even surpassing human
performance on a wide range of tasks. The single neuron model in ANNs can be seen
as a simplified, rate-based approximation of biological neurons. However, the main
strength of the resulting networks lies in their scalability. By combining Stochastic
Gradient Descent (SGD) training, vast amounts of data, and fast matrix multiplications
on Graphics Processing Units (GPUs), ANNs have achieved remarkable success in a
multitude of technological applications, including image, natural language, and speech
processing. Moving forward, the development of architectures that are both energy and
parameter-efficient is crucial for enabling these powerful models to run effectively on
low-powered devices.

At the intersection of neuroscience and machine learning, Spiking Neural Networks
(SNNs) mirror biological processes more closely than conventional ANNs. By capturing
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Chapter 1. Introduction

the temporal dynamics and precise spike-timing patterns seen in the brain, integrating
SNNs into modern machine learning frameworks offers a promising pathway to enhance
our understanding of brain function and improve the efficiency and capabilities of
machine learning models.

Speech represents the primary mode of human communication. The sequential nature of
speech signals is characterised by clear temporal dependencies, where the sound produced
at any given time step is influenced by preceding sounds in terms of intonation, phonetics
and other linguistic factors. These temporal dependencies emerge from a complex
interplay of physiological processes involved in speech production and perception. At the
core of these processes are neural network dynamics.

During speech production, these dynamics orchestrate motor control by coordinating
precise sequences of articulatory movements from the tongue, lips, jaw, and vocal folds to
produce speech sounds. Conversely, in speech perception, neural dynamics facilitate the
temporal integration and parsing of continuous acoustic signals into meaningful linguistic
components.

Our interest in the neural network dynamics driving speech processing is twofold.

1. Understanding the underlying physiology at a more fundamental level.
2. Exploring its natural energy-efficiency for technological applications.

1.2 Approach

In this thesis, we focus on speech encoding through Automatic Speech Recognition (ASR)
tasks for the following reasons. Firstly, ASR offers objective evaluation metrics that
accurately reflect performance and facilitate model comparisons. Secondly, ASR benefits
from the availability of extensive datasets for training. More generally, developing biolog-
ically inspired speech encoders provides a unique opportunity to compare computational
approaches with the human auditory pathway, enhancing our understanding of both
biological and artificial intelligence systems. Finally, the architectures we develop as
general speech encoders show potential for broader use in diverse speech processing
applications.

Our general approach is to cast techniques from Bayesian statistics and physiological
processes to develop more efficient and interpretable neural architectures for speech
encoding. On top of the relevance to low-powered, neuromorphic technology, we also
hope that our models can serve as novel tools to test neuroscience hypotheses and infer
some properties about the physiology.
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1.3 Outline and contributions

Figure 1.1: General approach using SNNs at the intersection of machine learning and
neuroscience.

1.3 Outline and contributions

This thesis is organised into seven chapters, with the main contributions presented in
Chapters 3-6. The current chapter introduces the overall motivation, approach and
outline for the thesis.

Chapter 2 provides relevant background material for the thesis. It begins with an overview
of the architectural components of a typical ASR system, including its evaluation metrics
and frameworks. The chapter then covers ANNs, with a particular focus on Recurrent
Neural Networks (RNNs), which will be the central type of architecture throughout the
thesis. Finally, the databases used in this thesis are presented at the end of the chapter.

In Chapter 3, we start from a recent Bayesian derivation of recurrence in conventional
ANNs (Garner and Tong, 2021) and derive a layer-wise feedback without the approxi-
mation of previous work. We show that the natural feedback domain is log-probability,
leading to the softplus activation function. Adding an update gate yields a unit very close
to the Light Gated Recurrent Unit (Li-GRU) (Ravanelli, Bordes, and Bengio, 2018) but
with a valid probabilistic formulation. In a second step, we come back to the special
case where hidden features are independent. We show that the corresponding unit-wise
feedback can be described as a first-order two-state Hidden Markov Model (HMM) and
derive a backward recursion that enables to consider future context with no additional
parameters. While the contributions are mostly theoretical, the resulting lightweight
models give competitive results on ASR tasks.

In Chapter 4, we shift to the main focus of biologically inspired SNNs, which constitute
a special case of RNNs. We derive our approach from continuous-time single neuron
dynamics (Gerstner and Kistler, 2002) using both differential equations and kernel-based
formulations. Instead of a moving threshold adaptation mechanism as defined by Bellec
et al. (2018) and typically used in SNNs (Yin, Corradi, and Bohté, 2020; Yin, Corradi, and
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Bohté, 2021; Salaj et al., 2021; Shaban, Bezugam, and Suri, 2021), our implementation
uses a recovery current coupled to the membrane potential, for which we also derive
stability conditions. With the idea of integrating SNNs into modern deep learning
frameworks, we review relevant training approaches and conclude that the surrogate
gradient method is most appropriate. Overall this chapter serves as a theoretical baseline
for our SNN approach, that we apply to several tasks in the subsequent chapters.

In Chapter 5, the SNN approach defined in Chapter 4 is integrated into deep learning
frameworks to serve as a physiologically inspired encoder for speech recognition tasks.
We begin with speech command recognition where our approach convincingly improves
upon previous efforts (Yin, Corradi, and Bohté, 2020; Yin, Corradi, and Bohté, 2021; Salaj
et al., 2021; Shaban, Bezugam, and Suri, 2021), achieving new state-of-the-art results
with SNNs. We then tackle the more challenging task of Large Vocabulary Continuous
Speech Recognition (LVCSR), where, to the best of our knowledge, our work is the
first to successfully integrate and train a surrogate gradient spiking encoder. On both
tasks, comparisons with conventional RNNs reveal that our SNNs achieve competitive
performance while significantly reducing computational cost. We also confirm the
effectiveness and computational efficiency of using adaptation in the neuron model
compared to layer-wise recurrent connections.

In Chapter 6, we define a new ASR architecture to favour physiology over performance.
By including auditory nerve fibers with plausible frequency sensitivity and by minimising
the size of ANN modules, almost all processing power is given to the central SNN. After
a preliminary architectural analysis, we concentrate on analysing the spiking activity
throughout the trained encoder. Our study reveals the natural emergence of neural
oscillations in the form of cross-frequency couplings, consistent with neuroscience obser-
vations. We also find that these oscillations occur exclusively during speech processing
and not when processing other types of noise. Our results suggest that the SNN has
learned similar processes to those of the biological auditory mechanism.

A final chapter is dedicated to an overall conclusion with directions for future work.
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2 Background

2.1 Automatic speech recognition

The field of ASR seeks to enable computer systems to understand and process human
speech, transforming spoken language into written text.

Early ASR systems employed template matching techniques, where spoken words were
matched against pre-recorded templates. The introduction of statistical models, particu-
larly HMMs, marked a significant milestone in the development of ASR. In recent years,
the advent of deep learning, enabled by scalable networks and extensive datasets, has
revolutionised ASR, allowing ANNs to outperform traditional HMM-based systems.

Despite significant advancements, substantial challenges remain, particularly for low-
powered, on-device applications. The high computational demand and energy con-
sumption of traditional ASR systems limits their feasibility on resource-constrained or
battery-operated devices such as smartphones, home pods and wearable technology.
The need for efficient, low-power models is further emphasised by the growing demand
for privacy-preserving solutions, where on-device processing is preferred over cloud-
based alternatives. This thesis addresses these challenges by developing parameter and
energy-efficient alternatives to traditional ANN speech encoders.

2.1.1 Architecture

Starting from the input audio signal, ASR systems typically apply feature extraction
and acoustic modelling, which produces an encoded representation that is then de-
coded into output text sequences. In this thesis, our focus lies on the acoustic model,
which corresponds to the encoder component in modern sequence-to-sequence, encoder-
decoder architectures. Nonetheless, to provide a comprehensive understanding of ASR
architectures, we present all relevant components below.
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Chapter 2. Background

Feature extraction

Feature extraction involves transforming raw audio signals into a more compact and
informative representation, making the subsequent stages of acoustic modeling and de-
coding more effective. Common practice involves splitting the waveform into overlapping
frames with a length of 25 ms and a shift of 10 ms. Each frame is usually multiplied by a
bell-shaped windowing function, such as the Hann window, before applying a Fourier
transform to convert it into a vector of frequency components. The resulting power
spectrum can then be processed using triangular filters spaced according to the Mel scale
to emulate the human ear’s perception of sound frequencies. Finally, to compress the
dynamic range, a logarithm is applied to the Mel-filtered spectrum.

Figure 2.1: Raw audio signal (left) and its Mel filterbank feature representation (right).

To illustrate, let us consider a single-channel audio signal with a sampling rate of 16 kHz
and a duration of about three seconds. As presented in Figure 2.1, the above procedure
using 40 Mel filters transforms the audio signal with length 49,853 into a two-dimensional
filterbank representation with 311 frames and 40 frequency bins, where the number of
frames is calculated using the formula

Number of frames =

Signal length− Frame length
Frame shift

+ 1 . (2.1)

While the Mel filterbank-based feature extraction described above is a common procedure
used in popular ASR baselines like the Conformer (Gulati et al., 2020) or Whisper (Rad-
ford et al., 2023), alternative approaches can use different types of filters or additional
processing techniques to extract features such as Mel-Frequency Cepstral Coefficients
(MFCCs) or Feature-space Maximum Likelihood Linear Regression (fMLLR). Additionally,
some approaches bypass traditional feature extraction altogether and directly apply Con-
volutional Neural Networks (CNNs) on the waveform or use trainable filters (Ravanelli
and Bengio, 2018; Baevski et al., 2020; Zeghidour et al., 2021).
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2.1 Automatic speech recognition

Figure 2.2: ASR architecture to transform input speech waveform into output text.

Subsampling convolutional module

After feature extraction, further reduction of the sequence length can optionally be carried
out using convolutional subsampling before entering the encoder (Karita et al., 2019;
Gulati et al., 2020; Radford et al., 2023).

Acoustic model or encoder

After the initial stages of feature extraction and convolutional subsampling have con-
densed the raw audio signal into a more compact and informative representation, the
acoustic model, or encoder, further processes this representation to extract higher-level
features that capture phonemic or subword information. The output of the encoder
typically consists of a two-dimensional array, omitting the batch dimension, representing
a sequence of probabilities over time across phoneme or subword classes.

The processing within the acoustic model must therefore map auditory features to
phonemic features before classifying them into token classes (phonemes, subwords,
words). To achieve this, the ASR encoder must effectively handle context dependencies,
such as how the pronunciation of a particular phoneme may vary depending on its
neighboring phonemes in a spoken word or sentence. These context dependencies
are typically shorter-range compared to those addressed during the decoding stage.
Therefore, the encoder mainly focuses on capturing local contextual information relevant
for recognising individual phonetic or linguistic units within the audio signal.

While traditional approaches relied on HMMs and Gaussian Mixture Models, RNNs, and
more recently, Transformers have been adopted as common choices for the encoder
component in modern ASR systems.
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Decoder

Upon identifying phonetic units from the audio input, the encoder passes them to the
decoder, which converts the probability distributions over these units into the most likely
sequence of words.

Traditional HMM-based ASR systems often used a pronunciation dictionary, called a
lexicon, to provide linguistic constraints and guide the selection of words in the output
sequence. By directly mapping input audio features to subword units, modern systems
often bypass the need for a phoneme-level lexicon.

ASR decoding involves handling variable-length input and output sequences, accommo-
dating the inherent flexibility of spoken language. One challenge arises from the fact that
the encoder output sequences are typically longer than their corresponding ground truth
token sequences. Two prevalent methods for addressing this are Connectionist Temporal
Classification (CTC) decoding and RNN or Transformer-based decoders. We provide an
overview of both approaches below.

RNN or Transformer based decoders

In RNN or Transformer-based ASR decoders, the output sequence y = [y1, y2, . . . , yTy ]

of length Ty represents discrete class labels and is generated token by token. At step t,
the generation process is conditioned on the entire input sequence x = [x1, x2, . . . , xTx ]

of length Tx, provided by the encoder, as well as on the previously generated tokens
y<t = [y1, y2, . . . , yt−1]. This conditioning yields a refined probability distribution over
the token classes, expressed as follows

P
(
y
∣∣∣x) =

Ty∏
t=1

P
(
yt

∣∣∣y<t,x
)
. (2.2)

Beam search is commonly used to find the most likely transcription. For the first step, it
starts the output sequence with the initial start-of-sequence token. At each subsequent
decoding step, all possible one-token continuations of the current hypotheses are scored
based on the following equation,

P
(
y<t+1

∣∣∣x) = P
(
y<t

∣∣∣x) · P(
yt

∣∣∣y<t,x
)
, (2.3)

where y<t is the current partial sequence and yt is one of the next possible tokens.
After scoring, the algorithm selects the top-k hypotheses based on their scores, where
k is the beam width. A larger beam width allows for more exploration but increases
computational complexity. The process repeats until either the end-of-sequence token is
generated or a maximum sequence length is reached. The hypothesis with the highest
overall score is then selected as the final output sequence.
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2.1 Automatic speech recognition

To improve transcription accuracy, ASR decoders often incorporate a language model
to rerank the final top-k output sequences at the end of the beam search procedure.
Language models can assess the likelihood of the next token based on the preceding ones,
denoted as PLM(yt

∣∣∣y<t), so that the rescoring is computed as,

P
(
y
∣∣∣x) =

Ty∏
t=1

P
(
yt

∣∣∣y<t,x
)
· PLM

(
yt

∣∣∣y<t

)
. (2.4)

During training with RNN or Transformer-based ASR decoders, the scores P
(
yt

∣∣∣y<t,x
)

are compared against the ground truth labels for each token yt in the sequence using
Cross-Entropy (CE) loss. Both predicted and ground truth sequences are often padded to
a maximum length, so that all sequences in a mini-batch have the same length. During
the loss computation, a mask is applied to ignore padded elements, comparing only the
valid tokens up to the length of the shorter sequence.

CTC decoding

As introduced by Graves, Fernández, et al. (2006), a CTC decoder receives probabilities
from the encoder’s softmax output layer, with one more unit as there are token classes,
typically representing phonemes or subwords. This additional unit is referred to as the
blank token, and corresponds the probability of observing no particular class at any given
time step. The encoder’s output can then be interpreted as the alignment probabilities of
all possible token sequences with the encoder’s input sequence.

The mapping B applied to a sequence is defined as removing all blanks and condensing
repeated tokens into single occurrences. The probability of a particular token sequence
y = [y1, y2, . . . , yTy ] is then computed by summing over all possible alignments y′ that
include blanks and repeated tokens, which can be reduced to the same final sequence,
i.e., B(y′) = y.

P (y |x) =
∑

B(y′)=y

P (y′|x) . (2.5)

The CTC decoded token sequence is therefore conditioned to be at most as long as the
encoder’s output sequence, Ty ≤ Tx. A differentiable forward-backward algorithm is
used to efficiently compute P (y |x) from the encoder’s outputs without any additional
trainable parameter. These probabilities can then be used to define a loss function that
maximises the likelihood of the ground truth sequence given the input.

At inference time, beam search can be applied to decode the CTC probabilities P (y |x)
into the most likely token sequences.
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2.1.2 Keyword spotting

Keyword Spotting (KWS) is a specialised area of speech recognition technology focused
on detecting specific, predefined words or phrases within an audio stream. Unlike general
ASR systems, which aim to transcribe entire spoken passages, KWS systems are inherently
simpler as they only listen for and identify a finite set of target words or phrases. Similar
to ASR systems, a typical KWS architecture also involves feature extraction and encoding.
However, instead of using a sequence-to-sequence decoder, the encoder outputs in KWS
are directly mapped to keyword probabilities.

2.1.3 Evaluation metric

The performance of an ASR system is most commonly evaluated using the Word Error
Rate (WER) metric, which is calculated by comparing the ASR system’s output with
reference transcripts from the testing split of the dataset. It is defined as follows:

WER =
Substitutions + Deletions + Insertions

Number of words in reference transcription
(2.6)

WER provides a clear, quantitative measure to compare different ASR systems or models.
Note that for KWS, it is more common to report accuracy rather than error rate. Accuracy
is defined as,

Accuracy =
Correctly predicted keywords

Total number of keyword predictions
. (2.7)

Credible intervals on error rates

When testing an ASR or KWS model, the error rate corresponds to the fraction of words
or phonemes that were incorrectly predicted by the model. The number of successes in
such an experiment with binary outcomes can be modelled as a binomial distribution. For
trivial priors, the posterior of the binomial distribution is beta distributed. Throughout
the thesis, we will use the equal-tailed 95% credible intervals on the posterior distribution
to compute error bars for the reported error rates.

2.1.4 Frameworks

In this thesis, we trained and evaluated ASR models using the pytorch-kaldi toolkit
(Ravanelli, Parcollet, and Bengio, 2019), before updating to SpeechBrain (Ravanelli,
Parcollet, Plantinga, et al., 2021). Both are open-source PyTorch-based (Paszke, Gross,
Massa, et al., 2019) toolkits. For keyword spotting, we wrote our own framework,
released at https://github.com/idiap/sparch.
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2.2 Hidden Markov models

2.2.1 Discrete Markov chains

A discrete Markov chain is a stochastic model that defines the evolution of a system
over discrete time steps {ht |t = 1, 2, . . . , T}. At each step, the system occupies one of
H distinct states, i.e., ht ∈ {ϕ1, ϕ2, . . . , ϕH}. For a n-th order Markov chain, the Markov
property states that the current state of the system, ht, depends only on a fixed number
of previous states, ht−1, ht−2, . . . , ht−n.

In a first-order Markov chain, the current state ht only depends upon the preceding
state ht−1, so that the joint probability of a particular sequence of T random variables
H = [h1, h2, . . . , hT ] can be computed as,

P (H) = P (h1)
T∏
t=2

P (ht|ht−1) . (2.8)

The evolution of the system is then fully described by the initial state distribution vector
a ∈ [0, 1]H representing the initial state probability of the Markov chain P (h1),

a =
[
P (h1 = ϕ1), P (h1 = ϕ2), . . . , P (h1 = ϕH)

]
with

H∑
i=1

ai = 1 , (2.9)

and the transition probabilities matrix A ∈ [0, 1]H×H to evaluate P (ht|ht−1),

Aij = P
(
ht = ϕj

∣∣∣ht−1 = ϕi

)
with

H∑
j=1

Aij = 1 ∀i ∈ {1, 2, . . . ,H} . (2.10)

2.2.2 Application to speech recognition

HMMs are typically based on first-order Markov chains and have long been employed on
speech processing tasks (Rabiner, 1989). By defining an autoregressive process, HMMs
are effective at capturing the sequential dependencies inherent in speech data, where
each observation is influenced by its preceding context.

In these models, speech is represented as a series of observations [x1,x2, . . . ,xT ] ∈ RT×F ,
where xt denotes a speech feature vector of size F at time t. An HMM assumes that these
observations are generated by a sequence of underlying hidden states {ht |t = 1, 2, . . . , T}
that follow a first-order Markov chain but are not directly observable.

Each hidden state ht = ϕi must therefore be associated with an additional emission
probability distribution bi(xt) = P (xt|ht = ϕi) which determines the likelihood of
emitting a particular observation given the current hidden state.
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An HMM is then fully parameterised by the initial state distribution vector a, the transition
probabilities matrix A and the set of emission probability distributions B(xt),

B(xt) =
[
b1(xt), b2(xt), . . . , bH(xt)

]
. (2.11)

HMM-based acoustic model

In HMM-based acoustic models, each phonetic unit is typically represented by a three-
state HMM. This structure captures the statistical properties of the acoustic features
corresponding to a particular phoneme. The three states represent different phases of
the phoneme: the beginning (transition from the previous phoneme), the middle (stable,
central portion of the phoneme), and the end (transition to the next phoneme). This
model is trained to output P (phonetic units|acoustic observations) using labeled acoustic
data where the phonetic units are known.

The training process involves estimating the HMM parameters to best represent the
observed acoustic features for each phoneme. To estimate the parameters of an HMM
(i.e., a, A and B), the Baum-Welch algorithm (Baum and Petrie, 1966; Baum, Petrie, et al.,
1970; Baum et al., 1972; Bahl, Jelinek, and Mercer, 1983) is typically employed. This
algorithm is a special application of the expectation-maximisation algorithm (Dempster,
Laird, and Rubin, 1977) for HMMs. During the expectation step, the forward-backward
algorithm (Chang and Hancock, 1966; Rabiner, 1989) is used to compute the expected
values of the hidden state sequences given the current parameter estimates. In the subse-
quent maximisation step, the HMM parameters are updated to maximise the expected
likelihood obtained in the expectation step. The algorithm then iteratively alternates
between these two steps until either convergence or a maximum number of iterations is
reached.

HMM-based decoding

HMM-based decoding aims to find the most likely sequence of words from a given
sequence of acoustic features. The decoding starts by using the HMM-based acoustic
model to identify the top-k most likely phoneme sequences based on the acoustic inputs.
These phoneme sequences are then mapped to sequences of linguistic units – such as
words, triphones or syllables – using a fixed pronunciation dictionary. Finally, a language
model evaluates the likelihood of these potential sequences of linguistic units. Throughout
this overall decoding process, the Viterbi algorithm (Viterbi, 1967; Rabiner, 1989) plays a
crucial role in efficiently searching through the possible phoneme sequences to determine
the one that maximises the likelihood of the resulting sequence of linguistic units.

16



2.3 Artificial neural networks

2.3 Artificial neural networks

The vast majority of neural networks used in modern machine learning tasks are organised
in layers of artificial neurons from the second generation as defined by Maass (1997),
and trained via SGD. Here we are interested in networks that can process sequential
inputs, in particular speech. Starting from some input tensor x ∈ RB×T×N0

with batch
size B, length T and number of features N0, an ANN processes the information layer by
layer, so that the l-th layer outputs a tensor yl ∈ RB×T×N l

, where N l is the number of
neurons in the layer. The outputs yL from the last layer represent predictions that are
evaluated using a loss function,

L = D
(
yL − ydesired

)
(2.12)

where D(·) evaluates some cost associated with prediction errors from the current mini-
batch that we intend to minimise. All trainable parameters θ inside the ANN architecture
can be updated according to the gradient of the loss with respect to them,

θ → θ − λ∇θL , (2.13)

where λ > 0 is some learning rate. The model iteratively learns to make better predictions
by looping over mini-batches of training data. In each iteration, the loss is computed and
the parameters updated accordingly. After a complete pass over the training data, the
model is typically tested on some validation split of the data which it never trains on.
The procedure repeats until sufficient convergence is reached, and the model is finally
evaluated on some remaining testing split of the data.

To compute gradients efficiently, the backpropagation algorithm (Rumelhart, Hinton,
and Williams, 1986) traverses the network in reverse order, leveraging the chain rule of
derivatives to reuse relevant partial derivatives from earlier layers. In the PyTorch deep
learning framework (Paszke, Gross, Massa, et al., 2019) employed throughout this thesis,
a computational graph is dynamically constructed during each forward pass, enabling
automatic differentiation (Paszke, Gross, Chintala, et al., 2017) without the need to
explicitly implement the backward pass.

2.3.1 Multilayer perceptrons

A Multilayer Perceptron (MLP) refers to a feedforward ANN where each neuron in a layer
is fully connected to all neurons in the subsequent layer. Using feedforward weights
W l ∈ RN l−1×N l

and bias bl ∈ RN l
, the l-th layer performs a linear combination of inputs

yl−1 from the previous layer,
I l = W l yl−1 + bl (2.14)
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before applying a nonlinear activation function g(·),

yl = g
(
I l
)
. (2.15)

Using a sigmoid activation function g(x) =
(
1 + e−x

)−1
for instance, the neuron output

y ∈ [0, 1] can be interpreted as the firing rate of a biological spiking neuron over some
arbitrary period of time.

This form of ANN processes all time steps at once without maintaining any memory of
previous inputs. This means that MLPs are incapable of considering temporal depen-
dencies or contextual information across different time steps. MLPs are therefore often
combined with other modules that can deal with context dependencies, or reserved for
tasks that require processing independent data points with no temporal dependency.

2.3.2 Convolutional neural networks

In the wider deep-learning field, modelling context is crucial. Analogous to finite impulse
response filters, CNNs apply fixed length kernels that slide along the temporal dimension
of the input to capture local patterns.

Convolution and cross-correlation operations

Convolution is a mathematical operation on two functions f , g that produces a third
function (f ∗ g) expressing how the shape of one is modified by the other. It is defined as,

(f ∗ g)(t) :=
∫ ∞

0
f(t′) g(t− t′)dt′ (2.16)

for a continuous variable t ∈ [0,∞) and as,

(f ∗ g)[n] :=
N−1∑
m=0

f [m] g[n−m] (2.17)

for a discrete variable n ∈ {0, 1, . . . , N−1}. The cross-correlation operation ⋆ is similar to
the convolution operation ∗ for real-valued functions of continuous or discrete variables,

f(t) ⋆ g(t) = f(−t) ∗ g(t) =
∫ ∞

0
f(t′) g(t+ t′)dt′ , (2.18)

except in contrast to convolution, f(t) and g(t) are compared without reversing the order
of one of them.
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Single channel, one-dimensional convolution

In the context of neural networks, a single trainable filter or kernel WK ∈ RKt with size
Kt can directly be applied to some discrete input sequence x ∈ RT by sliding the filter
over the input data and computing the dot product between the filter and the overlapping
region of the input,

(WK ⋆ x)[t] =

Kt−1∑
k=0

WK [k] · x[t+ k] , (2.19)

where t ∈ {0, 1, . . . , T − 1}. Cross-correlation is typically used instead of convolution to
simplify the implementation by not requiring to flip the trainable filter.

Single channel, two-dimensional convolution

During speech processing, two-dimensional convolution is often preferred, so that for
a two-dimensional input x ∈ RT×N , the trainable filter WK ∈ RKt×Kf slides over both
temporal and feature dimensions,

(WK ⋆ x)[t, j] =

Kt−1∑
k=0

Kf−1∑
m=0

WK [k,m] · x[t+ k, j +m] . (2.20)

Multi-channel, two-dimensional convolution

Now if input x ∈ RT×N×Cin has an additional channel dimension of size Cin, we can have
a trainable filter WK with size Kt×Kf ×Cin×Cout. For time step t, feature n and output
channel c ∈ {0, 1, . . . , Cout − 1}, we now have,

(WK ⋆ x)[t, j, c] =

Kt−1∑
k=0

Kf−1∑
m=0

Cin−1∑
c′=0

WK [k,m, c′, c] · x[t+ k, j +m, c′] , (2.21)

where an output channel is produced by summing the convolved results across all input
channels. These operations can be efficiently computed on GPUs by leveraging highly
optimised operations for matrix multiplication and convolution.

Convolutional layer

In a CNN, the l-th convolutional layer applies a trainable kernel or filter W l
K to the input

yl−1 from the previous layer,
I l = W l

K ⋆ yl−1 + bl , (2.22)

where bl is the trainable bias. This operation reduces the temporal and feature dimensions
from T l−1 to T l and from N l−1 to N l respectively. The new dimensions depend on
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the kernel sizes {Kt,Kf} along the temporal and feature dimensions, as well as the
corresponding amounts of padding {Pt, Pf} and stride {St, Sf},

T l =

⌊
T l−1 + 2Pt −Kt

St
+ 1

⌋
and N l =

⌊
N l−1 + 2Pf −Kf

Sf
+ 1

⌋
(2.23)

where ⌊·⌋ is the floor function. Similar to the MLP presented in Section 2.3.1, a nonlinear
activation such as the Rectified Linear Unit (ReLU) is then applied to I l as in Eq. (2.15).
The main difference between MLPs and CNNs therefore lies in the matrix operation they
apply to the input. In a convolutional layer, the same trainable filter is applied across
different parts of the input. This form of weight sharing allows convolutional layers to
require fewer parameters compared to fully connected layers, especially for large inputs
like images. Additionally, the resulting translation invariance enables the network to
detect features regardless of their position in the input.

2.3.3 Recurrent neural networks

While CNNs excel at capturing local dependencies through the use of finite impulse
response filters, signal processing often favours recurrence for processes that are un-
derstood to be autoregressive, the analogy being to infinite impulse response filters. A
pertinent example is in ASR, where RNNs have played a crucial and foundational role,
remaining key in the development and understanding of ASR systems.

Feedback mechanism

The distinctive feature of RNNs lies in their utilisation of feedback connections. In
addition to a linear combination of outputs yl−1

t ∈ RN l−1
from the previous layer l − 1 at

the current time step t, an RNN layer receives a linear combination of its own outputs
ylt−1 ∈ RN l

from the previous time step t − 1. Unlike MLPs which process time steps
independently, recurrent connections enable RNNs to capture temporal dependencies in
sequential data.

Standard non-gated RNNs

Mathematically, the overall stimulus of neurons in the l-th layer can be expressed in
vectorised form as,

I lt = W l yl−1
t + V l ylt−1 + bl , (2.24)

where W l ∈ RN l−1×N l
and V l ∈ RN l×N l

represent the trainable feedforward and recur-
rent weight matrices respectively, while bl ∈ RN l

is a trainable bias vector. Due to the
feedback on outputs from the previous time step ylt−1, a recurrent layer cannot directly
parallelise its computations over the time dimension, which typically leads to longer
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training time compared to MLPs and CNNs.

Standard non-gated RNNs simply follow Eq. (2.24) with an activation function similar
to Eq. (2.15). Nevertheless, this basic form of RNNs has been observed to encounter
difficulties with long-term dependencies due to problems like vanishing and exploding
gradients during training (Bengio, Simard, and Frasconi, 1994). To overcome these
challenges, more advanced RNN architectures were defined to incorporate gating mech-
anisms, designed to regulate the flow of information through the network. On top of
Eq. (2.24), each added gate employs its own unique feedforward and recurrent weights,
thereby increasing the total number of trainable parameters.

Gated RNNs

The most successful recurrent architectures are based on the Long Short-Term Memory
(LSTM), defined by Hochreither and Schmidhuber (1997), with a memory cell and
input and output gates to filter out irrelevant information and tackle vanishing and
exploding gradient problems. An additional forget gate and peephole connections were
subsequently added by Gers, Schmidhuber, and Cummins (2000) and Gers, Schraudolph,
and Schmidhuber (2002). A simplification of the unit then resulted into the Gated
Recurrent Unit (GRU) by Cho et al. (2014), where the input and forget gate were
combined into a single update gate, and the output gate was changed to a reset gate
that acts on the feedback inside the cell state. Further efforts to reduce the size of
recurrent units were pursued by Zhou et al. (2016) with the minimally gated unit, where
a single gate is used twice as the update and reset gates of the GRU. In the same spirit
of getting rid of redundancies, Ravanelli, Brakel, et al. (2017) and Ravanelli, Bordes,
and Bengio (2018) proposed an alternative simplification of the GRU called Li-GRU by
removing the reset gate altogether. The Li-GRU notably outperformed the GRU and
LSTM on several ASR tasks (Ravanelli, Bordes, and Bengio, 2018), where it represents a
parameter-efficient alternative to LSTMs and GRUs.

A Li-GRU layer with input x and output y can be implemented as,

ỹt = ReLU
(
W xt + V yt−1 + b

)
(2.25a)

zt = sigmoid
(
Wz xt + Vz yt−1 + bz

)
(2.25b)

yt = zt ⊙ yt−1 +
(
1− zt

)
⊙ ỹt . (2.25c)

Here ỹt ∈ [0,∞) represents a candidate output state and is computed by applying a ReLU
to the standard RNN update equation from Eq. (2.24). On the other hand, zt is a gate
with values in (0, 1) which defines the weighted combination of the previous output yt−1

with the current candidate output state ỹt using the element-wise product ⊙.
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Bidirectional RNNs

As defined by Schuster and Paliwal (1997) and similar to Graves, Jaitly, and Mohamed
(2013), PyTorch implements bidirectionality in all its RNN types (RNN, GRU and LSTM)
by essentially running two separate RNNs for each layer: one to process the input
sequence in the forward direction, and the other to process it in the backward direction.
The outputs of these two RNNs are then concatenated at each time step to form the final
output.

As notably used in pytorch-kaldi (Ravanelli, Parcollet, and Bengio, 2019) for the Li-GRU
implementation, bidirectionality can also be made more parameter-efficient by sharing
weights when processing forward and backward directions. In this approach, the input to
an RNN layer is duplicated, flipped and concatenated on the batch dimension so that the
forward pass processes both forward and backward sequences in parallel using the same
weights. The layer outputs for the forward and backward directions are then split, the
backward part flipped, and concatenated on the feature dimension, doubling the number
of features sent to the next layer. With this method, instead of doubling the number of
parameters, the first layer does not require additional parameters and subsequent layers
only double their feedforward matrix and not the recurrent one.

2.3.4 Attention-based networks

Instead of processing sequences in a step-by-step fashion like RNNs, the attention mecha-
nism enables networks to perform parallelisable matrix multiplications over the sequence
dimension, thereby fully exploiting GPU capabilities. This approach gave rise to the
transformer architecture, which quickly became state-of-the-art across a wide range of
tasks including speech recognition. Here, we provide a brief overview of core concepts
and their relation to RNNs.

Self Attention

For self-attention, three feedforward weight matrices WQ, WK and WV ∈ RN×N are
applied to the input tensor x ∈ RB×T×N over its feature dimension of size N ,

yQ = WQ x , yK = WK x and yV = WV x . (2.26)

The feature dimension of the resulting queries yQ, keys yK and values yV can be split
into two dimensions, N = NH ·H, where NH represents the number of attention heads
and H the number of features per head. We reshape these tensors to B ×NH × T ×H.
The computations in the attention mechanism are parallelised over the batch and head
dimensions, similar to broadcasting in Python, where operations are applied element-wise
across specified dimensions without explicit loops. The dimensions of interest in the
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attention computations are therefore the sequence and feature dimensions.

For each query time step t = 1, 2, . . . , T , the query vector of features yQ[b, h, t, :] ∈ RH

is compared with all t′ = 1, 2, . . . , T key vectors yK [b, h, t′, :] ∈ RH in the sequence. The
t-th query vector is compared with the t′-th key vector via a dot-product over the feature
dimension,

yQ[b, h, t, :] · yK [b, h, t′, :] =
H∑

n=1

yQ[b, h, t, n] yK [b, h, t′, n] , (2.27)

which produces a single value for each comparison. The attention scores then correspond
to the scaled dot-product between yQ ∈ RB×NH×T×H and y⊺K ∈ RB×NH×H×T ,

yQ · y⊺K√
H
∈ RB×NH×T×T , (2.28)

so that for each mini-batch element b and attention head h, a T × T score matrix
represents the relationships between time steps. Because that matrix does not need to
be symmetric, how time step t is related to t′ can be different to how t′ is related to t.
Taking the softmax of the score matrix produces the attention weights A ∈ RB×NH×T×T ,

A = softmax
(
yQ · y⊺K√

H

)
, (2.29)

which sum to one over the last sequence dimension. These attention weights are finally
applied to the value tensor yV across its sequence dimension, which outputs a tensor
with shape B ×NH × T ×H that can be reshaped back to B × T ×N to match the input
tensor x. Overall the self-attention operation,

SelfAttention(x) = softmax
(
(WQ x) · (WK x)⊺√

H

)
· (WV x) , (2.30)

does not affect the shape of the input tensor x, enabling the use of residual connections
(He et al., 2016). A transformer (Vaswani et al., 2017) layer T l(x) then combines
self-attention with a feedforward module, typically a two-layered MLP. Using layer
normalisation (Ba, Kiros, and Hinton, 2016) and residual connections (He et al., 2016),
it can be defined as,

y = LayerNorm
(

SelfAttention(x) + x
)

(2.31a)

T l(x) = LayerNorm
(

MLP(y) + y
)
. (2.31b)

Reducing the quadratic complexity

Despite its remarkable performance, self-attention has computational and memory re-
quirements that scale quadratically O(T 2) with the sequence length T , limiting its
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applicability to long sequences. Several approaches have managed to reduce the com-
plexity of transformers to O(T ), reducing memory usage and enabling faster inference
on autoregressive tasks. The Performer (Choromanski et al., 2020) approximates the
attention mechanism via positive orthogonal random features. The Linformer (Wang, Li,
et al., 2020) projects the n-dimensional sequence into a lower k-dimensional space where
k ≪ n. The Longformer (Beltagy, Peters, and Cohan, 2020) combines local windowed
attention with global attention, restricting most computations to a local context. Finally,
Katharopoulos et al. (2020) replaced the traditional softmax attention with a feature
map based dot product attention.

Relation to RNNs

The work of Katharopoulos et al. (2020) is particularly relevant as it directly links
transformers to RNNs. In particular, they show that a transformer with causal masking
can be formulated as an RNN with two hidden states st and zt,

st = st−1 + ϕ(WK xt)ϕ(WV xt)
⊺ (2.32a)

zt = zt−1 + ϕ(WK xt) (2.32b)

yt = LayerNorm
(
ϕ(WQ xt)

⊺ st
ϕ(WQ xt)⊺ zt

+ xt

)
(2.32c)

T l(xt) = LayerNorm
(

MLP(yt) + yt

)
. (2.32d)

Here ϕ(·) is a feature map that results in a positive similarity function sim(x, y) =

ϕ(x)ϕ(y)⊺. In their paper, they use

ϕ(x) = elu(x) + 1 , (2.33)

where elu(x) is the exponential linear unit (Clevert, Unterthiner, and Hochreiter, 2015).

2.3.5 State space models

In the same spirit of leveraging parallelisable computations during training while enabling
fast inference on autoregressive tasks, several State Space Model (SSM) approaches (Gu,
Goel, and Ré, 2021; Gupta, Gu, and Berant, 2022; Gu, Goel, Gupta, et al., 2022; Smith,
Warrington, and Linderman, 2022) have proven to be viable alternatives to transformers
for handling long-range dependencies. These models have also been successfully applied
to speech recognition and synthesis tasks (Miyazaki, Murata, and Koriyama, 2023; Saon,
Gupta, and Cui, 2023; Shan et al., 2024). We give here a brief overview of their
mechanism as they can be seen as a subclass of RNNs.
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A continuous-time SSM is described by the following differential equation,

dh

dt
(t) = Ah(t) +B x(t) , y(t) = C h(t) . (2.34)

Here, an input signal x(t) ∈ R gets mapped to a hidden state representation h(t) ∈ RN×1

via matrix A ∈ RN×N and vector B ∈ RN×1, before being projected to an output signal
y(t) ∈ R with C ∈ R1×N . Assuming that the value of x(t) remains constant over the
duration of a single time step ∆t, we obtain a discrete time representation where the
mapping between input x = [x0, x1, . . . , xT−1] ∈ RT and output y = [y0, y1, . . . , yT−1] ∈
RT occurs via recurrence,

ht = Ā ht−1 + B̄ xt , yt = C ht . (2.35)

Here Ā = exp(A∆t) and B̄ = (Ā − I)A−1B are the discrete time versions of the
continuous-time parameters A and B. Assuming x−1 = 0, unrolling the recurrence over
time yields,

yt =

t∑
n=0

CĀnB̄ · xt−n =

t∑
n=0

K̄n · xt−n , (2.36)

where we define the SSM kernel K̄ ∈ RT as,

K̄ = (CB̄,CĀB̄, . . . , CĀT−1B̄) . (2.37)

The kernel can also be written using the continuous-time parameters as,

K̄ =
(
C eA·t·∆t(eA·∆t − I)A−1B

)
0≤t<T

. (2.38)

Once the SSM kernel K̄ is known, then y can be computed in parallel via discrete
convolution,

y = K̄ ∗ x . (2.39)

To achieve this, different approaches (Gu, Goel, and Ré, 2021; Gupta, Gu, and Berant,
2022) assume particular structures of the underlying state space, leading to parametrisa-
tions where K̄ is easier to compute. The SSM can then use the convolution formulation
of Eq. (2.39) to speed up training and switch to the recurrent formulation of Eq. (2.36)
during inference to enable autoregressive decoding.
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2.4 Databases

2.4.1 TIMIT

The TIMIT dataset (Garofolo et al., 1993) provides a comprehensive and widely utilised
collection of phonetically balanced American English speech recordings from 630 speakers
with detailed phonetic transcriptions and word alignments. It represents a standardised
benchmark for evaluating ASR model performance. The training, validation and test sets
contain 3,696, 400 and 192 sentences respectively. Utterance durations vary between 0.9
to 7.8 seconds. The TIMIT dataset, along with relevant access information, can be found
on the Linguistic Data Consortium website at https://catalog.ldc.upenn.edu/LDC93S1.

2.4.2 AMI

The AMI (Carletta et al., 2005) corpus consists of 100 hours of multi-modal meeting
recordings. The meetings, primarily involving non-native speakers, were recorded in
English across three rooms with varying acoustic properties. Because of its conversational
style and the frequent overlap and interruptions between speakers, the AMI corpus
presents a significant challenge for ASR tasks. We use the training, validation and testing
splits of the Full-corpus-ASR defined in http://groups.inf.ed.ac.uk/ami/corpus/datasets.
shtml where training data represents about 81 hours. The dataset is available open-access
at https://groups.inf.ed.ac.uk/ami/corpus/.

2.4.3 LibriSpeech

The LibriSpeech (Panayotov et al., 2015) corpus contains about 1,000 hours of English
speech audiobook data read by over 2,400 speakers with utterance durations between
0.8 and 35 seconds. There are two testing splits of the dataset: the test-clean set which
represents 2,620 sentences for a total of 52,576 words, and the test-other set which
corresponds to more challenging data and includes 2,939 sentences for a total of 52,343
words. The dataset is freely available at https://www.openslr.org/12.

2.4.4 Google Speech Commands

The Google Speech Commands dataset (Warden, 2018) contains one-second audio
recordings of 35 spoken commands such as "yes," "no," "stop," "go," "left," "right" "up". The
training, validation and testing splits contain approximately 85k, 10k and 5k examples
respectively. It is available open-access at https://www.tensorflow.org/datasets/catalog/
speech_commands.
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2.4 Databases

2.4.5 Spiking Speech Commands Datasets

In order to rectify the absence of free spike-based benchmark datasets, Cramer et al.
(2020) recently released two spiking datasets for speech command recognition using
LAUSCHER, available at https://compneuro.net/datasets/.

Spiking Heidelberg Digits

The Spiking Heidelberg Digits (SHD) dataset contains spoken digits from 0 to 9 in both
English and German (20 classes). The recordings are from twelve different speakers, two
of which are only present in the test set. The train set contains 8,332 examples and the
test set 2,088 (there is no validation set).

Spiking Speech Commands

The Spiking Speech Commands (SSC) dataset is based on the Google Speech Commands
v0.2 dataset and contains 35 classes from a larger number of speakers. The number of
examples in the train, validation and test splits are 75,466, 9,981 and 20,382 respectively.
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3 Bayesian Recurrent Units

In machine learning, recurrent neural networks represent a fundamental
type of architecture to address sequential data processing tasks such as
speech recognition. They are characterised by feedback loops analogous
to infinite impulse response filters, which distinguishes them from tra-
ditional feedforward neural networks, and enables them to retain and
utilise information from previous steps. In this chapter we adopt a sta-
tistically rigorous approach to describe recurrence in neural networks.
Our Bayesian derivation yields two novel and interpretable types of recur-
rent units. While the contributions are mostly theoretical, our resulting
lightweight models give competitive results on speech recognition tasks.

Publication Note

The material presented in this chapter is adapted from the following publications.

• A. Bittar and P. N. Garner (2021). “A Bayesian Interpretation of the Light
Gated Recurrent Unit”. In: IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp. 2965–2969. DOI: 10.1109/
ICASSP39728.2021.9414259

• A. Bittar and P. N. Garner (2022b). “Bayesian Recurrent Units and the
Forward-Backward Algorithm”. In: Proc. Interspeech 2022, pp. 4137–4141.
DOI: 10.21437/Interspeech.2022-11035

The underlying code has been released and is openly accessible on GitHub at
https://github.com/idiap/bayesian-recurrence
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Chapter 3. Bayesian Recurrent Units

3.1 Introduction

Recurrent models have widely been employed in signal processing and statistical pattern
recognition, notably in the form of Kalman’s state space filter (Kalman, 1960; Scharf
and Demeure, 1991) and HMMs (Baum and Petrie, 1966; Baum and Eagon, 1967;
Baum, Petrie, et al., 1970; Bahl, Jelinek, and Mercer, 1983). Both approaches use
a forward-backward training procedure to make a statistical estimation of the model
parameters.

With the current success of machine learning techniques, speech recognition architectures
can be trained in an end-to-end fashion, by exploiting auto-differentiation inside deep
learning frameworks like PyTorch (Paszke, Gross, Chintala, et al., 2017). Here, recurrence
is also an important concept and RNNs are commonly trained via the Backpropagation
Through Time (BPTT) algorithm (Rumelhart and McClelland, 1986; Williams and Zipser,
1989), which is a generalisation of gradient descent to process sequential data. During
the forward pass, a mini-batch of input examples is passed through the network, and a
loss function is applied to the final outputs. During the subsequent backward computation
of derivatives, the network trainable parameters are updated to minimise the loss.

Similarities between HMMs and RNNs have long been observed. Bourlard and Wellekens
(1990) have shown that the outputs of RNNs approximate the maximum a posteriori
output probabilities of HMMs trained via the Viterbi algorithm (Forney, 1973). Bridle
(1990a) also showed that the alpha part of the forward-backward algorithm can be
simulated by a recurrent network, and that the beta part bears similarities with the
backward computation of derivatives in the training of neural networks. Bidirectional
RNNs were subsequently defined by Schuster and Paliwal (1997) to explicitly allow
networks to take into account future observations. This approach was later applied
to gated RNNs (Graves and Schmidhuber, 2005) and is now the standard approach
for LSTMs (Hochreither and Schmidhuber, 1997), GRUs (Cho et al., 2014) and Li-
GRUs (Ravanelli, Bordes, and Bengio, 2018). As detailed in Section 2.3.3, bidirectional
recurrent layers significantly increase the amount of trainable parameters compared to
the unidirectional case.

MLPs have long been shown to have probabilistic interpretations (Bridle, 1990b; Neal,
2012). Recently, Garner and Tong (2021) have used a Bayesian interpretation of gated
RNNs to derive a recurrent unit architecture similar to the GRU. By including a backward
recursion through the input sequences, their probabilistic approach, analogous to a
Kalman smoother, allows the consideration of future observations without requiring any
additional trainable parameters. Their work also shed some light on the seemingly ad-hoc
concepts of gates and memory cells inside commonly used recurrent units. In this chapter,
we adopt a similar Bayesian approach, treating the input as a sequence of observations
and interpreting the unit outputs as the probabilities of hidden features being present
at each time step. Recurrence emerges naturally from Bayes’s theorem which updates a
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prior probability into a posterior given new observational data.

In a first part, we summarise previous work (Garner and Tong, 2021) showing that
the basic sigmoid activation function arises as an instance of Bayes’s theorem, and that
recurrence follows from the Bayesian prior. Assuming interdependent hidden features,
we derive a layer-wise recurrence without the approximations of previous work, and
show that it leads to a standard non-gated recurrent unit with modest modifications to
reflect the use of log-probabilities. After adding an update gate, the resulting architecture
closely resembles the Li-GRU, a lightweight alternative to LSTMs and GRUs that we
presented in Section 2.3.3. Although the contribution is mainly theoretical, we show
that our derived unit outperforms these standard recurrent units on the TIMIT (Garofolo
et al., 1993) and AMI (Carletta et al., 2005) ASR datasets.

In a second part, we come back to the simpler case of unit-wise recurrence without a
gate. By assuming a latent space of independent hidden features, our derivation using
transition probabilities yields a Bayesian recurrent unit equivalent to a first-order two-
state HMM. Similar to the Kalman smoother (Kalman, 1960) and forward-backward
algorithm (Baum et al., 1972), we derive two backward recursions and prove their
equivalence. The resulting lightweight recurrent unit can be trained via gradient descent
like an RNN, and the backward recursion enables the consideration of future observations
without additional parameters. While this contribution is again mostly theoretical, we
show that the derived unit has practical value for ASR, as it can replace significantly
larger bidirectional gated RNNs without any loss of performance.

More generally, by aiming to develop the growing toolkit of Bayesian techniques appli-
cable to deep learning, the work presented in this chapter contributes novel theoretical
insights into the understanding of recurrent processes in neural networks. Additionally,
by demonstrating the effectiveness of the resulting parameter-efficient recurrent units in
ASR tasks, we highlight the practical advantages of a probabilistic derivation.
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3.2 A Bayesian Interpretation of the Light Gated Recurrent
Unit

This first part stems from our attempts to remove some of the approximations by Garner
and Tong, 2021, in particular regarding the layerwise feedback. We show that

1. A probabilistic layerwise feedback can be introduced via a sigmoid unit. Without a
forget mechanism, it reduces to the common fully-connected approach.

2. The natural feedback domain is log-probability, leading naturally to the softplus
activation function.

The resulting architecture is very close to the Li-GRU described in Section 2.3.3, but with
a valid probabilistic formulation. We hence add an update gate, yielding a Light Bayesian
Recurrent Unit (Li-BRU) which forms a basis for evaluation in terms of architecture and
number of trainable parameters. While we intend the main contribution to be theoretical,
augmenting the evolving toolkit of Bayesian components in deep learning, a modest
evaluation shows that the resulting collection of modifications outperforms Li-GRUs,
GRUs and LSTMs on ASR tasks.

3.2.1 Bayesian interpretation of recurrence

Consider an input sequence XT = [x1, . . . ,xT ] ∈ RF×T of length T , where each ob-
servation xt is a vector with F input dimensions. We assume that there are H hidden
features {ϕi |i = 1, . . . ,H} that we wish to detect along the sequence. At each time
step t, a feature has two possible states: present or absent, that we write as ϕt,i and
¬ϕt,i respectively. Using a Bayesian approach, we want to build a layer of H recurrent
units that will output the stacked probabilities ht := P (ϕt|Xt) ∈ [0, 1]H of the different
features being present at each time step t = 1, . . . , T . Let us start with the Bayesian
update formula

P (ϕt,i|Xt) =
p(xt|ϕt,i)P (ϕt,i|Xt−1)∑
ϕ
′
t,i
p(xt|ϕ

′
t,i)P (ϕ

′
t,i|Xt−1)

, (3.1)

that we can rewrite as,

ht,i =
1

1 +
p(xt|¬ϕt,i)

p(xt|ϕt,i)
· P (¬ϕt,i|Xt−1)

P (ϕt,i|Xt−1)

(3.2)

for the two-class case, where the posterior representing the desired unit output ht,i is
expressed as a function of the ratio of likelihood rt,i and prior pt,i, that we define in
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vectorised form for the whole layer as

rt :=
p(xt|ϕt)

p(xt|¬ϕt)
and pt := P (ϕt|Xt−1) . (3.3)

As pointed out by Bridle (1990a) and more recently reiterated by Garner and Tong (2021),
Bayes’s theorem has an explicit relationship with the sigmoid function σ(x) = 1/(1+e−x),
so that equation (3.2) can be rewritten as,

ht = σ

[
log(rt) + logit(pt)

]
, (3.4)

where logit(x) = log
[
x/(1 − x)

]
. As demonstrated by Garner and Tong (2021), if we

assume that the likelihood of observing xt given the current state of the features ϕt can
be represented with multivariate normal distributions that share the same covariance
matrix Σ, i.e. p(xt|ϕt) ∼ N (µ,Σ) and p(xt| ¬ϕt ) ∼ N (ν,Σ), then the ratio of likelihood
can be expressed as

rt = exp

[
W T

r xt + br

]
. (3.5)

where W r ∈ RF×H and br ∈ RH are defined as,

W r =

(
νT − µT

)
Σ−1 (3.6a)

br = −
1

2

(
νT Σ−1 ν + µT Σ−1µ

)
, (3.6b)

In the next subsection, we will derive a novel way of estimating the prior pt, leading to a
layer-wise recurrence without any approximation.

Prior

In the simplest case, where the features are time-independent, i.e. a feature is either
present in the entirety of the sequence or not there at all, the prior probability is simply
given by the one from the previous time step P (ϕt,i|Xt−1) = P (ϕt−1,i|Xt−1) = ht−1,i.

Now let us assume that the features can occur and vanish arbitrarily throughout the
sequence. We can first assume they are independent, which results in a unit-wise feedback,
where the prior probability P (ϕt,i|Xt−1) only depends on P (ϕt−1,i|Xt−1) = ht−1,i.

In the more realistic scenario, where we further assume that there is an interdependence
between the different features, i.e. that some will more naturally occur together than
others, the prior now needs to depend on all P (ϕt−1,j |Xt−1) with j = 1, . . . ,H. Here
we need to combine all H feature probabilities ht−1,j of the layer into a single prior
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probability. Dropping the t− 1 in the index for simplicity, the hi are between 0 and 1; it
is reasonable to assume that they are each independently beta distributed:

p(hi|αi, βi) =
1

B(αi, βi)
hαi−1
i (1− hi)

βi−1

= exp

(
− logB + (αi − 1) log(hi) + (βi − 1) log(1− hi)

)
.

(3.7)

The joint distribution is then,

p(h|α) =
H∏
i=1

p(hi|αi, βi) , (3.8)

where α =
[
α1, . . . , αH , β1, . . . , βH

]T
.

We define one set of parameters α1 that represents the beta-distribution when the features
are present at the next time step: p(ht−1|α1) = p(ht−1|ϕt), and a second one, α2 that
corresponds to the distribution when they are absent: p(ht−1|α2) = p(ht−1|¬ϕt). We
then write

P (ϕt|ht−1) =
p(ht−1|ϕt)P (ϕt)

P (ht−1)

=
1

1 +
p(ht−1|¬ϕt)

p(ht−1|ϕt)

1− P (ϕt)

P (ϕt)

(3.9)

Using equations (3.7) and (3.8), the ratio of likelihood in the denominator of equation
(3.9) can be computed as,

p(ht−1|α2)

p(ht−1|α1)
= exp

[
− V p log(ht−1)− bp

]
(3.10)

where V p := α1 − α2 and bp := logB(α2) − logB(α1). Notice that we have ignored
the log(1 − hi) terms. To do this, we need to make the assumption that all the βi are
equal to 1, or that they are the same for each class (feature presence). The second of
these is similar to the identical covariance in the Gaussian assumption case for the ratio
of likelihood.

The prior P (ϕt) in equation (3.9) represents the probability of having the feature present
at time t even before seeing the previous observation xt−1 or knowing ht−1. This can be
assumed to be some unconditional prior P (ϕ0). By putting equation (3.9) in sigmoid form
like we did with equation (3.4), the constant prior term logit

[
P (ϕ0)

]
can be integrated
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inside bp, and we get this final expression for the layer-wise prior

pt = σ

[
V p log(ht−1) + bp

]
, (3.11)

where we assumed that P (ϕt|Xt−1) = P (ϕt|ht−1).

Resulting Bayesian recurrent unit

With equations (3.5) and (3.11), we now have a probabilistically plausible way of
computing the ratio of likelihood rt and prior pt. By plugging them into equation (3.4),
we can use the relationship between the sigmoid and logit functions,

logit
[
σ(x)

]
= x (3.12)

to get the following update equation,

ht = σ

[
W hxt + V h log(ht−1) + bh

]
, (3.13)

where we redefined the parameters as W h = W r, V h = V p and bh = br + bp. These
parameters are representative of the distributions of xt and ht−1 when the features are
present or absent, and can be treated as trainable parameters of the model.

If we instead choose our units to output log-probabilities, i.e. ht := log
[
P (ϕt|Xt)

]
, we

can then write,

ht = log σ

[
W h xt + V h ht−1 + bh

]
. (3.14)

This actually corresponds to a softplus activation function, softplus(x) = − log
[
σ(−x)

]
,

as described by Dugas et al. (2001), where the sign differences can be integrated inside
the trainable parameters and we write the resulting forward pass as,

ht = softplus
[
W h xt + V h ht−1 + bh

]
. (3.15)

3.2.2 Comparison with RNN equation

The equation (3.13) resulting from this Bayesian approach resembles the following
forward pass of a standard RNN unit,

ht = tanh
[
W h xt + V h ht−1 + bh

]
, (3.16)
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which is also the basis of LSTMs and GRUs. In these standard recurrent units, the feedback
is not taken on the logarithm of probabilities but on ht−1 directly. The activation function
is a hyperbolic tangent, which is a rescaled version of a sigmoid with tanh(x) = 2σ(2x)−1.
If σ(x) describes a probability in [0,1], then tanh(x) is simply a rescaled representation
of that probability in the [-1,1] range. The main difference is therefore on the absence of
the log in the feedback, but since here ht−1 ∈ [−1, 1]H it does not make sense to take its
logarithm, as log(x ≤ 0) is not defined.

Coming back to equation (3.15) with the softplus activation, we notice that there is no
log in the feedback as ht already describes log-probabilities. As shown by Glorot, Bordes,
and Bengio (2011), the ReLU function is a linear approximation of the softplus. Using the
ReLU activation turns out to be exactly the forward pass of a Li-GRU (Ravanelli, Bordes,
and Bengio, 2018) without the update gate,

ht ≈ ReLU
[
W h xt + V h ht−1 + bh

]
. (3.17)

In the following section, we derive an alternative to the Li-GRU by adding an update gate
through a Bayesian approach.

3.2.3 Defining the Li-BRU

Let us start with the Bayesian Recurrent Unit (BRU) described by equation (3.13). In a
slight simplification of the approach by Garner and Tong (2021), let us define a binary
state variable ρt,i that is indicative of the relevance of the current observation xt for the
occurrence of the i-th hidden feature. The associated probabilities zt,i = P (ρt,i|Xt) can
be computed as a layer of BRUs with equation (3.13),

zt = σ

[
W z xt + V z log(ht−1) + bz

]
. (3.18)

We chose the recurrence to be on ht−1 instead of zt−1, simply because we observed better
performance. Both are valid choices as they represent probabilities and can be considered
to be beta-distributed (see subsection 3.2.1).

The idea is to apply zt as a gate on probabilities, which is why we choose equation (3.13)
and not (3.15), that describes log-probabilities instead. The desired output probability
ht,i can then be expressed by marginalizing as,

ht,i = P (ϕt,i|Xt)

=
∑

ρ
′
t,i
P (ϕt,i|Xt, ρ

′
t,i) p(ρ

′
t,i|Xt)

= (1− zt,i)P (ϕt,i|Xt−1) + zt,i P (ϕt,i|Xt)

= (1− zt,i)ht−1,i + zt,i ht,i ,

(3.19)
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which represents taking an arithmetic weighted mean of two probabilities p1, p2 as
p = zt · p1 + (1 − zt) · p2. When context is not relevant, we write P (ϕt,i|Xt,¬ρt,i) =

P (ϕt,i|Xt−1).

In a Li-GRU, due to the ReLU activation, the update gate acts on log-probabilities and thus
corresponds to taking a geometric weighted mean of two probabilities: p = pzt1 · p

1−zt
2 ,

since log(p) = zt · log(p1) + (1 − zt) · log(p2). The proper approach would be to first
exponentiate the log-probabilities before applying the gate. In practice, we found no
significant difference in doing so, suggesting that taking the geometric mean of the
probabilities is an appropriate approximation.

We can now define the Bayesian equivalent of a Li-GRU, that we call Li-BRU, where the
z-gate acts on probabilities,

zt = σ

[
W z xt + V z log(ht−1) + bz

]
(3.20a)

h̃t = σ

[
W h xt + V h log(ht−1) + bh

]
(3.20b)

ht = zt ∗ h̃t + (1− zt) ∗ ht−1 . (3.20c)

Additionally, the input of the i-th layer corresponds to the log-probabilities of the previous
layer x[i]

t = log
(
h
[i−1]
t

)
.

An alternative way of defining the same unit is with

zt = σ

[
W z xt + V z ht−1 + bz

]
(3.21a)

h̃t = softplus
[
W h xt + V h ht−1 + bh

]
(3.21b)

ht = log
(
zt ∗ eh̃t + (1− zt) ∗ eht−1

)
, (3.21c)

where x
[i]
t = h

[i−1]
t as ht already describes log-probabilities. The first version of the

Li-BRU as defined by equations (3.20) actually gave marginally better results than the
second one from equations (3.21) and will be the one used in the experiments described
in the next section.

3.2.4 Experiments

Following the pytorch-kaldi implementation of Ravanelli, Bordes, and Bengio (2018) and
Ravanelli, Parcollet, and Bengio (2019), all presented experiments use a recurrent archi-
tecture with four layers of H=550 bidirectional units. The F=50 fMLLR input features are
extracted via the Kaldi (Povey et al., 2011) recipe. Experiments on the TIMIT (Garofolo
et al., 1993) and AMI (Carletta et al., 2005) corpora are performed with Adam (Kingma
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Figure 3.1: PERs on TIMIT test-set for various RNN architectures.

and Ba, 2015) and RMSprop (Tieleman and Hinton, 2012) optimisers respectively, both
during 24 epochs with drop-out regularisation (p=0.2). Batch-normalisation (Ioffe and
Szegedy, 2015) is used on feed-forward connections, as suggested by Ravanelli, Bordes,
and Bengio (2018). Our aim is not to surpass the best reported Phoneme Error Rate
(PER) on TIMIT or AMI, but to perform a self-consistent comparison between recurrent
units.

Without the update gate

We first test the simple BRU resulting from section 3.2.1 on the TIMIT dataset and
compare it to standard non-gated RNN units (see Figure 3.1). We make a distinction
between the units that have a feedback on (rescaled) probabilities, like the standard
RNN of equation (3.16), and the ones that use log-probabilities (as justified in subsection
3.2.1). Note that all units have the same number of trainable parameters (i.e. F+H+1
per unit). We make the hypothesis that the units with a feedback on log-probabilities
perform better than the ones with probabilities. The error-bars on Figure 3.1 show the
95% equal-tailed confidence interval for a beta-assumption for the error-rate. As they
are relatively large on TIMIT due to the small size of the test set (7,215 utterances
versus 90,002 for AMI), we perform a matched-pairs test, as described by Gillick and Cox
(1989), on the different speakers and obtain a p-value of 4.96·10−5. Alternatively using a
Wilcoxon signed-rank test (Wilcoxon, 1945) gives us a p-value of 5.09·10−4. We consider
both results to be small enough to validate our hypothesis.

Testing the complete Li-BRU

Let us now add the update gate and compare the resulting Li-BRU from equations (3.20)
to state of the art recurrent units. As illustrated in Figure 3.2, the Li-BRU outperforms
all other state of the art recurrent architectures on both TIMIT and AMI datasets with
error-rates of 14.4 %, and 26.4% respectively. We also tested the Li-GRU architecture
with a softplus activation instead of a ReLU. As mentioned at the end of section 3.2.3,
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Figure 3.2: PERs on TIMIT (top) and WERs on AMI (bottom) for various RNN architec-
tures.

the unit gave the same results as the Li-BRU, both on TIMIT and AMI, signifying that
applying the gate to probabilities or log-probabilities is practically equivalent. The root
of the improvement therefore seems to lie in the choice of the activation function. The
importance of using the softplus function instead of its approximation by the ReLU is
especially visible on AMI.

3.2.5 Summary of contributions

In previous work (Garner and Tong, 2021), it was shown that a Bayesian analysis of a
sigmoid activation function led naturally to a unit-wise recurrence and, with approxi-
mations, to a layer-wise recurrence. In this section, in a mainly theoretical contribution,
we have shown that beta-distributed sigmoid outputs feeding into another sigmoid unit
constitute a layer-wise recurrence without approximations. Without a forget gate, this
reduces to a standard fully-connected recurrence, but with a softplus activation. Given
that the update gate of a GRU can also be derived probabilistically, the approach led
naturally to comparison with a Li-GRU. In an experimental evaluation, we confirmed
that the resulting Li-BRU can modestly but significantly outperform the state of the
art on two ASR tasks (TIMIT and AMI datasets), demonstrating the importance of the
probabilistic derivation. More generally, the new techniques contribute to a growing
toolkit of Bayesian approaches for neural architectures.

39



Chapter 3. Bayesian Recurrent Units

3.3 Unit-wise Bayesian Recurrent Unit

In our work on the Li-BRU presented in Section 3.2, hidden features were assumed to
be interdependent, which led to a layer-wise recurrence for the computation of prior
probabilities. In this section, in a mainly theoretical contribution, we come back to the
simpler case of an RNN with unit-wise recurrence and no gate. Here, by assuming a
latent space of independent features, a Bayesian analysis demonstrates that the trainable
parameters of the network directly correspond to standard parameters of a first-order
two-state HMM.

In a second step, similarly to the Kalman smoother (Kalman, 1960) and to the forward-
backward algorithm (Baum et al., 1972), we derive two different backward recursions
that allow the consideration of future observations without relying on any additional
parameters. We also prove by induction that the two are equivalent. In contrast with
the approach of Garner and Tong (2021), the unit-wise recurrence is here derived using
transition probabilities instead of a context relevance gate.

The derived Unit-wise Bayesian Recurrent Units (UBRUs) can be trained like standard
RNNs inside modern Deep Neural Networks (DNNs). Even though UBRUs have much
less representational power than state-of-the-art RNNs, they are appropriate when the
features are decorrelated. We confirm this by showing that, when placed on the phoneme
(rather than acoustic) region of a DNN for ASR, they are able to replace larger standard
bidirectional gated RNNs without any loss of performance, highlighting their practical
relevance and efficiency in real-world applications.

3.3.1 A hidden Markov model approach

Consider an input sequence XT = [x1, . . . ,xT ] ∈ RF×T of length T , where each ob-
servation xt is a vector with F input dimensions. We assume that there are H hidden
features {ϕi |i = 1, . . . ,H} that we wish to detect along the sequence. At each time step
t, a feature has two possible states: present or absent, that we write as ϕt,i and ¬ϕt,i

respectively. Each hidden feature can be represented as a first-order two-state Markov
process, such that its probability of occurring at time step t only depends on its state at
the previous time step t − 1. For a single hidden feature ϕ, an initial state probability
a ∈ [0, 1]2×1 ,

a =

[
P (ϕ0), P (¬ϕ0)

]
, (3.22)

and a transition matrix A ∈ [0, 1]2×2,

A =

[
P (ϕt|ϕt−1) P (¬ϕt|ϕt−1)

P (ϕt|¬ϕt−1) P (¬ϕt|¬ϕt−1)

]
, (3.23)
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can be defined to describe the evolution of the state through discrete time. Then, for any
binary sequence of hidden states, the probability of the sequence being generated by the
Markov chain is fully defined in terms of a and A as a product of initial and transition
probabilities. Since the hidden sequence is not directly observable, let us additionally
define a set of distributions,

B(xt) =

[
b1(xt), b2(xt)

]
=

[
p(xt|ϕt), p(xt|¬ϕt)

]
, (3.24)

representing the likelihood of seeing observation xt at time step t given the two possible
feature states. As explained by Juang and Rabiner (1991), the stochastic process repre-
sented by XT can then be fully characterised by the HMM parameters a, A and B(xt),
without requiring the knowledge of the sequence of hidden states.

3.3.2 Neural network formulation

Let us start by using a more machine learning oriented formulation of the HMM param-
eters a and A. We define trainable scalars ρ0,i, τ11,i and τ01,i ∈ [0, 1] that describe the
initial and transition probabilities of the i-th hidden feature,

ai =

[
ρ0,i, 1− ρ0,i

]
and Ai =

[
τ11,i 1− τ11,i
τ01,i 1− τ01,i

]
, (3.25)

where we used the notation τkl = P (ϕt = l|ϕt−1 = k), k, l ∈ {0, 1}. These can then
be vectorised for the whole layer as ρ0, τ 11 and τ 01 ∈ [0, 1]H . In order to express the
remaining HMM parameters related to the set of distributions B(xt), we can assume
that the likelihood of observing xt given the current state of the hidden features ϕt, can
be described using a distribution from the exponential family. As we will see in Section
3.3.3, only the ratio of these distributions will be necessary to compute. As demonstrated
by Garner and Tong (2021) drawing from Bridle (1990b), this ratio of likelihood rt can
then be expressed as

rt :=
p(xt| ¬ϕt )

p(xt|ϕt )
= exp

[
−W T xt − b

]
. (3.26)

As we saw in Section 3.2.1, for the case of multivariate normal distributions that share
the same covariance matrix Σ, i.e., p(xt|ϕt) ∼ N (µ,Σ) and p(xt| ¬ϕt ) ∼ N (ν,Σ), the
parameters W ∈ RF×H and b ∈ RH can be expressed as,

W =

(
νT − µT

)
Σ−1 (3.27a)

b = −1

2

(
νT Σ−1 ν + µT Σ−1µ

)
. (3.27b)
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Overall, we have shown that the Markov processes corresponding to a layer of H indepen-
dent hidden features can be fully described by a set of trainable tensors (or parameters)
ρ0, τ 11, τ 01 ∈ [0, 1]H , W ∈ RF×H and b ∈ RH . In the next section, we will derive a
forward-backward formulation that is similar to that of RNNs. This will allow them to be
trained inside a deep learning framework, while retaining a probabilistic interpretation
as they correspond to standard HMM parameters.

3.3.3 Forward-backward procedure

In order to make inference about the state of the hidden features throughout the sequence,
we use a Bayesian approach and design a layer of recurrent units that will evaluate the
stacked conditional probabilities γt := P (ϕt|XT ) ∈ [0, 1]H of the different features being
present at each time step t = 1, . . . , T , given the information of the complete input
sequence XT . In the first alpha or forward part of the procedure, the probabilities
αt := P (ϕt|Xt) ∈ [0, 1]H are computed. In the subsequent beta or backward part, these
probabilities are smoothed by taking into account future observations and produce the
desired outputs γ ∈ [0, 1]T×H , that are fed into the next layer.

Derivation of the forward pass

The quantity αt is defined as αt := P (ϕt|Xt) ∈ [0, 1]H . Using Bayes’s formula, we can
write it as,

αt =
p(xt|ϕt)P (ϕt|Xt−1)∑
ϕ

′
t
p(xt|ϕ

′
t)P (ϕ

′
t|Xt−1)

. (3.28)

Dividing both numerator and denominator by p(xt|ϕt) gives

αt =
pt

pt + rt (1− pt)
, (3.29)

where rt, pt and αt correspond to the ratio of likelihood, prior and posterior probabilities
of the Bayesian update respectively. One can also reformulate Eq. (3.29) by dividing
the numerator and denominator by the prior. This gives rise to the well known sigmoid
activation function σ(x) = 1/(1 + e−x),

αt = σ

[
W Txt + b+ logit(pt)

]
, (3.30)

where the logit function, logit(x) = log
[
x/(1 − x)

]
, is the inverse of the sigmoid. The

prior pt := P (ϕt|Xt−1) represents the probability of having the features present at time
t before seeing the current observation xt. For a time independent prior pt = const.,
the quantity logit(pt) is also constant and can be integrated into the trainable bias b, so
that the forward pass corresponds to a hidden layer of a standard feed-forward neural

42



3.3 Unit-wise Bayesian Recurrent Unit

network. With this probabilistic interpretation, it is therefore the time dependence of the
Bayesian prior that leads to recurrence in neural networks. By assuming independent
hidden features, the prior can be expanded as a function of the transition probabilities,

pt : = P (ϕt|Xt−1)

= P (ϕt|ϕt−1)P (ϕt−1|Xt−1) + P (ϕt|¬ϕt−1)P (¬ϕt−1|Xt−1)

= τ 11αt−1 + τ 01 (1−αt−1) .

(3.31)

Using Bayes’s theorem, we have thus derived a forward pass from t = 1 to t = T through
the sequence, that allows the computation of αt = P (ϕt|Xt) via a unit-wise first-order
recurrence on αt−1. So far, the inference on the state of the hidden features at time step
t only takes the previous observations Xt = [x1, . . . ,xt] into account. In order to include
the future observations X>t = [xt+1, . . . ,xT ], we define a backward recursion that will
smooth out the probabilities.

Derivation of HMM backward recursion

Using the relationship between joint and conditional probabilities as well as the indepen-
dence of observations, we can express the desired quantity γt as,

P (ϕt|XT ) =
P (ϕt,XT )

P (XT )
=

P (Xt,ϕt)P (X>t|Xt,ϕt)

P (X>t|Xt)P (Xt)

= P (ϕt|Xt)
P (X>t|ϕt)

P (X>t|Xt)
= αt βt ,

(3.32)

where we use the notation X>t := xt+1, . . . ,xT and define βt and its counterpart βt as,

βt :=
P (X>t|ϕt)

P (X>t|Xt)
and βt :=

P (X>t|¬ϕt)

P (X>t|Xt)
. (3.33)

Let us start by expanding the numerator of βt and use the independence of observations,

P (X>t|ϕt+1)P (ϕt+1|ϕt) + P (X>t|¬ϕt+1)P (¬ϕt+1|ϕt)

= P (xt+1|ϕt+1)P (X>t+1|ϕt+1)P (ϕt+1|ϕt)

+ P (xt+1|¬ϕt+1)P (X>t+1|¬ϕt+1)P (¬ϕt+1|ϕt) .

(3.34)

The denominator of Eq. (3.33) can similarly be decomposed as,

P (X>t|Xt) = P (xt+1|Xt)P (X>t+1|Xt+1) , (3.35)
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so that combining Eqs. (3.34) and (3.35) gives,

βt =
b1(xt+1)βt+1 τ 11 + b2(xt+1)βt+1 (1− τ 11)

P (xt+1|Xt)
. (3.36)

We finally need to deal with the remaining denominator of Eq. (3.36),

P (xt+1|Xt) = P (xt+1|ϕt+1)P (ϕt+1|Xt) + P (xt+1|¬ϕt+1)P (¬ϕt+1|Xt)

= b1(xt+1)pt+1 + b2(xt+1)(1− pt+1) .
(3.37)

By dividing the numerator and denominator by b1(xt+1), we then get the following final
expression for βt,

βt =
τ 11 βt+1 + rt+1(1− τ 11)βt+1

pt+1 + rt+1 (1− pt+1)
. (3.38)

Similarly, one can derive that,

βt =
τ 01 βt+1 + rt+1 (1− τ 01)βt+1

pt+1 + rt+1(1− pt+1)
. (3.39)

Derivation of Kalman backward recursion

Following the approach of a Kalman smoother, a simpler backward pass can be derived
by expanding γt on possible future states,

P (ϕt|XT ) = P (ϕt|ϕt+1)P (ϕt+1|XT ) + P (ϕt|¬ϕt+1)P (¬ϕt+1|XT ) . (3.40)

The transition probabilities need to be flipped using Bayes theorem, which gives

P (ϕt|ϕt+1) =
P (ϕt+1|ϕt)P (ϕt|Xt)∑
ϕ
′
t
P (ϕt+1|ϕ

′
t)P (ϕ

′
t|Xt)

=
τ 11αt

τ 11αt + τ 01 (1−αt)
= τ 11

αt

pt+1

(3.41)

for the first one, using the definition of the prior given in Eq. (3.31). Applying the same
treatment to the second one then gives the following backward recursion,

γt = αt

τ 11
γt+1

pt+1

+ (1− τ 11)
1− γt+1

1− pt+1

 . (3.42)
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Equivalence of the two backward recursions

Let us start with the HMM formulation of γt = αt βt. We can use Eq. (3.29) of the
forward pass to rewrite βt as,

βt =
αt+1

pt+1

(
τ 11 βt+1 + (1− τ 11) rt+1 βt+1

)
= τ 11

γt+1

pt+1

+ (1− τ 11)
(1−αt+1)βt+1

1− pt+1

.

(3.43)

By comparing with Eq. (3.42), we see that in order to prove that the HMM and Kalman
recursions are equivalent, the following equality,

1− γt+1 = (1−αt+1)βt+1 , (3.44)

must be satisfied ∀t ∈ {T − 1, T − 2, . . . , 0}. This can be demonstrated by induction as
follows.

Proof. We start by considering the base case t = T −1. Here 1−γT = (1−αT )βT follows
trivially from βT = 1 and γT = αT . By assuming that Eq. (3.44) is correct for the case
n = t+ 1, we must now prove that it holds for the next case n = t. Let us start with the
left hand side 1− γt and use the assumption for n = t+ 1 to express it as,

1− γt = 1−αt

τ 11
γt+1

pt+1

+ (1− τ 11)
1− γt+1

1− pt+1

 . (3.45)

The transition probabilities τ 11 can be expressed as a function of τ 01 using Eq. (3.31),

τ 11 =
pt+1 − τ 01(1−αt)

αt
. (3.46)

By plugging Eq. (3.46) into (3.45), we get that

1− γt = (1−αt)

τ 01
γt+1

pt+1

+ (1− τ 01)
1− γt+1

1− pt+1


= (1−αt)βt .

(3.47)

Implementation of the method

The ratio of the distributions b2(xt) and b1(xt), can be computed in advance for all time
steps and hidden features using Eq. (3.26). At t = 0, α0 is initialized with the trainable
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unconditional prior probability ρ0 = P (ϕ0). A forward pass from t = 1 to t = T is
then performed to compute and store the Bayesian prior pt = P (ϕt|Xt−1) and posterior
αt = P (ϕt|Xt) using Eq. (3.31) and (3.29) respectively. Since the two backward
procedures are equivalent, we use the Kalman recursion, as it is computationally simpler.
At t = T , γT is initialized with αT , and from t = T − 1 to t = 1, γt = P (ϕt|XT ) is
computed using Eq. (3.42).

Overall a UBRU layer of size N l requires N l (N l−1 + 4) trainable parameters, which
include the weight matrix W , bias b, and initial and transition probability vectors ρ0,
τ 11 and τ 01. This parameter count is comparable to that of an MLP, emphasising the
parameter-efficiency of the unit-wise recurrence.

3.3.4 Experiments

Speech recognition experiments are performed on the TIMIT corpus (Garofolo et al.,
1993), using the SpeechBrain (Ravanelli, Parcollet, Plantinga, et al., 2021) framework.
Mel filterbank features are extracted from the waveforms and fed into two convolutional
layers, followed by recurrent layers of H=512 hidden units. After two additional lin-
ear layers and a final log-softmax activation, the network outputs log-probabilities of
phoneme classes. The training is done using the CTC loss (Graves, Fernández, et al.,
2006) and the Adadelta optimiser (Zeiler, 2012) for 50 epochs. Batch-normalisation
(Ioffe and Szegedy, 2015) is also used on feed-forward connections, as suggested by
Ravanelli, Bordes, and Bengio (2018).

Speech features entering the architecture are highly correlated. This suggests that the
layer-wise recurrence of standard RNNs, which assumes interdependent hidden features,
is best suited for processing them. Nevertheless, once the speech information has been
processed and decorrelated, the classification of phoneme or subword representations
does not require to assume the same level of correlation. As one expects a phoneme to stay
in a state before transitioning to the next one, HMMs have been widely employed in ASR
frameworks to process this form of information. While the general aim of the experiments
is to implement the derived UBRUs with the backward recursion and demonstrate that
the mathematical predictions can be reflected practically, we also make the following
hypotheses,

1. As they assume a latent space of independent hidden features, UBRUs should be
best placed after layers of standard gated RNNs that can first decorrelate the highly
interdependent speech features.

2. Since future observations can already be taken into account with the analytically
derived backward recursion, we expect that this method can compete with the
standard bidirectional approach.
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3.3 Unit-wise Bayesian Recurrent Unit

We start by evaluating UBRUs on their own. We consider unidirectional and bidirectional
units, with or without the backward recursion, which leads to four different models. The
results are presented in Table 3.1. As expected, the error-rates are relatively high due
to the low representational capacities of the units. Nevertheless, we observe that the
derived backward recursion improves the error-rate without requiring more trainable
parameters, whereas making the units bidirectional does not.

Table 3.1: PERs on TIMIT with only two layers of UBRUs.

Model type Parameters PER

Unidirectional 3.2M 23.62%
Udir. + backward 3.2M 22.67%
Bidirectional 3.7M 24.08%
Bidir. + backward 3.7M 23.27%

We then test UBRUs by placing them after layers of state-of-the-art bidirectional Li-GRUs.
We again find that unidirectional UBRUs with the backward recursion perform the best,
as shown in Table 3.2, which corroborates our second hypothesis and highlights the
importance of our probabilistic derivation.

Table 3.2: PERs on TIMIT with four Li-GRU and one UBRU layers.

Model type Parameters PER

Unidirectional 10.0M 14.36%
Udir. + backward 10.0M 13.96%
Bidirectional 10.3M 14.75%
Bidir. + backward 10.3M 14.19%

By comparing with the Li-GRU baseline in Table 3.3, we find that adding a single
unidirectional UBRU layer with the backward recursion brings the same improvement
as adding another Li-GRU layer, even though the latter contains seven times more
trainable parameters. In contrast, placing the UBRUs before the Li-GRUs in initial ad-hoc
experiments suggested that the units were not effective at the acoustic level. This adheres
to our first hypothesis that if features at that level represent phonemes and not acoustics,
then the HMM-like derived UBRUs are appropriate for the classification task.

Table 3.3: PERs on TIMIT only with Li-GRU layers.

Model type Parameters PER

Li-GRU 4x512 9.8M 14.83%
Li-GRU 5x512 11.3M 13.99%

For reference, we made the same experiments with cross-entropy loss inside the pytorch-
kaldi (Ravanelli, Parcollet, and Bengio, 2019; Povey et al., 2011) framework. Here again,
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Chapter 3. Bayesian Recurrent Units

a layer of unidirectional UBRUs with backward recursion is able to compete with a fifth
Li-GRU layer, both scoring an accuracy of 14.4% compared to 14.8% for four Li-GRU
layers. Here fMLLR input features are extracted via the Kaldi recipe (Povey et al., 2011),
and fed into recurrent layers, followed by a final linear layer. The networks are trained
for 24 epochs using the RMSprop (Tieleman and Hinton, 2012) optimiser.

In summary, due to their correspondence with HMMs, the analytically derived unidi-
rectional unit-wise recurrent units with a backward recursion are capable of replacing
considerably larger, state-of-the-art, bidirectional, layer-wise units on the phoneme end
of an ASR architecture, at an extremely low cost in terms of trainable parameters.

3.3.5 Summary of contributions

Using a probabilistic formulation of neural network components, we have analytically
derived a new type of recurrent unit with a unit-wise feedback and a backward recursion.
The similarity with Kalman smoothers and the forward-backward algorithm of HMMs is
made explicit, and the equivalence of both approaches is proven by induction. Evaluating
on a standard speech recognition task shows that the derived backward recursion gives
better results compared to the conventional bidirectional approach. Moreover, adding the
derived unit-wise Bayesian recurrent units after layers of larger gated RNNs is capable of
considerably improving upon their performance, while only relying on a limited amount
of trainable parameters, showing the importance of a probabilistic derivation.

3.4 Conclusion

In this chapter, we derived novel interpretable recurrent units using a Bayesian approach.
On top of the theoretical contributions, we demonstrated their practical application in
achieving more parameter-efficient speech recognition architectures.

Owing to time limitation, we did not combine the approaches from the two sections,
i.e., a layer-wise HMM. We instead shifted our focus to the main theme of this thesis:
biologically-inspired SNNs. As the latter can be implemented as a special case of RNNs,
this initial work on Bayesian recurrence provided a solid foundation in understanding
conventional RNNs and paved the way for the exploration of SNNs in the following
chapter. With their potential to mimic biological neural processes more closely than
traditional RNNs, SNNs offer promising advancements in computational neuroscience
and energy-efficient technology.
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4 Spiking Neural Networks

Spiking neural networks are a physiologically plausible alternative to con-
ventional artificial neural networks. In this chapter, we derive the spiking
dynamics from single neuron model to multi-layered architectures. Using
the surrogate gradient method, the resulting spiking neural networks can
be trained like recurrent neural networks. The derived approach serves
as a theoretical baseline for the subsequent chapters.

Publication Note

While this chapter serves as background and methods for the subsequent chapters,
it consolidates material from the following publications,

• A. Bittar and P. N. Garner (2022a). “A surrogate gradient spiking base-
line for speech command recognition”. In: Frontiers in Neuroscience 16,
p. 865897. DOI: 10.3389/fnins.2022.865897

• A. Bittar and P. N. Garner (2022c). Surrogate gradient spiking neural
networks as encoders for large vocabulary continuous speech recognition.
arXiv: 2212.01187 [cs.CL]

• A. Bittar and P. N. Garner (2024). “Exploring neural oscillations during
speech perception via surrogate gradient spiking neural networks”. In:
Frontiers in Neuroscience 18. DOI: 10.3389/fnins.2024.1449181

The underlying code has been released and is openly accessible on GitHub at
https://github.com/idiap/sparch and https://github.com/idiap/sparse.

49

https://doi.org/10.3389/fnins.2022.865897
https://arxiv.org/abs/2212.01187
https://doi.org/10.3389/fnins.2024.1449181
https://github.com/idiap/sparch
https://github.com/idiap/sparse


Chapter 4. Spiking Neural Networks

4.1 Introduction

So far, our focus has been on conventional ANNs, which lie at the core of recent ar-
tificial intelligence advancements, notably in speech processing. Within these widely
used networks, artificial neurons typically operate by receiving real numbers as inputs
and producing real-valued outputs. In contrast, biological neurons encode and transmit
information through binary sequences of events known as spike trains. The neurons in
ANNs can be seen as an instantaneous firing rate approximation of biological spiking
neurons, so that the information about the individual timings of the spikes is neglected.
Several neuroscience studies suggest that precise spike timings are important in transmit-
ting information, especially in the visual cortex and in auditory neurons (Mainen and
Sejnowski, 1995; Van Rullen and Thorpe, 2001; Butts et al., 2007; Gollisch and Meister,
2008). With the idea of simulating brain-like networks to process information, this firing
rate interpretation of spikes can be improved to spiking neuron models.

Physiologically plausible mathematical models have been developed to describe the
neuronal dynamics (Gerstner and Kistler, 2002; Izhikevich, 2007). The resulting spiking
neurons constitute the building blocks of SNNs, and have been called the third generation
of neural network models (Maass, 1997). Due to the temporal dimension of spike
trains, SNNs are naturally adapted to sequential input data, such as speech, which in
principle grants them a higher representation capability compared to traditional ANNs
(Kasabov, 2019). In current practice however, only rarely do SNNs outperform ANNs
(Leng et al., 2018; Moraitis, Sebastian, and Eleftheriou, 2020). Nevertheless, interest in
SNNs is growing due to their potential for energy-efficient hardware implementations
(Davies et al., 2018; Roy, Jaiswal, and Panda, 2019; Panda, Aketi, and Roy, 2020;
Dellaferrera, Martinelli, and Cernak, 2020). The sparsity of spikes over time allows for
such implementations, especially when coupled with event-based sensors, leading to the
development of portable, low-powered devices. This practical motivation for SNNs is
particularly relevant given the energy-consuming nature of conventional ANNs, which
rely on high-end GPUs (Pfeiffer and Pfeil, 2018). Recent studies (Jeffares et al., 2022)
have shown that spike-based techniques can not only improve the ANN efficiency but
also its task performance, further highlighting the potential of SNNs in advancing neural
network technology.

ANNs are most commonly trained using SGD, which relies on the chain rule of derivatives.
During the forward pass, a mini-batch of input examples is passed through the network,
and a loss function is applied to the final outputs. During the subsequent backward
pass, the network trainable parameters are updated to minimise the loss. The network
gradually adapts to the task at hand by repeating this operation over a data set of
prepared examples. SNNs are not directly compatible with gradient descent owing to
their non-differentiable threshold behaviour. Different methods have been developed
to alleviate the problem. In particular, the surrogate gradient approach allows SNNs to
be trained like RNNs using the BPTT algorithm, which is a generalisation of gradient
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descent to process sequential data. As demonstrated in Chapter 3, RNNs have proven to
be efficient on speech recognition tasks. In general, the reported performance of SNNs is
inferior to that of the best ANNs (Wu, Chua, Zhang, Li, and Tan, 2018; Wu, Yılmaz, et al.,
2020; Cramer et al., 2020; Yin, Corradi, and Bohté, 2020; Yin, Corradi, and Bohté, 2021;
Yao et al., 2021; Shaban, Bezugam, and Suri, 2021), even if the gap is gradually closing.
There is in fact theoretical (Maass, 1997; Moraitis, Sebastian, and Eleftheriou, 2020;
Perez-Nieves et al., 2021) and recent experimental (Moraitis, Sebastian, and Eleftheriou,
2020) evidence that SNNs can outperform ANNs.

With this work, we aim to make SNNs available to a speech processing audience, the
frameworks of which are currently dominated by ANNs. In this chapter, we review
relevant spiking neuron concepts and derive an appropriate framework, compatible with
ANNs and gradient descent training, to serve as a theoretical baseline for subsequent
experiments on speech recognition tasks that will be presented in the next chapters. Our
first goal is therefore,

1. To identify which SNN neuron models and training techniques are compatible with
successful modern ANN frameworks, and establish a method that can compete with
the ANN performance while retaining the advantages of energy efficiency.

More generally, we aim

2. To assess the general capability of SNNs on speech recognition tasks, and how they
might represent an attractive alternative to standard ANNs.

3. To use a physiologically plausible approach to provide some insights on how the
corresponding biological mechanisms in humans might be functioning.
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Chapter 4. Spiking Neural Networks

4.2 Single Neuron Model

In our approach, the single neuron model serves as a fundamental building block for
constructing deep SNNs. To ensure compatibility with the modern machine learning
frameworks, we prioritise the use of computationally efficient single neuron models that
rely on a limited number of parameters.

While physiologically grounded conductance-based neuron models such as the well-
known Hodgkin and Huxley model (Hodgkin and Huxley, 1952) offer detailed insights
into the dynamics of ion channels, their computationally intensive formulation limits
their applicability to our approach. Nonetheless, efforts to simplify these complex models
have notably resulted in the reduction of the Hodgkin and Huxley model to just two
variables in certain contexts (FitzHugh, 1961; Morris and Lecar, 1981). Building upon
these simplifications, more contemporary models, such as the Izhikevich (Izhikevich,
2003) and adaptive exponential integrate-and-fire (Brette and Gerstner, 2005) models,
have similarly demonstrated the capacity to accurately replicate voltage traces observed
in biological neurons using just membrane potential and adaptation current as essential
variables (Badel, Lefort, et al., 2008).

The above mentioned spiking neuron models all use differential equations to describe
the neuron’s internal dynamics. Alternatively, one can use the Spike Response Model
(SRM) approach (Jolivet, Timothy, and Gerstner, 2003), where two kernel functions
describe the neuron’s responses to incoming and outgoing spikes. Instead of solving
differential equations, the evolution of the membrane potential in the SRM is computed
by convolving input and output spike trains with their corresponding kernel functions.

The linear Leaky Integrate-and-Fire (LIF) model and its adaptive variant, the Adaptive
Leaky Integrate-and-Fire (AdLIF) model possess equivalent formulations in both SRM
and differential equation representations (Gerstner and Kistler, 2002). These models
are particularly relevant for our approach as they enable flexible and efficient implemen-
tations in computational simulations. We therefore concentrate on the LIF and AdLIF
neuron models through this chapter.

4.2.1 Leaky integrate and fire

The simplest and most widely used single neuron model is the LIF model, the origin of
which dates back to the beginning of the twentieth century with the work of Lapicque
(1907). The dynamics of a single neuron are described by the membrane potential u(t),
which evolves over time as a function of some input current I(t). In the absence of stimuli,
i.e., when I(t) = 0, the membrane potential u(t) decays exponentially to some resting
value urest with a time constant τu ≈ 10 ms. When I(t) ̸= 0, the membrane potential u(t)
integrates the incoming stimuli and increases or decreases accordingly.
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4.2 Single Neuron Model

As presented by Gerstner and Kistler (2002), the dynamics in continuous time follow the
differential equation,

τu u̇(t) = −
(
u(t)− urest

)
+RI(t) , (4.1)

where R is the membrane resistance. In order to have spikes, a threshold value ϑ must
be added to the model, so that when the potential reaches the critical value, a spike is
emitted and the potential is reset to a new value ur < ϑ.

if u(t = tf ) ≥ ϑ then s(tf ) = 1 and lim
δ→0;δ>0

u(tf + δ) = ur . (4.2)

While the real-valued membrane potential u(t) ∈ R characterises the internal state of
the neuron, the only information transmitted to other neurons is the binary spike train
s(t) ∈ {0, 1} that can be expressed as a sum of delta-functions,

s(t) =
∑
f

δ(t− tf ) =

{
1 if u(t) ≥ ϑ

0 otherwise
. (4.3)

In summary, the dynamics of a single neuron are characterised by four phases, (i)
integration of stimuli, (ii) decay back to rest in the absence of stimuli, (iii) emission of
a short pulse when a critical threshold value is attained, and (iv) recovery period after
a spike is emitted. The stimuli I(t) received by the neuron can be approximated as a
weighted combination of spikes emitted by pre-synaptic neurons. As illustrated in Figure
4.1, although the membrane potential is constantly evolving, the neuron emits spikes
sparingly and remains silent most of the time.

...
<latexit sha1_base64="z6pwsMO+MIb9LOEfUUa/P4I1QxQ="></latexit><latexit sha1_base64="z6pwsMO+MIb9LOEfUUa/P4I1QxQ="></latexit><latexit sha1_base64="z6pwsMO+MIb9LOEfUUa/P4I1QxQ="></latexit><latexit sha1_base64="z6pwsMO+MIb9LOEfUUa/P4I1QxQ="></latexit>

Figure 4.1: Behaviour of a single spiking neuron that receives spike trains as inputs and
produces an output spike train. The evolution of the membrane potential is shown in
blue.

4.2.2 Adding an adaptation variable

Although widely utilised, the LIF model is not sufficient to reproduce many of the various
firing patterns observed in biological neurons, such as adaptive, bursting, transient and
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delayed (Gerstner and Kistler, 2002). The idea of a second equation to describe an
adaptation (or accommodation) variable between threshold and subthreshold voltage
can be traced back to Hill (1936). The work of Treves (1993), Izhikevich (2001) and
Brunel, Hakim, and Richardson (2003) have notably led to its modern formulation, in
which a recovery variable w(t) is linearly coupled to the membrane potential u(t) in the
subthreshold regime, and a mechanism is used for spike-triggered adaptation.

In this formulation, Spike Frequency Adaptation (SFA) is achieved through the adaptation
variable w(t) without explicitly including a moving or dynamic threshold (Fuortes and
Mantegazzini, 1962; Chacron, Pakdaman, and Longtin, 2003; Jolivet, Rauch, et al., 2006;
Badel, Gerstner, and Richardson, 2006). By evolving more slowly than the potential,
the adaptation variable modulates the neuron’s firing patterns, contributing to a richer
repertoire of dynamical behaviours. While SFA typically refers to a form of attenuation in
a neuron’s activity when stimulated by a prolonged input, we will specifically use this
term throughout this thesis to denote the adaptation mechanism in the AdLIF neuron
model presented below.

With the objective of incorporating realistic neuronal dynamics into large-scale neural
network simulations with gradient descent training, the linear AdLIF neuron model stands
out as an adequate compromise between physiological plausibility and computational
efficiency. It can be described in continuous time by the following differential equations,

τu u̇(t) = −
(
u(t)− urest

)
−Rw(t) +RI(t)− τu (ϑ− ur)

∑
f

δ(t− tf ) (4.4)

τw ẇ(t) = −w(t) + a
(
u(t)− urest

)
+ τw b

∑
f

δ(t− tf ) . (4.5)

Similarly to the LIF model, the neuron’s internal state is characterised by the membrane
potential u(t) which linearly integrates stimuli I(t) and gradually decays back to a resting
value urest with time constant τu ∈ [3, 25] ms. A spike is emitted when the threshold
value ϑ is attained, u(t) ≥ ϑ, denoting the firing time t = tf , after which the potential
is decreased by a fixed amount ϑ − ur. In the following, we will use ur = urest for
simplicity. The particularity of the AdLIF model is that a second variable w(t) is coupled
to the potential with strength a and decay constant τw ∈ [30, 350] ms, characterising
sub-threshold adaptation. Additionally, w(t) experiences an increase of b after a spike
is emitted, which defines spike-triggered adaptation. The spike-induced shifts of the
membrane potential and adaptation variable are directly incorporated into Eqs. (4.4)
and (4.5) using delta functions. These differential equations can be simplified as,

τu u̇(t) = −u(t)− w(t) + I(t)− τu
∑
f

δ(t− tf ) (4.6)

τw ẇ(t) = −w(t) + a u(t) + τw b
∑
f

δ(t− tf ) . (4.7)
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by making all time-dependent quantities dimensionless with changes of variables,

u→ u− urest

ϑ− urest
, w → Rw

ϑ− urest
and I → RI

ϑ− urest
,

and redefining neuron parameters as,

a→ Ra , b→ Rb

ϑ− urest
, ϑ→ ϑ− urest

ϑ− urest
= 1 and urest →

urest − urest

ϑ− urest
= 0 .

By getting rid of R, urest, ur and ϑ, this procedure halves the number of parameters, so
that a neuron ends up being fully characterised by four parameters: τu, τw, a and b.

Adaptation and refractoriness

In the AdLIF model, refractoriness is not directly implemented as in some conductance-
based models but emerges from the interplay between the adaptation current w(t) and
the membrane potential u(t). The immediate refractoriness is produced by the delta-
function terms in Eqs. (4.6) and (4.7). After emitting a spike, u(t) is decreased by −1
and w(t) is increased by +b, which lowers the membrane potential and results in a longer
refractory period during which the neuron is less responsive to stimuli. Additionally,
the adaptation time constant τw controls how quickly w(t) returns to equilibrium. A
longer τw means that w(t) stays elevated for a longer period, prolonging the refractory
period. Over time, as w(t) increases after each emitted spike and decays more slowly
than the potential, the neuron becomes less responsive to sustained inputs, leading to
the phenomenon of SFA. The concept of refractoriness is therefore subsumed into the
more general adaptation mechanism.

4.2.3 Spike response model equivalent formulation

The AdLIF neuron has an SRM representation that is equivalent to the differential
equations representation in Eqs 4.6 and 4.7. In this subsection, we derive the kernel-
based formulation step-by-step.

Eigenvalues of AdLIF free equations

The free equations of the AdLIF neuron model are obtained by considering Eqs. (4.6)
and (4.7) in the special case where there is no input, I(t) = 0, and no emitted spikes,
s(t) = 0. They can be rewritten in matrix form as,

d

dt

[
u

w

]
=

[
−1/τu −1/τu
a/τw −1/τw

][
u

w

]
= A

[
u

w

]
. (4.8)
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The eigenvalues can be found by setting the determinant of A− λI to zero,∣∣∣∣∣−1/τu − λ −1/τu
a/τw −1/τw − λ

∣∣∣∣∣ = 0 , (4.9)

yielding the characteristic polynomial,

λ2 + λ

 1

τu
+

1

τw

+
1 + a

τuτw
= 0 , (4.10)

whose roots correspond to the two eigenvalues of the system,

λ1,2 = −
1

2

 1

τu
+

1

τw

± 1

2

√√√√√
 1

τu
+

1

τw

2

− 4(1 + a)

τuτw
. (4.11)

Stability conditions

In order to prevent the occurrence of exponentially growing solutions and ensure stability,
both eigenvalues need to have a strictly negative real part, which can be realised by
imposing a lower bound a > −1 on the coupling strength. Moreover, allowing eigenvalues
to have a nonzero imaginary part introduces the potential for oscillatory modes that may
amplify perturbations. This could cause some challenges in terms of numerical stability,
convergence and interpretability, especially in the context of deep neural networks trained
with gradient descent. We therefore impose an additional upper bound on the values of a
leading to the overall stability condition,

−1 < a ≤

(
τw − τu

)2

4τuτw
. (4.12)

Eigenvectors and projection matrix

By solving the eigenvalue equations Av⃗ = λv⃗, i.e.,[
−1/τu −1/τu
a/τw −1/τw

][
vi,u
vi,w

]
= λi

[
vi,u
vi,w

]
, (4.13)

we find that the eigenvectors are

v⃗i =

[
vi,u
vi,w

]
=

[
1

−1− τu λi

]
(4.14)
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for i = 1, 2, which defines the projection matrix P and its inverse P−1,

P =

[
1 1

−1− τu λ1 −1− τu λ2

]
and P−1 =

1

τu(λ1 − λ2)

[
−1− τuλ2 −1
1 + τuλ1 1

]
. (4.15)

Solving the uncoupled system

The projection matrix defined by the eigenvectors allows us to transform the system of
differential equations into a diagonal form,

d

dt

[
u

w

]
= P

[
λ1 0

0 λ2

]
P−1

[
u

w

]
, (4.16)

which can be rewritten as,
d

dt

[
x

y

]
=

[
λ1 0

0 λ2

][
x

y

]
, (4.17)

in terms of variables x, y, defined as,[
x

y

]
= P−1

[
u

w

]
. (4.18)

As the equations are now uncoupled, they have simple solutions of the form,

x(t) = x0 e
λ1 t and y(t) = y0 e

λ2 t . (4.19)

Impulse responses

Starting from some arbitrary initial conditions u0 and w0, we now have an analytical
solution that describes how the unforced system evolves and decays back to equilibrium.[

u(t)

w(t)

]
= eA t

[
u0
w0

]
= P

[
eλ1t

eλ2t

]
P−1

[
u0
w0

]
(4.20)

Inserting P and P−1 gives us,[
u(t)

w(t)

]
= α1 e

λ1t

[
1

−1− τuλ1

]
+ α2 e

λ2t

[
1

−1− τuλ2

]
= α1 e

λ1t v⃗1 + α2 e
λ2t v⃗2 (4.21)

where the coefficients are defined as,

α1 = −
u0(1 + τuλ2) + w0

τu(λ1 − λ2)
, α2 =

u0(1 + τuλ1) + w0

τu(λ1 − λ2)
, (4.22)
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and
α1 + α2 = u0 . (4.23)

Response to an input pulse

Let us now inject a single input pulse I(t) = δ(t) into the system at equilibrium. We can
assume that it will instantly bring the system into a state u = 1, w = 0. The response of
the system to such an input pulse of magnitude 1 at t = 0 is then described by equation
(4.21) with initial conditions u0 = 1 and w0 = 0, which represents a linear combination
of the eigenvectors, [

u0
w0

]
= β1 v⃗1 + β2 v⃗2 =

[
1

0

]
(4.24)

with coefficients,

β1 = −
1 + τuλ2

τu(λ1 − λ2)
and β2 = 1− β1 . (4.25)

Response to an afterspike pulse

Similarly, in response to an afterspike pulse, s(t) = δ(t), let us assume that the membrane
potential instantly decreases by ∆u = −1 and that the adaptation current instantly
increases by ∆w = b. Again, the response of the system is a linear combination of the
eigenvectors, [

u0
w0

]
= γ1 v⃗1 + γ2 v⃗2 =

[
−1
b

]
(4.26)

with coefficients,

γ1 =
(1 + τuλ2)− b

τu(λ1 − λ2)
and γ2 = −1− γ1 . (4.27)

SRM formulation of AdLIF neuron

Using the SRM formulation, the membrane potential u(t) is defined as the convolution of
input stimuli I(t) and output spike trains s(t) with their corresponding kernel functions
κ(t) and η(t),

u(t) = κ(t) ∗ I(t) + η(t) ∗ s(t) . (4.28)

In continuous time, it can then be described in terms of integrals instead of differential
equations as,

u(t) =

∫ ∞

0
κ(t′) I(t− t′)dt′ +

∫ ∞

0
η(t′)S(t− t′)dt′ , (4.29)
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where the two kernels κ(t) and η(t) describe the response to an input pulse and the
response to an afterspike reset pulse respectively,

κ(t) =

(
β1 e

λ1 t + (1− β1) e
λ2 t

)
Θ(t) (4.30a)

η(t) =

(
γ1 e

λ1 t − (1 + γ1) e
λ2 t

)
Θ(t) . (4.30b)

Here λ1, λ2 are the eigenvalues of the system given in Eq. (4.11), β1 and γ1 are defined in
Eqs. (4.25) and (4.27) and Θ(t) is the Heaviside step function. The response of the input
kernel is such that the membrane potential increases by ∆u = 1, without any effect on
the recovery current, i.e., ∆w = 0. The afterspike reset kernel is such that the membrane
potential decreases by ∆u = −1 and the recovery current jumps by an amount ∆w = b,
The kernel functions κ(t) and η(t) are illustrated in Fig. 4.2.

Figure 4.2: Membrane potential response of an AdLIF neuron to an input pulse at t = 50
ms (in blue) and to an emitted spike at t = 200 ms (in orange). The neuron parameters
are τu = 10 ms, τw = 100 ms, a = 0.2 and b = 1.
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4.2.4 Reduction to LIF neuron

With a = b = 0, the AdLIF neuron reduces to the standard LIF model with kernel
functions,

κ(t) = e−t/τu Θ(t) and η(t) = −e−t/τu Θ(t) . (4.31)

As illustrated when comparing Figure 4.3 with Figure 4.2, the main effect of the adapta-
tion variable lies in the afterspike response. While the LIF model uses the same relatively
short time constant τu for both input and afterspike responses, the AdLIF afterspike
response can inhibit the neuron on a longer scale using dedicated neuron parameters τw,
a and b. These additional parameters also yield a higher heterogeneity of responses and
firing patterns among neurons.

Figure 4.3: Membrane potential response of a LIF neuron to an input pulse at t = 50 ms
(in blue) and to an emitted spike at t = 200 ms (in orange). Compared to the AdLIF, here
the only neuron parameter is τu = 10 ms, so that both responses have the same shape.
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4.2.5 Discrete time formulation

Here we use a finite difference scheme to approximate the derivatives in the continuous-
time equations of the AdLIF neuron to differences in discrete time.

Forward-Euler first-order exponential integrator method

The continuous-time differential equations of the AdLIF neuron from Eqs. (4.6) and (4.7)
are of the form,

τ ẏ = −y +N (y) + τ γ s(t) , (4.32)

where N (y) is a nonlinear function and s(t) is a spike train defined as

s(t) =
∑
f

δ(t− tf ) . (4.33)

Multiplying both sides by 1
τ exp(

t
τ ) and then integrating over [tn, tn+1], where tn = n∆t,

yields∫ tn+1

tn

(
ẏ exp

t

τ
+ y

1

τ
exp

t

τ

)
dt =

1

τ

∫ tn+1

tn

N (y) exp
t

τ
dt+ γ

∑
f

∫ tn+1

tn

exp
t

τ
δ(t− tf ) .

(4.34)
The left hand side has an exact solution

y(t) exp
t

τ

∣∣∣∣∣
tn+1

t=tn

=

(
yn+1 exp

∆t

τ
− yn

)
exp

tn
τ
. (4.35)

For the first term of the right hand side, the nonlinearity N (y) can be approximated as
constant over [tn, tn+1] for sufficiently small ∆t, so that N (y) ≈ N (yn) and we can solve
it as

1

τ

∫ tn+1

tn

N (y) exp
t

τ
dt ≈ N (yn) exp

t

τ

∣∣∣∣∣
tn+1

t=tn

= N (yn) exp
tn
τ

(
exp

∆t

τ
− 1

)
. (4.36)

Finally for the last term, the width ∆t of the interval [tn, tn+1] can be set sufficiently
small to include at most a single spike. The exact firing time tf ∈ [tn, tn+1] can then be
discretised as tf = tn so that sn =

∑
f δ(tn − tf ) and

γ
∑
f

exp
tf

τ

∣∣∣∣∣
tf∈[tn,tn+1]

= γ exp
tn

τ
sn (4.37)
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Putting everything together, we get the following update equation for y in discrete time,

yn+1 = exp
−∆t

τ

(
yn + γ sn

)
+

(
1− exp

−∆t

τ

)
N (yn) . (4.38)

AdLIF discrete time formulation

Using Eq. (4.38) derived from the forward-Euler first-order exponential integrator
method, the differential equations of the AdLIF neuron can now be solved in discrete
time. After initialising u0 = w0 = s0 = 0, and defining α := exp −∆t

τu
and β := exp −∆t

τw
,

the neuronal dynamics can be solved by looping over time steps t = 1, 2, . . . , T as,

ut = α
(
ut−1 − st−1

)
+ (1− α)

(
It − wt−1

)
(4.39)

wt = β
(
wt−1 + b st−1

)
+ (1− β) a ut−1 (4.40)

st =
(
ut ≥ 1

)
. (4.41)

We apply stability conditions from Eq. 4.12 for the value of the coupling strength a.
Additionally, we constrain the values of the neuron parameters to biologically plausible
ranges (Gerstner and Kistler, 2002; Augustin, Ladenbauer, and Obermayer, 2013),

τu ∈ [3, 25]ms, τw ∈ [30, 350]ms, a ∈ [−0.5, 5], b ∈ [0, 2] . (4.42)

The four neuron parameters τu, τw, a and b all characterise the shape of the membrane
potential response to input and output spikes illustrated in 4.2.
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4.3 Networks

4.3.1 Relationship between spiking and recurrent neural networks

Similar to an MLP with Eq. (2.14), the stimulus of a layer of N l spiking neurons can be
implemented as a linear combination of spike trains sl−1 ∈ {0, 1}T×N l−1

from the N l−1

neurons in the previous layer
I l = W l sl−1 + bl . (4.43)

If recurrent connections are enabled, the stimulus of the l-th layer also includes a feedback
term from its own spike trains sl ∈ {0, 1}T×N l

, resulting in an equation similar to Eq.
(2.24) for RNNs,

I lt = W l sl−1
t + V l slt−1 + bl . (4.44)

Here the weight matrices W l ∈ RN l−1×N l
and V l ∈ RN l×N l

correspond to the strength
of the synaptic connections, and the bias bl to heterogeneous resting values of the
membrane potential among neurons. The excitatory and inhibitory connections between
physiological neurons are here represented by positive and negative weights respectively.

Enabling layer-wise recurrence is biologically plausible, as neurons frequently form
recurrent connections with other neurons in their local circuits. While longer-range
recurrent connections are also common in the brain, we do not consider them here
for compatibility with deep learning frameworks, though they represent an interesting
direction for future work. In terms of unit-wise recurrent connections, diagonal elements
of V l are set to zero as afterspike self inhibition is already accounted for in Eq. (4.39).
While this choice excludes autapses, which are rare but do exist in the brain, it simplifies
the model for our study.

Additionally, a binary mask can be applied to matrices W l and V l to limit the number
of nonzero connections. Similarly, a portion of neurons in a layer can be reduced to LIF
dynamics without any SFA by applying another binary mask to the neuron adaptation
parameters a and b. Indeed, as illustrated in Section 4.2.4, if a = b = 0, the adaptation
current vanishes wt = 0 ∀t ∈ {1, 2, . . . , T} and has no more impact on the membrane
potential.

The forward pass through an SNN is then defined by vectorising Eq. (4.44) and Eqs.
(4.39)-(4.41), and looping them over layers and time. The main difference with ANNs
is therefore that the dynamics of the membrane potential, combined with the threshold
behaviour replace the simple activation function of Eq. (2.15) and produce binary signals
sl ∈ {0, 1}T×N l

instead of real-valued ones yl ∈ RT×N l
. As pointed out by Neftci, Mostafa,

and Zenke, 2019, such dynamics can be viewed as a nonlinear activation function which
makes SNNs a special case of RNNs. Nevertheless, throughout this thesis the term RNN
refers to purely non-spiking recurrent network, as defined in Section 2.3.3.
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4.3.2 Neural heterogeneity

In reaction to a given stimulus It, different sets of values for the neuron parameters τu,
τw, a and b will lead to different firing patterns, which is an important particularity of
SNNs. In ANNs, since the same activation function is typically applied to all neurons, as
defined in Eq. (2.15), two neurons receiving the same stimulus It will always produce
the same output.

As demonstrated by Perez-Nieves et al. (2021), the introduction of heterogeneity in the
spiking neuron parameters can considerably improve the network performance, especially
for tasks that have a rich temporal structure. This form of neural heterogeneity therefore
seems to represent a theoretical advantage of SNNs over standard ANNs on such tasks, as
it may allow superior representations of the temporal information.

As reviewed by Apicella et al. (2021), trainable or adaptable activation functions have
also been used inside ANNs, and are known to improve their accuracy. In this thesis
however, we do not attempt to additionally cover this large field. The above review points
out that the enabled improvements can usually be replicated using a more conventional
non-trainable homogeneous activation function, and simply more neurons or layers.

In line with the current standard practices in the field, the ANNs we implement in Chapter
5 for comparison with our ANNs all use homogeneous activation functions, as defined in
Equation (2.15). As our own ANN implementations sometimes outperform those of the
literature (Cramer et al., 2020; De Andrade et al., 2018), we believe that they form an
adequate ANN baseline for comparing with SNNs.

4.3.3 Relationship between SNNs and state-space models

With our approach, a recurrent layer of spiking neurons can be represented as a threshold-
based non-linear SSM with feedback. We can write the differential equations of the system
as those of a continuous time SSM,

d

dt

[
u(t)

w(t)

]
=

[
W

0

]
sin(t) +A

[
u(t)

w(t)

]
+

[
V − I
b I

]
sout(t) (4.45)

sout(t) = Θ
(
u(t)− ϑ

)
, (4.46)

where Eq. (4.45) is the state equation and Eq. (4.46) the observation equation.

For a layer of N neurons, the state of the complete system is characterised by a 2N -
dimensional vector ũ := [u1, u2, . . . , uN , w1, w2, . . . , wN ](t). The state equation from Eq.
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(4.45) can then be vectorised as,

d

dt
ũ(t) = W̃ sin(t) + Ã ũ(t) + Ṽ sout(t) . (4.47)

As described in Eq. (4.8), the state transition matrix Ã ∈ R2N×2N depends on neuron
parameters τu, τw and a ∈ RN . It represents a unit-wise feedback from the system’s
dynamics, characterising leakiness and subthreshold adaptation,

Ã =



−1/τu,1 −1/τu,1
−1/τu,2 −1/τu,2

. . . . . .
−1/τu,N −1/τu,N

a1/τw,1 −1/τw,1

a2/τw,2 −1/τw,2

. . . . . .
aN/τw,N −1/τw,N


. (4.48)

Matrix W̃ ∈ R2N×M has zeros in its bottom half as the input spike trains sin(t) ∈ {0, 1}M

stimulate the membrane potential but not the adaptation currents. Matrix Ṽ ∈ R2N×N

depends on neuron parameters b ∈ RN and recurrent connections V ∈ RN×N . The
upper and bottom diagonals correspond to unit-wise feedbacks describing spike-triggered
refractoriness, whereas non-diagonal elements in the upper half correspond to synaptic
weights between different neurons in the same layer.

W̃ =



W11 W12 . . . W1M

W21 W22 . . . W2M

...
...

. . .
...

WN1 WN2 . . . WNM


and Ṽ =



−1 V12 V13 . . . V1N

V21 −1 V23 . . . V2N

V31 V32 −1 . . . V3N

...
...

...
. . .

...
VN1 VN2 VN3 . . . −1

b1
b2

b3
. . .

bN



(4.49)

We illustrate Eq. (4.47) in Figure 4.4 using a block diagram representation.
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Figure 4.4: Block diagram representation of a layer of spiking neurons with input and
output spike trains sin and sout. W̃ , Ṽ and Ã represent vectorised versions of input,
feedback and state matrices respectively. The gate symbol represents the nonlinear
threshold operation.
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4.4 Training methods for SNNs

Biological neurons exhibit activity-dependent synaptic plasticity characterised by long
term potentiation and depression. This behaviour can be modelled using a form of Spike
Timing Dependent Plasticity (STDP), as defined by Dan and Poo (2006). Without the need
of labeled examples, this form of unsupervised Hebbian learning is sufficient to detect
correlations in the input stimuli and learn encodings of real-world data. However, in order
to perform motor tasks, STDP must be combined with a form of global reward-based
learning that involves neuromodulators in the brain (Schultz, Dayan, and Montague,
1997; Schultz, 2007; Schultz, 2010; Frémaux and Gerstner, 2016).

Artificial neurons, on the other hand, are most commonly trained using SGD. As detailed
in Section 2.3, this technique involves comparing the model predictions to desired outputs
for a mini-batch of examples via a loss function. The error of the whole mini-batch is then
backpropagated through the network using the chain-rule of derivatives, and the trainable
parameters of the entire network are updated accordingly. This form of supervised, global
and offline learning is however highly biologically implausible (O’Reilly and Munakata,
2000). In comparison, the weight adjustment with STDP happens online, i.e., each time a
spike is emitted, and has only a local dependence on the pre- and post-synaptic neurons.
Nevertheless, SGD represents the most successful training algorithm used in ANNs. With
the aim of evaluating the compatibility of SNNs within ANN frameworks, we will focus
on training SNNs with gradient descent.

Using SGD with SNNs is challenging because the derivative of the spike function in
equation (4.41) with respect to the membrane potential is zero in the subthreshold
regime (when no spikes are emitted, i.e., almost everywhere) and undefined when
threshold is reached and a spike is produced. Moreover, small perturbations of the
synaptic weights can either lead to considerably different output spike trains, or produce
no change at all. The numerous discontinuities caused by the threshold mechanism
make the search of a global optimum particularly difficult, especially in multi-layered
architectures. Nevertheless, training SNNs with SGD can still be achieved through a
variety of approaches that can be grouped into the following three general categories:

1. Sharing weights with ANNs

2. Using a differentiable neuron model

3. Using surrogate gradients.

4.4.1 Weight-sharing with ANNs

The first category, which has been reviewed by Abbott, DePasquale, and Memmesheimer
(2016), circumvents the problem of training SNNs by using conventional rate-based
ANNs instead. The general approach is to first train an ANN before converting it to an
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equivalent SNN (Diehl and Cook, 2015). The resulting architectures do exhibit a spiking
behaviour during the forward pass, but the spike timings are ignored in the learning
rule. Recently, Wu, Chua, Zhang, Li, Li, et al. (2021) have managed to ensure an efficient
gradient based back-propagation by coupling an SNN with an ANN through layer-wise
weight sharing. During the forward pass, the SNN computes the exact spiking neural
representations, and the ANN the corresponding approximate spike counts (or firing
rates). During the backward pass, the error is backpropagated through the ANN via
SGD and the weight updates are transferred to the SNN. This tandem learning technique
allows fast and efficient learning with multi-layered architectures and has notably proven
to be successful on speech recognition tasks (Wu, Yılmaz, et al., 2020). Nevertheless, one
could argue that the information about the timings of the individual spikes is still reduced
to a rate-based approximation during the backward pass. Moreover, this approach so far
neither includes adaptive neuron models nor recurrent connections.

4.4.2 Differentiable neuron models

The second category, which has been reviewed by Neftci, Mostafa, and Zenke (2019),
involves spiking neuron models that are differentiable. These include soft-threshold
models (Hodgkin and Huxley, 1952; FitzHugh, 1961; Morris and Lecar, 1981; Huh and
Sejnowski, 2018), probabilistic models (Jang et al., 2019), spike train convolution models
(Lin, Wang, and Hao, 2017; Lin and Shi, 2018; Wang, Lin, and Dang, 2019) as well as
single-spike timing-based models (Bodyanskiy and Dolotov, 2013; Mostafa, 2017; Comsa
et al., 2020). Although interesting, these models are beyond the scope of our focus on
the non-differentiable neuron models presented in Section 4.2.

4.4.3 Surrogate gradient method

Also presented by Neftci, Mostafa, and Zenke (2019), the problem of the non-differentiable
threshold behaviour can be solved using surrogate gradients. During the backward pass,
the Heaviside step function of the spike generation is smoothed into a suitable differen-
tiable function. With this approach, the threshold operation is only approximated during
the backward pass, and remains a step function inside the forward computations. An
SNN can then be considered as a special case of RNNs and the BPTT algorithm becomes
applicable for training. Nevertheless, the sparsity in time of non-zero gradients, combined
with the problems of exploding and vanishing gradients remain.

As illustrated in Figure 4.5, the derivative of the step-function has notably been approxi-
mated using the sigmoid derivative (Schrauwen and Van Campenhout, 2006; Zenke and
Ganguli, 2018), exponential functions (Shrestha and Orchard, 2018), piecewise linear
functions (Bohte, Kok, and La Poutre, 2002; Bellec et al., 2018; Panda, Aketi, and Roy,
2020), a Gaussian (Yin, Corradi, and Bohté, 2020), a multi-Gaussian (Yin, Corradi, and
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Bohté, 2021) and a boxcar function (Kaiser, Mostafa, and Neftci, 2020). These typically
involve a width hyperparameter controlling how close neurons must be to their threshold
value for their gradients to be backpropagated.

Figure 4.5: Different surrogate gradient functions to approximate the derivative of the
step-function responsible for spike generation.

This third and last category of SGD-based training methods is rather versatile compared
to the first two as it is not limited to a specific neuron model and allows the use of the
different spiking neuron models described in Section 4.2. We will therefore concentrate
our analysis on the surrogate gradient approach, but still include a comparison with the
tandem method of Wu, Chua, Zhang, Li, Li, et al. (2021).

In an SNN as defined in Section 4.3, by exploiting auto-differentiation inside the deep
learning framework PyTorch (Paszke, Gross, Chintala, et al., 2017), one can manually
replace the undefined gradient of the step function in Eq. (4.41) with a surrogate,
and make the backward pass and therefore gradient descent possible for the whole
network. After conducting a series of ad-hoc experiments to compare the different
surrogate gradient functions illustrated in Figure 4.5, we selected the boxcar function, as
it performed the best overall and is computationally efficient. Consequently, we used the
boxcar method, previously employed by Kaiser, Mostafa, and Neftci (2020), in all our
reported results. It is defined as,

∂st
∂ut

=

{
0.5 if |ut − 1| ≤ 0.5

0 otherwise .
(4.50)
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4.5 Implementation of an AdLIF spiking layer

In order to implement this model of spiking neurons inside a trainable network, we define
here a method relying on the surrogate gradient approach that will be compatible with
standard deep learning frameworks.

4.5.1 Differential equations formulation

Algorithm 1 Forward pass through AdLIF layer using differential equations formulation

1: Input: x ∈ RB×T×N l−1

2: Trainable parameters: matrices W , V and vectors α, β, a, b
Optionally apply masks to W and V to reduce the connectivity
Optionally apply masks to a and b to also include LIF neurons with no SFA
Clamp values of α, β, a and b to specified ranges

3: Apply feedforward matrix:
I ← BatchNormalisation(W x)

4: Pre-loop initializations:
ut ← 0, wt ← 0, st ← 0
s← [ ] as an empty list

5: for t = 1, 2, . . . , T do

6: if V ̸= 0 then
7: It ← It + V · st
8: end if

9: ut ← α(ut − st) + (1− α)(It − wt)
10: wt ← β(wt + b st) + (1− β) a ut
11: st ← (ut ≥ 1)

12: s.append(st)

13: end for

14: Stack list elements of s over time dimension

15: Return s ∈ {0, 1}B×T×N l
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4.5.2 Spike response formulation

Algorithm 2 Forward pass through AdLIF layer using SRM formulation

1: Input: x ∈ RB×T×N l−1

2: Trainable parameters: matrix W and vectors α, β, a, b
Optionally apply mask to W to reduce the connectivity
Optionally apply masks to a and b to also include LIF neurons with no SFA
Clamp values of α, β, a and b to specified ranges
Compute SRM parameters λ1, λ2, β1, γ1 from α, β, a and b

3: Apply feedforward matrix:
I ← BatchNormalisation(W x)

4: Convolve with input kernel:
Define time vector: t⃗ = [0, 1, . . . , T − 1]∆t
Compute input kernel: κ = β1 exp(λ1 t⃗) + (1− β1) exp(λ2 t⃗)
Compute membrane potential: u← I ∗ κ

5: Precompute afterspike kernel:
η = γ1 exp(λ1 t⃗)− (1 + γ1) exp(λ2 t⃗)

6: Pre-loop initializations:
s← [ ] as an empty list

7: for t = 1, 2, . . . , T do

8: Check which neurons fire:
st ← (ut ≥ 1)
s.append(st)

9: Apply afterspike resets to neurons that fired:
ηshifted ← [0, 0, . . . , 0, η1, η2, . . . , ηT−t]
u← u+ st · ηshifted

10: end for

11: Stack list elements of s over time dimension

12: Return s ∈ {0, 1}B×T×N l
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5 Applications of SNNs to Speech
Recognition Tasks

After defining our SNN approach in the previous chapter, we first apply it
to speech command recognition tasks and obtain competitive performance
compared to conventional non-spiking ANNs. Building on this initial
success, we then extend the approach to tackle the more challenging
task of large vocabulary continuous speech recognition. Overall, we
demonstrate that surrogate gradient SNNs can be effectively trained
within end-to-end deep learning frameworks and are applicable to various
speech recognition tasks. In addition to the potential for low-power
hardware implementations due to the inherent energy efficiency of spiking
neurons, this chapter establishes a foundation for exploring how trained
networks encode speech information in the next chapter, offering insights
relevant to neuroscience.

Publication Note

This chapter is based upon the following publications.

• A. Bittar and P. N. Garner (2022a). “A surrogate gradient spiking base-
line for speech command recognition”. In: Frontiers in Neuroscience 16,
p. 865897. DOI: 10.3389/fnins.2022.865897

• A. Bittar and P. N. Garner (2022c). Surrogate gradient spiking neural
networks as encoders for large vocabulary continuous speech recognition.
arXiv: 2212.01187 [cs.CL]

The underlying code has been released and is openly accessible on GitHub at
https://github.com/idiap/sparch
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Chapter 5. Applications of SNNs to Speech Recognition Tasks

5.1 A baseline for speech command recognition

In the previous chapter, we defined our SNN approach that combines the AdLIF neuron
model with the surrogate gradient method, and allows the resulting SNNs to be trained
just like RNNs using the BPTT algorithm. In this section, we first apply this approach to
speech command recognition tasks and compare the performance with ANNs. We also
discuss potential energy advantages for integration into low-powered devices.

Recently, spiking versions of speech command recognition datasets have been released,
using the physiological cochlea model LAUSCHER to convert input audio into spikes
(Cramer et al., 2020). We use these as well as their respective non-spiking, traditional
versions to conduct experiments with both SNNs and ANNs. Using a recovery current
instead of the more conventional moving threshold formulation of Bellec et al. (2018),
our implementation of adaptive neurons seems to convincingly improve upon previous
efforts on similar tasks (Yin, Corradi, and Bohté, 2020; Yin, Corradi, and Bohté, 2021;
Shaban, Bezugam, and Suri, 2021; Salaj et al., 2021), as we achieve new state-of-the-art
results with SNNs. Furthermore, a comparison with traditional gated RNNs shows that
our spiking baseline is capable of achieving competitive results, even without resorting to
recurrent connections, showing the effectiveness of a physiologically inspired approach.

5.1.1 Architecture

The overall speech command recognition pipeline is presented in Figure 5.1.

Figure 5.1: Speech command recognition pipeline. For non-spiking datasets, Mel fil-
terbank features are extracted from the input waveform and directly sent to the SNN.
For the spiking datasets, spike train representations of the input waveforms have been
pre-computed using LAUSCHER. The multi-layered SNN processes the information in
the form of spike trains before the final readout layer transforms these into a vector of
probabilities over the C classes (with no time dimension).
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Acoustic frontend

On the spiking datasets, the inputs sl=0 already represent spike trains encodings of
the speech signals. Selecting a 100 Hz sampling rate, we directly process them with a
multi-layered SNN without requiring any feature extraction. On the non-spiking datasets,
we extract Mel filterbank features from the audio waveforms using 25 ms windows and a
shift of 10 ms. In this case, the first SNN layer receives real-valued features and outputs
the first spike trains.

Encoder

Based on ad-hoc experiments, we use two hidden layers. Each hidden unit integrates
the incoming stimuli from feedforward and recurrent connections at time step t with
Eq. (4.44). The membrane potential is updated using Eqs. (4.39)-(4.40) and a spike is
emitted with Eq. (4.41) if threshold is reached.

Readout layer

In both spiking and non-spiking datasets, the spike trains of the last hidden layer need to
be converted to class probabilities using a readout layer.

Instead of a sequence of spikes, this readout layer must output one value oi per neuron
i = 1, . . . , NL that indicates its level of activity over time. During inference, the neuron
with the highest activity will be chosen. We considered four different methods for the
readout layer,

1. a spiking layer using the spike count,

oi =
T∑
t=1

sLt,i (5.1)

2. a non-spiking layer using the last potential value over time,

oi = uLT,i (5.2)

3. a non-spiking layer using the maximal potential value over time,

oi = max
t=1,...,T

uLt,i (5.3)

4. a non-spiking layer using a sum of the softmax of the potential across neurons over
time,

oi =

T∑
t=1

softmax(uLt,i) . (5.4)
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In ad-hoc experiments presented in Table 5.1, the last technique gave the best performance
and is what is used in all presented results. We define readout units as non-spiking LIF
neurons that integrate purely feedforward stimuli and update their membrane potential
without spiking. We then use Eq. (5.4) to compute the outputs [o1, o2, . . . , oNL ], where oi
corresponds to the sum of the i-th unit potential over time, normalised by the softmax
function across units at each time step.

Table 5.1: Results on the SHD dataset for SNNs with different types of readout layer.

Network Potential softmax sum Spike count Last potential Max potential

LIF 3x128 87.27% 87.45% 62.45% 77.99%
LIF 3x512 89.94% 87.27% 67.74% 79.46%
AdLIF 3x128 93.06% 90.35% 90.07% 88.56%
AdLIF 3x512 93.93% 93.52% 90.53% 89.61%

Cross-entropy loss function

All models take inputs of size (B, T,N0) and return outputs o of size (B,NL), where
B is the batch size (i.e., the number of examples in one mini-batch), T the number of
time steps, N0 the number of input features/channels and NL the number of command
classes. The ground truths are given as a vector y of size (B) containing the label indexes.
The CE loss is then computed as,

LCE = − 1

B

B∑
b=1

log
exp

(
o[b, y[b]]

)
∑C

c=1 exp
(
o[b, c]

) . (5.5)

ANN baseline for comparison

We implement MLPs, non-gated RNNs, Li-BRUs and GRUs to serve as an ANN-baseline to
compare with our SNNs.

With the objective of assessing the capabilities of spiking neurons compared to standard
artificial ones, we must define equivalent architectures, that only differ in the type of
neurons that they employ. As we will see in Section 5.1.3, even though the spiking
neuron parameters τu, τb, a and b can be made trainable, the total number of trainable
parameters in a network remains largely dominated by the amount of connecting weights.
This means that in terms of the total number of trainable parameters, SNNs with and
without recurrent connections are comparable to non-gated RNNs and MLPs respectively.
On the other hand, state-of-the-art gated RNNs remain considerably larger and do not
have any direct spiking equivalent in this study.
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It is also worth mentioning that even though purely feedforward SNNs do not have
recurrent connections, they still include a form of unit-wise recurrence from Eqs. (4.39)
and (4.40), where a dependence to the previous time step is present in the dynamics of
the membrane potential. This implies that non-recurrent SNNs are theoretically capable
of developing a form of memory, without the need of recurrent connections, which is not
the case for MLPs.

The readout layer of RNNs, Li-BRUs and GRUs was first defined as a recurrent layer, and
the same cumulative sum used for SNNs was applied to its output sequence. Even though
this might appear as the best choice for comparison with the SNN technique, we found
that applying the cumulative sum in the penultimate (L− 1) layer instead, followed by a
final linear layer gave better results, which is what is used for all reported RNN, Li-BRU
and GRU results in the manuscript. For MLPs, the cumulative sum is simply applied to
the final output sequences.

Optimiser and learning rate scheduler

The Adam optimizer (Kingma and Ba, 2015) is used for all experiments with initial
learning rates of 0.01 and 0.001 on the spiking and non-spiking datasets respectively.
A scheduler is also defined to reduce the learning rate by a factor 0.7 if there is no
improvement on the validation set accuracy during 10 epochs in a row. This approach
proved to be suitable for both SNNs and ANNs and is employed in all presented networks.

5.1.2 Spiking and non-spiking datasets

This research focuses on the bio-inspired processing of auditory information, leading to
the formation of appropriate representations and the extraction of relevant features that
can then be used for different tasks. The long-term objective is to perform ASR using a
physiologically plausible approach that includes waveform to spike conversion followed
by processing of the information via spiking neural networks.

However, ASR is a complex task; modern approaches involve end-to-end deep networks,
whereas previous techniques needed to solve a series of subtasks, typically feature
extraction, phoneme recognition and decoding. In the field of SNNs, it appears that one
could benefit from first focusing on the simpler task of speech command recognition
to better understand spiking networks. While retaining the processing of auditory
information, this more elementary task neither involves too many components in the
pipeline, nor requires very deep networks and therefore constitutes a first necessary step
in the direction of efficient ASR with SNNs.

We will start by giving a short summary of the biological processes involved in speech
perception. We then review LAUSCHER, a bio-inspired model to convert audio waveforms
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into spike trains, and some resulting, newly available spiking datasets.

From waveform to spikes

A speech utterance arrives at the ear in the form of air vibrations. From the eardrum
it travels via the ossicles to the cochlea, hence the basilar membrane and the organ of
Corti, ultimately stimulating hair cells that convert the physical movement into electrical
signals. The signals take the form of spike trains on the auditory nerve. Many conventional
ASR “filterbank” front-ends are rough analogues of this process, notably modelling the
logarithmic response to frequency and to amplitude.

Cramer et al. (2020) have developed LAUSCHER, a biologically plausible model to convert
audio waveforms into spike trains. A cochlear model, based on the models developed by
Sieroka, Dosch, and Rupp (2006) is used to calculate the hydrodynamic shallow water
basilar membrane response to the input waveform. The output of the cochlea then goes
into a transmitter pool-based hair cell model, derived from the work of Meddis (1986)
and Meddis (1988). Finally, a layer of auditory neurons called bushy cells convert the
signal to spike trains using LIF dynamics.

Such a framework allows a direct conversion from audio waveforms into spike trains,
while solely relying on physiological processes. In order to train SNNs on speech data,
the general and most commonly used alternative is to extract acoustic features from the
waveform and interpret them as firing rates to produce spike trains via Poisson processes.
Even though the latter approach still shows some physiological plausibility, a single firing
rate value is used to produce spikes during the length of a frame (typically 25 ms). This
concession comes from the need of using datasets that were originally designed for ANNs,
i.e., rate-based approximations of SNNs.

Spiking datasets

In order to rectify the absence of free spike-based benchmark datasets, Cramer et al.
(2020) recently released two spiking datasets using LAUSCHER:

• The SHD dataset contains spoken digits from 0 to 9 in both English and German
(20 classes). The recordings are from twelve different speakers, two of which are
only present in the test set. The train set contains 8332 examples and the test set
2088 (there is no validation set).

• The SSC dataset is based on the Google Speech Commands v0.2 dataset and
contains 35 classes from a larger number of speakers. The number of examples in
the train, validation and test splits are 75466, 9981 and 20382 respectively.

78



5.1 A baseline for speech command recognition

In both datasets, the original waveforms have been converted to spike trains over 700
input channels. These spiking datasets form an adapted benchmark and allow the
investigation of SNNs as well as the comparison of different techniques.

Figure 5.2: Standard representation via filterbank features (A) and spike train repre-
sentation via LAUSCHER (B) of the same spoken digit (seven in English) from the SHD
dataset.

The current state-of-the-art on the SHD and SSC datasets is summarized in Tables 5.2
and 5.3. The SNN methods are presented in the upper section of the tables, and in the
lower sections, the non-spiking CNN and LSTM serve as a point of comparison with the
ANN performance.

Table 5.2: State-of-the-art on the SHD dataset.

Method Test acc.

Attention (Yao et al., 2021) 91.1%
Recurrent + adaptation (Yin, Corradi, and Bohté, 2021) 90.4%
Recurrent + adaptation (Yin, Corradi, and Bohté, 2020) 84.4%
Recurrent + data augm. (Cramer et al., 2020) 83.2%
Recurrent + heter. time const. (Perez-Nieves et al., 2021) 82.7%
Recurrent (Cramer et al., 2020) 71.4%
Non-recurrent (Cramer et al., 2020) 47.5%

CNN (Cramer et al., 2020) 92.4%
LSTM (Cramer et al., 2020) 89%

Non-spiking datasets

The original, non-spiking versions of the SHD and SSC datasets are available and will
also be considered in this work. For the Heidelberg Digits (HD) and Google Speech
Commands (SC) datasets, acoustic features are extracted from the waveforms and fed
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Table 5.3: State-of-the-art on the SSC dataset.

Method Test acc.

Recurrent + adaptation (Yin, Corradi, and Bohté, 2021) 74.2%
Recurrent + heter. time const. (Perez-Nieves et al., 2021) 57.3%
Recurrent (Cramer et al., 2020) 50.9%
Non-recurrent (Cramer et al., 2020) 41.0%

CNN (Cramer et al., 2020) 77.7%
LSTM (Cramer et al., 2020) 73%

into neural networks. An input example is illustrated in Figure 5.2, where the filterbank
and spiking approaches are compared. The second version of the original SC dataset
introduced by Warden (2018) has the same number of examples as its spiking version
(SSC), but different training, validation and testing splits of 84843, 9981 and 11005
examples respectively. The SSC has a 70% / 10% / 20% partition instead of 80% / 10% /
10% for the SC. This makes a direct comparison impossible between the accuracies on the
two tasks, as the SC has considerably more training data. For the HD and SHD datasets
however, the splits are the same. We were not able to find state-of-the-art results on the
non-spiking HD dataset, however, for the SC dataset, the state-of-the-art is presented
in Table 5.4. Note that certain approaches, such as that of Pellegrini, Zimmer, and
Masquelier, 2021, use the first version of the SC dataset. Others, like Zhang et al. (2017)
or Rybakov et al. (2020) do use the second version of the dataset, but only 12 labels
instead of 35, by using an "unknown" category that includes some of the remaining words.
This explains the absence of some of the literature inside the state-of-the-art table, as
their results unfortunately cannot directly be compared with ours. In all state-of-the-art
tables, the best test accuracies by SNNs and ANNs are written in bold.

Table 5.4: State-of-the-art on the SC dataset (version 2 with 35 labels).

Method Test acc.

Recurrent + adaptation (Salaj et al., 2021) 91.21%
Recurrent + adaptation (Shaban, Bezugam, and Suri, 2021) 91%

Transformers (Gong, Chung, and Glass, 2021) 98.11%
Attention RNN (De Andrade et al., 2018) 93.9%

5.1.3 Results

We present results for the LIF and AdLIF neuron models defined in Section 4.2. We
distinguish between models with and without recurrent connections, in the form of a
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weight matrix V applied to a layer-wise feedback as defined in Section 4.3, so that SNNs
without recurrent connections are considerably lighter in terms of number of trainable
parameters. In the following, Recurrent Leaky Integrate-and-Fire (RLIF) and Recurrent
Adaptive Leaky Integrate-and-Fire (RAdLIF) refer to the recurrent networks using LIF
and AdLIF neurons respectively.

The hidden size of a network corresponds to the number of neurons in each of the hidden
layers. Although different hidden layers can have different sizes, we focused on hidden
layers of the same size in this study. The number of layers is the number of hidden layers
plus one (the readout layer). Networks of increasing size and depth were investigated by
varying the hidden size from 128 to 1024 neurons per layer, and the number of layers
from two to five. Overall, three-layered architectures appeared as the best compromise
between size and performance and are used in all presented results with both SNNs and
ANNs.

Nevertheless, increasing the number of layers showed that the training of the networks
was robust to considerable depth. The chosen approach was therefore able to discard
scalability limitations of SNNs on these four tasks, which is very encouraging for the
compatibility of SNNs with modern deep learning frameworks.

In the following sections dedicated to each of the four tasks, the results with SNNs will
be presented in the upper region of the tables. We distinguish between the following
types of network:

1. tandem: non-recurrent network of non-adaptive integrate-and-fire neurons (no
leak) trained with tandem learning rule.

2. LIF: non-recurrent network of non-adaptive LIF neurons trained with a surrogate
gradient.

3. AdLIF: non-recurrent network of AdLIF neurons trained with a surrogate gradient.

4. RLIF: recurrent network of non-adaptive LIF neurons trained with a surrogate
gradient.

5. RAdLIF: recurrent network of AdLIF neurons trained with a surrogate gradient.

Based on ad-hoc experiments, all presented surrogate gradient SNNs use (i) trainable
neuron parameters within fixed ranges of values (α for LIF and α, β, a and b for AdLIF
neurons as defined in Section 4.2), (ii) a surrogate gradient with the boxcar function, and
(iii) a non-spiking readout layer with a cumulative sum over time as defined in Section
5.1.1.

On the other hand, for the ANN baseline, the following types of network will be presented
in the lower section of the tables of results:
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1. MLP: a simple feed-forward network without recurrence

2. RNN: a standard recurrent network

3. Li-BRU: a network of light Bayesian recurrent units

4. GRU: a network of gated recurrent units

The Li-BRU is the probabilistic version of the Li-GRU presented in Section3.2 with a
Softplus activation function instead of a ReLU. We show results with the Li-BRU instead
of the Li-GRU, as they were slightly better on all four tasks.

In terms of number of trainable parameters, on the one hand, tandem,LIF and AdLIF
networks are roughly equivalent to MLPs, and on the other hand, RLIF and RAdLIF
networks are comparable to standard RNNs. By contrast, gated non-spiking networks are
considerably larger than all SNNs, since each gate includes weight matrices of its own.
With respectively one and two gates, Li-BRUs and GRUs contain approximately two and
three times as many parameters as RNNs of the same size. LSTMs were also tested, but
since their performance was observed to be slightly lower than that of Li-BRUs and GRUs,
they are not mentioned in our experiments.

Note that although surrogate gradient SNNs have trainable parameters inside their
activation function, the implemented ANNs only use a non-trainable homogeneous
activation function, as it is the case in current common practice. The implemented SNNs
and ANNs therefore differ with respect to the trainability of their respective activation
functions.

All presented ANNs and SNNs use dropout with p = 0.1 as well as batch normalisation
(Ioffe and Szegedy, 2015). The only hyperparameters in both artificial and spiking
networks are the dropout rate, the learning rate, and the patience and decay factor of
its scheduler. Given that we were not initially aiming for state-of-the-art performance, a
simple ad-hoc search was carried out to tune them.

Spiking Heidelberg digits

Owing to its small size, the SHD data set allows a thorough investigation of the best
choice of architecture. On this specific task, we show for the first time that SNNs can
surpass ANNs. Our results are illustrated in Table 5.5. First notice that our best SNN
results are better than the attention based SNN state of the art of 91.1% by Yao et al.
(2021) (see Table 5.2). More importantly, our approach also improves upon the best
reported ANN-performance of 92.4% by Cramer et al. (2020), which used a CNN. Our
own attempts with recurrent ANNs only reached 90.40% with GRUs. Even using non-
recurrent connections and a relatively small network (3x128), we obtained an accuracy
of 93.06% with adaptive spiking neurons. This shows a remarkable ability of SNNs to
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compete with much larger standard networks. With recurrence and a higher number
of neurons, our best performing SNN even reached a test accuracy of 94.62%, which is
extremely promising for the future of spiking networks with surrogate gradients.

We also tested the tandem approach of Wu, Chua, Zhang, Li, Li, et al. (2021) presented in
Section 4.4.1, which is an alternative to surrogate gradients. This method so far does not
allow recurrent connections. Even if the results are slightly higher (62.64%) than those
with a MLP (61.63%), they are significantly lower than what we get with the surrogate
gradient approach for a network of the same size (87.04% and 93.06% for LIF and AdLIF
neurons respectively). This can be seen as evidence of the importance of using the precise
spike timings inside the training mechanism.

Table 5.5: Results on the SHD dataset. All models use three layers, i.e., two hidden and
one readout layer. Using the method described in Section 2.1.3 to compute credible
intervals, we get error bars between ±2.1% and ±0.9% for test set accuracies between
61.63% and 94.62%. Note that larger ANNs were also tested but only obtained slight
improvements and remained under the performance of SNNs of the same size.

Network type Recurrent connections Hidden size Test accuracy

tandem no
128

1024
62.64%
68.01%

LIF no
128

1024
87.04%
89.29%

AdLIF no
128

1024
93.06%
93.57%

RLIF yes
128

1024
89.75%
92.51%

RAdLIF yes
128

1024
92.88%
94.62%

MLP no 128 61.63%
RNN yes 128 73.48%
Li-BRU yes 128 89.61%
GRU yes 128 90.40%

SNN SOTA (Yao et al., 2021) 91.1%
ANN SOTA (Cramer et al., 2020) 92.4%
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Non-spiking Heidelberg digits

In order to compare with standard methods for speech recognition, some experiments
were made on the original, non-spiking HD dataset. Filterbank features were extracted
from the waveforms, and directly fed into various networks. As illustrated in Figure 5.2,
compared to a spiking input generated with LAUSCHER, which is a 700 neurons × 100
timesteps sparse binary tensor, here a non-spiking input typically takes the form of a 40
features × 250 frames real-valued tensor. Even though the first hidden layer receives
real-valued sequences instead of spike trains, spiking networks remain compatible with
this approach. They even outperform their non-spiking equivalents, as presented in Table
5.6, where the LIF and RLIF networks surpass the MLP and RNN respectively. The Li-BRU
was also tested and gave the best overall performance, athough it requires roughly twice
as many trainable parameters as a RNN or RLIF network. The accuracies reached with
this filterbank approach are considerably higher than the ones on the spiking dataset.
Most investigated models were able to reach a test accuracy close to 100%, which is why
we only show a few relevant results. This seems to indicate that some information is lost
when performing the conversion from waveform to spikes with LAUSCHER, compared to
the extraction of acoustic features. Here the conversion from filterbank features to spike
trains happens in a trainable fashion inside the neuronal dynamics of the first hidden
layer. Moreover, the initial (non-trainable) transformation of the audio waveforms into
filterbank features is fast enough to be performed during training, so that our approach
with the non-spiking data sets does not require any preliminary processing of the audio,
and could be suitable for low-powered hardware implementations.

Table 5.6: Results on the HD dataset. All models use three layers, i.e., two hidden and
one readout layer. Using the method described in Section 2.1.3 to compute credible
intervals, we get error bars between ±0.5% and ±0.1% for test set accuracies between
96.99% and 99.96%.

Network type Recurrent connections Hidden size Test accuracy

LIF no 128 98.40%
RLIF yes 128 99.35%

MLP no 128 96.99%
RNN yes 128 99.13%
Li-BRU yes 128 99.96%
GRU yes 128 99.91%
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Spiking Google speech commands

The SSC dataset is roughly ten times bigger than the SHD and has 35 labels instead of
20. It already represents a more complicated classification task to solve for a neural
network. Our results are presented in Table 5.7. Here, we managed to close the gap
between the SNN and ANN performances by reaching a test accuracy of 77.4% with
an SNN. Even though this already represents considerable improvements upon the best
previously reported SNN result of 74.2% by Yin, Corradi, and Bohté (2021), our results
remain slightly lower than the (non-spiking) CNN performance of 77.7% reported by
Cramer et al. (2020), and also lower than our best ANN-performance of 79.05% with
GRUs. Nevertheless, in terms of number of trainable parameters, if we compare SNNs to
ANNs of the same size, the LIF and AdLIF networks score substantially better (66.67%
and 71.66%) than the MLP (only 29.27%), and the RLIF and RAdLIF outperform (73.87%
and 73.25%) the RNN (70.01%).

Table 5.7: Results on the SSC dataset. Using the method described in Section 2.1.3 to
compute credible intervals, we get error bars of approximately ±0.6% on all accuracies
due to the large size of the test set.

Network type Recurrent connections Hidden size Test accuracy

LIF no
128
512

66.67%
68.14%

AdLIF no
128
512

71.66%
73.58%

RLIF yes
128
512

73.87%
75.91%

RAdLIF yes
128
512

1024

73.25%
76.21%
77.40%

MLP no 128 29.27%
RNN yes 128 70.01%
Li-BRU yes 512 78.70%
GRU yes 512 79.05%

SNN SOTA (Yin, Corradi, and Bohté, 2021) 74.2%
ANN SOTA (Cramer et al., 2020) 77.7%
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Non-spiking Google speech commands

Our results on the non-spiking SC dataset are presented in Table 5.8. We find that our
approach is able to reach even better accuracies than the current SNN state-of-the-art of
91.21% by Salaj et al. (2021), which also uses recurrent SNNs, but with a different model
of adaptation. We also find that the chosen SNN approach surpasses the performance of
almost all implemented ANNs. With a similar number of trainable parameters, the non-
recurrent LIF and AdLIF networks give much better results (82.12% and 90.46%) than
the MLP which only scores 48.80% on this task. Similarly, the recurrent RLIF and RAdLIF
networks achieve accuracies of 90.71% and 92.48% respectively, compared to 90.61%
for a non-spiking equivalent RNN. For larger units, we even observe that a non-recurrent,
adaptive SNN (AdLIF) is able to outperform a conventional RNN with 93.12% against
92.09%. This illustrates the advantage of physiologically plausible spiking neuron models
as the former is significantly lighter than the latter in terms of trainable parameters. By
adding recurrence and a larger number of hidden units, we find that our best performing
SNN (94.51%) even surpasses the Attention RNN approach of De Andrade et al. (2018)
(93.9%), which remained as the ANN state-of-the-art on this task for a long time. With
roughly twice as many trainable parameters, the Li-BRU is the only ANN in our baseline
that is able to modestly exceed the RAdLIF SNN performance. More generally, the SNN
approach appears able to compete with state-of-the-art gated recurrent networks, while
retaining a definitive advantage of parameter and energy efficiency; this is extremely
encouraging for further work in this direction.

Reducing the network size

So far in this study, we have only considered fully connected layers as it was the most
general case and allowed a direct comparison with standard ANNs. The number of
trainable parameters can be an important limitation in energy efficient implementations
of neural networks. The contributions of the different trainable components used in our
spiking architectures are listed here below for a layer l with N l hidden units.

• Feedforward weights: N l−1 ·N l

• Recurrent weights: N l ·N l

• Biases: N l

• LIF neuron parameters (α): N l

• AdLIF neuron parameters (α, β, a, b): 4 ·N l

We see that the main contribution to the total number of trainable parameters comes from
the weights. Imposing a lower connectivity can therefore greatly reduce the network size.
This is especially effective in the first layer on the spiking datasets due to the very high
number of input neurons (N0 = 700). Further experiments with a sparser connectivity in
the first layer have been carried out on the SHD dataset, and are presented in Table 5.9.
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We observe that gradually reducing the connectivity in the first layer only hinders the
accuracy by about 1.5%, even when randomly removing up to 99% of the connections.
Other experiments presented in Table 5.10 were made with large RAdLIF networks. Here
a portion of both feedforward and recurrent connections was randomly removed in all
hidden layers. We see that the sparser networks are still able to achieve state-of-the-art
accuracies, and that even reducing the number of weights by a factor of 20 only decreases
the accuracy by about 1.4%.

Another way of reducing the size of the network is through the parameters of the
spiking neuron model. We distinguished four cases in ad-hoc experiments: (i) fixed
and homogeneous, i.e., the same fixed value for all neurons in the layer, (ii) fixed and
heterogeneous, i.e., distributed but fixed values for all neurons in a layer, (iii) trainable
and homogeneous, i.e., having a single trainable parameter shared by all neurons in the
same layer, and finally (iv) trainable and heterogeneous, i.e., each neuron has its own
trainable parameters. We found that the fourth case gave significantly better results and
was therefore chosen throughout the whole thesis. As demonstrated by Perez-Nieves et al.
(2021), the heterogeneous nature of a spiking layer allows each neuron to develop its
own “activation function”, defined by the values of its parameters. This appears as one
core advantage over conventional ANN models in which the same activation function is
shared by all units. We believe that this neural heterogeneity contributes to the superior
representational capacities of spiking neurons when applied to auditory sequences.

5.1.4 Towards physiological plausibility

Spike-frequency adaptation

As presented in Section 5.1.3, adding adaptation with the AdLIF model consistently
improved the performance compared to the LIF. In this work, adaptation is described
by the discrete time Eqs. (4.39) to (4.41), that are not based on a moving threshold,
but on subthreshold coupling and spike-triggered currents. These directly stem from the
continuous time formulation of Eqs. (4.4) and (4.5), as defined by Gerstner and Kistler
(2002), which represent a linear version of the quadratic or Izhikevich neuron model
(Izhikevich, 2007). Moreover, Mensi et al. (2012) have shown that depending on the type
of cortical neurons, SFA was dominantly mediated by spike-triggered currents or moving
threshold. Although both produce SFA, they inherently represent different mechanisms.

A fair amount of the reported approaches have used adaptive neurons on the studied
datasets (Yin, Corradi, and Bohté, 2020; Yin, Corradi, and Bohté, 2021; Salaj et al.,
2021; Shaban, Bezugam, and Suri, 2021). However, they all employ a moving threshold
formulation of adaptation, that is similar to that of Bellec et al. (2018), in which the
dynamical threshold is specific to each neuron and increases by a fixed amount after
firing, before decaying back to some rest value. Note that Shaban, Bezugam, and Suri
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(2021) actually use a more complex version of the adaptive threshold that includes a
second time constant. Nevertheless, these are all based on a moving threshold adaptation
model. In order to test whether the improvements came from our specific implementation
of adaptation, several experiments were made using the moving threshold formulation.
A comparison between the two approaches is presented in Table 5.11. We observe that
our formulation of adaptation significantly outperforms the moving threshold alternative,
especially on the SHD dataset.

Coming back to Table 5.8, on the SC dataset, adding adaptation had the same impact
as adding recurrent connections, even though the former requires remarkably fewer
trainable parameters than the latter. On the SHD dataset, the effect of adding adaptation
is even more pronounced as the considerably lighter AdLIF networks scored better than
the RLIFs (see Table 5.5). This shows the importance of the neuron model and, more
generally, of a physiologically plausible approach. As pointed out by Perez-Nieves et al.
(2021), the heterogeneity of the spiking neurons is a metabolically and computationally
efficient strategy. In ANNs, as defined in Eq. (2.15), all neurons have the same activation
function. The resulting homogeneity in the behaviour of standard artificial neurons
implies that the only source of heterogeneity lies in the synaptic connections, that can
be different for each neuron. However, adding neurons to the network increases the
computational cost by an order ofO(N2) for fully-connected layers. With spiking neurons,
the more complex neuronal dynamics enable heterogeneous behaviours among neurons
by depending on trainable parameters that only scale withO(N), hence the more efficient
computational strategy.

Learning rule

In terms of the learning rule, the compatibility with deep learning methods was favoured
over the biological plausibility of the approach. Nevertheless, the surrogate gradient
technique can actually be a good candidate towards more physiologically plausible
learning algorithms. Kaiser, Mostafa, and Neftci (2020) have recently defined a deep
continuous local learning rule (DECOLLE) using random readouts at each layer. Their
method still uses surrogate gradients to allow SGD, but is closer to a form of bio-inspired
plasticity. This seems to indicate that the evaluated compatibility of training SNNs
within ANN frameworks could lead to further improvements of the training methods, and
allow more physiologically plausible learning rules by retaining the advantages of well
developed ANN techniques.

Finally, compared to the SNN-ANN tandem method of Wu, Chua, Zhang, Li, Li, et al.
(2021), the chosen surrogate gradient approach does not ignore the spike timings during
the backward pass. In addition to being more flexible to easily include recurrence and
different neuron models, the latter gave considerably better results than the former, which
suggests that precise spike timings are of importance in processing temporal information.
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5.1.5 Towards energy efficient hardware

In other papers that used the spiking datasets (see Tables 5.2 and 5.3), non-recurrent
SNNs were always reported to perform substantially less well compared to their recurrent
counterparts. In this study, we managed to raise the performance of lighter, non-recurrent
SNNs. Our results with non-recurrent AdLIF models on the SHD and SC data sets were
even able to surpass those of the best previously reported recurrent SNNs on the same
tasks. This allows competitive networks with much fewer trainable parameters, and
could lead to hardware implementations that require less space, power and memory.

The average firing rate ν̄ of the implemented spiking networks (over all neurons and all
time steps) was observed to consistently converge around ν̄ ≈ 0.1, which corresponds
to 10 Hz. To compare the energy consumption of SNNs with ANNs, similarly to Panda,
Aketi, and Roy (2020), one can count the number of Accumulate operations (ACs) and
Multiply-and-accumulate operations (MACs) that are required at each time step. Here,
we consider ANNs that process sequential inputs and focus on the case with recurrent
connections, i.e., RNNs. In contrast to Eq. (2.24) where the matrix multiplications
involve non-zero real numbers and results in N l(N l−1 + N l + 1) MACs for RNNs, Eq.
(4.44) only requires ν̄N l(N l−1 +N l + 1) ACs for SNNs. The first energy gain therefore
comes from the sparsity of the spike trains in Eq. (4.44), which gets rid of 1− ν̄ ≈ 90% of
the required operations as most neurons are not activated. Even if the internal neuronal
dynamics of SNNs described by Eqs. (4.39−4.41) require additional operations compared
to the ANN activation of Eq. (2.15), these only scale with the number of hidden units N l

in the current layer l, whereas the benefits of sparsity scale with (N l)2.

Moreover, SNNs replace the MACs by ACs in the dot-product computations as a conse-
quence of the binary nature of spike trains, which constitutes the second gain of energy. As
presented by Han et al. (2015) with a 45 nm complementary metal-oxide-semiconductor
process, a single 32-bit integer AC only requires 0.1pJ compared to 3.2pJ for a MAC. This
reduces the energy consumption by another factor of 32. Even if they usually lead to
slightly worse accuracies, regularisers can additionally be used to obtain even sparser
spike trains and reduce the value of ν̄. By combining the advantages of the sparse and
binary nature of the information, a recurrent SNN without regularisers already requires
roughly 320 times less energy than a non-spiking RNN of the same size.

On the ANN side, this energy gap can nevertheless be reduced. Low footprint KWS
techniques involve network quantisation, (Zhang et al., 2017), a max-pooling based loss
function (Sun, Raju, et al., 2016), cascaded executions (Sun, Hoffmeister, et al., 2017;
Giraldo, O’Connor, and Verhelst, 2019), compute-in-memory architectures (Schaefer
et al., 2021) and various specialized hardware (Conti et al., 2018; Giraldo, Lauwereins,
et al., 2020; Kadetotad et al., 2020) designed to reduce the energy consumption of
RNNs. Very recently, Jeffares et al. (2022) have notably taken inspiration from SNNs to
define a threshold based rank coding approach with considerable speed and efficiency
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benefits. Even though the efficiency superiority of SNNs can be nuanced by taking into
consideration the above ANN methods, they inevitably play a central role in developing
lower powered neuromorphic hardware.

The main motivation for using ANNs is their task performance, which is typically superior
to that of SNNs, especially when using sophisticated architectures such as gates or
attention. In this work however, we have seen that SNNs consistently outperformed
non-gated RNNs of the same size. This apparent superiority can be explained by the
heterogeneous and trainable activation of spiking neurons, which represents an advantage
over the implemented ANNs, that similarly to common practice, use homogeneous
activation functions. The higher representational capabilities of using heterogeneous
neural activations in SNNs is well illustrated by the fact that on all four tasks, even
the much lighter non-recurrent adaptive SNNs managed to surpass the performance
of standard RNNs. Only gated RNNs were able to compete with SNNs and marginally
surpass them in most cases. However, layers of Li-BRUs and GRUs require two and three
times more operations respectively compared to standard RNN layers, thus expanding the
energy gap even more drastically. The sparse event-driven processing of the information
in SNNs, combined with their assessed capabilities therefore make them extremely
attractive for reaching lower powered hardware implementations dedicated to real-world
applications.

5.1.6 Conclusion

In Section 4.1, we set out three goals for our work with SNNs. In concluding, by carefully
selecting appropriate techniques, we have established an SNN method that, on top of
being compatible with standard deep learning frameworks, is capable of competing with
ANNs on the same speech processing tasks, while conserving the advantage of energy
efficiency. This represents the main contribution of this section, which in fact fulfils
the first goal. The chosen surrogate gradient approach allows SNNs to be trained with
gradient descent like conventional ANNs. The resulting compatibility with modern ANN
frameworks, combined with the observed scalability of our spiking networks to relatively
deep architectures, point towards further applications of this method to more advanced
tasks, which will be the focus of the next section. In terms of energy consumption, the
implemented SNNs are drastically more efficient compared to standard ANNs of the same
size, showing promising pathways for low-powered hardware implementations of neural
networks.

At the same time, we have also achieved the second goal of assessing the more general
capability of SNNs in comparison to conventional ANNs. We have shown that the
particular combination of adaptive spiking neurons, surrogate gradients and automatic
differentiation can actually compete with strong ANN baselines on speech recognition
tasks. Our implementation of adaptation in the neuron model was able to improve
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upon the standard moving threshold formulation, and replace recurrent connections
at a considerably lower cost in terms of number of trainable parameters. Such lighter
non-recurrent SNNs were even capable of competing with much larger, standard gated
recurrent units. While the neurons inside such conventional ANNs all share the same
activation function, firing behaviours among spiking neurons can become heterogeneous
by making the neuron parameters trainable, which appears to allow more complex
representations of the temporal information with fewer neurons inside the network.
The implemented SNNs were indeed consistently superior to equivalent non-spiking
architectures, which further corroborates the hypothesis of greater representational
capabilities. This also points towards further investigations of heterogeneous activation
functions inside ANNs, as they are not commonly used in current practice.

The success of this physiologically plausible approach to modelling neural networks
indicates that our more general third and last goal is still valid. So far, our experiments
do not attempt to say anything about biological function. However, they show that a
representational capability, that is available to biological entities, is capable of solving the
same problems as artificial networks that are known to be capable of exceeding human
performance on many tasks. This provides a strong hypothesis for future understanding
of the biological mechanisms of the brain, which we will focus on in Chapter 6.
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Table 5.8: Results on the SC dataset. All models use three layers, i.e., two hidden and one
readout layer. Using the method described in Section 2.1.3 to compute credible intervals,
we get error bars between ±0.9% and ±0.4% for test set accuracies between 48.80% and
95.06%.

Network type Recurrent connections Hidden size Test accuracy

LIF no
128
512

82.12%
83.03%

AdLIF no
128
512

90.46%
93.12%

RLIF yes
128
512

90.71%
93.58%

RAdLIF yes
128
512

92.48%
94.51%

MLP no
128
512

48.80%
53.16%

RNN yes
128
512

90.61%
92.09%

Li-BRU yes
128
512

94.55%
95.06%

GRU yes
128
512

93.65%
94.32%

SNN SOTA (Salaj et al., 2021) 91.21%
ANN SOTA (Gong, Chung, and Glass, 2021) 98.11%
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Table 5.9: Results on the SHD dataset for a non-recurrent AdLIF network of size 3x128,
with a sparser connectivity in the first layer. Here a sparsity proportion p corresponds to
randomly removing p% of the connecting weights in the first layer. The second column
gives the corresponding number of trainable parameters in the complete architecture.

Sparsity proportion Parameters Test accuracy

0% 109’864 93.06%
10% 100’904 92.83%
50% 65’064 92.14%
90% 29’224 92.33%
95% 24’744 92.14%
99% 21’160 91.59%

Table 5.10: Results on the SHD dataset for a recurrent RAdLIF network of size 3x1024,
with a sparser connectivity in all hidden layers. Here, a sparsity proportion p corresponds
to randomly removing p% of the connecting weights (both feedforward and recurrent)
in all hidden layers. The second column gives the corresponding number of trainable
parameters in the complete architecture.

Sparsity proportion Parameters Test accuracy

0% 3’893’288 94.62%
10% 3’507’035 93.80%
50% 1’962’024 93.57%
90% 417’013 92.51%
95% 223’886 93.20%
99% 69’385 90.95%

Table 5.11: Comparison between our adaptation scheme and an alternative moving
threshold on the SHD and SC datasets.

Dataset Network Moving threshold Spike-triggered currents

SHD RAdLIF 3x128 88.79% 92.87%
SHD RAdLIF 3x512 90.21% 93.75%
SHD RAdLIF 3x1024 89.25% 94.62%

SC RAdLIF 3x128 90.95% 92.48%
SC RAdLIF 3x512 93.61% 94.51%

93



Chapter 5. Applications of SNNs to Speech Recognition Tasks

5.2 Extending to large vocabulary continuous speech recogni-
tion

In Section 5.1, we demonstrated the effectiveness of surrogate gradient SNNs on speech
command recognition, showing competitive performance with larger RNNs. This recent
progress is primarily due to the surrogate gradient method introduced in Section 4.4.3,
which enables SNNs to leverage modern deep learning frameworks. Despite this compati-
bility, their usage has so far been restricted to relatively simple tasks and small networks,
when compared to current end-to-end ANN architectures. In particular, this method has
not yet been thoroughly tested in advanced sequence-to-sequence learning scenarios.

In this section, we extend the successful application of our method from speech com-
mand recognition to the more challenging task of LVCSR. Even though the scalability
of surrogate gradient SNNs to multi-layered architectures was assessed in Section 5.1.3,
this assessment was within the constraints of simpler tasks compared to LVCSR. Speech
command recognition involves very short audio samples, each labeled with a single
class, whereas LVCSR must handle long speech utterances and predict corresponding
token arrangements using encoder-decoder architectures that typically involve more
components and parameters.

LVCSR presents unique challenges for SNNs, particularly concerning the potential for
vanishing gradients due to the longer sequences and its sequence-to-sequence mapping.
In surrogate gradient SNNs, the length of the temporal unrolling during backpropagation
is reduced by the sparse and binary properties of the variables to which recurrence is
applied, resulting in sparse gradients. This can theoretically lead to vanishing gradients
and inefficiencies in learning, especially in such sequence-to-sequence scenarios with
long-range temporal dependencies. On the other hand, compared to continuous signal
propagation in standard RNNs, the inherent sparsity of spike-based communication
could mitigate the risk of exploding gradients. Without having to resort to gates as in
LSTMs or GRUs, energy-efficient and lightweight SNNs could then constitute an attractive
alternative for such tasks.

Wu, Yılmaz, et al. (2020) previously used SNNs on LVCSR tasks, however, instead of the
surrogate gradient approach, they use the tandem learning rule, presented in Section
4.4.1. Through weight sharing, their approach relies on ANNs to approximate the spike
counts, thereby discarding meaningful information about spike timings in the learning
mechanism. The only research involving surrogate gradient SNNs on LVCSR that we
were able to find is the recent work of Ponghiran and Roy (2022), which uses a custom
LSTM-inspired version of SNNs that combines a forget gate with multi-bit outputs instead
of binary spikes. While these studies represent significant advancements, applying a
more standard and physiologically plausible implementation with surrogate gradients on
LVCSR remains unexplored.
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In this section, we therefore come back to the standard and most commonly used LIF
neuron model without gates or multi-bit outputs. By training the resulting physiologically
inspired speech encoder on LVCSR tasks, we aim to,

1. Assess the compatibility and scalability of surrogate gradient SNNs within end-to-
end sequence-to-sequence architectures.

2. Evaluate the representational capabilities of SNNs as lightweight, energy-efficient
speech encoders.

3. Investigate the robustness of SNNs to exploding gradient issues in the context of
LVCSR.

More generally, having used a physiological neuron model on connected speech, our work
lays the foundation for spike train analysis and comparison with neuroscience, which will
be the main focus of the next chapter.

5.2.1 ANN baseline architecture

Using the SpeechBrain framework (Ravanelli, Parcollet, Plantinga, et al., 2021), we
selected our ANN baseline based on its default RNN-based ASR recipes for TIMIT (Garo-
folo et al., 1993) and LibriSpeech (Panayotov et al., 2015). As our surrogate gradient
SNNs constitute a special case of RNNs, we assume that substituting them into an RNN
baseline will require fewer hyperparameter adjustments such as learning rate and batch
size compared to starting from a Transformer-based recipe. The overall ASR pipeline,
illustrated in Figure 5.3 contains the following modules.

Figure 5.3: Sequence-to-sequence LVCSR pipeline on LibriSpeech, where the LSTM layers
from the SpeechBrain baseline have been replaced by an SNN inside the encoder.

Feature extraction

On all tasks, the inputs consist of 40 Mel-filterbank features that are extracted from the
16 kHz utterance waveforms. These features are obtained using 25 ms windows with a
10 ms shift, aligning with standard ASR practice.

95



Chapter 5. Applications of SNNs to Speech Recognition Tasks

Encoder

The 40 filterbank features are passed through two CNN layers with 64 and 128 channels
respectively, kernel sizes of (3, 3) and strides of (2, 2). These CNN layers divide both
sequence and feature dimensions by a factor of four. Merging the feature and channel
dimensions results in tensors with 1280 features.

These tensors are then passed through four bidirectional recurrent LSTM layers of 512
hidden units each, which represent the main components of the encoder and contain the
majority of trainable parameters.

The LSTM outputs are projected to 1024 features and finally to the desired number
of phoneme or subword classes via Fully-Connected (FC) layers. We use a dropout
probability of 0.15 and the Leaky ReLU activation function throughout the whole encoder,
except for the last layer which uses a log-softmax activation.

Decoder

On TIMIT, the output log-probabilities from the encoder, which correspond to 40 different
phoneme labels (including a blank class), directly go into a CTC loss (Graves, Fernández,
et al., 2006) without any additional decoder.

On LibriSpeech (both 100 and 960 hours), these log-probabilities correspond to 5000
byte-pair encoding subword units (Sennrich, Haddow, and Birch, 2015). Here a hybrid
CTC/attention architecture (Watanabe et al., 2017) is used. In this approach, an attention-
based RNN decoder is employed alongside the CTC loss, with CE loss applied to the
decoder predicted sequence. Finally, at inference time, a pretrained Transformer-based
language model is used to refine the predictions from the RNN decoder.

Training

On TIMIT, the architectures are trained end-to-end for 50 epochs with the Adadelta
optimiser, an initial learning rate of 1 and a batch size of 8. A scheduler reduces the
learning rate by a factor of 0.8 if the validation PER does not improve after each epoch.
During training, noise is added to the audio samples with a signal-to-noise ratio ranging
between 0 and 15 dB to simulate various noise conditions and improve model robustness.
Additionally, the speed of the audio is varied between 95% and 105%.

On LibriSpeech 100h, we use the same configuration except the number of epochs is
reduced to 25. For our experiments using all 960h of training data, we further reduce the
number of epochs to 10. While TIMIT only used CTC, the total loss on LibriSpeech is half
CTC from the encoder and half CE from the decoder.
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5.2.2 Hybrid ANN-SNN architecture

We focus on the encoder and gradually replace LSTM layers with SNNs. The rest of the
pipeline, which corresponds to the default SpeechBrain baseline, remains unchanged.
Replacing all layers yields the architecture illustrated in Figure 5.3. In placing the spiking
neurons in the encoder we are focusing on the low level auditory processing, as opposed
to the higher level semantic processing.

LSTMs have proven representational capabilities for speech. We have no hypothesis
that SNNs can replace all of their capabilities. Nevertheless we would expect simpler
recurrence to suffice for at least some of the layers. A single bidirectional LSTM layer
corresponds to eight times more trainable parameters, compared to a bidirectional RLIF
layer with the same number of units. This comes from the absence of gates, as well as a
lighter way of tackling the bidirectionality in the SNN compared to RNNs (see Section
2.3.3). In order to compare with equivalent non-spiking layers, we also investigate
replacing the LSTM layers with standard non-gated RNNs.

5.2.3 TIMIT experiments

We start with TIMIT to first assess that that our approach can successfully be integrated
and trained within an end-to-end ASR architecture. The use of this rather limited data
set is here justified because (i) our experiments with SNNs are considerably slower
compared to non-spiking RNNs that benefit from a CUDA implementation, and (ii) it
allows comparison with non-gated RNNs that were found to diverge on LibriSpeech.

As presented in Table 5.12, we obtain satisfying results when gradually replacing LSTMs
in the encoder with SNNs. While requiring eight times fewer parameters, replacing
all four LSTM layers with RLIF layers only increases the PER by less than two percent.
To compare architectures of more similar sizes, we also replaced the LSTM layers with
standard non-gated RNNs. Here the performance is the same between RLIFs and RNNs
up to three layers, even though RNNs still employ twice as many parameters due to their
implementation of bidirectionality.

These initial experiments show that surrogate gradient SNNs are capable of being trained
as part of an end-to-end hybrid architecture. Moreover, they perform similarly to their
non-spiking RNN counterpart, which suggests that sparse, binary information is sufficient
to encode speech information. It is worth noting that even if LSTMs remain marginally
better, they appear to be over-parameterised when used on such a small data set.
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Table 5.12: PERs on TIMIT test set via CTC decoding. Using the method described in
Section 2.1.3 to compute credible intervals, we get error bars between ±0.8% and ±0.9%

Encoder Layers Parameters PER [%]
RLIF RNN LSTM RLIF RNN LSTM testing validation

with SNN 1 0 3 0.9M 0 18.9M 16.1 14.4
2 0 2 1.7M 0 12.6M 16.6 14.5
3 0 1 2.5M 0 6.3M 16.8 14.7
4 0 0 3.3M 0 0 17.6 15.5

without SNN 0 0 4 0 0 26.2M 15.8 14.0
0 1 3 0 1.8M 18.9M 16.1 14.0
0 2 2 0 3.4M 12.6M 17.0 14.9
0 3 1 0 5.0M 6.3M 16.8 15.2
0 4 0 0 6.6M 0 16.3 14.7

5.2.4 LibriSpeech experiments

After this first success on TIMIT, we now train similar architectures on a larger and more
challenging dataset with longer sequences. We use two versions of LibriSpeech, one with
100h and the other with 960h of training data, both utilising the same validation and
testing splits. Our results, presented in Table 5.13, improve upon previous efforts with
SNNs on the same data sets (Wu, Yılmaz, et al., 2020; Ponghiran and Roy, 2022).

Table 5.13: WERs on LibriSpeech test sets. Using the method described in Section 2.1.3 to
compute credible intervals, we get error bars between ±0.2% and ±0.3% for the reported
WERs on test-clean and test-other respectively.

Layers Parameters WER [%] 100h WER [%] 960h
RLIF LSTM RLIF LSTM clean other clean other

0 4 0 26.2M 5.9 19.5 3.5 10.0
1 3 0.9M 18.9M 6.3 20.9 3.5 10.7
2 2 1.7M 12.6M 6.7 23.0 4.2 12.7
3 1 2.5M 6.3M 7.3 24.2 4.7 14.6
4 0 3.3M 0 11.5 32.0 9.9 25.1

We first notice that while benefiting from a considerable decrease in the number of
trainable parameters, gradually replacing the first three LSTM layers with spiking RLIF
layers only marginally degrades the performance (1% absolute difference on test-clean
and 4% on test-other). This corroborates our initial results on TIMIT, and assesses that
surrogate gradient SNNs are compatible and effective on LVCSR tasks.

When also replacing the last LSTM layer, the difference in error rates becomes more
significant (6% absolute difference on test-clean and 15% on test-other). Although the
number of parameters is reduced by a factor of eight, this result suggests that the gating
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mechanism present in LSTMs remains important for an optimal processing of speech
information, but a single layer may suffice.

We also compared with fewer LSTM layers and ensured that adding SNNs was indeed
beneficial. For instance, two RLIF layers followed by two LSTM layers did outperform
two LSTM layers on their own. The trade-off between performance and network size was
further investigated using four LSTM layers with fewer hidden units. With a comparable
number of trainable parameters, we found that hybrid RLIF-LSTM encoders performed
similarly to purely LSTM encoders. These results were left out of the tables for clarity.

Finally, as presented in Table 5.14, we also evaluated the impact of recurrent connections
and SFA in the spiking neuron model. We observe that adding either SFA or recurrent
connections to a LIF baseline produces comparable improvements. This is in line with
our speech command recognition experiments presented in Section 5.1.3, where SFA
constituted a parameter-efficient alternative to layer-wise recurrent connections.

Table 5.14: Results on LibriSpeech 100h to evaluate the impact of recurrent connections
and SFA in our SNNs. The last two columns contain the WERs [%] on the two test sets.
Here we use three SNN layers and one LSTM layer in the encoder.

Model SNN parameters clean other

LIF 1.7M 8.2 26.7
AdLIF 1.7M 7.5 24.8
RLIF 2.5M 7.3 24.2
RAdLIF 2.5M 7.1 23.7

5.2.5 Robustness to exploding gradients

Non-gated RNNs have been known to suffer from exploding and vanishing gradient prob-
lems (Bengio, Simard, and Frasconi, 1994; Hochreiter et al., 2001). In our experiments,
we found that non-spiking RNNs were particularly susceptible to such issues on the Lib-
riSpeech corpus, which notably involves longer utterances. Even by gradually reducing
the initial learning rate from 1.0 to 0.001, we were unable to use them successfully, at
the exception of a single RNN layer followed by three LSTMs on the 100h version which
gave a similar error rate to its spiking counterpart.

By contrast, spiking RNNs did not suffer from such divergence problems owing to the
sparsity of the spike sequences counteracting excessive gradient accumulation from
past time steps. Indeed, the surrogate gradient, as defined in Eq. (4.50), will be zero
whenever the membrane potential lies sufficiently far from its threshold value. This
inherent robustness to exploding gradients makes SNNs an even more viable alternative
to standard non-gated RNNs.
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5.2.6 Speech encoding using SNNs

The information transmitted between spiking layers takes a sparse and binary form. This
is illustrated in Figure 5.4, where we use the firing rates as a mean to add structure to
the y-axis. Despite the simplistic method, it is extremely interesting to observe that a
spectrogram structure appears, at least distinguishing speech from silence.

Figure 5.4: Evolution of the representation of speech through the encoder. The utterance
in question is ‘thank you but I don’t like it so well as this’.

As no residual connections are used in our ASR pipeline, the SNN fully transforms
speech information into sparse sequences of binary events. Our results confirm that
this conversion to spike trains does not result in any loss of valuable information, as a
three-layered SNN followed by an LSTM layer improves upon a single LSTM layer.

Our approach demonstrates that SNNs can be successfully trained to encode continuous
speech information in the form of spike trains, replicating some of the physiological
processes underlying human cognition. On top of indicating that such physiological
networks are applicable to LVCSR, our work establishes a tool that could be used towards
a better understanding of how the brain represents and processes speech. The analysis of
spiking layers trained inside a more physiologically inspired ASR architecture will be the
focus of Chapter 6.
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5.2.7 Energy efficiency

From Figure 5.4, it is also quite apparent that what gets transmitted from one spiking
layer to the next (rows 2-4) is remarkably sparse compared to an LSTM (last row). On
average, we measured that 90% of the neurons stay silent, which reduces the number of
required operations by a factor of 10. As we detailed in Section 5.1.5 the binary nature
of the information also implies that MACs reduce to ACs, which can lower the energy
consumption by an additional factor of 32.

As our hybrid ANN-SNN architectures produced competitive results compared to purely
ANN baselines with similar number of parameters, our work demonstrates that SNNs are
effective as continuous speech encoders and suggests their potential for neuromorphic
hardware development, which has so far mostly concentrated on keyword spotting tasks.

5.2.8 Summary of findings

In the introduction, we set three goals for our work on SNNs. After successfully train-
ing them in the context of LVCSR, we can conclude that surrogate gradient SNNs are
compatible with modern end-to-end, sequence-to-sequence architectures. This answers
our first and more general goal of assessing their scalability to more advanced tasks and
deeper networks. Secondly, on all tasks, spiking layers, which involve eight times fewer
trainable parameters, were shown to be capable of replacing LSTMs with only minor
losses in performance. Even though keeping a single LSTM layer still significantly helped
reducing the error rate, this demonstrates that the information inside neural networks
can efficiently be reduced to sparse and binary events using a physiological approach
without considerably affecting the network encoding capabilities. Thirdly, recurrent
SNNs proved to be robust to exploding gradient problems without requiring gates, where
standard RNNs failed. More generally, these findings contribute not only to creating
energy-efficient technology, but also to making SNNs viable deep learning components
and promising tools for gaining insights into the neural basis of speech processing in the
brain.
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5.3 Conclusion

In this chapter, we have demonstrated that the surrogate gradient SNN approach defined
in Chapter 4 is compatible with modern deep learning-based ASR frameworks.

A key technical innovation was our implementation of SFA with an adaptation current and
stability conditions, as opposed to the previously used moving threshold formulation. This
advancement enabled us to first achieve new state-of-the-art results for SNNs in speech
command recognition tasks. Furthermore, it allowed us to successfully extend surrogate
gradient SNNs to more challenging LVCSR tasks, which involve sequence-to-sequence
training with longer sequences and larger datasets. Unlike previous SNN approaches on
such tasks, which either discarded precise spike timings in the learning rule or did not
use a physiologically plausible neuron model, our method integrated both components
and demonstrated robustness against exploding and vanishing gradient issues.

Across both simple speech command and complex LVCSR tasks, our lightweight SNNs not
only achieved competitive results compared to RNN baselines but also benefited from the
inherent energy efficiency of spiking neurons, underscoring their relevance and potential
for future applications in neuromorphic technology.

So far, our architectures have been designed for comparison with ANN baselines. Although
our experiments do not directly infer about biological function, they demonstrate that
a representational capability found in biological systems can solve the same problems
as artificial networks, which are known to surpass human performance on many tasks.
This offers a promising hypothesis for better understanding physiological processes using
our SNN approach, which is the focus of the next chapter. While this comes at the cost
of some recognition performance, our goal is to more closely reproduce physiological
processes involved in speech perception. Specifically, this allows us to test whether
our approach generates neural oscillations and macro-scale synchronisation phenomena
similar to those observed in the brain.
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6 Bio-Inspired Speech Encoding and
Neural Oscillations

In the previous chapter, we assessed the compatibility and technical plau-
sibility of our SNNs with deep learning frameworks for ASR, comparing
their performance to that of non-spiking RNNs. We now shift our focus
to the physiology and define a more biologically-inspired speech encoder.
After training on ASR tasks, we conduct an analysis of spike trains across
the architecture. Our trained networks naturally reproduce neural oscilla-
tion phenomena commonly associated with various cognitive processes
in the brain. During speech processing, we measure significant forms of
cross-frequency couplings of the neural activity both within and across
layers. When processing noise, the activity is greatly reduced and no
coupling occurs, indicating a natural efficiency of SNNs in adapting their
processing power to the input. We also observe the key role of spike-
frequency adaptation, recurrent connections and the excitatory-inhibitory
properties of neurons in driving these oscillations and regulating the
overall activity.

Publication Note

This chapter includes content from the following publication.

• A. Bittar and P. N. Garner (2024). “Exploring neural oscillations during
speech perception via surrogate gradient spiking neural networks”. In:
Frontiers in Neuroscience 18. DOI: 10.3389/fnins.2024.1449181

The underlying code is available open-access on GitHub at https://github.com/
idiap/sparse
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Chapter 6. Bio-Inspired Speech Encoding and Neural Oscillations

6.1 Introduction

In the field of speech processing technologies, the effectiveness of training deep ANNs
with gradient descent has led to the emergence of many successful encoder-decoder
architectures for ASR, typically trained in an end-to-end fashion over vast amounts of
data (Gulati et al., 2020; Baevski et al., 2020; Li, Pang, et al., 2021; Radford et al., 2023).
Despite recent efforts (Brodbeck, Hannagan, and Magnuson, 2024; Millet, Caucheteux,
et al., 2022; Millet and King, 2021; Magnuson et al., 2020) towards understanding how
these ANN representations can compare with speech processing in the human brain, the
cohesive integration of the fields of deep learning and neuroscience remains a challenge.

Nonetheless, biologically inspired SNNs present an interesting convergence point of the
two disciplines. Although slightly behind in terms of performance compared to ANNs,
we have seen in Chapter 5 that surrogate gradient SNNs were capable of achieving
competitive results on speech command recognition and LVCSR tasks. Their successful
inclusion into contemporary deep learning ASR frameworks offers a promising path to
bridge the existing gap between deep learning and neuroscience in the context of speech
processing. This integration not only equips deep learning tools with the capacity to
engage in speech neuroscience but also offers a scalable approach to simulate spiking
neural dynamics, which supports the exploration and testing of hypotheses concerning
the neural mechanisms and cognitive processes related to speech. This investigation
of complex brain functions via physiologically inspired networks aligns with the work
of Pulvermüller et al. (2021), Henningsen-Schomers and Pulvermüller (2022), and
Pulvermüller (2023), who applied biological constraints to large-scale simulations of
language learning in SNNs. We complement their approach by training on more realistic
speech data, albeit at the cost of some simplifications.

In neuroscience, various neuroimaging techniques such as Electroencephalography (EEG)
can detect rhythmic and synchronised postsynaptic potentials that arise from activated
neuronal assemblies. These give rise to observable neural oscillations, commonly cate-
gorised into distinct frequency bands: delta (0.5-4 Hz), theta (4-8 Hz), alpha (8-13 Hz),
beta (13-30 Hz), low-gamma (30-80 Hz), and high-gamma (80-150 Hz) (Buzsaki, 2006).
It is worth noting that while these frequency bands provide a useful framework, their
boundaries are not rigidly defined and can vary across studies. Nevertheless, neural oscil-
lations play a crucial role in coordinating brain activity and are implicated in cognitive
processes such as attention (Fries et al., 2001; Jensen and Colgin, 2007; Womelsdorf
and Fries, 2007; Vinck et al., 2013), memory (Kucewicz et al., 2017), sensory percep-
tion (Başar et al., 2000; Senkowski et al., 2007) and motor function (MacKay, 1997;
Ramos-Murguialday and Birbaumer, 2015). Of particular interest is the phenomenon of
Cross-Frequency Coupling (CFC) which reflects the interaction between oscillations occur-
ring in different frequency bands (Jensen and Colgin, 2007; Jirsa and Müller, 2013). As
reviewed by Abubaker, Al Qasem, and Kvašňák (2021), many studies have demonstrated
a relationship between CFC and working memory performance (Tort, Komorowski, et al.,
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2009; Axmacher et al., 2010). In particular Phase-Amplitude Coupling (PAC) between
theta and gamma rhythms appears to support memory integration (Buzsáki and Moser,
2013; Backus et al., 2016; Hummos and Nair, 2017), preservation of sequential order
(Reddy, Self, et al., 2021; Colgin, 2013; Itskov et al., 2008) and information retrieval
(Mizuseki et al., 2009). In contrast, alpha-gamma coupling commonly manifests itself
as a sensory suppression mechanism during selective attention (Foxe and Snyder, 2011;
Banerjee et al., 2011), inhibiting task-irrelevant brain regions (Jensen and Mazaheri,
2010) and ensuring controlled access to stored knowledge (Klimesch, 2012). Finally, beta
oscillations are commonly associated with cognitive control and top-down processing
(Engel, Fries, and Singer, 2001).

In the context of speech perception, numerous investigations have revealed a similar
oscillatory hierarchy, where the temporal organisation of high-frequency signal amplitudes
in the gamma range is orchestrated by low-frequency neural phase dynamics, specifically
in the delta and theta ranges (Canolty et al., 2006; Ghitza, 2011; Giraud and Poeppel,
2012; Hyafil et al., 2015; Attaheri et al., 2022). These three temporal scales – delta, theta
and gamma – naturally manifest in speech and represent specific perceptual units. In
particular, delta-range modulation (1-2 Hz) corresponds to perceptual groupings formed
by lexical and phrasal units, encapsulating features such as the intonation contour of an
utterance. Modulation within the theta-range aligns with the syllabic rate (4 Hz) around
which the acoustic envelope consistently oscillates. Finally, (sub)phonemic attributes,
including formant transitions that define the fine structure of speech signals, correlate
with higher modulation frequencies (30-50 Hz) within the low-gamma range. The close
correspondence between the perception of (sub)phonemic, syllabic and phrasal attributes
on one hand, and the manifestation of gamma, theta and delta neural oscillations on
the other, was notably emphasised by Giraud and Poeppel (2012). These different levels
of temporal granularity inherent to speech signals therefore appear to be processed
in a hierarchical fashion, with the intonation and syllabic contour encoded by earlier
neurons guiding the encoding of phonemic features by later neurons. Some insights
about how phoneme features end up being encoded in the temporal gyrus were given by
Mesgarani et al. (2014). Drawing from recent research (Bonhage et al., 2017) on the
neural oscillatory patterns associated with the sentence superiority effect, it is suggested
that such low-frequency modulation may facilitate automatic linguistic chunking by
grouping higher-order features into packets over time, thereby contributing to enhanced
sentence retention. The engagement of working memory in manipulating phonological
information enables the sequential retention and processing of speech sounds for coherent
word and sentence representations. Additionally, alpha modulation has also been shown
to play a role in improving auditory selective attention (Strauß, Wöstmann, and Obleser,
2014; Strauß, Kotz, et al., 2014; Wöstmann, Lim, and Obleser, 2017), reflecting the
listener’s sensitivity to acoustic features and their ability to comprehend speech (Obleser
and Weisz, 2012).

Computational models (Hyafil et al., 2015; Hovsepyan, Olasagasti, and Giraud, 2020)
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have shown that theta oscillations can indeed parse speech into syllables and provide a
reliable reference time frame to improve gamma-based decoding of continuous speech.
These approaches (Hyafil et al., 2015; Hovsepyan, Olasagasti, and Giraud, 2020) im-
plement specific models for theta and gamma neurons along with a distinction between
inhibitory and excitatory neurons. The resulting networks are then optimised to detect
and classify syllables with very limited numbers of trainable parameters (10-20). In con-
trast, this work proposes to utilise significantly larger end-to-end trainable multi-layered
architectures (400k-20M trainable parameters) where all neuron parameters and synaptic
connections are optimised to predict sequences of phoneme/subword probabilities, that
can subsequently be decoded into words. By avoiding constraints on theta or gamma
activity, the approach allows us to explore which forms of CFC naturally arise when
solely optimising the decoding performance. Even though the learning mechanism is
not biologically plausible, we expect that a model with sufficiently realistic neuronal
dynamics and satisfying ASR performance should reveal similarities with the human
brain. We divide our analysis in two parts,

1. Architecture: As a preliminary analysis, we conduct hyperparameter tuning to
optimise the model’s architectural parameters. On top of assessing the network’s
capabilities and scalability, we notably evaluate how the incorporation of SFA and
recurrent connections impact the speech recognition performance.

2. Oscillations: We then explore the central aspect of our analysis concerning the
emergence of neural oscillations within our model. Each SNN layer is treated
as a distinct neuron population, from which spike trains are aggregated into a
population signal similar to EEG data. Through intra- and inter-layer CFC analysis,
we investigate the presence of significant delta-gamma, theta-gamma, alpha-gamma
and beta-gamma PAC. We also investigate how incorporating Dale’s law (which
constrains neurons to be either excitatory or inhibitory, but not both), along with
SFA and recurrent connections affects the synchronisation of neural activity.
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6.2 Methods

6.2.1 Simulated speech recognition pipeline

Our objective is to design a speech recognition architecture that, while sufficiently
plausible for meaningful comparisons with neuroscience observations, remains simple
and efficient to ensure compatibility with modern deep learning techniques and achieve
good ASR performance. We implement the overall waveform-to-phoneme pipeline
illustrated in Fig. 6.1 inside the Speechbrain (Ravanelli, Parcollet, Plantinga, et al., 2021)
framework. We provide a description of each of its components here below.

Figure 6.1: End-to-end trainable speech recognition pipeline. Input waveform is con-
verted to a spike train representation to be processed by the central SNN before being
transformed into output phoneme probabilities sent to a loss function for training. A
sampling rate of 500 Hz is used through the SNN to improve the temporal resolution for
our oscillation analysis.

Feature extractor

Mel filterbank features are extracted from the raw waveform using 80 filters and a 25
ms window with a shift of 2 ms. This procedure down samples the 16 kHz input speech
signal to a 500 Hz spectrogram representation with 80 frequency bins.

Auditory CNN

A single-layered two-dimensional convolution module is applied to the 80 extracted Mel
features using 16 channels, a kernel size of (7, 7), a padding of (7, 0) and a stride of 1,
producing 16 ·

(
(80−7)+1

)
= 1184 output signals with unchanged number of time steps.

Layer normalisation, drop out on the channel dimension and a Leaky ReLU activation are
then applied. Each produced signal characterises the evolution over time of the spectral
energy across a frequency band of 7 consecutive Mel bins.
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Auditory nerve fibers

Each 500 Hz output signal from the auditory CNN constitutes the stimulus of a single
auditory nerve fiber, which converts the real-valued signal into a spike train. These nerve
fibers are modelled as a layer of LIF neurons without recurrent connections and using a
single trainable parameter per neuron, τu ∈ [3, 25] ms, representing the time constant of
the membrane potential decay.

Multi-layered SNN

The resulting spike trains are sent to a fully connected multi-layered SNN architecture
with 512 neurons in each layer. The proportion of neurons with nonzero adaptation
parameters is controlled in each layer so that only a fraction of the neurons are AdLIF
and the rest are LIF. Similarly the proportion of nonzero feedforward and recurrent
connections is controlled in each layer by applying fixed random binary masks to the
weight matrices. Compared to a LIF neuron, an AdLIF neuron has three additional
trainable parameters, τw ∈ [30, 350] ms, a ∈ [−0.5, 5] and b ∈ [0, 2], related to the
adaptation variable coupled to the membrane potential.

Spikes to probabilities

The spike trains of the last layer are sent to a an average pooling module which down
samples their time dimension to 25 Hz. These are then projected to 512 phoneme
features using two FC layers with Leaky ReLU activation. A third FC layer with log-
softmax activation finally projects them to 40 log-probabilities representing 39 phoneme
classes and a blank token as required by CTC.

Training and inference

The log-probabilities are sent to a CTC loss (Graves, Fernández, et al., 2006) so that
the parameters of the complete architecture can be updated through back propagation.
Additionally, regularisation of the firing rate as defined in Eq. (6.2) is used to prevent
neurons from being silent or firing above the Nyquist frequency. At inference, CTC
decoding is used to output the most likely phoneme sequence from the predicted log-
probabilities, and the PER is computed to evaluate the model’s performance. On TIMIT,
we use the Adam optimiser (Kingma and Ba, 2015) with an initial learning rate of 0.001
and a batch size of 8 during 50 epochs.
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Spike frequency regularisation

The firing rate f l
b,n of neuron n in layer l when processing utterance b can be calculated

in Hz as,

f l
b,n =

1

Tb

T∑
t=1

slb,t,n , (6.1)

where T is the number of steps and Tb the utterance duration in seconds. We regularise
the firing rates of all spiking neurons between fmin = 0.5 Hz and fmax = fNyquist using
the following regularisation loss,

Lreg =
1

B L

B∑
b=1

L∑
l=1

1

N l

N l∑
n=1

ReLU
(
fmin − f l

b,n

)
+ ReLU

(
f l
b,n − fmax

)
, (6.2)

to discourage neurons from remaining silent or from firing above the Nyquist frequency.

6.2.2 Physiological plausibility and limitations

After a brief description of the physiology of speech perception throughout the human
auditory pathway, we discuss the plausibility and limitations of our model.

Overview of the human auditory pathway

Sound waves are initially received by the outer ear and then transmitted as vibrations
to the cochlea in the inner ear, where the basilar membrane allows for a representation
of different frequencies along its length (Gundersen, Skarstein, and Sikkeland, 1978).
Distinct sound frequencies induce localised membrane vibrations that activate adjacent
inner hair cells. These specialised sensory cells, covering the entire basilar membrane,
release neurotransmitters when activated, stimulating neighbouring auditory nerve fibers
and initiating the production of action potentials. Tonotopy is maintained through the
conversion of mechanical motion into electric signals as each inner hair cell, tuned
to a specific frequency, only affects nearby auditory nerve fibers (Saenz and Langers,
2014). The resulting spike trains then propagate through a multi-layered neural network,
ultimately reaching cortical regions associated with higher-order cognitive functions such
as speech recognition. Overall, the auditory system is organised hierarchically, with
each level contributing to the progressively more sophisticated processing of auditory
information.

Cochlea and inner hair cells

While some of the complex biological processes involved in converting mechanical
vibrations to electric neuron stimuli can be abstracted, we assume that the key feature
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to retain is the tonotopic encoding of sound information. A commonly used metric in
neuroscience is the ratio of characteristic frequency to bandwidth, which defines how
sharply tuned a neuron is around the frequency it is most responsive to. As detailed in
Table 6.1, from measured Q10 values in normal hearing humans reported by Devi et al.
(2022), we evaluate that a single auditory nerve fiber should receive inputs from 5-7
adjacent frequency bins when using 80 Mel filterbank features. The adoption of a Mel
filterbank frontend can be justified by its widespread utilisation within deep learning
ASR frameworks. Although we do not attempt to directly model cochlear and hair cell
processing, we can provide a rough analogue in the form of Mel features passing through
a trainable convolution module that yields plausible ranges of frequency sensitivity for
our auditory nerve fibers.

Table 6.1: Sensitivity to frequency of auditory nerve fibers. The second column gives the
sensitivity ranges measured by Devi et al. (2022) that we compute from their reported
mean Q10 values in the normal hearing group. The third column gives the Mel scale
centers using 80 filters that surround the corresponding sensitivity ranges.

Characteristic
Frequency [Hz]

Sensitivity
range [Hz]

Nearby Mel bin
centers [Hz]

Overlapping Number
of bins

500 416-583 416, 452, 488, 525, 564, 604 5-6
1000 881-1119 872, 921, 973, 1026, 1080, 1136 5-6
2000 1770-2230 1729, 1806, 1886, 1967, 2052, 2139, 2228 6-7
4000 3566-4434 3553, 3688, 3827, 3970, 4117, 4270, 4427 7
6000 5501-6499 5479, 5674, 5875, 6083, 6297, 6519 5-6

Simulation time step

Modern ASR systems (Gulati et al., 2020; Radford et al., 2023) typically use a frame
period of ∆t = 10 ms during feature extraction, which is then often sub-sampled to 40
ms using a CNN before entering the encoder-decoder architecture. In the brain, typical
minimal inter-spike distances imposed by a neuron’s absolute refractory period can vary
from 0 to 5 ms (Gerstner and Kistler, 2002). We therefore assume that using a time
step greater than 5 ms could result in dynamics that are less representative of biological
phenomena. Although using a time step ∆t < 1 ms may yield biologically more realistic
simulations, we opt for time steps ranging from 1 to 5 ms to ensure computational
efficiency. After the SNN, the spike trains of the last layer are down-sampled to 25 Hz via
average pooling on the time dimension. This prevents an excessive number of time steps
from entering the CTC loss, which could potentially hinder its decoding efficacy. We use
∆t = 5 ms for most of the hyperparameter tuning to reduce training time, but favour
∆t = 2 ms for the oscillation analysis so that the full gamma range of interest (30-150
Hz) remains below the Nyquist frequency at 250 Hz.

110



6.2 Methods

Neuron model

The LIF neuron model is an effective choice for modelling auditory nerve fibers as it
accurately represents their primary function of encoding sensory inputs into spike trains.
We avoid using SFA and recurrent connections, as they are not prevalent characteristics
of nerve fibers.

On the other hand, for the multi-layered SNN, the linear AdLIF neuron model with
layer-wise recurrent connections stands out as a good compromise between accurately
reproducing biological firing patterns and remaining computationally efficient (Bittar and
Garner, 2022b; Deckers et al., 2024). Although less popular than the moving threshold
formulation by Bellec et al. (2018), recently reviewed in Ganguly et al. (2024), our
implementation of SFA using the AdLIF model combines spike-triggered adaptation with
subthreshold coupling. In Section 5.1, we demonstrated that the AdLIF outperforms
moving threshold implementations (Yin, Corradi, and Bohté, 2021; Salaj et al., 2021;
Shaban, Bezugam, and Suri, 2021; Yin, Corradi, and Bohté, 2020) in speech command
recognition tasks. Nevertheless, we will still implement and train an additional model
with moving threshold SFA to ensure that our conclusions hold consistently across
different SFA models.

Organisation in layers

Similarly to ANNs, our simulation incorporates a layered organisation, which facilitates
the progressive extraction and representation of features from low-order to higher-
order, without the need of concretely defining and distinguishing neuron populations.
This fundamental architectural principle aligns with the general hierarchical processing
observed in biological brains. However, it oversimplifies the complexities of auditory
processing, which extends beyond a straightforward sequential framework. While there
is some sort of sequential processing in sub-cortical structures, the levels of processed
features are more intricate than a simple hierarchy. This simplification is made to ensure
compatibility with deep learning frameworks.

Layer-wise recurrence

While biological efferent pathways in the brain involve complex and widespread con-
nections that span across layers and regions, modelling such intricate connectivity can
introduce computational challenges and complexity, potentially hindering training and
scalability. By restricting feedback connections to layer-wise recurrence, we simplify the
network architecture and enhance compatibility with deep learning frameworks.

111



Chapter 6. Bio-Inspired Speech Encoding and Neural Oscillations

Excitatory and inhibitory

In the neuroscience field, neurons are commonly categorised into two types: excitatory
neurons, which stimulate action potentials in postsynaptic neurons, and inhibitory neu-
rons, which reduce the likelihood of spike production in postsynaptic neurons. This
bio-inspired distinction is referred to as Dale’s law.

In ANNs, weight matrices are commonly initialised with zero mean and a symmetric
distribution, so that the initial number of excitatory and inhibitory connections is balanced.
During training, synaptic connections are updated across all layers without enforcing a
distinction between excitatory and inhibitory neurons. Dale’s law can nevertheless be
imposed (Li, Cornford, et al., 2024; Cornford et al., 2021) even if it typically results in
slightly reduced performance.

In our baseline model, Dale’s law is not applied, so that similarly to standard ANNs, weight
matrices are trained without constraining values to be positive or negative. Additionally,
we train separate SNNs with Dale’s law to evaluate its impact on neural oscillations. In
this setup, half the neurons are excitatory and half are inhibitory, while the auditory
nerve fibers are all excitatory.

Delays

In biological neural networks, the propagation time of spikes between neurons introduces
delays, primarily due to axonal transmission. To incorporate and assess the impact of
these delays on neural oscillations, we additionally train separate SNNs using dilated
convolutions in the temporal dimension instead of fully connected feedforward matrices.
This approach, introduced by Hammouamri, Khalfaoui-Hassani, and Masquelier (2023),
allows us to introduce controlled delays directly into the network architecture. Based
on their configuration for speech command recognition tasks, we use a maximum delay
value of 300 ms.

Learning rule

SGD, though biologically implausible due to its global and offline learning framework,
allows us to leverage parallelisable and fast computations to optimise larger-scale neural
networks. While this approach facilitates effective training and scaling, it diverges from
biologically inspired synaptic plasticity mechanisms, such as those mediated by AMPA
and NMDA receptors.
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Decoding into phoneme sequences

Although lower PERs could be achieved with a more sophisticated decoder, our primary
focus is on analysing the spiking layers within the encoder. For simplicity, we therefore opt
for straightforward CTC decoding, which more directly reflects the encoder’s capabilities.

Hybrid ANN-SNN balance

The CNN module in the ASR frontend as well as the ANN module (average pooling and
FC layers) converting spikes to probabilities are intentionally kept simple to give most
of the processing and representational power to the central SNN on which focuses our
neural oscillations analysis.

6.2.3 Speech processing tasks

The following non-spiking datasets, detailed in Section 2.4, are used in our study.

• The TIMIT (Garofolo et al., 1993) dataset, due to its compact size of approximately
five hours of speech data, is well-suited for investigating suitable model architec-
tures and tuning hyperparameters. It is however considered small for ASR hence
the use of LibriSpeech presented below.

• The LibriSpeech (Panayotov et al., 2015) corpus contains about 1,000 hours of
English audiobook recordings, allowing us to validate our findings on a significantly
larger scale compared to TIMIT. Given the extended training duration, we train
only a limited number of models to confirm that our analysis holds when applied
to larger datasets.

• The Google Speech Commands dataset (Warden, 2018) is used to test whether
similar CFCs arise when simply recognising single one-second words instead of
phoneme or subword sequences.

Using the method described in Section 2.1.3 to compute credible intervals, we get error
bars of ±0.8% for the reported PERs on the TIMIT dataset, about ±0.2% for the reported
word error rates on LibriSpeech, and about ±0.4% for the reported accuracy on Google
Speech Commands.

6.2.4 Analysis methods

Hyperparameter tuning

Before reporting results on the oscillation analysis, we investigate the optimal architecture
by tuning some relevant hyperparameters. All experiments are run using a single NVIDIA
GeForce RTX 3090 GPU. On top of assessing their respective impact on the error rate, we
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test if more physiologically plausible design choices correlate with better performance.
Here is the list of the fixed parameters that we do not modify in our reported experiments:

• number of Mel bins: 80
• Mel window size: 25 ms
• auditory CNN kernel size (7, 7)
• auditory CNN stride: (1, 1)
• auditory CNN padding: (7, 0)
• average pooling size: 40 / ∆t

• number of phoneme FC layers: 2
• number of phoneme features: 512
• dropout: 0.15
• activation: Leaky ReLU

where for CNN attributes of the form (nt, nf ), nt and nf correspond to time and feature
dimensions respectively. The tunable parameters are the following,

• filter bank window shift controlling the SNN time step in ms: {1, 2, 5}
• number of auditory CNN channels (filters): {8, 16, 32, 64, 128}
• number of SNN layers: {1, 2, 3, 4, 5, 6, 7}
• neurons per SNN layer: {64, 128, 256, 512, 768, 1024, 1536, 2048}
• proportion of neurons with SFA: [0, 1]
• feedforward connectivity: [0, 1]
• recurrent connectivity: [0, 1]

While increasing the number of neurons per layer primarily impacts memory requirements,
additional layers mostly extend training time.

Population signal

In the neuroscience field, EEG stands out as a widely employed and versatile method for
studying brain activity. By placing electrodes on the scalp, this non-invasive technique
measures the aggregate electrical activity resulting from the synchronised firing of
neurons within a specific brain region. An EEG signal therefore reflects the summation
of postsynaptic potentials from a large number of neurons operating in synchrony. The
typical sampling rate for EEG data is commonly in the range of 250 to 1000 Hz which
matches our desired simulation time steps. With our SNN, we do not have EEG signals
but directly the individual spike trains of all neurons in the architecture. In order to
perform similar population-level analyses, we sum the binary spike trains slb ∈ {0, 1}T×N l
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emitted by all neurons in a specific layer l for a single utterance b as follows,

plb,t =
N l∑
n=1

slb,t,n . (6.3)

Before performing the PAC analysis, the resulting population activity signal plb,t is then
normalised over the time dimension with a mean of 0 and a standard deviation of 1,
yielding the normalised population signal p̂lb,t defined as,

p̂lb,t =
plb,t − µl

b

σl
b

, (6.4)

where µl
b is the mean and σl

b is the standard deviation of plb,t over the time dimension.

Phase-amplitude coupling

Using finite impulse response band-pass filters, the obtained population signals are
decomposed into different frequency ranges. We study CFC in the form of PAC both within
a single population and across layers. This technique assesses whether a relationship
exists between the phase of a low frequency signal and the envelope (amplitude) of a
high frequency signal.

As recommended in Hülsemann, Naumann, and Rasch (2019), we implement both the
modulation index (Tort, Kramer, et al., 2008) and mean vector length (Canolty et al.,
2006) metrics to quantify the observed amount of PAC. For each measure type, the
observed coupling value is compared to a distribution of 10,000 surrogates to assess
the significance. Surrogate couplings are computed by disrupting the temporal order of
the amplitude time series while preserving its overall characteristics. Specifically, the
amplitude time series is permuted by cutting it at a random point and reversing the order
of the two segments. This method, as discussed by Hülsemann, Naumann, and Rasch
(2019), maintains all inherent properties of the original data except for the temporal
relationship between phase angle and amplitude magnitude, providing a conservative
test of significance. A p-value is then obtained by fitting a Gaussian function on the
distribution of surrogate coupling values and calculating the area under the curve for
values greater than the observed coupling value.

As pointed out by Jones (2016), it is important to note that observed oscillations can
exhibit complexities such as non-sinusoidal features and brief transient events on single
trials. Such nuances become aggregated when averaging signals, leading to the widely
observed continuous rhythms. We therefore perform all analysis on single utterances.

For intra-layer interactions, a single population signal is used to extract both the low-
frequency oscillation phase and the high-frequency oscillation amplitude. In a three-
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layered architecture, these interactions include nerve-nerve, first layer-first layer, second
layer-second layer, and third layer-third layer couplings.

For inter-layer interactions, we consider couplings between the low-frequency oscillation
phase in one layer and the high-frequency oscillation amplitude in all subsequent layers.
These interactions include nerve-first layer, nerve-second layer, nerve-third layer, first
layer-second layer, first layer-third layer, second layer-third layer couplings.

For all aforementioned intra- and inter-layer combinations, we use delta (0.5-4 Hz), theta
(4-8 Hz), alpha (8-13 Hz) and beta (13-30 Hz) ranges as low-frequency modulating bands,
and low-gamma (30-80 Hz) and high-gamma (80-150 Hz) ranges as high-frequency
modulated bands. For a given model, we iterate through the 64 longest utterances
in the TIMIT test set. For each utterance, we consider the 10 aforementioned intra-
and inter-layer relations, as well as the 8 possible combinations of low-frequency to
high-frequency bands. We conduct PAC testing on each of the 5,120 resulting coupling
scenarios, and only consider a coupling to be significant when both modulation index
and mean vector length metrics yield p-values below 0.05.
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6.3 Results

6.3.1 Architectural analysis

In order to draw a comparison with the human auditory pathway, we have introduced
the physiologically inspired ASR pipeline illustrated in Fig. 6.1. The proposed hybrid
ANN-SNN architecture is trained in an end-to-end fashion on the TIMIT dataset (Garofolo
et al., 1993) to predict phoneme sequences from speech waveforms. In the architectural
design, we aimed to minimise the complexity of ANN components and favour the central
SNN which will be the focus of the oscillation analysis. Here as a preliminary step, we
examine how relevant hyperparameters affect the PER. On top of assessing the scalability
of our approach to larger networks, we identify the importance of the interplay between
recurrence and SFA.

Table 6.2: Hyperparameter tuning for the number of SNN layers and neurons per layer
on the TIMIT dataset. The third column gives both the number of trainable parameters
in the multi-layered SNN (left) and in the whole encoder (right). The PERs are reported
after 50 training epochs using a 5 ms time step, 16 CNN channels, 50% of AdLIF neurons,
100% feedforward and 50% recurrent connectivity. The performance of the architecture
when removing the SNN is also reported (bottom). Bold values indicate the lowest
achieved PERs.

Number of
layers

Neurons
per layer

Number of
parameters

Test PER
[%]

Validation
PER [%]

1 512 740k / 1.3M 23.3 21.8
2 512 1.1M / 1.7M 21.0 19.2
3 512 1.5M / 2.1M 20.5 18.2
4 512 1.9M / 2.5M 20.2 17.4
5 512 2.3M / 2.9M 20.0 17.6
6 512 2.7M / 3.3M 20.0 17.9
7 512 3.1M / 3.7M 20.5 18.0

3 64 91k / 394k 30.9 29.6
3 128 211k / 547k 25.5 24.1
3 256 537k / 938k 22.5 20.9
3 768 3.0M / 3.7M 19.6 17.4
3 1024 4.9M / 5.7M 19.1 17.1
3 1536 10.1M / 11.2M 19.0 17.3
3 2048 17.1M / 18.5M 19.2 17.2

no nerve, no SNN 0 / 873k 34.2 32.0

117



Chapter 6. Bio-Inspired Speech Encoding and Neural Oscillations

Network scalability

As reported in Table 6.2, performance improves with added layers, peaking at 4-6 layers
before declining, which suggests a significant contribution to the final representation
from all layers within this range. Compared to conventional non-spiking RNN encoders
used in ASR, our results support the scalability of surrogate gradient SNNs to relatively
deep architectures. Additionally, augmenting the number of neurons until about 1,000
per layer consistently yields lower PERs, beyond which performance saturates.

Recurrent connections and spike-frequency adaptation

The impact of adding SFA in the neuron model as well as using recurrent connections
are reported in Table 6.3. Interestingly, we find that without SFA, optimal performance
is achieved by limiting the recurrent connectivity to 80%. When additionally using SFA,
further limitation of the recurrent connectivity about 50% yields the lowest PER. This
differs from conventional non-spiking RNNs, where employing FC recurrent matrices is
favoured. These results indicate that while requiring fewer parameters, an architecture
with sparser recurrent connectivity and more selective parameter usage can achieve
better task performance.

Table 6.3: Ablation experiments for the recurrent connectivity and proportion of neurons
with SFA on the TIMIT dataset. PERs are reported after 50 epochs using a 5 ms time step,
16 CNN channels, 3 layers, 512 neurons per layer and 100% feedforward connectivity.
Bold values indicate the lowest achieved PERs.

Model type
Recurrent

connectivity
Proportion of
AdLIF neurons

Number of
parameters

Test
PER [%]

Validation
PER [%]

No recurrence no SFA 0 0 1.1M / 1.7M 26.9 24.8

Recurrence only 0.2 0 1.3M / 1.8M 22.0 20.1
0.5 0 1.5M / 2.1M 21.0 18.9
0.8 0 1.8M / 2.3M 20.8 18.7
1 0 1.9M / 2.5M 21.8 19.3

SFA only 0 0.2 1.1M / 1.7M 24.2 21.7
0 0.5 1.1M / 1.7M 23.7 21.6
0 0.8 1.1M / 1.7M 23.3 21.0
0 1 1.1M / 1.7M 22.9 21.1

Recurrence and SFA 0.2 0.2 1.3M / 1.8M 20.9 19.3
0.5 0.5 1.5M / 2.1M 20.5 18.2
0.8 0.8 1.8M / 2.3M 21.2 18.8
1 1 1.9M / 2.5M 23.3 21.5
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Overall, SFA and recurrent connections individually yield significant error rate reduction,
although they respectively grow as O(N) and O(N2) with the number of neurons N . In
line with previous studies on speech command recognition tasks (Perez-Nieves et al.,
2021) and our findings in Section 5.1.3, our results emphasise the metabolic and compu-
tational efficiency gained by harnessing the heterogeneity of adaptive spiking neurons.
Furthermore, effectively calibrating the interplay between unit-wise feedback from SFA
and layer-wise feedback from recurrent connections appears crucial for achieving optimal
performance.

Enforcing Dale’s law

To align with common ANN practice, the previous results were obtained without re-
stricting neurons to be either strictly excitatory or strictly inhibitory. We now train more
physiologically inspired models that satisfy Dale’s law, with results presented in Table 6.4.
Although ASR performance decreased (1-4% absolute PER increase), this may simply be
due to suboptimal weight initialisation, which is known to affect performance (Li, Corn-
ford, et al., 2024). This could likely be mitigated in future work by using the approach
of Rossbroich, Gygax, and Zenke (2022), who derived fluctuation-driven initialisation
schemes compatible with Dale’s law.

Table 6.4: Ablation experiments for the recurrent connectivity and proportion of neurons
with SFA on the TIMIT dataset when additionally using Dale’s law. PERs are reported
after 50 epochs using a 2 ms time step, 16 CNN channels, 3 layers, 512 neurons per
layer, 100% feedforward connectivity and an excitatory-inhibitory ratio of 1. Bold values
indicate the lowest achieved PERs.

Model configuration
Recurrent

connectivity
Proportion of
AdLIF neurons

Number of
parameters

Test PER
[%]

Validation PER
[%]

No recurrence no SFA 0 0 1.1M / 1.7M 30.7 28.7
Recurrence only 0.5 0 1.5M / 2.1M 23.6 20.6
SFA only 0 0.5 1.1M / 1.7M 25.1 22.9
Recurrence and SFA 0.5 0.5 1.5M / 2.1M 21.2 19.2

Supplementary findings

We observe in Table 6.5 that decreasing the simulation time step does not affect the
performance. Although making the simulation of spiking dynamics more realistic, one
might have anticipated that backpropagating through more time steps could hinder the
training and worsen the performance as observed in standard RNNs often suffering
from vanishing or exploding gradients. With inputs ranging from 1,000 to over 7,000
steps using 1 ms intervals on TIMIT, our results demonstrate a promising scalability of
surrogate gradient SNNs for processing longer sequences.
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Table 6.5: Hyperparameter tuning for the simulation time step on the TIMIT dataset.
PERs are reported after 50 epochs using 16 CNN channels, 3 layers of 512 neurons each,
50% of AdLIF neurons, 100% feedforward and 50% recurrent connectivity.

Time step [ms] Epoch duration [min] Test PER [%] Validation PER [%]

5 21 20.5 18.2
2 53 20.4 18.7
1 156 20.6 18.2

Secondly, as reported in Table 6.6, we did not observe substantial improvement when
increasing the number of auditory nerve fibers past ∼5,000, even though there are
approximately 30,000 of them in the human auditory system. This could be due to both
the absence of a proper model for cochlear and hair cell processing in our pipeline and to
the relatively low number of neurons (<1,000) in the subsequent layer.

Table 6.6: Hyperparameter tuning for the number of CNN channels on TIMIT. PERs are
reported after 50 epochs using a 5 ms time step, 3 layers, 512 neurons per layer, 50% of
AdLIF neurons, 100% feedforward and 50% recurrent connectivity. Bold values indicate
the lowest achieved PERs. The third column gives the number of trainable parameters in
the complete encoder.

CNN channels Nerve fibers Parameters Test PER [%] Validation PER [%]

8 592 1.8M 20.9 18.9
16 1,184 2.1M 20.5 18.2
32 2,368 2.7M 20.2 18.4
64 4,736 3.9M 19.8 18.0
128 9,472 6.4M 21.3 18.9

Table 6.7: Hyperparameter tuning for the feedforward connectivity on the TIMIT dataset.
PERs are reported after 50 epochs using a 5 ms time step, 16 CNN channels, 3 layers of
512 neurons each, 50% of AdLIF neurons and 50% recurrent connectivity. Bold values
indicate the lowest achieved PERs. The second column gives both the number of trainable
parameters in the multi-layered SNN (left) and in the whole encoder (right).

Feedforward connectivity Parameters Test PER [%] Validation PER [%]

0.2 629k / 1.2M 22.0 19.6
0.5 968k / 1.5M 21.6 19.7
0.8 1.3M / 1.8M 20.7 18.8
1.0 1.5M / 2.1M 20.5 18.2
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As detailed in Table 6.7, reduced feedforward connectivity in the SNN led to poorer
overall performance. This contrasts with our earlier findings on recurrent connectivity,
highlighting the distinct functional roles of feedforward and feedback mechanisms in the
network.

Additionally, we incorporated trainable delays by replacing the fully connected feedfor-
ward matrices with dilated convolutions over the temporal dimension. While including
delays resulted in similar overall performance, using the groups parameter to control
connectivity led to more parameter-efficient models, as shown in Table 6.8. This method
of reducing connectivity proved more effective than our previous approach of randomly
masking fully connected matrices.

Finally, Table 6.9 shows our results when using the more popular moving threshold
formulation of SFA instead of the AdLIF model. Consistent with our previous findings on
speech command recognition detailed in Section 5.1, the AdLIF implementation of SFA
outperforms its moving threshold alternative, with the same number of parameters.

Table 6.8: Hyperparameter tuning for trainable delays on the TIMIT dataset. PERs are
reported after 50 epochs using a 5 ms time step, 16 CNN channels, 3 layers of 512
neurons. Bold values indicate the lowest achieved PERs.

Model configuration Conv Groups Parameters Test PER [%] Validation PER [%]

No recurrence no SFA 1 2.3M / 2.8M 26.2 24.6
Recurrence only 1 2.7M / 3.2M 21.6 19.5
SFA only 1 2.3M / 2.8M 23.3 20.7
Recurrence and SFA 1 2.7M / 3.2M 20.8 18.6
Recurrence and SFA 4 968k / 1.5M 21.0 18.4

Table 6.9: Results with moving threshold SFA on the TIMIT dataset. PERs are reported
after 50 epochs using a 2 ms time step, 16 CNN channels, 3 layers of 512 neurons.

Model configuration Parameters Test PER [%] Validation PER [%]

SFA only 1.1 / 1.7M 26.3 23.9
Recurrence and SFA 1.5 / 2.1M 22.1 19.2
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6.3.2 Oscillation analysis

Based on our previous architectural results that achieved satisfactory speech recognition
performance using a physiologically inspired model, we hypothesise that the spiking dy-
namics of a trained network should, to some extent, replicate those occurring throughout
the auditory pathway. Our investigation aims to discern if synchronisation phenomena
resembling brain rhythms manifest within the implemented SNNs as they processes
speech utterances to recognise phonemes.

Synchronised gamma activity produces low-frequency rhythms

As illustrated in Fig. 6.2, the spike trains produced by passing a test-set speech utterance
through the trained architecture exhibit distinct low-frequency rhythmic features in all
layers. By looking at the histogram of single neuron firing rates illustrated in Fig. 6.3,
we observe that the distribution predominantly peaks at gamma range, with little to no
activity below beta.

Figure 6.2: Spiking activity in response to speech input. Input filterbank features and
resulting spike trains produced across layers. For each layer, the neurons are vertically
sorted on the y-axis by increasing average firing rate (top to bottom). The model uses
a 2 ms time step, 16 CNN channels, 3 layers of size 512, 50% AdLIF neurons, 100%
feedforward and 50% recurrent connectivity with Dale’s law.
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Figure 6.3: Distribution of single neuron firing rates in response to speech input using
the same model and utterance as in Fig. 6.2.

This reveals that the low-frequency oscillations visible in Fig. 6.2 actually emerge from the
synchronisation of gamma-active neurons. The resulting low-frequency rhythms appear
to follow to some degree the intonation and syllabic contours of the input filterbank
features and to persist across layers.

Compared to the three subsequent layers, higher activity in the auditory nerve comes
from the absence of inhibitory SFA and recurrence mechanisms.

These initial observations suggest that the representation of higher-order features in the
last layer is temporally modulated by lower level features already encoded in the auditory
nerve fibers, even though each layer is seen to exhibit distinct rhythmic patterns. In the
next section, we focus on measuring this modulation more rigorously via PAC analysis.

Phase-amplitude coupling within and across layers

By aggregating over the relevant spike trains as detailed in Section 6.2.4, we compute
distinct EEG-like population signals for the auditory nerve fibers and each of the three
SNN layers. These are then filtered in the different frequency bands, as illustrated in Fig.
6.4, which allows us to perform CFC analyses.
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Figure 6.4: Population signals of auditory nerve fibers (blue) and last layer (orange)
filtered in distinct frequency bands.

We measure PAC within-layer and across-layers between all possible combinations of
frequency bands and find multiple significant forms of coupling for every utterance. An
example of significant theta low-gamma coupling between the auditory nerve fibers
and the last layer is illustrated in Fig. 6.5. Here input low-frequency modulation is
observed to significantly modulate the output gamma activity. This indicates that the
network integrates and propagates intonation and syllabic contours across layers through
synchronised neural activity along these perceptual cues.

On the majority of utterances, we found significant CFCs between the input waveform
and the population signal of the last layer. It is important to note that the synchronisation
of neural signals to the auditory envelope emerged without imposing any theta or
gamma activity in our network. The optimisation of the PER combined with sufficiently
realistic spiking neuronal dynamics therefore represent sufficient conditions to reproduce
some broad properties of neural oscillations observed in the brain, suggesting a general
functional role of facilitating information processing.

The activity of the final layer of the SNN stands out as the most significantly modulated
overall. By architectural construction, modulation in that final layer has the greatest
impact on the ASR task, as the spike trains from this layer are converted to phoneme
probabilities using a small ANN. A higher number of couplings in the final layer correlates
with a decrease in the PER. This suggests that CFCs may be associated with more selective
integration of phonetic features, enhanced attentional processes, as well as improved
assimilation of contextual information.
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Alpha-band oscillations were the most frequently measured, consistent with biological
evidence that the alpha rhythm is the most prominent oscillation in spontaneous EEG
(Berger, 1929).

More generally, the patterns of coupling between different neural populations and
frequency bands were found to differ from one utterance to another. These variations
indicate that the neural processing of our network is highly dynamic and depends on
the acoustic properties and linguistic content of the input. The observed rich range of
intra- and inter-layer couplings suggests that the propagation of low-level input features
such as intonation and syllabic rhythm is only one aspect of these synchronised neural
dynamics.

Figure 6.5: Cross-frequency coupling of population aggregated activity. Modulation
index and mean vector length metrics as measures of PAC between the theta band of the
auditory nerve fibers and the low-gamma band of the last layer. In the bottom-left graph,
the amplitude of the low-gamma band is represented by the radius.

Impact of Dale’s law on oscillations

As illustrated in Table 6.10, SNNs that satisfy Dale’s law display significantly higher
numbers of CFCs. In biological neural networks, this principle contributes to a more
structured and organised form of network dynamics, as each neuron is either excitatory or
inhibitory but not both. When applying Dale’s principle to SNNs, it constrains the network
with more defined roles for neurons, leading to more coherent oscillatory patterns and
more CFCs.
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In this study, we use equivalent models for both excitatory and inhibitory neurons, and
simply allow them to adapt their parameters within the same fixed ranges during training.
We observe that trained values of both membrane and adaptation time constants τu and
τw converge to lower average values across the inhibitory populations compared to the
excitatory ones. This suggests that, even with initially equivalent models, the network
naturally differentiates the dynamics of excitatory and inhibitory neurons to fulfill their
distinct functional roles. Future work could focus on better defining these two types
of neurons from the outset, incorporating more biologically plausible initial parameter
ranges.

When using Dale’s law, the fixed excitatory-inhibitory (E/I) ratio plays a crucial role in
shaping the neuronal dynamics inside the SNN. In our study, we observed that increasing
the proportion of inhibitory neurons (E/I = 0.33) resulted in a similar ASR performance
(∼ 1% absolute PER difference) compared to the standard ratio (E/I = 1), but with
a reduced average firing rate of 56 Hz instead of 68 Hz for equivalent models with
50% of neurons with SFA and 50% of recurrent connectivity (see Table 6.10). This
finding suggests that a higher ratio of inhibitory neurons can achieve comparable task
performance while maintaining a lower overall level of network activity.

Table 6.10: Effect of Dale’s law, SFA, recurrence and delays on oscillatory activity. Com-
parison of the oscillatory activity resulting from passing the 64 longest TIMIT test-set
utterances through different types of trained networks. The last two columns show the
total number of significant PACs summed across all 64 utterances and frequency bands,
for intra- and inter-layer relations respectively. All networks use a 2 ms time step, 16
CNN channels, 3 layers, 512 neurons per layer and 100% feedforward connectivity (i.e.,
groups=1 for delays). The E/I ratio is 1 for models with Dale’s law, except the last one
where it is 0.33.

Model type Model configuration
Test PER

[%]
Firing rate

[Hz]
Number of intra-

layer PACs
Number of inter-

layer PACs

AdLIF baseline No recurrence no SFA 26.9 98 133 192
SFA only 23.7 72 213 390
Recurrence only 21.0 76 180 132
Recurrence and SFA 20.5 71 265 177

AdLIF with Dale No recurrence no SFA 30.7 100 513 643
SFA only 25.1 77 564 603
Recurrence only 23.6 67 432 278
Recurrence and SFA 21.2 68 329 290
Recurrence and SFA, E/I=0.33 22.3 56 526 496

]AdLIF with delays No recurrence no SFA 26.2 92 116 54
SFA only 23.3 77 91 53
Recurrence only 21.6 68 205 66
Recurrence and SFA 20.8 68 253 60

Moving threshold SFA only 26.3 56 136 131
Recurrence and SFA 22.1 62 182 135
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Impact of spike-frequency adaptation and recurrent connections on oscillations

Across all model types (AdLIF or moving threshold SFA, with or without delays and
Dale’s law), both SFA and recurrent connections had an overall inhibitory effect, typically
reducing the average network firing rate from around 100 Hz to roughly 60 Hz (see Table
6.10).

This regularisation of the network activity appears to enable more effective parsing and
encoding of speech information, as it reliably led to improved ASR performance. While
both forms of feedback exhibit an overall inhibitory effect, SFA operates at the individual
neuron level whereas recurrent connections act at the layer level.

SFA is known to encourage and stabilise the synchronisation of cortical networks (Crook,
Ermentrout, and Bower, 1998) and to promote periodic signal propagation (Augustin,
Ladenbauer, and Obermayer, 2013). In our results, this effect is pronounced in SNNs
without Dale’s law, where the inclusion of SFA was consistently associated with a signif-
icant increase in the number of measured CFCs. However, when Dale’s law is applied,
the overall number of CFCs is significantly higher with no noticeable impact of SFA on
CFCs. This suggests that the stricter constraints imposed by Dale’s law may lead to more
uniform behaviour in CFCs, thereby reducing the observed influence of SFA.

In models with and without Dale’s law, incorporating recurrent connections was consis-
tently associated with a decrease in the number of inter-layer couplings, indicating more
localised synchronisation.

Finally, using the moving threshold formulation of SFA produces a lower firing rate
and fewer significant PACs compared to our AdLIF baseline. The lower number of
PACs might mean that the moving threshold formulation is less effective than the AdLIF
at coordinating these interactions, which could explain the inferior task performance.
Nevertheless, the discrepancy between the two approaches could potentially be narrowed
with further hyperparameter optimisation.

Impact of delays on oscillations

As illustrated in Table 6.10, SNNs with delays produced significantly fewer PACs, espe-
cially for inter-layer couplings, compared to the baseline with fully connected feedforward
matrices. Introducing trainable delays through dilated convolutions allows for temporal
dispersion of signals, which may desynchronise neural activity and explain the observed
reduction in CFCs.
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Effects of training and input type on neuronal activity

In order to further understand the emergence of coupled signals, we consider passing
speech through an untrained network, as well as passing different types of noise inputs
through a trained network.

Trained architectures exhibit persisting neuronal activity across layers compared to
untrained ones, where the activity almost completely decays after the first layer, as
illustrated in Figure 6.6. This decay across layers persists even when increasing the input
magnitude up to saturating auditory nerve fibers. This phenomenon can be attributed to
the random weights in untrained architectures, which transform structured input patterns
into uncorrelated noise, leading to vanishing neuronal activity in deeper layers. Our CFC
analysis shows no significant coupling, even in layers with sufficient spiking activity, i.e.,
within the auditory nerve population and the first layer.

In trained networks, noise inputs lead to single neuron firing rate distributions peaking
at very low rates and where the activity gradually decreases across layers, as illustrated
in Fig. 6.9. This contrasts with the response to speech inputs seen in Fig. 6.3 where the
activity was sustained across layers with most of the distribution in the gamma range.
We tested uniform noise as well as different noise sources (air conditioner, babble, copy
machine and typing) from the the MS-SNSD dataset (Reddy, Beyrami, et al., 2019).
Compared to a speech input, all noise types yielded reduced average firing rates (from
60 Hz to about 40 Hz) with most of the neurons remaining silent. This highly dynamic
processing of information is naturally efficient at attenuating its activity when processing
noise or any input that does not induce sufficient synchronisation. Interestingly, babble
noises were found in certain cases to induce some significant PAC patterns, whereas other
noise types resulted in no coupling at all. Even though babble noises resemble speech
and produced some form of synchronisation, they only triggered a few neurons per layer.
Overall, we showed that synchronicity of neural oscillations in the form of PAC results
from training and is only triggered when passing an appropriate speech input.
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Figure 6.6: Spiking activity of an untrained network in response to speech input. Input
filterbank features and resulting spike trains produced across layers. The model uses
a 2 ms time step, 16 CNN channels, 3 layers of size 512, 50% AdLIF neurons, 100%
feedforward and 50% recurrent connectivity.

Figure 6.7: Single neuron firing rate distributions of an untrained network in response to
speech input. The model and the utterance are the same as in Fig. 6.6
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Figure 6.8: Spiking activity of a trained network in response to babble noise input. Input
filterbank features and resulting spike trains produced across layers. The model uses
a 2 ms time step, 16 CNN channels, 3 layers of size 512, 50% AdLIF neurons, 100%
feedforward and 50% recurrent connectivity.

Figure 6.9: Single neuron firing rate distributions of a trained network in response to
babble noise input. The model and the utterance are the same as in Fig. 6.8
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Scaling to a larger dataset

Our approach was extended to the LibriSpeech dataset (Panayotov et al., 2015) with 960
hours of training data. After 8 epochs, we reached 9.5% WER on the test-clean data split.
The model uses a 5 ms time step, 16 CNN channels, 3 layers of size 1024, 50% AdLIF
neurons, 100% feedforward and 50% recurrent connectivity. During training, dynamic
batching was employed with a maximum batch length of 60k steps. As observed on
TIMIT, the trained model demonstrated similar CFCs in its spiking activity.

While the computational cost of training on such a large dataset is high – taking ap-
proximately two days per epoch with a 5ms time step – we were able to successfully
demonstrate the robustness of our method at this scale. However, this extension high-
lights the need for more efficient tools to speed up training, particularly when finer time
resolutions are required for detailed analysis.

Training on speech command recognition task

With our experimental setup, the encoder is directly trained to recognise phonemes on
TIMIT and subwords on LibriSpeech. One could therefore assume that the coupled gamma
activity emerges from that constraint. In order to test this hypothesis, we run additional
experiments on a speech command recognition task where no phoneme or subword
recognition is imposed by the training. Instead the model is directly trained to recognise
a set of short words. We use the same architecture as on TIMIT, except the average
pooling layer is replaced by a readout layer as defined in Section 5.1 which reduces the
temporal dimension altogether, as required by the speech command recognition task.
Interestingly, using speech command classes as ground truths still produces significant
PAC patterns, especially in the last layer. These results indicate that the emergence of the
studied rhythms does not require phoneme-based training and may be naturally emerging
from speech processing.

Using the second version of the Google Speech Commands data set (Warden, 2018)
with 35 classes, we achieve a test set accuracy of 97.05%, which, to the best of our
knowledge, improves upon the current state-of-the-art performance using SNNs of 95.35%
(Hammouamri, Khalfaoui-Hassani, and Masquelier, 2023). Our model uses a 10 ms time
step, 16 CNN channels, 3 layers of size 512, 50% AdLIF neurons, 100% feedforward and
50% recurrent connectivity.
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6.4 Conclusions

In this chapter, we introduced a physiologically inspired speech recognition architecture,
centred around an SNN, and designed to be compatible with modern deep learning frame-
works. As set out in the introduction, we first explored the capabilities and scalability of
the proposed speech recognition architecture before analysing neural oscillations.

Our preliminary architectural analysis demonstrated a satisfactory level of scalability
to deeper and wider networks, as well as to longer sequences and larger datasets.
This scalability was achieved through our approach of utilising the surrogate gradient
method to incorporate an SNN into an end-to-end trainable speech recognition pipeline.
In addition, our ablation experiments emphasised the importance of including SFA
within the neuron model, along with layer-wise recurrent connections, to attain optimal
recognition performance. Notably, our implementation of SFA using the AdLIF model
outperformed the more popular moving threshold formulation, which corroborates our
previous results on speech command recognition in Section 5.1.

The subsequent analysis of the spiking activity across our trained networks in response to
speech stimuli revealed that neural oscillations, commonly associated with various cogni-
tive processes in the brain, did emerge from training an architecture to recognise words
or phonemes. Through CFC analyses, we measured similar synchronisation phenomena
to those observed throughout the human auditory pathway. During speech processing,
trained networks exhibited several forms of PAC, including delta-gamma, theta-gamma,
alpha-gamma, and beta-gamma, while no such coupling occurred when processing pure
background noise. Our networks’ ability to synchronise oscillatory activity in the last
layer was also associated with improved speech recognition performance, which points to
a functional role for neural oscillations in auditory processing. Even though we employ
gradient descent training, which does not represent a biologically plausible learning
algorithm, our approach was capable of replicating natural phenomena of macro-scale
neural coordination. By leveraging the scalability offered by deep learning frameworks,
our approach can therefore serve as a valuable tool for studying the emergence and role
of brain rhythms.

Building upon the main outcome of replicating neural oscillations, our analysis on SFA
and recurrent connections emphasised their key role in actively shaping neural responses
and driving synchronisation via inhibition in support of efficient auditory information
processing. Our results point towards further work on investigating more realistic
feedback mechanisms including efferent pathways across layers. More accurate neuron
populations could also be obtained using clustering algorithms.

Further analysis incorporated Dale’s law which constrains neurons to be exclusively
excitatory or inhibitory. This physiologically inspired principle proved to be a crucial
consideration as it significantly increased the number of measured oscillations.
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6.4 Conclusions

Aside from the fundamental aspect of developing the understanding of biological pro-
cesses, our research on SNNs also holds significance for the fields of neuromorphic
computing and energy efficient technology. Our exploration of the spiking mechanisms
that drive dynamic and efficient information processing in the brain is particularly rele-
vant for low-power audio and speech processing applications, such as on-device keyword
spotting. In particular, the absence of synchronisation in our architecture when handling
background noise results in fewer computations, making our approach well-suited for
always-on models.
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7 Conclusions and Future Work

7.1 Conclusions

By casting techniques from biological processes, Bayesian statistics and signal processing,
this thesis focused on developing the interpretability and physiological plausibility of
neural architectures for speech recognition.

In Chapter 3, we built upon a recent Bayesian interpretation of recurrence in conventional
ANNs and derived novel parameter-efficient recurrent units. On top of the theoretical
contributions, our units were shown to have practical value on ASR tasks, highlighting
the importance of a probabilistic derivation.

We then shifted to SNNs in Chapter 4, where we derived biologically-inspired networks
from single neuron dynamics. Using the surrogate gradient method, our approach
constitutes a special case of RNNs that can be integrated and trained within modern deep
learning frameworks while retaining the advantages of energy efficiency. We also showed
that the subthreshold dynamics can be solved as a SSM using either a convolution or a
recurrent formulation. Nevertheless, threshold-based nonlinear feedbacks still require to
loop over time steps.

In Chapter 5, we first applied our SNN approach to speech command recognition tasks and
then extended it to LVCSR. Overall, we demonstrated the compatibility and scalability of
surrogate gradient SNNs within deep learning frameworks. While requiring considerably
fewer parameters and computations, our SNNs achieved competitive results compared to
traditional RNNs, demonstrating their applicability to low-powered speech technology.

Finally, in Chapter 6, we transitioned our focus from the technology to the physiology of
speech perception. After defining a more biologically inspired architecture, we analysed
spike trains across the trained network and measured significant CFCs consistent with
neuroscience observations. We showed that gradient descent training on ASR tasks leads
to the emergence of neural oscillations in the SNN, but only during speech processing
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and not when processing background noise. Our results also highlighted the key role
of feedback mechanisms in the form of SFA and layer-wise recurrent connections in
regulating the neural activity and improving the recognition performance.

7.2 Future work

Building upon the findings of this thesis, several promising directions for future research
are outlined below:

1. Bayesian interpretation of SNNs: A first theoretical direction would involve
combining the approaches used in this thesis and derive a Bayesian interpretation
of SNNs. This could not only enhance our understanding of SNNs, but also help
interpret the processing of information in biological networks.

2. Optimisation of surrogate gradient SNNs: Further research could also focus on
the optimisation of SNNs using the surrogate gradient method. Although we were
able to show a certain robustness to vanishing and exploding gradients, our SNNs
still employ optimisers originally defined for ANNs. Developing dedicated optimisa-
tion techniques specifically designed for SNNs could yield significant performance
improvements.

3. Incorporating more physiological components: Increasing the number of phys-
iological components, such as including dendrite models and utilising multiple
adaptation currents per neuron, could enhance the heterogeneity of spiking neu-
rons in response to stimuli. Additionally, employing more physiologically plausible
cochlear and auditory nerve models to convert audio inputs into initial spike trains
could improve the biological fidelity of the simulations. Due to the computational
intensity of typical biologically-inspired auditory models, pre-computing spike out-
puts may be necessary. In terms of the learning rule, combining SGD with STDP or
other biologically inspired mechanisms could also be explored.

4. Testing neuroscience hypotheses: Future work could leverage our approach to
reproduce neural dynamics at relatively large scales, facilitating the testing of
hypotheses and comparisons with observations in the human brain. On top of
developing our fundamental understanding of biological phenomena, this direction
could also contribute to biomedical research related to pathological speech or neural
disorders, such as the manifestation of auditory hallucinations during psychosis or
symptoms of schizophrenia.

5. SNNs for speech synthesis: Another avenue for future work is the integration
of SNNs into speech synthesis architectures. Due to their physiologically-inspired
temporal dynamics, the inclusion of SNNs could enhance the naturalness and
expressiveness of synthesised speech.
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6. SNNs for energy-efficient hardware: The sparse and event-driven nature of
biological neural systems can be leveraged to create hardware that operates with
significantly lower power consumption compared to traditional ANN-based systems.
Research in this area could focus on the design and implementation of neuromorphic
chips and architectures that optimise the energy efficiency of SNN operations,
potentially revolutionising applications in portable and embedded systems.

In a lot of these directions, writing CUDA code would allow our implementation to run
faster on GPUs, reducing training time and enabling more extensive experiments. This
could leverage the kernel-based formulation described in Chapter 4.
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