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Bayesian Parameter-Efficient Fine-Tuning for
Overcoming Catastrophic Forgetting

Haolin Chen, Philip N. Garner

Abstract—We are motivated primarily by the adaptation of
text-to-speech synthesis models; however we argue that more
generic parameter-efficient fine-tuning (PEFT) is an appropriate
framework to do such adaptation. Nevertheless, catastrophic
forgetting remains an issue with PEFT, damaging the pre-trained
model’s inherent capabilities. We demonstrate that existing
Bayesian learning techniques can be applied to PEFT to prevent
catastrophic forgetting as long as the parameter shift of the fine-
tuned layers can be calculated differentiably. In a principled
series of experiments on language modeling and speech synthesis
tasks, we utilize established Laplace approximations, including
diagonal and Kronecker-factored approaches, to regularize PEFT
with the low-rank adaptation (LoRA) and compare their per-
formance in pre-training knowledge preservation. Our results
demonstrate that catastrophic forgetting can be overcome by
our methods without degrading the fine-tuning performance, and
using the Kronecker-factored approximation produces a better
preservation of the pre-training knowledge than the diagonal
ones.

Index Terms—parameter-efficient fine-tuning, Bayesian trans-
fer learning, Laplace approximation, catastrophic forgetting.

I. INTRODUCTION

IN the context of text-to-speech synthesis (TTS), it has long
been of interest to adapt a generic model to a specific

domain such as a given speaker identity, language, or emo-
tion. The process is termed adaptation; typically the generic
model would be well-trained on a large dataset, whereas the
(domain-specific) adaptation dataset would be too small to
train a bespoke model. Adaptation proved particularly useful
in statistical parametric and neural TTS [1], [2], and remains
a goal of the recent Blizzard challenge [3]. More recently,
the state of the art in TTS is represented by more generic
generative models that have arisen in the machine learning
community, with advances made in the domains of text [4],
[5], vision [6], [7], and audio [8], [9], all feeding through to
TTS.

A key paradigm that has emerged in the development and
application of such generic models is the pre-training-fine-
tuning approach, which involves initially training a model
on a large dataset (pre-training) and subsequently fine-tuning
it on a task-specific dataset. The paradigm has proven to
be highly effective, leading to substantially more accurate
and robust outcomes. More recent large pre-trained models
have increasingly been equipped with in-context or zero-shot
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learning capabilities [6], [9], [10]. However, when there are
more data available for the target task, fine-tuning is still
useful to further improve the performance considerably [11].
Notice that, whilst the vocabulary differs slightly, the goal is
the same as for TTS. It follows that current research in fine-
tuning provides the means to adapt current TTS models.

The performance gains achieved by large pre-trained models
are undeniably linked to their scale. Larger models, with
their increased capacity, tend to deliver superior performance.
However, as the size of pre-trained models increases, the
costs associated with fine-tuning and storing all parameters
become prohibitively high, making it practically infeasible.
This has led to the study of parameter-efficient fine-tuning
(PEFT) techniques [12]–[15], which optimize a small subset of
the model parameters (either original parameters or additional
ones) while leaving the rest unchanged, significantly reducing
computation and storage costs. PEFT techniques have not
only facilitated fine-tuning of large pre-trained models on
low-resource devices but also enabled the easy sharing and
deployment of customized models as far fewer parameters
need to be stored and transferred.

Despite the benefits of (parameter-efficient) fine-tuning, it is
not without its pitfalls. One significant risk is catastrophic for-
getting [16]–[18], where the model loses much of the knowl-
edge it gained during pre-training. This loss can adversely
affect the model’s ability to generalize to unseen data, a critical
aspect of any machine learning model. The phenomenon is
even more unfavorable on modern large pre-trained models
that are usually multi-functional by training on a diverse range
of tasks and data. For example, a language model may forget
its general knowledge after continual instruction tuning [19],
or hypothetically, the controllability of emotions of a speech
synthesizer may be compromised after fine-tuning on a specific
voice.

Bayesian learning theory provides a principled solution to
overcoming catastrophic forgetting. Considering optimizing
the neural network as performing a maximum a posteriori
(MAP) estimation of the network parameters given the fine-
tuning data, it tries to find the optimal trade-off between the
likelihood of the fine-tuning data and the prior knowledge
of the pre-trained model, of which the latter is accessible
in the form of the posterior over the parameters given the
pre-training data. Although the true posterior is intractable, it
can be approximated by fitting a Gaussian distribution with a
mean equal to the MAP solution and a precision equal to the
observed Fisher information. The technique is known as the
Laplace approximation [20] and has been thoroughly studied
[21]–[24].
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In this paper, we demonstrate quite generally that existing
Bayesian learning techniques can be applied to PEFT to
overcome catastrophic forgetting. Deriving from the Bayesian
transfer learning framework, we show that it is viable to
regularize the PEFT to preserve the pre-training knowledge
as long as the parameter shift of the fine-tuned layers can
be expressed in a differentiable manner. Utilizing established
Laplace approximation techniques including diagonal [21],
[25] and Kronecker-factored [26], [27] approximations of the
Hessian, we conduct a series of experiments on language mod-
eling and speech synthesis tasks with the low-rank adaptation
(LoRA) [15] to demonstrate the effectiveness and compare the
performance of different methods. Specifically, we start from
a study on text classification and causal language modeling
tasks, the quantitative nature of which allows both rigorous
comparison of techniques and comparison with existing liter-
ature. We then verify our findings on our target task of speaker
adaptation of speech synthesis, where the results are typically
more subjective and more onerous to generate. Our results
demonstrate that catastrophic forgetting can be overcome by
such methods without degrading the fine-tuning performance,
and the Kronecker-factored approximations generate a better
preservation of the pre-training knowledge than the diagonal
ones. Audio samples and source code are available1.

II. RELATED WORK

A. Laplace Approximation

The Laplace approximation [20] is an established tech-
nique in statistics and machine learning to approximate a
complex posterior distribution with a Gaussian distribution.
This is achieved by identifying the mode of the posterior
distribution, which is the maximum a posteriori estimate,
and then approximating the distribution around this mode
using a second-order Taylor expansion. Two popular kinds of
Laplace approximation are the diagonal approximation [21],
[25], which only considers the variance of each parameter
itself and ignores the interactions between parameters, and
the Kronecker-factored approximation [22], [27] that also
takes the covariance between parameters within each layer
into account. Thanks to the additional information on the
off-diagonal elements of the Hessian, the Kronecker-factored
approximation has been shown to be more accurate than the
diagonal approximation in capturing the loss landscape [26].

The Laplace approximation has been widely applied in neu-
ral network optimization (natural gradient descent) [22], [23],
[27], [28], improving calibration of neural networks (predictive
uncertainty estimation) [24], [29]–[31], and overcoming catas-
trophic forgetting in transfer and continual learning [21], [26],
[32]. In this work, we focus on its application in mitigating
catastrophic forgetting in the PEFT setting.

B. Parameter-Efficient Fine-Tuning

There exists a variety of PEFT techniques taking dif-
ferent approaches to adding new trainable components to,

1https://github.com/idiap/bayesian-peft

or modifying existing parameters of the pre-trained model.
Representative PEFT techniques include

1) inserting serial or parallel adapters with a bottleneck
structure to the model [12], [33], [34],

2) prepending trainable tokens to the input and hidden
states of the transformer block [13], [35],

3) fine-tuning the bias terms inside the model only [14],
4) optimizing the low-rank approximation of the change of

weights [15], [36]–[38], and
5) the combination of the above methods [34], [39].

C. Continual Learning

Continual learning aims to enable the model to learn from
non-stationary streams of data. [40] categorizes continual
learning into three types: task-, domain-, and class-incremental
learning. In the context of the adaptation of TTS models, we
are interested in the scenario where the pre-trained model is
fine-tuned to solve the same task as the pre-training one using
data from different domains. This is an example of the domain-
incremental type. Despite close ties with continual learning,
the scenario concerned aligns better with transfer learning
and domain adaptation. Further constraints that should be
considered include that not all pre-training data are accessible
and that the pre-training process cannot be replayed. All
such constraints limit the usage of techniques designed for
task- and class-incremental learning, such as Learning without
Forgetting [41] and Synaptic Intelligence [42].

There have been attempts to utilize PEFT techniques,
mainly the low-rank adaptation (LoRA), in the continual
learning setting. C-LoRA [43] leverages a self-regularization
mechanism with LoRA to prevent catastrophic forgetting in
continual customization of text-to-image models; O-LoRA
[44] continually learns tasks in different low-rank subspaces
that are kept orthogonal to each other to minimize interference.
For general fine-tuning, [45] proposes to regularize the LoRA
weights with Elastic Weight Consolidation [21] when fine-
tuning language models on question-answering tasks while
preserving their general inference abilities.

III. BAYESIAN TRANSFER LEARNING

A. Framework

The optimization of neural networks can be interpreted as
performing a maximum a posteriori (MAP) estimation of the
network parameters θ given the training data. In the transfer
learning setting, the model has been pre-trained on a task A
using data DA, and is then fine-tuned on a downstream task
B using data DB. The overall objective is to find the optimal
parameters on task B while preserving the prior knowledge
of the pre-trained model on task A. The posterior to be
maximized in the MAP estimation can be written as:

p(θ|DA,DB) =
p(DB|θ,DA)p(θ|DA)

p(DB|DA)

=
p(DB|θ)p(θ|DA)

p(DB)

(1)

https://github.com/idiap/bayesian-peft
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where DB is assumed to be independent of DA. Taking a
logarithm of the posterior, the MAP objective is therefore:

θ∗ = arg max
θ

log p(θ|DA,DB)

= arg max
θ

[log p(DB|θ) + log p(θ|DA)]
(2)

The first term p(DB|θ) is the likelihood of the data DB
given the parameters θ, which can be expressed as the training
loss function on task B, denoted by LB(θ). The second
term p(θ|DA) is the posterior of the parameters given the
pre-training data DA. If training the network from scratch,
i.e., assuming DA and DB to be one dataset D, this term
is usually approximated by a zero-mean isotropic Gaussian
distribution, i.e., p(θ|D) = N (θ|0, σ2I), corresponding to the
L2 regularization. However, for transfer learning, this posterior
must encompass the prior knowledge of the pre-trained model
to reflect which parameters are important for task A. Despite
the true posterior being intractable, log p(θ|DA) can be defined
as a function f(θ) and approximated around the optimum point
f(θ0) [20], where θ0 is the pre-trained values and∇f(θ0) = 0.
Performing a second-order Taylor expansion on f(θ) around
θ0 gives:

log p(θ|DA) ≈ f(θ0) +
1

2
(θ − θ0)>∇2f(θ0)(θ − θ0)

= f(θ0) +
1

2
(θ − θ0)>H(θ − θ0)

(3)

where H is the Hessian matrix of f(θ) at θ0. The second
term suggests that the posterior of the parameters on the pre-
training data can be approximated by a Gaussian distribution
with mean θ0 and covariance H−1. Note that the negation of
the expected value of the Hessian over the data distribution is
the Fisher information matrix (FIM) F, i.e., F = −EDA [H].
Following Equation 2, the training objective becomes:

θ∗ = arg min
θ

[LB(θ)− 1

2
(θ − θ0)>H(θ − θ0)] (4)

Finally, the loss function that we minimize during fine-
tuning can be written as:

L(θ) = LB(θ) + λ(θ − θ0)>F(θ − θ0) (5)

where λ is the regularization strength that determines how
much prior knowledge should be preserved during fine-tuning.

B. Diagonal Approximation of the Hessian

Modern neural networks typically have millions to billions
of parameters, thus the Hessian, being at least terabytes, is
intractable to compute and store. One practical approximation
of the Hessian is the diagonal of the Fisher information
matrix, i.e., the expected square of the gradients over the data
distribution, known as Elastic Weight Consolidation (EWC)
[21]. The loss function of EWC is:

LEWC(θ) = LB(θ) + λFEWC(θ − θ0)2 (6)

where FEWC is the vectorized expected square of the gradi-
ents over the distribution of DA.

To estimate FEWC , a small subset of the pre-training data
DA is sampled and used to compute the gradients of the

training loss function LA(θ) on task A. The final FEWC is
then the average of the square gradients over the sampled data.

A simplified version of EWC, named L2-SP [25], assigns
equal importance to all parameters, which is equivalent to
assuming that the Fisher information matrix is an identity
matrix. The loss function of L2-SP is:

LL2−SP (θ) = LB(θ) + λ(θ − θ0)2 (7)

L2-SP can be regarded as an extension of the L2 regulariza-
tion: instead of zero, it limits the parameters to be close to the
pre-trained values during fine-tuning by assigning a Gaussian
prior N (θ0, σ

2I). Despite being overly simplified, L2-SP
proves to be effective in preventing catastrophic forgetting in
transfer learning [25], and is particularly useful when the pre-
training data are unavailable since no estimation of the FIM
is required.

C. Kronecker-Factored Approximation of the Hessian

While first-order approximations such as EWC and L2-
SP are simple and efficient, they are not accurate enough
to capture the complete loss landscape since they ignore the
off-diagonal elements of the Hessian, i.e., the interactions
between parameters. To address this issue, recent advances
in second-order optimization [22], [23] utilize block-diagonal
approximations of the Hessian: the diagonal blocks of the
Hessian, corresponding to the interactions between parameters
within a single layer, can be approximated as a Kronecker
product of two much smaller matrices. This approximation
is known as the Kronecker-factored approximate curvature,
usually abbreviated as KFAC.

Following [22], we denote the input, the weight, the pre-
activations, the non-linear function, and the output of the l-th
layer as al−1, Wl, sl, φl and al, respectively. For simplic-
ity, we only consider linear layers with no bias term, thus
sl = Wlal−1 and al = φl(sl). We further define gl = ∂L

∂sl
as

the gradient of the loss function L with respect to the pre-
activations sl. The FIM with respect to the weights Wl can be
written as:

FlKFAC =
∂2L

∂2vec(Wl)
= Al ⊗Gl (8)

where vec(Wl) is the vectorized form of Wl, Al = al−1a
>
l−1,

Gl = glg
>
l and ⊗ is the Kronecker product operator. To

calculate the expectation, the two factors are assumed to be
independent, thus the expected Kronecker product is approx-
imated as the Kronecker product of the expected factors.
Thanks to a property of the Kronecker product, the quadratic
penalty term for each layer can be efficiently calculated:

(Al ⊗Gl)vec(∆Wl) = vec(Gl∆WlAl) (9)

where ∆Wl = Wl −W 0
l is the parameter shift from the pre-

trained weight W 0
l of the l-th layer. The overall loss function

of KFAC is:

LKFAC(θ) =LB(θ)+

λ

L∑
l=1

vec(∆Wl) ∗ vec(Gl∆WlAl)
(10)
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Despite KFAC’s assumption of independence between lay-
ers, the most important in-layer parameter interactions are
taken into account. It has been demonstrated that KFAC leads
to better prior knowledge preservation in continual learning
than using a diagonal approximation of the Hessian [26].

Improved versions of KFAC include the eigenvalue cor-
rected KFAC (EKFAC) [27]. EKFAC computes a diagonal
variance in a Kronecker-factored eigenbasis by performing
eigendecomposition on the Kronecker factors to correct the
potentially inexact rescaling of the gradients of KFAC. For
each layer:

FlEKFAC = (UAl
SAl

U>Al
)⊗ (UGl

SGl
U>Gl

)

= (UAl
⊗ UGl

)(SAl
⊗ SGl

)(UAl
⊗ UGl

)>
(11)

where UAl
and UGl

are the eigenvectors of Al and Gl,
respectively, and SAl

and SGl
are the corresponding eigenval-

ues. For efficiency, the eigendecomposition and the correction
are conducted on the expectation of the Kronecker factors,
i.e., the outcome of KFAC, which only requires a one-time
computation. Given the more accurate approximation of the
Hessian, we would expect EKFAC to be more effective in
overcoming catastrophic forgetting in transfer learning than
KFAC.

IV. BAYESIAN PEFT
In this work, we aim to show that Bayesian transfer learning

can provide a unifying framework for a variety of PEFT
techniques. Such an approach not only retains the parameter
efficiency of PEFT but also brings a principled approach to
regularization, in turn overcoming catastrophic forgetting.

Looking back on Eq. 5, it is not difficult to see that, as
long as the parameter shift ∆Wl of the fine-tuned layers can
be expressed in a differentiable way, the Bayesian transfer
learning framework can be applied to any PEFT technique in
the form of modification to the inherent weight of the pre-
trained model. The loss function of Bayesian transfer learning
with PEFT is therefore:

LPEFT (θ) =LB(θ)+

λ

L∑
l=1

vec(∆Wl)
>Flvec(∆Wl)

(12)

The most representative PEFT technique that fits this re-
quirement is the low-rank adaptation (LoRA) family. LoRA
[15] aims to optimize the low-rank approximation of the
change of the original weight matrices based on the hypothesis
that the change of weights during fine-tuning has a low
intrinsic rank. It is formulated as adding the matrix product
of two low-rank matrices to the original weight matrix, i.e.,
Wl = W 0

l + γAlB
>
l , where W 0

l ∈ Rdo×di is the pre-
trained weight matrix, γ is a scaling factor, Al ∈ Rdo×r
and Bl ∈ Rdi×r are two low-rank matrices. Therefore, the
weight modification (delta weight) of each layer is simply
∆Wl = γAlB

>
l . Following Eq. 12, the loss function of

Bayesian transfer learning with LoRA is:

LLoRA(θ) =LB(θ)+

λ

L∑
l=1

vec(γAlB
>
l )>Flvec(γAlB

>
l )

(13)

Apart from the original LoRA, there exist several variants
of LoRA including AdaLoRA [46], which adaptively assigns
the rank to the LoRA matrices in each layer, FedPara (LoHa)
[36], [38], of which the delta weight is the Hadamard product
of two LoRA delta weights, and KronA (LoKr) [37], [38],
which generates the delta weight by the Kronecker product
of two low-rank matrices. Thanks to the explicit formulation
of the delta weight, the LoRA family fits any aforementioned
approximation of the Hessian in the Bayesian transfer learning
framework. We also note that other PEFT methods such as
(IA)3 [47] and Orthogonal Butterfly [48], that do not explicitly
calculate the delta weight, also fit in the framework, although
regularizing these methods may require extra computation
and memory. Given that the original LoRA has achieved
sufficiently good performance, e.g., it matches the full fine-
tuning performance on the GLUE benchmark [15], and other
LoRA variants only offer insubstantial improvements, we
only employ the original LoRA and focus on the study of
regularization methods in our experiments.

V. EXPERIMENTS: LANGUAGE MODELING

A. Tasks

We first apply our methods to fine-tuning pre-trained lan-
guage models with LoRA on two sets of language modeling
tasks: text classification and causal language modeling. The
reason for this choice of task is twofold: The first is that
language models can be evaluated quantitatively; a clear metric
is associated with each task. The second is that it allows
objective comparison with the wider literature.

1) Text Classification: We select three sentence-pair classi-
fication tasks and one single-sentence classification task from
the GLUE benchmark [49]. The sentence-pair tasks are: MNLI
[50], a natural language inference task of predicting whether
a premise entails, contradicts or is neutral to a hypothesis,
QQP [51], a paraphrase detection task of predicting whether a
pair of sentences are semantically equivalent, and QNLI [52],
a question answering task of predicting whether a sentence
answers a question. The single-sentence task is SST-2 [53], a
sentiment analysis task of predicting whether a sentence has
positive or negative sentiment. For all tasks, the fine-tuning
performance is reflected by the accuracy on the validation set.
The number of training examples in the four selected datasets
are MNLI: 393k, QQP: 363k, QNLI: 105k, and SST-2: 67k.

2) Causal Language Modeling: We experiment on the two
subsets, WikiText-2 and WikiText-103, of the WikiText dataset
[54], a collection of over 100 million tokens extracted from
the set of verified good and featured articles on Wikipedia.
The number of tokens in WikiText-2 and WikiText-103 are
2.1M and 103M, respectively. The fine-tuning performance
is reflected by the perplexity on the validation set, which is
shared by the two subsets.

B. Model: OPT

We select the Open Pre-trained Transformers (OPTs) [55]
with 350M and 1.3B parameters as the pre-trained models
for our experiments. The OPTs are a suite of decoder-only
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TABLE I
MAIN RESULTS OF LANGUAGE MODELING EXPERIMENTS.

Model Method λ PT PPL
Classification (ACC↑ / PPL↓) CLM (PPL↓ / PPL↓)

MNLI QQP QNLI SST-2 WikiText-2 WikiText-103

OPT-350M

None -

15.40

83.33% / 523.7 88.97% / 1234 89.79% / 51.11 93.81% / 19.05 13.48 / 20.35 15.21 / 31.74
L2-SP 10−3 83.35% / 33.65 88.28% / 19.91 89.84% / 23.69 93.72% / 16.66 13.62 / 18.21 15.95 / 20.61
EWC 104 83.67% / 18.67 88.73% / 15.94 89.88% / 16.91 93.78% / 15.60 13.55 / 17.17 15.80 / 16.87
KFAC 106 84.21% / 17.24 89.28% / 15.80 90.13% / 16.41 93.76% / 15.56 13.59 / 16.22 15.60 / 16.08
EKFAC 106 84.21% / 17.31 89.33% / 15.82 90.11% / 16.36 93.85% / 15.56 13.59 / 16.22 15.60 / 16.09

OPT-1.3B

None -

11.18

87.70% / 23.55 90.97% / 16.28 92.59% / 13.45 95.94% / 11.87 9.81 / 13.08 10.53 / 24.32
L2-SP 10−4 87.77% / 15.66 90.32% / 15.94 92.51% / 13.33 96.10% / 11.78 9.82 / 12.72 10.71 / 15.93
EWC 104 87.78% / 11.72 90.62% / 11.32 92.41% / 11.40 96.08% / 11.23 9.81 / 11.89 10.70 / 13.45
KFAC 105 87.76% / 11.45 90.64% / 11.25 92.28% / 11.43 96.17% / 11.20 9.84 / 11.73 10.70 / 11.55
EKFAC 105 87.69% / 11.45 90.67% / 11.25 92.30% / 11.40 96.17% / 11.20 9.84 / 11.72 10.70 / 11.51

* ACC: accuracy, PPL: perplexity, PT PPL: perplexity of pre-trained model on the sampled test set from the Pile, CLM: causal language modeling.

transformers ranging from 125M to 175B parameters pre-
trained on a series of large open-access corpora, including a
subset of the Pile [56]. Our choice of model sizes is based on
those of state-of-the-art pre-trained TTS models ranging from
100M to 1B parameters [9], [57], [58], so that the findings
will hopefully provide useful guidance for our target task.

For text classification, a classification head is added on the
last token the model generates and trained along with LoRA.
This is purely for the simplicity of the implementation, though
it could also be done by instruction tuning. For causal language
modeling, the model structure remains unchanged.

C. Experimental Details

Implementation. We base our code on the text classification
and the causal language modeling examples of the Hugging
Face Transformers library [59]. The Bayesian transfer learning
techniques are implemented with the Hugging Face Parameter-
Efficient Fine-Tuning (PEFT) library [60].
Hessian estimation. The Hessian estimates are computed on
the pre-training task, i.e., the causal language modeling task,
and are shared by all fine-tuning tasks. We randomly sample
20,000 examples from the subset of the Pile used to pre-train
the OPTs to compute the Hessian estimates for EWC, KFAC,
and EKFAC, and another 2,000 examples for the evaluation
of the pre-training knowledge preservation.
Training and evaluation. All models are trained using the
Adam optimizer [61] on each dataset for 3 epochs without
weight decay. The learning rate is set to 5 × 10−4 for the
350M model and 2 × 10−4 for the 1.3B model, both with
a linear decay schedule. For the text classification tasks, the
batch size for all models is set to 32, while for the causal
language modeling tasks, the batch size is set to 16 for the
350M model and 8 for the 1.3B model with a context window
of 1024 tokens. LoRA is applied to the linear modules that
produce the query and value in every self-attention module.
The rank and the scaling factor of LoRA are set to 16 and
2 respectively for all models, resulting in the percentage
of trainable parameters of the 350M and 1.3B model being
0.473% and 0.239%, respectively. To evaluate the fine-tuning
performance, we calculate the accuracy or the perplexity on
the validation set for the text classification tasks and the

causal language modeling tasks respectively. For MNLI, the
“matched” validation set is used. For the evaluation of the pre-
training knowledge preservation, we calculate the perplexity
on the sampled test set of the Pile. We run a coarse hyper-
parameter sweep on the regularization strength λ with a step
size of 10 times for each method on each task. The optimal
λ is selected balancing the fine-tuning performance and the
preservation of pre-training knowledge, typically the point
where fine-tuning performance is going to drop greatly if
the regularization further strengthens. All experiments were
conducted on machines equipped with one NVIDIA RTX3090.
The results are averaged over 5 runs with different random
seeds.

D. Results and Analyses

The main results are shown in Table I. Note that the method
“None” refers to LoRA without regularization. We elaborate
our findings from several perspectives.
Catastrophic forgetting. Compared to the pre-trained mod-
els, all models fine-tuned without regularization demonstrated
significant forgetting of the pre-training knowledge, e.g., the
perplexity on the pre-training data increased from 15.40 to
523.7 when fine-tuned on MNLI. Comparing different tasks,
it is obvious that the forgetting is more severe when the model
is fine-tuned on more data. In terms of model sizes, we notice
that larger models tend to forget the pre-training knowledge
less than smaller models, which suggests larger models have
better resistance to catastrophic forgetting.
Comparison of regularization methods. All regularization
methods significantly reduced the loss of pre-training knowl-
edge. Among them, L2-SP underperforms other methods by
a large margin, which is reasonable given its over-simplified
assumption of diagonal Hessian with equal importance on all
parameters. In general, the Kronecker-based methods outper-
form EWC especially when there is more fine-tuning data,
however, the difference is less significant for larger models.
This demonstrates that knowledge preservation does benefit
from more accurate Hessian estimations. Within the same
family, KFAC and EKFAC perform similarly, which can be
explained by the fact that the improvement by the one-time
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eigenvalue correction is small when the Hessian is already
well approximated by KFAC.

TABLE II
COMPARISON OF PERFORMANCE WITH VARYING REGULARIZATION

STRENGTH OF OPT-350M ON MNLI.

Method λ Accuracy↑ Perplexity↓

Pre-trained - - 15.40

None - 83.33% 523.74

L2-SP
10−4 84.52% 52.51
10−3 83.35% 33.65
10−2 81.51% 34.23

EWC
103 84.11% 26.84
104 83.67% 18.67
105 82.03% 16.88

KFAC
105 84.32% 19.38
106 84.21% 17.24
107 83.12% 17.10

EKFAC
105 84.16% 19.51
106 84.21% 17.31
107 83.14% 17.18

Regularization strength. We provide an example of the
regularization strength λ sweep for the 350M model fine-tuned
on MNLI, which is shown in Table II. As λ increases, the
parameters are more constrained to the pre-trained values, thus
the fine-tuning performance drops. We select the optimal λ as
the one that achieves a fine-tuning performance better than
that of using the original LoRA and has the lowest perplexity
on the pre-training data. It can be seen that, compared to
KFAC-based methods, the pre-training knowledge preservation
of EWC is worse when achieving the same level of fine-
tuning performance. We also observe that the fine-tuning
benefits from the regularization when λ is small, which can
be attributed to the fact that the Hessian estimation introduces
a Gaussian prior that better describes the loss landscape than
assuming an isotropic Gaussian prior at zero. This suggests
that Bayesian transfer learning can lead to better fine-tuning
performance as well as overcoming catastrophic forgetting.

TABLE III
COMPARISON OF HESSIAN ESTIMATES WITH VARYING SAMPLES.

Model Samples
MNLI WikiText-103

EWC KFAC EWC KFAC

OPT-350M

20000 83.67% / 18.67 84.21% / 17.24 15.80 / 16.87 15.60 / 16.08
2000 83.66% / 18.77 84.30% / 17.64 15.80 / 16.96 15.57 / 16.22
200 83.71% / 18.50 84.51% / 17.60 15.83 / 16.84 15.47 / 16.79
20 83.59% / 18.63 84.47% / 21.39 15.83 / 16.96 15.37 / 18.50

OPT-1.3B

20000 87.78% / 11.72 87.76% / 11.45 10.70 / 13.45 10.70 / 11.55
2000 87.79% / 11.74 87.70% / 11.46 10.70 / 13.36 10.70 / 11.53
200 87.74% / 11.70 87.76% / 11.54 10.71 / 13.22 10.66 / 11.68
20 87.85% / 11.67 87.71% / 11.94 10.70 / 13.49 10.59 / 12.53

Hessian estimates with varying samples. We further ex-
periment on Hessian estimates with a reduced amount of
pre-training data to investigate the effect of the sample size
on the accuracy of the Hessian estimation. The results are
shown in Table III. We observe that EWC is more robust
to the sample size than KFAC, showing no degradation in
pre-training knowledge preservation with Hessian estimates

on fewer samples, whereas KFAC demonstrates significant
degradation in perplexity on the pre-training data when the
sample size is reduced to 20. This can also be corroborated by
the increasing fine-tuning performance of KFAC when sample
sizes decrease, which signifies less effective regularization.
However, for other larger sample sizes, KFAC always out-
performs EWC. Overall, the results suggest that KFAC, while
being superior to EWC, requires more data to be estimated
accurately than EWC, which is reasonable given its additional
off-diagonal elements in the Hessian estimation.
Computational cost and memory usage. We compare the
computational cost and memory usage of each regularization
method in Table IV. Note that the calculation is based on a
linear layer with weight Wl ∈ Rdo×di using a single sample.
The computational cost has two sources: the estimation stage,
where a small subset of the pre-training data is sampled to
compute the FIM, and the training stage, where the regular-
ization loss is computed at each iteration.

TABLE IV
COMPARISON OF COMPUTATIONAL COST AND MEMORY USAGE.

Method
Computation

Memory
Estimation Regularization

L2-SP 0 O(dodi) 0
EWC O(dodi) O(dodi) O(dido)
KFAC / EKFAC O(d2o + d2i ) O(dodi(do + di)) O(d2o + d2i )

VI. EXPERIMENTS: SPEECH SYNTHESIS

A. Tasks

Having verified the efficacy of our methods quantitatively
and objectively on language modeling tasks, we further apply
them to our target application: the fine-tuning of speech
synthesis models. Such models are typically more onerous and
subjective to evaluate. Our strategy is to demonstrate that the
results from the objective evaluation also apply to the more
specific target application.

Specifically, we fine-tune a pre-trained zero-shot speech
synthesizer with LoRA to adapt it to an unseen speaker. Next,
we evaluate the speaker similarity on both the target speaker
and other out-of-domain (OOD) speakers, of which the former
represents the fine-tuning performance and the latter indicates
how well the model preserves the pre-training knowledge. To
amplify the effect of catastrophic forgetting, the target speaker
and other OOD speakers should be distinct from the pre-
training data, thus we select speakers with particular accents
for both fine-tuning and evaluation.

We appreciate that the task of evaluating the pre-training
knowledge preservation is perhaps of less practical value
since there is more interest in getting a similar voice to the
target speaker than maintaining the zero-shot performance on
other speakers in such a setting. However, this is a necessary
compromise owing to several reasons. Firstly, the current pub-
licly available state-of-the-art speech synthesis models mainly
target speaker adaptation and are far from being omnipotent,
meaning a good zero-shot performance on other speech char-
acteristics is not guaranteed. Further, both the objective and
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subjective evaluation methods of speaker similarity are well-
established, which is not the case for most of the others.
Finally, the multi-speaker speech data are easy to obtain, while
in other cases the data are not. Despite the limitation, we
believe the results will provide practical guidance not only
for speaker adaptation on this model but also for many other
models and usages where catastrophic forgetting is detrimental
to the model’s inherent capabilities.

B. Model: StyleTTS 2

To proceed with the proposed tasks, we need an open-access
pre-trained TTS model that has good synthesis quality and
zero-shot performance for speaker adaptation. StyleTTS 2 [57]
is a recently proposed end-to-end TTS model that utilizes style
diffusion and adversarial training with a large speech language
model to generate human-level expressive and diverse speech.
It also achieves a remarkable zero-shot performance though
only trained on limited data of 245 hours from the LibriTTS
dataset [62] compared to large-scale models such as VALL-E
[10], which is trained on 60k hours of data. Initial experiments
on zero-shot synthesis show that despite StyleTTS 2 rendering
excellent synthesis quality, the synthesized speech tends to lose
the accent traits of the target speaker, which can be attributed
to the limited training data. Nevertheless, this could be suitable
for our experiments as it makes the improvement brought by
fine-tuning or the degradation of zero-shot performance more
distinguishable.

StyleTTS 2 has a variety of components, many of which
are composed of modules that are not compatible with LoRA
or whose Hessian estimation needs extra calculation, such as
LSTMs and 1D/2D convolutions. However, we found in our
initial experiments that only fine-tuning the linear modules in
StyleTTS 2 already achieves reasonably good performance.
Therefore, for convenience, we only fine-tune the linear
modules in all components that are useful for inference of
StyleTTS 2.

C. Experimental Details

Implementation. Our code is based on the official implemen-
tation of StyleTTS 2 2. The same PEFT library for previous
experiments is used for applying Bayesian methods and LoRA
to the model.
Hessian estimation. We use the official fine-tuning code
to calculate the Hessian estimates, during which all training
losses are enabled to ensure the gradients are properly back-
propagated to all components. Based on the experience from
language modeling experiments, we randomly sample 1,000
utterances from the train-clean-360 subset of the Lib-
riTTS dataset for Hessian estimation to ensure accuracy.
Data. We select p248, a female speaker with an Indian
accent in the VCTK dataset [63] as the target speaker and
randomly split the data into the training set of 356 utterances
(approximately 21 minutes) and the test set of 20 utterances.
For OOD speakers, we select another 9 speakers (5 females,

2https://github.com/yl4579/StyleTTS2

4 males) with different accents from VCTK and randomly
choose 20 utterances of each speaker as test sets.
Training and inference. We adopt the official multi-stage
fine-tuning strategy of 50 epochs described in the code repos-
itory for all models, only reducing the batch size from 8 to 2
due to hardware limits. LoRA is applied to the linear modules
in all components except for the discriminators and the text
aligner which are fully trained and only used during training.
The rank and the scaling factor of LoRA are set to 16 and
2 respectively, resulting in an overall percentage of trainable
parameters of 1.639% (2.26M of 138M). The fine-tuning is
conducted 3 times with different random seeds. For inference,
we synthesize test samples using the test sentences for every
speaker using the fine-tuned model. All experiments were
conducted on the same hardware as previous experiments.
Evaluation. We conduct both objective and subjective evalu-
ations, focusing exclusively on the speaker similarity. Essen-
tially, we use the objective test results as the guideline for our
experiments and corroborate our findings with subjective test
results. More details are provided in the following sections.
Regularization. Based on the fact that there is no substantial
difference in the performance between KFAC and EKFAC, and
L2-SP is far inferior to other methods, we only experiment
with EWC and KFAC in this section. The optimal regulariza-
tion strength λ is selected using the same criterion as in the
language modeling experiments based on the results of the
hyperparameter sweep. It is 103 for both EWC and KFAC.

D. Objective Evaluation

For the objective evaluation, we use an ECAPA-TDNN
[64] speaker verification model 3 to compute the averaged
speaker embedding cosine similarity (SECS) score between
the synthesized speech and the ground truth on the test set
of each speaker. The averaged results of the three runs are
shown in Table V. Note that OOD All/Female/Male are the
aggregated scores of all/female/male OOD speakers, “Full”
and “Linear” stand for full fine-tuning and linear module-
only fine-tuning, respectively. We analyze the results from the
following perspectives.
Fine-tuning performance. After fine-tuning, the SECS score
of the target speaker p248 increases from 0.216 to above
0.6, which manifests that fine-tuning is essential for improv-
ing speaker similarity. Without a doubt, the full fine-tuning
achieves the best performance. The linear module only fine-
tuning (“Linear”) and its LoRA-enabled counterpart (“LoRA”)
perform similarly, however falling behind by a less than 10%
margin. This demonstrates the efficacy of the linear module-
only fine-tuning scheme. Applying EWC and KFAC on top of
LoRA further degrades the performance slightly, with KFAC
performing slightly better than EWC.
Zero-shot performance. The overall scores on all OOD
speakers clearly demonstrate the catastrophic forgetting, drop-
ping from 0.293 for the pre-trained model to 0.159 for the fully
fine-tuned model. Fine-tuning the linear modules only with or
without LoRA slightly mitigates the forgetting, suggesting it
is necessary to apply additional regularization. Under optimal

3https://huggingface.co/speechbrain/spkrec-ecapa-voxceleb

https://github.com/yl4579/StyleTTS2
https://huggingface.co/speechbrain/spkrec-ecapa-voxceleb
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TABLE V
MAIN OBJECTIVE TEST RESULTS OF SPEECH SYNTHESIS EXPERIMENTS.

Speaker Accent
Model

Pre-trained Full Linear LoRA LoRA+EWC LoRA+KFAC

p248 (f, target) Indian 0.216 0.695 0.652 0.654 0.633 0.648

OOD All - 0.293 0.159 0.204 0.203 0.224 0.280
OOD Female - 0.325 0.184 0.226 0.227 0.247 0.291
OOD Male - 0.254 0.127 0.175 0.174 0.196 0.267

p225 (f) English 0.318 0.167 0.241 0.252 0.296 0.352
p234 (f) Scottish 0.385 0.221 0.257 0.240 0.274 0.297
p261 (f) Northern Irish 0.448 0.206 0.288 0.281 0.323 0.374
p294 (f) American 0.267 0.131 0.173 0.181 0.166 0.241
p335 (f) New Zealand 0.205 0.195 0.171 0.179 0.176 0.188

p245 (m) Irish 0.324 0.143 0.189 0.209 0.256 0.319
p302 (m) Canadian 0.262 0.109 0.169 0.170 0.219 0.308
p326 (m) Australian 0.165 0.132 0.112 0.105 0.082 0.164
p347 (m) South African 0.262 0.123 0.232 0.210 0.228 0.276

* A suffix (m/f) is added to the speaker name to indicate the gender. Speakers in bold are selected for subjective evaluation.

λ settings, KFAC (0.280) performs substantially better than
EWC (0.224), only showing a slight degradation compared to
the pre-trained model. The gender breakdown indicates that
the fine-tuned model generally achieves a higher similarity
on females than males, which can be attributed to the female
fine-tuning data. This is confirmed by our test listening that
the male speech synthesized by models without regularization
severely deteriorates and resembles female speech more. In the
speaker breakdown, despite the pre-trained model performing
well on some speakers, the fine-tuning degrades similarities
on all OOD speakers. One of the reasons for this could be the
distinction between the target speaker and the OOD speakers
in terms of the accent and the timbre. Moreover, the similarity
drops more on speakers that previously had high similarity
before fine-tuning. However, in any case, KFAC successfully
preserves the zero-shot performance of the model, exceeding
EWC by a large margin.

TABLE VI
COMPARISON OF EWC AND KFAC WITH VARYING REGULARIZATION

STRENGTH.

λ
EWC KFAC

Target OOD Target OOD

102 0.641 0.213 0.647 0.261
103 0.633 0.224 0.648 0.280
104 0.575 0.270 0.593 0.283
105 0.379 0.271 0.491 0.271

Regularization strength. We provide the λ sweep results in
Table VI. It can be seen that under all λ settings, KFAC al-
ways achieves better fine-tuning performance and better zero-
shot performance preservation than EWC. When matching a
good similarity score above 0.6 on the target, EWC shows a
significant degradation on OOD speakers. Furthermore, as λ
increases, EWC’s fine-tuning performance drops faster than
KFAC and its zero-shot performance never surpasses that of
KFAC. Overall, the results suggest that KFAC helps maintain
the zero-shot synthesis ability of the pre-trained model while

achieving good fine-tuning performance, whereas EWC suffers
from a significant loss of fine-tuning performance when pre-
serving the pre-training knowledge. This is consistent with the
results of language modeling experiments on the smaller 350M
model, however here the phenomenon is more pronounced.

E. Subjective Evaluation

Sample selection. Having verified the efficacy with objective
tests, we further conduct a subjective evaluation to corroborate
our findings. One of the concerns is that the synthesized
samples of OOD speakers usually result in a much lower
perceptual similarity than those of the target speaker, making
it difficult to distinguish the performance of low-performing
models. In this regard, we select two OOD speakers that
have the highest SECS scores and the most difference among
models in each gender for the listening test, which are p225,
p261, p245, and p302. 10 samples of the target speaker and 5
samples of each OOD speaker are randomly selected, totaling
10 female samples and 10 male samples of the OOD speakers
for each model. We also add a ground truth (GT) group for
comparison.
Implementation. We hired 20 native English speakers from
the United Kingdom on the Prolific 4 crowd-sourcing platform
to rate the speaker similarity between the synthesized speech
and the reference on a 5-point scale (5: completely same
speaker, 4: mostly similar, 3: equally similar and dissimilar,
2: mostly dissimilar, 1: completely different speaker), using a
modified Degradation Category Rating (DCR) method based
on the P.808 toolkit [65]. The reference is a random recording
of the speaker with spoken content different from that of the
test sample and is bound to each test sample. The averaged
result is often referred to as the Similarity Mean Opinion Score
(SMOS).
Results and analyses. The results are shown in Table
VII. In general, the subjective test results corroborated our
findings from objective tests, hence we mainly comment on

4https://www.prolific.com

https://www.prolific.com
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TABLE VII
SUBJECTIVE TEST RESULTS WITH 95% CONFIDENCE INTERVAL.

Model Target OOD All OOD Female OOD Male

GT 4.46 ± 0.11 4.59 ± 0.07 4.65 ± 0.10 4.52 ± 0.11

Pre-trained 1.90 ± 0.15 2.22 ± 0.13 2.36 ± 0.20 2.08 ± 0.17

Linear 4.06 ± 0.16 1.50 ± 0.10 1.83 ± 0.17 1.18 ± 0.07
LoRA 3.86 ± 0.16 1.48 ± 0.09 1.83 ± 0.17 1.13 ± 0.06
LoRA+EWC 3.60 ± 0.14 1.51 ± 0.10 1.77 ± 0.17 1.26 ± 0.09
LoRA+KFAC 3.81 ± 0.16 2.08 ± 0.13 2.31 ± 0.20 1.85 ± 0.16

the discrepancies between the two tests. For the target speaker,
fine-tuning linear modules (“Linear”) achieves an SMOS of
4.06, which is a significant improvement from the pre-trained
model of 1.90 and is considerably good given the ground
truth of 4.46. Different from the objective test results, the
LoRA-only model shows a disadvantage of 0.20 compared
to “Linear”, meaning fine-tuning a low-rank representation
does degrade the fine-tuning performance for this model. The
small difference between EWC and KFAC shown by SECS
scores is actually perceivable, indicated by a difference of
0.21 in SMOS. In terms of zero-shot performance, EWC’s
preservation effect is not reflected on SMOS considering all
OOD speakers, which is in contrast with KFAC. The gender
breakdown shows a slight degradation on male OOD speakers
for the LoRA with KFAC model, suggesting KFAC did not
perfectly preserve the zero-shot performance of the pre-trained
model as the SECS scores showed.

VII. CONCLUSIONS

In this work, we explored applying Bayesian learning
techniques to parameter-efficient fine-tuning to overcome
catastrophic forgetting. We started from the derivation of
the Bayesian transfer learning framework and demonstrated
that PEFT could be regularized to preserve the pre-training
knowledge as long as the parameter shift of the fine-tuned
layers could be calculated differentiably. We then conducted
experiments with LoRA on both language modeling and
speech synthesis tasks to verify the efficacy of the proposed
methods and compared the performance of different Laplace
approximations. Our results show that catastrophic forgetting
can be overcome by our methods without degrading the fine-
tuning performance. Furthermore, the results on both tasks
suggest using the Kronecker-factored approximations of the
Hessian produces more effective preservation of the pre-
training knowledge and better fine-tuning performance than
the diagonal approximations, even though the former requires
more data to be estimated accurately.

Current limitations of this work include that it cannot
be applied to PEFT techniques that add new components
to the model such as bottleneck adapters; however this is
not a serious concern given suitable techniques like LoRA
already provide good fine-tuning performance. Further, it is
only feasible when at least part of the pre-training data is
accessible. Finally, the efficacy on larger (TTS) models has
not been verified due to the inaccessibility to these models and
hardware constraints. We would like to evaluate our methods

on larger TTS models when they become publicly available in
the future.

ACKNOWLEDGMENTS

This project received funding under NAST: Neural Ar-
chitectures for Speech Technology, Swiss National Science
Foundation grant 185010.

REFERENCES

[1] J. Yamagishi, T. Kobayashi, Y. Nakano, K. Ogata, and J. Isogai, “Anal-
ysis of speaker adaptation algorithms for hmm-based speech synthesis
and a constrained smaplr adaptation algorithm,” IEEE Transactions on
Audio, Speech, and Language Processing, vol. 17, no. 1, pp. 66–83,
2009.
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