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Abstract

Morphing attacks have diversified significantly over the
past years, with new methods based on generative adver-
sarial networks (GANs) and diffusion models posing sub-
stantial threats to face recognition systems. Recent research
has demonstrated the effectiveness of features extracted
from large vision models pretrained on bonafide data only
(attack-agnostic features) for detecting deep generative im-
ages. Building on this, we investigate the potential of
these image representations for morphing attack detection
(MAD). We develop supervised detectors by training a sim-
ple binary linear SVM on the extracted features and one-
class detectors by modeling the distribution of bonafide fea-
tures with a Gaussian Mixture Model (GMM). Our method
is evaluated across a comprehensive set of attacks and var-
ious scenarios, including generalization to unseen attacks,
different source datasets, and print-scan data. Our results
indicate that attack-agnostic features can effectively de-
tect morphing attacks, outperforming traditional supervised
and one-class detectors from the literature in most scenar-
ios. Additionally, we provide insights into the strengths and
limitations of each considered representation and discuss
potential future research directions to further enhance the
robustness and generalizability of our approach.

1. Introduction
Morphing attacks pose a significant threat to face recog-

nition (FR) systems. These attacks involve creating a com-
posite passport image that merges facial features from two
distinct source identities. This manipulated image is then
submitted to governmental services for passport applica-
tions, a process still allowed in several European countries
where applicants can provide their own photographs. In
successful morphing attacks, both contributing individuals
can then authenticate against the altered image, enabling
them to share a single passport. This undermines the se-
curity and effectiveness of automated border control (ABC)
systems.

Historically, morphing attacks were primarily generated
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Figure 1. We tackle the problem of MAD using pretrained attack-
agnostic extractors. Morph generation: we generate morphs us-
ing a variety of algorithms (landmark-based, GAN-based, and
diffusion-based). Stage 1: the attack-agnostic extractor is a large
vision model trained on real images for a pretext task. We reuse
it to summarize any image by extracting an internal representation
as the feature vector. Stage 2: features are extracted for bonafide
images and face morphs. We train a supervised morphing attack
detector as a linear SVM on top of this features space. We train
a one-class detector by modeling the distribution of bonafide fea-
tures with a GMM, then using the likelihood of incoming samples
as the discriminative score.

using straightforward image processing algorithms. These
methods, typically relying on facial landmark warping,



alignment, and pixel averaging of the source images, are
known as landmark-based morphing techniques [9]. The
vulnerability of existing FR systems to such attacks has
been well documented, prompting extensive research into
morphing attack detection (MAD) methods.

More recently, advances in generative artificial intelli-
gence have introduced fundamentally different morphing
algorithms, particularly those based on GANs [23, 20, 25]
and on diffusion models [5]. Resulting morphs are referred
to as deep morphs, as they leverage deep neural networks
for their creation. Initially less effective than landmark-
based morphs, deep morphs have rapidly improved, and
now also pose a significant concern as they reach real-world
applicability.

Detection of deep morphs has often been approached
by adapting existing methods designed for landmark-based
morphs, such as incorporating deep morphs into the train-
ing datasets for data-driven detectors. We propose to con-
sider the reverse perspective: treating MAD as a deep-
fake detection problem, specifically focusing on detecting
deep synthetic images. With respect to typical deepfake de-
tection, one must then address two additional challenges:
keeping the ability to handle the fundamentally different
nature of landmark-based morphs, and ensuring robustness
against print-scan post-processing—a degradation not typi-
cally considered in deepfake detection literature.

Recent advancements in deepfake detection have demon-
strated the unexpected effectiveness of using internal fea-
tures from large vision models trained exclusively on real
data. These features, which are then attack-agnostic, can
be used in conjunction with simple downstream classifiers
to perform detection. Notably, features extracted using pre-
trained CLIP models, originally trained for image-caption
alignment, have shown promise in previous studies [4, 14].

This study focuses on evaluating the applicability of
attack-agnostic features for MAD. Specifically:

• We develop and evaluate MAD systems using simple
probe classifiers trained on attack-agnostic feature rep-
resentations.

• We develop and evaluate MAD systems based on one-
class modeling of the bona fide class, and detecting
morphs as out-of-distribution samples, an approach
which is enabled by the use of attack-agnostic repre-
sentations.

• We compare our methodology against traditional su-
pervised convolutional neural network (CNN) training,
through extensive experiments involving three differ-
ent datasets and five types of morphing attacks span-
ning three categories: landmark-based, GAN-based,
and diffusion-based. Our evaluation includes a variety
of scenarios, focusing on the generalization capabili-

ties across different families of attacks, across source
datasets, and across domains (digital to print-scan).

Source code for regenerating the morphs and reproduce
the results is released publicly.1

2. Related work
Morphing attack detection systems can be broadly cat-

egorized into single MAD and differential MAD. Single
MAD aims to assess the authenticity of a single image, such
as a registered passport picture, while differential MAD also
exploits probe information, such as the live-captured im-
age of the passport holder at the Automated Border Control
(ABC) gate. We focus here on single MAD which our work
is concerned with.

MAD systems can be categorized into those using hand-
crafted features and those using deep features [21]. Hand-
crafted features typically rely on texture cues (e.g. Local
Binary Patterns (LBPs)) or image forensic cues (e.g. fre-
quency content, Photo Response Non-Uniformity (PRNU)).
Deep features, on the other hand, are learned in a data-
driven manner by training a neural network (usually a CNN)
on examples of bonafide and morphed images.

A significant portion of research has focused on
landmark-based morphs, with somewhat more limited at-
tention given to GAN-based morphs and almost none to the
more recent diffusion-based morphs, such as those intro-
duced in [5]. Common benchmark datasets, such as the
NIST FATE MORPH [1] and the SOTAMD dataset [19],
include only a single type of deep morph (GAN-based) or
none at all. Similarly, the largest available dataset, SMDD
[6], based on synthetic identities, includes only a single
landmark-based morphing attack. In practice, handcrafted
features developed for landmark-based MAD are not partic-
ularly effective for deep morphs, as demonstrated in [22].
The effectiveness of deep features is strongly dependent on
the training data, and generalization from a training dataset
containing only landmark-based morphs to one containing
deep morphs is not guaranteed, as observed in [5].

Notable exceptions include two works that approach
MAD as an anomaly detection problem. Both design an
image-reconstruction network that aims to degrade then
reconstruct bonafide input images. This process is done
through an autoencoder in [8], and by a noise-denoise pro-
cess in [10] using diffusion models. They then observe
that the reconstruction error differs between bonafide im-
ages and morphs, although it is lower for morphs in [8] but
higher in [10]. The reconstruction error is thus discrimina-
tive for detection purposes. One main advantage of such ap-
proaches is that they are one-class, relying only on bonafide
data and not on specific attacks in the training set, making

1https : / / gitlab . idiap . ch / bob / bob . paper .
ijcb2024_agnostic_features_mad

https://gitlab.idiap.ch/bob/bob.paper.ijcb2024_agnostic_features_mad
https://gitlab.idiap.ch/bob/bob.paper.ijcb2024_agnostic_features_mad


them less prone to bias towards a specific family of morph-
ing methods. However, evaluation on diffusion morphs, for
example, is not provided in these works.

Finally, [3] demonstrates that generic pre-existing GAN-
image detectors are quite effective out-of-the-box for de-
tecting GAN-based morphs in the digital domain. This sug-
gests potential in leveraging methodologies from deep syn-
thetic image detection research and applying them to MAD.
The two main additional challenges are handling landmark-
based morphs, which are of a different nature, and deal-
ing with the print-scan domain. Recent progress in syn-
thetic image detection, as shown in [14] and [4], indicates
that internal representations from existing large vision mod-
els, pretrained on auxiliary tasks and real data only (hence,
attack-agnostic), can be surprisingly effective for synthetic
image detection by training a simple downstream classi-
fier on top of extracted features. Similarly to one-class ap-
proaches, this method is less prone to overspecialize for a
family of morphing algorithms, given that the selected rep-
resentations are based only on bonafide data.

The core goal of our work is to carefully examine the
applicability of attack-agnostic features in the context of
MAD, particularly with the inclusion of landmark-based
morphs and print-scan data.

3. Methodology

3.1. Morph Datasets

We create morphs using three distinct source datasets:
the FRLL dataset [2], the FRGC dataset [17], and the FFHQ
dataset [11]. The FRLL and FRGC datasets are extensively
utilized in prior research on face morphing due to their
constrained facial images (frontal pose, neutral expression)
with consistent backgrounds and illumination. These char-
acteristics render them suitable for morph generation. In
contrast, the FFHQ dataset, collected from Flickr, exhibits
greater diversity. We hypothesize that employing a more
diverse source dataset is advantageous for our research ob-
jectives, particularly in studying cross-source dataset gener-
alization and one-class modeling of the bonafide class.

For the FRLL and FRGC datasets, we select identity
pairs for morph creation following previous research works
[13] and [25], respectively. This results in 1,140 pairings for
FRLL and 2,521 pairings for FRGC. For the FFHQ dataset,
we initially select 10,000 images from the original dataset
of 70,000 images, focusing on those with the most frontal
poses, which are then randomly paired to form 5,000 mor-
phing pairs. While this process might yield some unrealistic
morphs (e.g., morphs between different genders), it allows
the creation of a large set of samples containing the relevant
attack artifacts and showcasing high diversity. Hence, this
set remains valuable for training MAD systems.

Using consistent pairings, we generate morphs from

Table 1. Number of samples in each dataset and
split. We indicate the number of attack samples
per morphing algorithm, i.e. the total number of
attack samples used in experiments should be ob-
tained by multiplying the provided value by the
number of considered morphing algorithms.

# bonafide # per attack

Src. dataset Train Test Train Test

FRGC 9228 2304 2014 507
FRLL - 204 - 1140
FFHQ 8000 2000 4000 1000

Table 2. Available image sets. Attacks are grouped into
higher level families indicated in the first row. Most at-
tacks are available in digital format (◦), some of them
have their test set in print-scan format as well (•). The
FRGC-MIPGAN attack is used only for testing purpose
in the print-scan domain (⋆).
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these source datasets employing five different attack al-
gorithms. These include two landmark-based algorithms
(LB-Complete [12] and LB-Combined [13]), two GAN-
based algorithms (SG2-W [11] and SG2-W+ [23]), and one
diffusion-based algorithm (MorDIFF [5]). Examples of the
generated morphs are presented in Figure 2.

For the bonafide sets, we use original images from the
source datasets. For FRLL, we use the only available
204 frontal images, some of which have also been used as
sources for morphing. Due to this low amount of bonafide
images, we restrict the usage of FRLL to test purposes. For
FRGC and FFHQ, we select bonafide images containing
identities never used for morphing, with 11,532 and 10,000
images, respectively. We split both the bonafide sets and
attack sets into training and test sets using an 80-20 ratio,
ensuring that identities are disjoint between the training and
test sets for bonafide images, and that pairs of identities are
disjoint between the training and test sets for the attacks.
The exact number of samples in each dataset is detailed in
Table 1.

Additionally, we create a ”real-world” test dataset by
printing and scanning a subset of images. Specifically, the



Source 1 LB-Complete LB-Combined SG2-W SG2-W+ MorDIFF Source 2

Figure 2. Examples of generated morphs using as source dataset respectively FRGC (first row), FRLL (second row) and FFHQ (third row).
The first and last column show the two real sources for which a morph must be created, and other columns show the results using each
considered morphing algorithm.

bonafide test samples from FRGC, morph test samples cre-
ated using FRGC with the LB-Combined and MorDIFF al-
gorithms, and an additional set of FRGC morphs created
using another unseen algorithm, MIPGAN [25]. This simu-
lates a challenging scenario where we must generalize from
the digital to the print-scan domain, and towards unseen at-
tacks. The morphs are printed at a size of 35mm x 35mm
then rescanned at a resolution of 300 DPI, using a Kyocera
TASKalfa 2554ci (laser printer + scanner). As preprocess-
ing, all images are cropped to 256x256 pixels while ensur-
ing consistent landmark alignement.

Available image sets are summarized in Table 2. For the
experiments, we regroup attacks into higher level families,
respectively landmark-based (LB), GAN-based (GAN), and
diffusion-based (Diff).

3.2. Evaluation Scenarios

We aim to evaluate the performance of MAD systems
in various settings, with a focus on assessing generaliza-
tion capability across unseen attack families (LB, GAN, or
Diff), unseen source datasets, and different domains (digi-
tal to print-scan). Additionally, we seek to evaluate the per-
formance of one-class detectors trained solely on bonafide
data. The following evaluation scenarios are considered:

1. Baseline : the detector is trained and tested on digi-
tal bonafide and morph samples from the same source
dataset (FRGC or FFHQ), with all families of attacks
seen during training.

2. Generalization to unseen attacks : unlike the base-
line, the detector is trained using only a single family

of attacks (LB, GAN, or Diff.) and tested on the other
two families.

3. Generalization to different source datasets : unlike
the baseline, the detector is tested on bonafide and
morph samples from an unseen source dataset, specif-
ically FRLL.

4. Generalization to print-scan data : unlike the base-
line, the detector is tested on print-scanned bonafide
and morph samples. This scenario is evaluated only
using FRGC, for which print-scanned data is available.

5. One-Class Detection : the detector is trained solely
on bonafide samples and then tested on all attacks. For
this setting, we restrict ourselves to a single source
dataset and to the digital domain.

The first four scenarios involve training the detector in a
supervised manner as a binary classifier. In the last scenario,
one-class detectors are achieved by modeling the statistical
distribution of the features of bonafide samples, then using
the likelihood score of incoming samples under the learned
distribution as the discriminative score. For both types of
systems, performance is evaluated by reporting the Detec-
tion Equal Error Rate (D-EER) on the respective test sets.

3.3. Models

We consider two types of detection models. The first
type, which is the focus of our study, involves training a
simple downstream classifier on top of pretrained features
extracted from an attack-agnostic vision model, i.e., a net-
work trained solely on bonafide data for some auxiliary task



(cf. Figure 1). The second type is used for comparison pur-
poses, and consist in fully training a convolutional neural
network directly on image samples, either as a binary clas-
sifier (in the supervised setting) or as an autoencoder (in the
one-class setting).

3.3.1 Probed Attack-Agnostic Models

We consider the following attack-agnostic feature extrac-
tors:

• RN50-IN [16] : this baseline extractor is a ResNet50
network trained for image classification on ImageNet.
We use the output of the penultimate layer before the
image classification layer as the feature representation
of images.

• DINOv2 [15] : this extractor is trained in a self-
supervised manner with the goal of learning general
image representations. It has demonstrated effective-
ness for a broad variety of downstream classification
tasks and serves as a more sophisticated baseline com-
pared to RN50-IN. We specifically use the ‘giant‘ vari-
ant, and use the learned general representation as fea-
ture vector.

• CLIP [18] : this vision-language model is trained to
represent matched image-caption pairs jointly in the
same feature space. Despite being trained for a seem-
ingly unrelated task, previous research [14, 4] has
shown that CLIP-extracted features showcase strong
discriminative power to differentiate between bonafide
and synthetic images. We use the L/14 variant as sug-
gested by [14], and use the output of the vision encoder
as feature vector.

• AIM [7] : this extractor is pretrained for auto-
regressive image modeling, which involves decompos-
ing images into ordered sequences of patches and pre-
dicting subsequent patches using only the context of
previous patches. This auto-regressive objective is the-
oretically equivalent to learning the true underlying
image distribution. Trained on a massive dataset of
12.8 billion images, AIM has the potential to approx-
imate the distribution of ”natural” images. Given that
deep synthetic images typically exhibit salient statisti-
cal differences from bonafide ones [4], we hypothesize
that they might lie outside of the distribution learned
by AIM. We use the 600M variant, and use the pool-
averaged output of the trunk as the feature representa-
tion.

• DNADet [24] : this extractor is originally designed to
improve the accuracy of source attribution for GAN-
generated images. It is pretrained using real images

for a task of patchwise contrastive learning of image
transformations, where images undergo various degra-
dations (e.g., blurring, JPEG compression) and are de-
composed into patches. The model learns to repre-
sent patches subject to the same degradations close to
each other, and patches subject to different degrada-
tions far apart, and additionally has to classify incom-
ing patches based on their applied degradation. Given
the already demonstrated efficacy of this pretraining in
learning salient features to differentiate various GAN
models, DNADet is a strong candidate for synthetic
image detection, particularly as its pretraining data in-
cludes face images, making it also content-specific for
our case. We use the output of the penultimate layer,
right before the fully connected layer used for the clas-
sification, as the feature representation.

For supervised modeling, we train a downstream linear
probe on top of the extracted features, specifically a binary
linear Support Vector Machine (SVM), preceded by a Prin-
cipal Component Analysis (PCA) decomposition achieving
99% of explained variance. This initial projection mitigates
the challenges posed by the high dimensionality of certain
feature spaces.

For one-class modeling, we fit the distribution of
bonafide features using a GMM, also preceded by PCA de-
composition achieving 99% of explained variance. The log-
likelihood of incoming samples under this statistical model
is then used to distinguish between bonafide samples, which
are expected to have high log-likelihood values, and attacks,
which are expected to have low log-likelihood values. To
determine the optimal number of components for the GMM
(ranging from 1 to 256), as well as the type of covariance
matrix (diagonal or spherical), we perform 4-fold cross-
validation on the training set. The validation set includes
attack samples, and the D-EER on the validation set is used
as the selection criterion.

3.3.2 Reference MAD Models

For the supervised detection setting, we use as compara-
tive reference the MixFaceNet architecture, which has been
employed in prior work as a backbone for training MAD
systems. The model is a CNN trained as a binary classifier
directly on image examples. We reproduce the backbone
setup and training process as described in [6], and reuse
their provided code.2 For the one-class setting, we compare
our models to the SPL-MAD model from [8]. The SPL-
MAD model is trained as a convolutional autoencoder on
the Casia-WebFace dataset (bonafide face images). At in-
ference time, the authors observe that the reconstruction er-

2https://github.com/naserdamer/SMDD-Synthetic-
Face - Morphing - Attack - Detection - Development -
dataset

https://github.com/naserdamer/SMDD-Synthetic-Face-Morphing-Attack-Detection-Development-dataset
https://github.com/naserdamer/SMDD-Synthetic-Face-Morphing-Attack-Detection-Development-dataset
https://github.com/naserdamer/SMDD-Synthetic-Face-Morphing-Attack-Detection-Development-dataset


Table 3. Baseline. D-EER (%) on the test split when all attacks
are seen at training time. Bold values indicate setups where probed
attack-agnostic models perform better than the MixFaceNet MAD
reference. Underlined values are the best performing models.

Src dataset FRGC FFHQ
Test on LB GAN DIFF LB GAN DIFF

Model
AIM 0.00 0.00 0.00 0.20 0.05 0.05
CLIP 0.00 0.00 0.13 1.45 0.40 1.65
DNADet 0.00 0.04 0.00 5.70 5.75 6.10
DINOv2 0.00 0.00 0.00 5.50 2.45 3.25
RN50-IN 0.04 0.17 0.00 9.70 7.25 6.35
MixFaceNet * 0.00 0.00 0.00 6.70 5.30 7.05

ror is smaller for morphs than for bonafide images, and thus
can be used as a discriminative score for detection, despite
using only bonafide data at training time. We use the code
and pretrained model provided by the authors3.

4. Results
Baseline performance Table 3 shows results for the base-
line scenario where both training and testing data come
from the same source dataset in the digital domain, and all
attacks are known during training. For attacks from a con-
strained dataset (FRGC), all methods perform well, achiev-
ing nearly perfect separation between bonafide and attack
samples regardless of the attack family. However, with
a more diverse dataset (FFHQ), performance declines for
most methods, and differences become more evident. Here,
our linear probes generally outperform the MixFaceNet
detectors, with AIM and CLIP achieving the best results
across all attack families.

Generalization to unseen attacks Table 4 presents re-
sults where only one attack family is known during training.
For FRGC attacks, AIM features perform best except when
only diffusion attacks are known; in this case, MixFaceNet
is superior for diffusion to landmark-based generalization,
and CLIP is best for diffusion to GAN generalization. The
DNADet probe shows comparable generalization from dif-
fusion to both landmark-based and GAN attacks, though it
performs slightly worse than MixFaceNet overall.

For FFHQ attacks, CLIP probes consistently outperform
AIM probes and MixFaceNet across all generalization sce-
narios. Our linear probing approach also frequently sur-
passes MixFaceNet.

Generalization to difference source datasets Table 5 re-
ports results when the source dataset differs between train-

3https://github.com/meilfang/SPL-MAD

ing and testing, focusing on the FRLL dataset. The ex-
periment highlights in particular the importance of source
dataset diversity for effective generalization. Indeed, de-
tectors trained on FFHQ attacks generally perform better
on FRLL attacks than those trained on FRGC. This trend
holds for both our linear probes and the MixFaceNet detec-
tor, with DINOv2 being a notable exception. Overall, lin-
ear probes typically outperform MixFaceNet. When trained
on FFHQ attacks, AIM and DNADet probes achieve perfect
separation between FRLL morphs and bonafide samples but
perform poorly when trained on FRGC attacks. In this latter
case, CLIP probes provide the most balanced performance
for generalization to unseen datasets across all attack types.

Generalization to print-scan data Table 6 shows results
when detectors trained on digital data are evaluated on print-
scan data. This scenario is challenging because artifacts
left by deep morph generators on generated samples are
likely degraded during the print-scan process. Most de-
tectors, which achieved perfect separation in the baseline
protocol, show significant performance drops on print-scan
data (notably LB-PS and Diff-PS, even though they con-
tain attacks whose digital counterpart has been seen during
training). The MIPGAN-PS attacks are particularly chal-
lenging due to being totally unseen during training. Never-
thesless, our linear probes still generally outperform Mix-
FaceNet, with DINOv2 features being the most effective,
followed by CLIP.

One-class detector Finally, Table 7 presents the perfor-
mance of one-class detectors trained only on bonafide data.
It is important to note that the comparison to SPL-MAD is
not entirely fair, as SPL-MAD is trained on Casia-Webface
data, while our detectors are specifically tuned to the con-
sidered source dataset, providing an advantage. Nonethe-
less, for FRGC attacks, AIM and DNADet probes show
quite strong performance, and significantly better than SPL-
MAD. DNADet probes in particular lead to an impressive
D-EER of under 1% for all considered families of attacks,
even though the detector is never exposed to any attack for
its development. For FFHQ attacks however, the overall
detection performance is unsatisfactory, with CLIP features
proving to be the most effective in this scenario.

4.1. Discussion

The results demonstrate that the considered attack-
agnostic feature representations are highly effective for
morphing attack detection. Training simple probes on these
features consistently outperforms a CNN detector trained
end-to-end on image samples across all generalization sce-
narios. They also lead to improved performance over an
out-of-the-box one-class detector from the recent litera-
ture. However, which representation is the most effective

https://github.com/meilfang/SPL-MAD


Table 4. Unseen attacks generalization. D-EER (%) on the test split when a single family of attacks is seen at
training time. Bold values indicate setups where probed attack-agnostic models perform better than the MixFaceNet
MAD reference. Underlined values are the best performing models.

Train attacks LB GAN Diff

Test attacks LB GAN Diff LB GAN Diff LB GAN Diff

Src. dataset Model

FRGC

AIM 0.00 0.00 0.00 0.22 0.00 0.39 33.81 8.68 0.00
CLIP 0.00 0.00 1.22 5.21 0.00 5.03 4.34 0.22 0.00
DNADet 0.00 2.91 0.00 9.77 0.00 0.65 1.39 1.09 0.00
DINOv2 0.00 0.69 1.13 10.81 0.00 5.90 7.34 2.78 0.00
RN50-IN 0.09 6.03 0.00 11.50 0.09 0.74 2.86 4.86 0.00
MixFaceNet * 0.00 0.48 0.13 2.73 0.00 1.87 0.95 0.61 0.00

FFHQ

AIM 0.00 11.20 19.60 12.90 0.00 11.90 27.90 13.00 0.00
CLIP 1.25 0.90 8.30 5.70 0.00 7.90 7.75 1.20 0.30
DNADet 2.30 17.05 27.20 16.15 1.95 41.45 25.30 26.35 0.90
DINOv2 5.10 8.25 12.20 20.75 0.30 17.85 19.05 10.15 0.55
RN50-IN 7.75 33.00 17.65 33.90 2.45 36.60 21.90 26.95 2.25
MixFaceNet * 5.00 18.10 33.75 24.05 0.85 34.55 26.15 26.15 2.40

Table 5. Source dataset generalization. D-EER (%) on FRLL bona
fide & morph images when all attacks based on a different source
dataset are seen at training time. Bold values indicate setups where
probed attack-agnostic models perform better than the MixFaceNet
MAD reference. Underlined values are the best performing models.

Train src. dataset FRGC FFHQ

Test attacks LB GAN DIFF LB GAN DIFF

Model
AIM 1.47 23.53 11.76 0.00 0.00 0.00
CLIP 6.86 4.90 7.84 3.43 0.49 0.98
DNADet 10.29 35.78 42.65 0.00 0.00 0.00
DINOv2 9.80 8.33 3.92 15.20 13.24 5.88
RN50-IN 13.24 29.41 19.61 1.96 38.73 0.98
MixFaceNet * 12.75 28.92 20.10 2.94 11.76 1.47

is scenario-dependent.
The key outcomes can be summarized as follows:

• DNADet features are particularly effective for one-
class modeling in the digital domain and when target-
ing a single passport standard. The DNADet one-class
detector achieves a D-EER under 1% for all attack
families on FRGC attacks. However, these features
exhibit poor performance in print-scan generalization.
This limitation is likely due to DNADet’s pretraining
task of contrastive learning of image transformations,
which may result in a different representation manifold
for print-scan images compared to digital ones. Incor-
porating print-scan data into the bonafide training set
may resolve this issue, which we plan to explore in fu-
ture work.

Table 6. Print-scan generalization. D-EER (%) on
test split when all digital attacks are seen at train-
ing time, but test attacks are in the print-scan do-
main. Bold values indicate setups where probed
attack-agnostic models perform better than the Mix-
FaceNet MAD reference. Underlined values are the
best performing models.

Src dataset FRGC

Test on LB-PS MIPGAN-PS DIFF-PS

Model
AIM 4.77 32.47 30.12
CLIP 3.99 15.02 14.97
DNADet 16.19 60.50 56.55
DINOv2 8.85 5.60 7.51
RN50-IN 20.57 35.24 26.78
MixFaceNet * 22.05 50.22 32.34

• AIM features excel for generalizing to unseen attacks
but show inconsistencies in other generalization sce-
narios. While AIM features behave overall similarly
to DNADet features, their more irregular performance
across different attack families may limit their practi-
cality in real-world applications.

• DINOv2 features are particularly suitable for print-
scan generalization. In scenarios where we assume a
limited known set of possible attacks (i.e., all attacks
can be seen during training), these features are valu-
able when generating actual print-scan data for train-



Table 7. One-class model. D-EER (%) on the test split when only
bona fide sample are seen at training time. We compare to the
SPL-MAD model from [8]. Bold values indicate setups where
probed attack-agnostic models perform better than the SPL-MAD
reference. Underlined values are the best performing true one-
class models.
Src. dataset FRGC FFHQ

Test attacks LB GAN DIFF LB GAN DIFF

Model
AIM 6.08 0.39 0.00 34.40 56.10 7.20
CLIP 23.87 1.52 20.92 14.50 4.75 27.70
DNADet 0.87 0.82 0.48 27.10 29.10 32.80
DINOv2 35.72 32.86 30.16 35.80 48.90 34.00
RN50-IN 51.56 43.23 18.75 46.75 61.25 46.10
SPL-MAD * 16.28 11.02 20.23 28.15 14.10 34.20

ing is impractical or too time-consuming. Future work
should in particular verify if this print-scan generaliza-
tion performance holds across a wider variety of phys-
ical devices.

• CLIP features, even though they are rarely the best,
consistently perform well across all generalization sce-
narios, making them interesting for scenarios where
multiple generalization challenges are simultaneous.
By enabling robust generalization to unseen attacks,
strong source dataset generalization, and decent print-
scan generalization, they become a strong candidate
for training detectors in a supervised way on a small
set of attacks. In the one-class setting, CLIP features,
while less effective than DNADet on FRGC attacks,
are the most effective for FFHQ attacks. Coupled with
their strong source dataset generalization capability,
this fact makes them potentially well-suited for devel-
oping more general-purpose one-class MAD systems
that target multiple passport standards.

5. Conclusion

Our work highlighted the superior effectiveness of train-
ing simple probes on top of attack-agnostic features in mor-
phing attack detection (MAD) compared to traditional su-
pervised CNN training (MixFaceNet) and a one-class de-
tector from the literature (SPL-MAD).

In particular, DNADet features led to remarkable perfor-
mance in one-class detection scenarios, achieving a D-EER
of less than 1% for all attack families on the FRGC dataset.
This underscores its efficacy in detecting morphs without
prior exposure to attack samples. However, this perfor-
mance was limited to the digital domain, with DNADet
showing low efficacy for generalization to the print-scan
domain. This indicates the need to explore whether the in-
clusion of bonafide print-scan data in the training set of the

DNADet one-class model might enable similar performance
in the print-scan domain.

Conversely, DINOv2 excelled in print-scan generaliza-
tion, making it a promising candidate for contexts where
generating large enough print-scan data for training is im-
practical.

Finally, CLIP, while not always the top performer, con-
sistently delivered solid results across all generalization sce-
narios. This highlights its potential for developing more
versatile MAD systems capable of handling various types
of generalization.

Future work will focus on several key areas to further
enhance the robustness and generalizability of our pro-
posed approach. First, a more systematic evaluation of one-
class detection performance is necessary, particularly to en-
sure fairer comparisons with existing methods, notably by
making sure equivalent bonafide sets are seen at training
time. Second, an evaluation of the one-class performance of
DNADet in the print-scan domain is needed, likely requir-
ing the inclusion of bonafide print-scan data in the training
set. Third, there is potential in specializing attack-agnostic
extractors by continuing pretraining using content-specific
data, such as bonafide face images. In this work, only
DNADet had been pretrained on face data. Lastly, the print-
scan generalization capabilities of DINOv2 should be eval-
uated using additional print-scan devices to verify its effec-
tiveness across a broader range of physical conditions.

In conclusion, the study validates the effectiveness of
attack-agnostic representations for MAD, with DNADet
and CLIP feature representations standing out in one-class
and generalist performances, respectively, and DINOv2 in
print-scan generalization. The outlined future work aims to
address current limitations and further optimize these mod-
els for practical deployment in diverse real-world scenar-
ios.
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