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Abstract
Accurately predicting heart activity and other biological

signals is crucial for diagnosis and monitoring. Given that
speech is an outcome of multiple physiological systems, a sig-
nificant body of work studied the acoustic correlates of heart
activity. Recently, self-supervised models have excelled in
speech-related tasks compared to traditional acoustic meth-
ods. However, the robustness of data-driven representations
in predicting heart activity remained unexplored. In this study,
we demonstrate that self-supervised speech models outperform
acoustic features in predicting heart activity parameters. We
also emphasize the impact of individual variability on model
generalizability. These findings underscore the value of data-
driven representations in such tasks and the need for more
speech-based physiological data to mitigate speaker-related
challenges.
Index Terms: Speech processing, Biological signals, ECG,
Heart Rate, Self-supervised learning

1. Introduction
In the contemporary era of telemedicine, harnessing ubiquitous
biological signals such as human speech has been of great im-
portance. Thanks to the advances in machine learning, a sig-
nificant body of research has emerged, exploring paralinguistic
analysis in speech. This multi-faceted discipline encompasses
tasks such as detecting various stress indicators [1, 2], predict-
ing emotional states [3], and modeling physiological parame-
ters such as heart activity [4], respiration patterns [5], and skin
conductance responses [6].

There has been an effort to examine the association between
speech signals and heart activity. Orlikoff et al. [7] in one of
the very early studies showed that cardio vascular system can
influence the vocal fundamental frequency (F0) indicating that
the absolute F0 perturbation (jitter) during a sustained phona-
tion could vary between 0.5% to 20%. In other studies, heart
activity was studied in relation with speech in different emo-
tional states. Williams et al. [8] demonstrated that the emo-
tion variation might cause an increase in blood pressure (BP),
heart rate (HR), sub-glottal pressure, and the depth of respira-
tory movements. James et al. [9] suggested a strong correlation
between speech, emotion, and heart rate using spectral features
from speech. Smith et al. [10] showed that HR increases when
the person is speaking compared to when they are silent and
this increase is greater when they are frustrated. In another
study [11], the HR was predicted using linear models in dif-
ferent emotional states. Jati et al. [12] predicted physiological
signals from speech during stressful conversations.

However, the influence of inter- and intra-individual vari-
ability on the efficacy of speech-based models remains rela-

tively unexplored. For example in [6, 13, 10, 14], it has been
shown that acoustic features, in particular spectral features, can
be used as good predictors of heart activity parameters like beats
per minute (BPM) in the context of regression and classifica-
tion tasks. Nevertheless, the speaker-dependent data split used
in these efforts might be confounding the reported performance
since both training and testing sets have included data samples
belonging to the same speakers. Furthermore, an interesting
study conducted by [4] has addressed the speaker-dependency
in their experimental setup showing the superior performance
achieved using speaker-dependent split over leave-one-speaker-
out (LOSO) approach. However, the level of variability between
and within speakers has not been examined.

Part of the challenge in properly addressing these confound-
ing parameters has been manifested in the lack of large speech
corpora that includes recorded biological signals, leading to
overfitting models on speakers’ samples. One way to allevi-
ate this limitation is to pre-train models on large scale corpora
and evaluate the pre-trained models on downstream paralinguis-
tic tasks with limited data samples. One major breakthrough
in this domain is introducing self-supervised models (SSMs).
These are models trained to optimize a certain task objective
without using labels. Consequently, several benchmarks have
evaluated the predictive power of these data-driven representa-
tions on paralinguistic tasks [3, 15] as well as speech [16] and
audio tasks in general [17]. Additionally, SSMs outperformed
acoustic and knowledge-based features on multiple audio-based
tasks.

In this study, we evaluate, for the first time, the ability of
SSMs to be used for predicting heart activity parameters such
as BPM and heart rate variability (HRV) and assess its predic-
tive power compared to acoustic features. Importantly, we high-
light the impact of both inter- and intra-individual variability on
performance and generalizability. We further examine the op-
timal context window duration of speech for this task. Lastly,
we pinpoint the salient features for this task and compare it to
previous work in literature. Collectively, these analyses high-
light the importance of collecting data systematically to provide
better understanding of the underlying physiological variability
across individuals.

The rest of the paper is organized as follows. We introduce
our proposed method and the database used in Section 2. The
results has been given in Section 3. We conclude the paper in
Section 4.

2. Materials & Methods
2.1. Dataset

In this work, we use Ulm-TSST database presented in the MuSe
challenges [18, 19]. This corpus included 69 German-speaking



Figure 1: Training pipeline for predicting BPM and HRV values from knowledge-based and data-driven speech representations.

subjects (49 Females and 20 Males) performing free speech
tasks following the Trier Social Stress Test (TSST) protocol
[20]. Multiple physiological signals such as ECG, BPM, respi-
ration (RESP), and EDA were captured during the speech tasks
at a sampling rate of 1 kHz. This dataset was originally used to
study emotions (i.e., arousal and valence) of people in stressful
dispositions. However, in this paper, we are only interested in
the recorded heart activity (ECG).

2.2. Data Preprocessing

The utterances were originally acquired with 6 channels. We
select the channel that featured the highest loudness (the first
channel). Then, we re-sample all mono-channel utterances to
16 kHz and standardize them. Subsequently, we chunk the data
into clips of varying window sizes ranging from 3 to 5 seconds
with a hop size of 500 ms. The ECG signals are preprocessed
using NeuroKit package 1. BPM is computed from the ECG
signal using the same package. Then, for each audio clip, we
extract the corresponding ECG signal and compute HRV. Lastly,
we compute the average value for BPM and HRV for each clip
to have one value per audio sample/clip.

2.3. Speech Feature Extraction

We compared the performance of knowledge-based features
against speech representations generated from a pre-trained
self-supervised model.

Knowledge-based: We use openSMILE [21], an open
source toolkit for extracting low-level descriptors from audio
utterances. We extract two commonly-used feature sets from
openSMILE, namely eGeMAPS (88 features) [22] and Com-
ParE (6373 features) [23].

Data-driven: We use Hybrid BYOL-S model [2], a self-
supervised model derived from Bootstrap Your Own Latent
(BYOL-A) learning framework [24]. BYOL-A learns general-
purpose audio representations from juxtaposing two augmented
views of a single input utterance. The two augmented views are
fed to two networks, an online and a target network. The task
objective involves the online network predicting the generated
representations from the target network. The new variant of
BYOL-A (i.e. Hybrid BYOL-S) is a speech-specific derivation
that trains the online network to predict data-driven representa-
tions from the target network as well as knowledge-based rep-
resentations (ComParE features) simultaneously yielding robust
speech embeddings of size 2048. We selected Hybrid BYOL-S

1https://neuropsychology.github.io/NeuroKit/
functions/ecg.html

due to its superior performance on multiple audio downstream
tasks [25] as part of the HEAR 2021 challenge [17].

2.4. Evaluation Pipeline

We evaluate the performance of the three feature sets to predict
BPM and HRV. To examine the generalizability of the meth-
ods to various speakers, we create two data splits, one speaker-
independent split where we used 70% of the speakers (N=48)
for training and hold out 30% (N=21) for testing. The second
split is speaker-dependent in which we keep 70% of the clips
for each speaker in the training set and the remaining clips per
speaker are evaluated. Additionally, we train speaker-specific
regression models for each speaker where the model is only
trained on data samples from one speaker and these samples
are split into 70% and 30% for training and testing, respec-
tively. For each experiment, multiple regressors are used such
as Ridge regression, Random Forrest (RF), Gradient boosting
tree (GBT), and multi-layer perceptron (MLP). We run a grid-
search for hyperparameters that are model-specific. In case of
speaker-independent, we run a 5-fold group shuffle split where
speakers in the training set were further divided into train and
validation sets (70% and 30%, respectively). Thus, ensuring
that the validation set includes unseen speakers during train-
ing with cross validation. On the other hand, when running
speaker-dependent experiments, we use a 5-fold time series split
where the training samples for all speakers are split into train
and validation (70% and 30%, respectively) while considering
the temporal dependency between the data samples. Lastly, for
speaker-specific, we train regression models on data samples
from a single speaker using 5-fold time series split as well. Af-
ter training the regression models, we report performance on a
held out test set using coefficient of determination (R2) score as
well as Pearson’s correlation coefficient, as illustrated in Figure
1.

3. Results & Analysis
Figure 2 illustrates the performance of candidate speech rep-
resentations on predicting BPM and HRV under two different
speaker conditions for unseen test sets; speaker-dependent and
speaker-independent protocols. We report the R2 and Pearson’s
correlation between the predicted and the ground truth. The
plotted distributions highlight the performance across differ-
ent regressors, targets (i.e., BPM and HRV), and window sizes
(i.e., 3, 4, and 5 seconds). We show that Hybrid BYOL-S out-
performs knowledge-based features in a speaker-dependent set-
ting. Whereas, all representations perform equally poorly in the
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Figure 2: Performance of different speech features in both speaker conditions. The reported distributions show the evaluation across
multiple regressors and window sizes as well as the performance for predicting both targets (i.e. BPM and HRV).

speaker-independent setting. This result highlight the limita-
tions of generalizability of speech features for this downstream
task.

Moreover, we study the effect of context window duration
on performance. Figure 3 shows that increasing the window
size improves performance in all feature candidates. This figure
reports the Pearson’s correlation on a speaker-dependent test set
using GBT (best-performing regressor) for both targets. Impor-
tantly, we observe significant improvement between 3 sec win-
dow and 4 sec window while between 4 sec and 5 sec duration
performance is relatively overlapping.
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Figure 3: Performance of different speech features with varying
context window duration. The reported distributions show the
evaluation using speaker-dependent and GBT regression model
for predicting both targets (i.e., BPM and HRV).
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Figure 4: Predictions from GBT model using Hybrid BYOL-
S features with 5 sec window size. Predictions are shown for
speakers 52, 13, and 46, respectively.

Given the discrepancy between both speaker-related proto-
cols, we further train regression models on data samples from
a single speaker resulting in building a model per speaker (i.e.,
speaker-specific protocol). Figure 5 demonstrates the high vari-
ability in performance across a randomly selected sample of 20
speakers. In this figure, we report the Pearson’s correlation eval-
uated on Hybrid BYOL-S to predict BPM and HRV across dif-
ferent window sizes.

We further plot the predictions from three speakers; the
speaker exhibiting the lowest correlation (i.e., speaker 52),
the speaker with the highest positive correlation (i.e., speaker
46) and the speaker with the highest negative correlation (i.e.,
speaker 13), as shown in Figure 4. This figure provides insights
regarding the model’s ability to capture the variability within a
single speaker.

Furthermore, we opted to pinpoint the salient acoustic fea-
tures for predicting heart activity. Thus, we perform feature im-
portance on the trained GBT regression model using eGeMAPS
and ComParE features. Figure 6 shows the top 10 features for
each feature set that contribute to predicting both BPM and
HRV. The feature importance is computed from the best esti-
mator and ranked accordingly.

4. Discussion & Conclusions
In this paper, we studied the robustness of acoustic and data-
driven features to predict heart activity parameters. We showed
that Hybrid BYOL-S, a self-supervised model, outperformed
acoustic features on this downstream task. This finding aligns
with previous work showing the feasibility of using speech rep-
resentations as predictors for heart activity [6, 14]. Addition-
ally, we highlight the significance of leveraging data-driven, in
particular SSMs, representational spaces for better predictive
power.

Nevertheless, we noticed that all features performed equally
poorly in the speaker-independent protocol as shown in Figure
2. This result exposes the limitations of these features and their
sensitivity to inter-individual variability confirming the work
done in [4]. Importantly, this dataset was originally collected to
study speech as a biomarker for stress. Accordingly, one might
hypothesize that the high variability in heart activity might have
been a consequence of variability in stress response across in-
dividuals. Hence, the inability of models to generalize across
speakers. Thus, it is crucial for future work to consider emo-
tional states and cognitive aspects as confounding variables for
predicting heart activity from speech. We further observe vary-
ing correlation scores when training models on a single speaker
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Figure 5: Performance of Hybrid BYOL-S features for speaker-specific protocol across all window sizes (3, 4, 5 seconds) of audio and
a GBT regressor model. The figure shows a random sample of 20 speakers for both targets BPM and HRV
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Figure 6: Feature importance showing top 10 acoustic features for both targets BPM and HRV extracted from both openSMILE feature
sets eGeMAPS and ComParE.

data as in Figure 5. The poor performance in some speakers in-
dicates that even intra-individual variability plays a role as well
in hindering the model to properly predict unseen data samples
from the same speaker which has not been previously discussed.
Moreover, we demonstrated that increasing the context window
duration more than 3 sec provides significantly better predic-
tions.

Lastly, we ran feature importance as shown in Figure 6 and
found that spectral features and loudness were the most impor-
tant acoustic features for this downstream task which line up
with the previous findings in literature [7, 13, 6]. These re-
sults together provide insights on the robustness and limitations
of acoustic and data-driven features in studying heart activity
as well as shed light on the importance of adding the mental

state as an essential dimension to study the relationship between
speech and physiological signals such as heart activity.
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