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Fig. 1: Sample instances from the ChildPlay-Hand dataset with person bounding boxes
and the per-hand object bounding boxes and corresponding action classes.

Abstract. Hand-Object Interaction (HOI) is gaining significant atten-
tion, particularly with the creation of numerous egocentric datasets driven
by AR/VR applications. However, third-person view HOI has received
less attention, especially in terms of datasets. Most third-person view
datasets are curated for action recognition tasks and feature pre-segmented
clips of high-level daily activities, leaving a gap for in-the-wild datasets.
To address this gap, we propose ChildPlay-Hand, a novel dataset that
includes person and object bounding boxes, as well as manipulation ac-
tions. ChildPlay-Hand is unique in: (1) providing per-hand annotations;
(2) featuring videos in uncontrolled settings with natural interactions,
involving both adults and children; (3) including gaze labels from the
ChildPlay-Gaze dataset for joint modeling of manipulations and gaze.
The manipulation actions cover the main stages of an HOI cycle, such as
grasping, holding or operating, and different types of releasing. To illus-
trate the interest of the dataset, we study two tasks: object in hand detec-
tion (OiH), i.e. if a person has an object in their hand, and manipulation
stages (ManiS), which is more fine-grained and targets the main stages of
manipulation. We benchmark various spatio-temporal and segmentation
networks, exploring body vs. hand-region information and comparing
pose and RGB modalities. Our findings suggest that ChildPlay-Hand is
a challenging new benchmark for modeling HOI in the wild.

* equal contribution
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1 Introduction

Hands are our primary means of physical interaction with the environment, par-
ticularly through object manipulation. This explains why understanding hands
in action has been an important topic in computer vision, focusing on various
aspects such as recognizing gestures (see the recent review [24]) and hand-object
interaction (HOI) [2,8,10,20,28]. This understanding naturally finds applications
in various domains, including human-computer interaction [26], robotics [35], and
augmented and virtual reality (AR/VR) [12].

Recently, much research has concentrated on HOI from a first-person perspec-
tive due to its applications in AR/VR. This has led to the creation of numerous
egocentric video datasets, each tailored to specific settings and activities. These
range from cooking activities in kitchen environments (FPHA [8] and EPIC-
Kitchen [2]), to more diverse scenarios in Ego4D [10]. Also, some other HOI
datasets are captured from multiple views and are collected in lab environment
and come with rich data like 3D hand pose and/or 6D object poses thanks to
the use of dedicated setup, as in H2O [20] and Assembly101 [28].

Despite the extensive efforts in egocentric HOI, the study of hands from
a third-person perspective has received less attention. Most third-person view
datasets [11,13,15,18,22,29–31] are designed for action recognition tasks, where
isolated short clips are annotated with human activities. These datasets primar-
ily focus on high-level human activities in daily life, such as driving a car or
washing dishes, serving a different research purpose. As a result, there is a no-
table lack of datasets specifically concentrating on hands interacting with objects
in the wild from a third-person view.

To address this gap, we introduce ChildPlay-Hand. It is derived from the
ChildPlay [33] (or ChildPlay-Gaze) video dataset, which was originally intro-
duced for addressing the gaze following task for children and toddlers, and fea-
tures videos from childcare facilities and school settings. We selected this dataset
because it contains both adults and children, and due to the rich diversity of hand
manipulation behaviors mixed within children and adults interactions. Building
upon this dataset, we provide dense annotations of body bounding boxes, hand
manipulation action for each hand, and object bounding boxes of objects in-
volved in such interactions. In terms of actions, we are interested in the main
stages of the hand-object manipulation cycle: grasping, holding (passively having
an object in hand) or operating (i.e. doing something actively with the object),
and releasing (with several variants, see Sec. 3). While this may seem crude, this
level of granularity allows to cover the entire hand-object interaction activities
without being limited to the vocabulary of a particular application domain, and
is anyway a first level of analysis that needs to be performed in HOI. Also, when
addressed in the wild, it is actually very challenging.

The above annotation scheme results in a dataset that is unique in several
ways. First, it provides per-hand annotations as hands can do multi-tasking.
This is rare among existing datasets that typically focus on the activities of
both hands as a whole. Second, it features videos in uncontrolled settings
with varying camera views, showcasing scenes with multiple people interacting
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naturally with each other and objects in a free manner. This is in stark contrast
with datasets that assume a fixed view with a single person performing a given
activity, where hands and objects typically stay visible. Third, the decision to
use videos from ChildPlay-Gaze [33] will enable in the future the study of the
coordination between manipulations and gaze from a third-person view,
which, to the best of our knowledge, has not been explored before. Lastly, the
inclusion of children (and not dominantly adults) in the dataset makes it a
valuable source for behavioral studies of this demographic group. Such datasets
are typically private due to the sensitive nature of the data.

ChildPlay-Hand can serve as a new benchmark for several tasks such as ac-
tion recognition, action localization, and human-object interaction. In this work,
we demonstrate its use and challenge for addressing two temporal action seg-
mentation (TAS) tasks: object in hand (OiH) and manipulation stages (ManiS).
The former is a coarse task of predicting whether an object is in a given hand,
while the latter is more fine-grained, aiming to predict the main stages of hand-
object manipulation interaction. For benchmarking, we explore different spatio-
temporal networks like PoseConv3D [4], RGBPoseConv3D [4], and Hiera [27] by
fine-tuning them on ChildPlay-Hand. We also explore other aspects such as the
use of hand inputs compared to full body inputs. We then use the best spatio-
temporal network to extract features for full hand sequences as input to TAS
methods such as MS-TCN [5] and report frame-based and segmental metrics. In
summary, our contributions are as follows:
– We propose ChildPlay-Hand, a unique and novel dataset of hand which

provides per-hand activity annotations, features both adults and children,
in uncontrolled and natural settings, and nicely complements existing gaze
labels from ChildPlay-Gaze [33];

– We benchmark the dataset for two tasks, investigating different state-of-the-
art spatio-temporal action recognition networks, as well as Temporal Action
segmentation methods. Our work establishes several baselines, comparing
pose-only networks to multimodal and visual-only networks, and explores
the effectiveness of full-body vs. hand region inputs.

2 Related Datasets

2.1 Hand-Object Interaction (HOI) datasets

Recent video datasets of HOI are predominantly egocentric, each focusing on
specific activities and settings. For instance, FPHA [8] and EPIC-Kitchen [2]
capture cooking activities in kitchen environments, while Ego4D [10] contains
more diverse scenes, environments, and daily activities. In addition to egocen-
tric view, some datasets offer multiple views, typically captured in controlled
lab settings with dedicated setups, such as H2O [20] and Assembly101 [28].
These datasets often include 3D hand poses and/or 6D object poses. In terms
of activities, Assembly101 [28] contains fine-grained interaction verbs used to
describe assembling and disassembling actions, such as "unscrew" and "remove"
to achieve broader actions like "detach". Similarly, H2O [20] defines 11 action
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verbs, including "open", "apply", and "read", to cover actions performed by
participants when interacting with 8 distinct objects.

Despite great contributions to egocentric HOI, there is a notable lack of
third-person view datasets capturing hand manipulations in uncontrolled envi-
ronments. We fill this gap with ChildPlay-Hand. While Assembly101 [28] offers a
multi-view setting and is larger in scale, our dataset stands out by moving away
from lab environments. It includes scenes from uncontrolled settings captured
from a third-person view, marking a significant step towards recognizing and
analysing hand-object interactions in the wild.

2.2 Action Recognition

Unlike action recognition datasets, which feature pre-segmented clips of high-
level activities typically performed by an individual, our dataset contains frame-
wise annotations of per-hand manipulation actions performed by multiple people
in the scene.

For instance, ActivityNet [13] or Kinetics [15] contains video clips annotated
with high-level activities such as painting furniture, washing dishes, driving a
car, and planting trees. In these clips, hands are part of the broader context of
these actions, rather than the primary focus. NTU [22, 29] includes subsets of
hand-centric actions such as "throw", "pick up", and "drop", performed in a
scripted manner by individuals in a lab environment. These actions are isolated
and lack the complexity of natural interactions. A subset of actions in AVA-
Action [11] are hand-related, such as touching, carrying, and holding, annotated
at 1Hz. Hence they lack the start and end of an action. Furthermore, the videos
are typically low in quality, and contains scenes from movies in rather non-daily
life situations, making it difficult to study hands in detail or spending efforts to
provide additional annotations.

Something-Something [9] contains clips of finer-grained hand actions related
to manipulating objects, offering a more focused view on hand-object interac-
tions. The Charades [30] dataset contains videos of daily indoor activities where
actors were tasked with performing scripted short-term actions, hence lacks the
expected natural diversity of hand manipulations found in real situations.

2.3 Temporal Action Segmentation (TAS)

Widely used datasets for TAS typically focus on procedural activities, primarily
confined to kitchen settings and cooking-related tasks. GTEA [6] is an egocentric
dataset featuring videos recorded in a single kitchen, capturing activities such
as making sandwiches and preparing coffee. 50Salads [32] contains videos of
salad preparation captured from a top-down perspective, showcasing activities
such as cutting vegetables and mixing ingredients. Breakfast [17] increases the
diversity of kitchen environments and individuals performing actions related to
breakfast preparation. The scenes are captured from a third-person view using
3 to 5 cameras. The dataset includes finer-level actions such as "taking a cup"
and "pouring milk" as part of coarser activities like making coffee.
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Our dataset can serve as yet another dataset for TAS, but it goes beyond
kitchen environments and activities by focusing on per-hand manipulations in
uncontrolled, free-play settings where inter-category and intra-category manip-
ulation segments vary in length, making it a challenging dataset for TAS.

3 ChildPlay-Hand

In this section, we present ChildPlay-Hand by first defining the hand interaction
class labels (Sec. 3.1), providing the annotation protocol (Sec. 3.2), presenting
statistics of the annotations (Sec. 3.3), and comparing it with other datasets
(Sec. 3.4).

3.1 Hand Interactions

We are interested in the main stages of a hand manipulation cycle that a person
would consider to grossly description interactions with an object: background →
grasp → hold/operate → release → background; these are complemented with
other more precise activities (see below). Additionally, we annotated other ac-
tions beyond the aforementioned ones: the various pre-release gestures differ-
entiating between different ways of getting rid of an object, such as dropping,
putting/placing, throwing, and giving; and pointing. This was done given the
nature of our video dataset, which features multi-person scenes, and due to the
importance of these gestures for analysing children behaviors and adult-children
interaction. In summary, the set of considered categories in ChildPlay-Hand and
their definitions are as follows:

– Background: Hands Idle, i.e. not holding any object.
– Grasp: is the transition moment from idle hands to securing an object.

It typically starts with a shift in visual attention, followed by approach-
ing and then securing the object.

– Hold: Passively holding an object in the hand.
– Operate: Performing an intentional activity with the object (e.g., play-

ing, disassembling, distorting, displacing).
– Give: Extend your hand towards a person with the intention of giving

them an object (whatever the object is taken or not).
– Put/Place: Place an object on a surface.
– Drop: Releasing an object from a distance.
– Throw: Throw an object.
– Release: is the transition moment from having the object in hand

to having idle hands by simply letting go, dropping, putting/placing,
throwing, or giving it to someone (i.e. is situated at the end of the
previous actions).

– Point: Pointing at an object, person or area if the object is not count-
able, e.g., a wall.

The above level of granularity has several advantages. It covers key moments
of a complete hand-object interaction cycle without being too fine-grained or
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Fig. 2: Distribution of hand action classes in the dataset. We show the distribution in
frames (top) and events (bottom).

coarse. For example, grasping could be broken down into micro-events like initi-
ating intention, hand pre-shaping, reach planning, approaching, object contact,
and securing the object. Similarly, a cycle or series of cycles, depending on the
object and activity, can describe actions like assembling a toy, but this is not
our aim here.

3.2 Annotation Protocol

Source of Videos: We borrowed video clips from ChildPlay-Gaze [33] and
annotated them with the defined hand actions described in Sec. 3.1. This dataset
was originally annotated with the 2D pixel location of gaze targets for the task of
gaze following, focusing on children’s gaze. The raw videos were downloaded from
YouTube and feature children playing and interacting with adults in uncontrolled
environments such as childcare facilities, schools, homes, and therapy centers.
The dataset contains 401 video clips of high visual quality, mainly in indoor
settings, featuring at least one child, often with one or two adults and multiple
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Fig. 3: Distribution of event duration (in frames) per action class. The violin plot
shows the min, max and median values of each distribution.

children. Activities are unscripted, with the dominant activity typically being
"playing with toys".
Annotation Process: We densely annotated ChildPlay-Gaze clips with body
bounding boxes, per-hand interactions with objects, involved object bounding
boxes, for up to three people in the scene, the same as those annotated with
gaze. Seven annotators were assigned on the annotation process, followed by a
review stage done by an expert in the field. The two action classes of grasp
and release were not manually annotated because they can be inferred from
the existing annotations at the transition moments (e.g . a person’s hand chang-
ing from background to hold or operate has inevitably gone through a grasp
event). We empirically set the duration for grasp to 20 frames, or approximately
0.6s, with 4 frames inside the object manipulation segment and 16 frames outside
(i.e. background). For release, this duration is split into 8 frames inside and 8
frames outside. When the duration of the preceding (resp. following) event for
grasp (resp. release) is smaller than the outside frames (16 for grasp and 8 for
release), we use the available frames instead. We conduct a manual verification
step afterwards to ensure that the grasp and release instances are valid and
acceptable.

3.3 Annotation Statistics

Figure 2 provides the per-hand distribution of action labels by frames and by
event segments. Expectedly, the distribution features a long tail with actions
like give, drop, and throw having much fewer instances than the rest. It is also
interesting to note that the right hand operate has a higher frequency than the
left counterpart, whereas the opposite can be observed for the hold class. This
is likely due to the fact that a higher percentage of people is right-handed, so
the active manipulation of objects is more often associated with the dominant
right hand first, while the more passive hold is delegated to the left. We follow
the training, validation, and test splits in ChildPlay-Gaze [33]. More information
about the dataset splits can be found in the supplementary material.
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Dataset View # Segments # Actions Per-Hands In-the-Wild Multi-Person
50Salads [32] Top-Down 899 6 ✗ ✗ ✗

Breakfast [17] Exo 11,300 14 ✗ ✗ ✗

Assembly101-Coarse [28] Ego-Exo 104,759 11 ✗ ✗ ✗

Assembly101-Fine [28] Ego-Exo 1M 24 ✗ ✗ ✗

ChildPlay-Hand Exo 7,653 10 ✓ ✓ ✓

Table 1: Comparison of ChildPlay-Hand with other related datasets. Note that #
Actions refers to verbs in other datasets.

We also provide the frame-wise event duration distribution of each action
class (cf . Figure 3). We observe that, aside from the background class which
tends to be longer, all other actions typically last between 0 and 4 seconds
(assuming a frame rate of 30 FPS), with holding and operating being relatively
longer compared to the other more short-term and specific labels.

3.4 Comparison to Other Datasets
Tab. 1 compares ChildPlay-Hand across different aspects. While our dataset has
fewer segments and actions due to the granularity we focus on, it has other
unique aspects. ChildPlay-Hand features per-hand actions, captures in-the-wild
scenes of children playing in a free-play manner in various backgrounds, and
includes multiple people interacting with the same objects.

4 Experiments
In this section, we define the tasks (Sec. 4.1), discuss the selected models, proto-
col, implementation details for recognition (Sec. 4.2) and segmentation (Sec. 4.3).

4.1 Benchmarked Tasks
The ChildPlay-Hand dataset can be used for various video understanding tasks.
Following the standard terminology, we can address Action Recognition by ex-
ploiting pre-segmented actions. It can also be used for Spatio-Temporal Action
Localization, similar to the AVA-Action dataset [11], which involves not only
recognizing but also localizing actions performed by all individuals within a key
frame. Alternatively, the task can be formulated as an Human-Object Interac-
tion recognition problem, by predicting all triplets within a key frame, <person
bounding box, hand interaction, object bounding box>.

In this work, we focus on Temporal Action Segmentation (TAS), where
the goal is to perform frame-wise prediction Y = {y1, . . . , yT } on an input video
X = {x1, . . . , xT } of a person where, yt ∈ {aL, aR} denote the left and right
hand actions and can belong to one of C categories.
T1: Object in Hand (OiH): We first investigate the binary task of detecting
whether a person has an object in a given hand. We generate labels by catego-
rizing hold and operate as positive (OiH) and the rest as negative. The main
motivation behind this task is that it serves as a prequel to segmenting different
stages between non-OiH and OiH and evaluates the ability of a model to detect
the presence of an object in hand. This task remains very challenging due to
self-occlusions or hands being close (i.e., objects being occluded by hands), the
small sizes and great variety of objects.
T2: Manipulation Stages (ManiS): Next, we target the primary stages of
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an object manipulation cycle: hands begin in an idle state (background), grasp
an object (grasp), perform a series of holding (hold) and operating actions
(operate), release the object (release), and return to the idle state. To distin-
guish between these categories and segment them, a combination of two primary
cues is needed: distinguishing among the hand motions and tracking the presence
or absence of an object in the hands, thus making it challenging.

To perform frame-wise prediction of the entire input sequence, methods in
TAS usually rely on pre-extracted features for each frame, e.g. using I3D [1].
However, these representations need to be informative and tailored to the task.
To this end, we explore different spatio-temporal networks (detailed in Sec. 4.2)
and fine-tune them on ChildPlay-Hand under a recognition protocol to measure
their ability to recognize object and hand manipulations within a short window.
Then, we use the top-performing recognition network to extract frame-wise rep-
resentations for the TAS methods in Sec. 4.3.

4.2 OiH and ManiS Recognition

Below, we first detail the two types of video volume used as input to the networks
and then provide a brief overview of the selected networks.
Inputs: We experiment with two types of inputs for the person of interest
(PoI) in the scene: full-body and hand-region. For each type, we use the cor-
responding per-frame bounding boxes to crop out the body or hand of the PoI
according to the Subject-Centered Cropping method from [4]: we compute the
body/hand bounding box that encapsulates the PoI across frames in a short
temporal window and use it to crop the input modalities, such as RGB frames
and keypoints, across all frames in the window. For the body variant, we use the
available ground-truth bounding boxes. For the hand, as ground-truth boxes are
unavailable, we generate pseudo-hand bounding boxes as described in the supp.
materials with illustrations.
Methods: PoseConv3D [4] is a strong state-of-the-art (SoA) model for skeleton-
based action recognition. We experiment with PoseConv3D as a baseline to
evaluate the performance of pose-only representation. Unlike graph-based meth-
ods [21] that use the coordinate-based representation of 3D body joints, PoseC-
onv3D creates heatmap volumes of 2D body joints and has shown to be more
robust. Each heatmap has a size of K ×H ×W . Here, K denotes the number
of joints, represented by Gaussian maps centered at each joint. These heatmaps
are then stacked along the temporal dimension to form a volume of size K ×
T × H × W . Then, the input heatmap volumes are encoded using 3D-CNNs.
For body keypoints, we extract K = 17 keypoints using HRNet [34], and for
hand keypoints, we use K = 21 per hand, extracted using ZoomNet [14]. Note,
to make use of the pre-trained PoseConv3D weights, which are trained on body
keypoints, for use with hand keypoint heatmaps, we add an adapter layer to the
model that maps the 21 channels of hand keypoints to the 17 channels expected
by PoseConv3D, using a 3D-CNN layer.

However, pose alone (esp. body pose) is insufficient to recognize actions such
as grasping, holding, and releasing, as these actions require appearance cues
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to determine whether objects are in the hands. Therefore, we experiment with
the multimodal version of PoseConv3D, RGBPoseConv3D [4], which has two
pathways: a pose pathway operating at a higher frame rate and a visual pathway
using RGB frames at a lower frame rate, similar to Slow-fast networks [7]. The
fast branch for pose captures fine-grained motion of the keypoints, while the slow
visual branch can provide appearance context (e.g., objects in the hands) with
lateral connections between the two pathways. Following [4], we use 8 frames
with a temporal stride of 4 for the visual pathway and 32 frames with no stride
for the pose pathway.

Additionally, given the success of transformer-based architectures in video
understanding, we experiment with a recent hierarchical transformer, Hiera [27].
This network has demonstrated strong performance, particularly on the AVA-
Action [11] dataset, as also shown in LART [25]. Please refer to the supp. mate-
rials for the implementation details of these networks.
Recognition Metrics: For the recognition part, we compare models based on
frame-based metrics only. For the OiH task, we use accuracy as well as precision,
recall, and F1 of the OiH state. For the ManiS task, we compute accuracy as
well as macro precision, recall, and F1 by averaging each of these metrics across
the categories. The choice of macro metrics is due to the imbalanced nature of
the dataset, treating all classes equally since they all represent main stages of
hand-object manipulation.

4.3 OiH and ManiS Segmentation

Input: TAS methods process entire sequences as input and make frame-wise pre-
dictions. They rely on extracted features from spatio-temporal networks trained
for recognition to form a feature grid sized L × D, where L represents the se-
quence length and D denotes the feature dimension.
Methods: As a first baseline, we use the best frame-recognition network identi-
fied in Sec. 4.2 to produce frame-wise prediction via a standard Sliding-Window
strategy. However, to account for a larger temporal context, smooth predic-
tions and avoid over-segmentation, and learn the plausibility of manipulation
activity sequence and ordering, we experiment with MS-TCN [5], a multi-stage
convolutional-based network specifically designed for TAS. It relies on 1D convo-
lutional kernels to process the feature grid along time, maintaining full temporal
resolution across its multi-stage architecture. Each stage (SS-TCN) of MS-TCN
comprises multiple layers of dilated convolutions, which are used to progressively
increase the receptive field and to refine the predictions made by the previous
stage.
Segmentation Metrics: In addition to the frame-based metrics, we compute
segmental metrics. Given the predicted and ground-truth segments, we first find
the optimal matching between them using Bipartite matching [19]. The cost
function used is as follows:

C(i, j) =

{
1−O(Di, Gj) if label(Di) = label(Gj)

2 if label(Di) ̸= label(Gj)
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Method Input N. Param. Pre-train Window T1: OiH T2: ManiS
Acc. F1 Prec. Rec. Acc. m-F1 m-Prec. m-Rec.

Dummy Classifier - - - - 53.6 35.3 31.4 40.3 40.0 19.4 19.8 19.7
PoseConv3D [4] body 2M NTU-60 48× 1 66.5 32.6 44.3 25.8 63.0 30.1 36.0 28.9
PoseConv3D [4] hand 2M NTU-60 48× 1 62.6 51.5 43.5 63.2 59.3 32.9 34.8 31.7
RGBPoseConv3D [4] body 36M NTU-60 8× 4, 32× 1 72.4 51.5 57.7 46.6 66.0 33.8 44.9 31.2
RGBPoseConv3D [4] hand 36M NTU-60 8× 4, 32× 1 75.1 53.0 65.2 44.7 67.7 36.8 51.1 33.4
Hiera [27] body 52M K400 16× 2 79.5 65.4 69.8 61.5 66.5 45.0 45.2 45.7
Hiera [27] hand 52M K400 16× 2 85.4 74.3 83.4 67.0 73.2 51.2 50.6 53.1
Table 2: Comparison of different networks. All metrics are frame-based. m-{metric}
stands for macro. Stratified sampling is used as dummy classifier. Window of e.g., 16×2
refers to 16 frames with a temporal stride of 2.

Fig. 4: Class-wise frame-based: Precision, Recall, and F1.

where O(Di, Gj) is the overlap between a predicted segment Di and a ground-
truth segment Gj , defined as:

O(Di, Gj) = 2× Prec. × Rec.
Prec. + Rec.

, Prec. =
|Di ∩Gj |

|Di|
, Rec. =

|Di ∩Gj |
|Gj |

After optimal matching, a matched segment is said to be a true positive if
its overlap is above 0 (and of the same class); otherwise, it is considered a false
positive. Unmatched recognized segments become false positives, and unmatched
ground-truth segments become false negatives. Using these counts, we compute
precision, recall, and F1. We also report Edit score as in TAS methods [3].

5 Results
In this section, we first present the results of recognition experiments in Sec. 5.1,
followed by segmentation results in Sec. 5.2.
5.1 Recognition Results

OiH Task: As shown in Tab. 2, the top-performing network is Hiera with hand
inputs, achieving an accuracy of 85.4% and an F1 score of 74.3%, and out-
performing other methods by a large margin in terms of F1. Beyond architec-
tural differences, this performance may also be attributed to the pre-training on
Kinetics-400 (K400) [15] which offers more diverse scenes than NTU-60 [29].
ManiS Task: Hiera applied on hand crops also outperforms the other ap-
proaches in this task, with the hand version leading at 73.2% accuracy and
a 51.2% macro F1 score. However, RGBConvPose3D with hand inputs shows
slightly better m-Prec. (+0.5%). Looking at class-wise performance in Fig. 4,
the Hiera family generally delivers the best results across manipulation stages,
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particularly in the hold and operate stages, where the hand version significantly
outperforms others. However, other methods like RGBPoseConv3D-Hand exhibit
better precision in the grasp and release stages. Despite Hiera-Hand achieving
relatively better performances in the hold and operate stages with F1 scores
above 40%, the transitional stages of grasp and release remain challenging.
Confusion matrices can be found in the supp. materials.
Comparing full-body and hand-region inputs: In both tasks, hand variants
consistently outperform their body counterparts in terms of F1 score. Looking
at Fig. 4, this difference is more pronounced in certain classes depending on the
method. For instance, Hiera-Hand outperforms its body variant more notably in
the hold and operate stages, while the body version performs better on release
with higher recall. In the case of RGBPoseConv3D, the hand variant shows
notable improvements in the operate and release stages, while performing on
par with the body variant on hold.

Indeed, hand-regions allow models to focus more directly on the main area of
interest, which likely contributes to their improved performance. However, the
body input also contains additional contextual information that could be valu-
able. For instance, the orientation and posture of the body, along with attentional
cues, could help distinguish between intentional and unintentional hand move-
ments, which is crucial for differentiating between hold and operate. It would
be interesting to explore ways to leverage both hand-focused and full-body in-
formation together. We leave this for future work.
On the effectiveness of pose-only recognition: In OiH task, using pose-
alone especially body-pose is indeed insufficient to recognize OiH state. This is re-
flected in Tab. 2, where RGBPoseConv3D-Body outperforms PoseConv3D-Body
by a large margin in terms of F1 score. The same applies to RGBPoseConv3D-
Hand and PoseConv3D-Hand, though with a smaller difference, likely due to
the fact that hand pose implicitly contains information about objects in hand
to some extent, whereas body-pose (with only the wrist keypoint as hand in-
formation) does not. Interestingly, PoseConv3D-Hand performs on par with
RGBPoseConv3D-Body, indicating the effectiveness of hand-pose keypoints. In
ManiS task, we can see a similar trend with RGBPoseConv3D outperforming
PoseConv3D.

Looking at F1 scores in Fig. 4, with the body inputs, having appearance
cues helps more notably with release, hold, and grasp while pose-only per-
forms slightly better on operate. This shows that while body-pose can be ef-
fective when manipulating an object, other stages indeed need appearance cues.
With hand inputs, appearance cues help more with operate and release while
performing more closely to each other on hold and grasp.

5.2 Segmentation Results

OiH Task: Tab. 3 reports the segmentation results obtained with the meth-
ods discussed in Sec. 4.3. In terms of segmental F1 (S-F1), both SS-TCN and
MS-TCN outperform the sliding-window approach, which is expected since the
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Method T1: OiH T2: ManiS
S-Prec. S-Rec. S-F1 F-Acc. F-Prec. F-Rec. m-S-Prec. m-S-Rec. m-S-F1 Edit F-Acc. m-F-F1

Sliding-Window 18.5 87.3 30.5 85.4 83.4 67.0 13.1 78.6 22.1 34.2 73.2 51.2
SS-TCN [5] 41.2 81.0 54.6 86.5 84.2 70.3 28.9 64.2 38.9 61.6 77.7 53.9
MS-TCN [5] 54.7 81.0 65.3 86.2 83.2 70.5 41.7 64.5 49.6 66.1 78.1 54.0
Table 3: Comparison of TAS methods. S-{metric} refers to segmental, F-{metric} to
frame-based, and m-{metric} to macro.

Fig. 5: Class-wise segmental: Precision, Recall, and F1.

sliding-window method cannot leverage long-range temporal context. These meth-
ods improve segmental precision (S-Prec.) by removing spurious short term pre-
dictions which strongly affect this metric. Additionally, they also slightly improve
frame-based metrics. When comparing SS-TCN and MS-TCN, MS-TCN further
improves the segmental metrics while maintaining the same frame accuracy.
ManiS Task: Here, MS-TCN also outperforms the other models largely due
to the improvement on the precision metric as in the OiH task, at the cost of
only a slight degradation of the recall (esp. for grasp). We can also notice that
the frame-based metrics improves, showing that some regularization helps here
as well. In general, these results highlight that multiple stages are are beneficial
for handling the task’s complexity, unlike in OiH where more stages did not
improve frame-based metrics. Fig. 5 shows that MS-TCN consistently achieves
the highest F1 scores across all classes.
Qualitative Examples: Fig. 6 shows qualitative examples (QEs) of predicted
segments. In QE1, all methods perform well on both tasks, although MS-TCN
fails to predict the first grasp segment, likely due to over-smoothing. In QE2,
while all methods perform well on the OiH task, they struggle to accurately
predict the hold segment in the ManiS task. This is due to slight hand motion
made by the person while passively holding the object, leading the methods to
predict operate instead. In this case, the hand-region alone does not provide
enough context to determine whether the person is intentionally moving the ob-
ject. In QE3, the predictions are of lower quality. For example, in the ManiS
task, background is incorrectly predicted as grasp, due to confusion between
the motions of pointing and grasping. Also, the last release mostly is predicted
as operate while in this stage there is no object in hand. In the OiH task, all
methods struggle to accurately predict the boundaries of the OiH state, espe-
cially when the hands are close to the object during the release.

These observations again highlight the difficulty of modeling hands in action
in the wild, where hand movements can extend beyond object manipulation
(e.g., pointing), objects come in varying shapes and sizes, and multiple people
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Fig. 6: Qualitative results of predicted segments for hand interaction sequences in
ChildPlay-Hand. The left figure corresponds to the ManiS task, and the right figure
to the OiH task. Hand-region frames for each segment are highlighted using the same
color as their label, representing the key moments within each segment. Note that the
hand regions are cropped using the procedure discussed in Sec. 4.2.

may interact with the same object or be in close proximity, making accurate
prediction of hand manipulations challenging.

6 Conclusion

In this work, we introduced ChildPlay-Hand, a novel dataset of hand manipu-
lations in the wild. This dataset is unique for its rich annotations and scenes
featuring multiple people interacting naturally with objects and each other in
uncontrolled settings. These annotations enable the use of ChildPlay-Hand for
a variety of tasks and protocols, including spatio-temporal action localization,
pre-segmented action recognition, and human-object interaction. Future research
can also leverage the accompanying gaze labels to explore the coordination be-
tween manipulations and visual attention. In this work, we proposed two spe-
cific tasks under recognition and temporal segmentation protocols: object in
hand (OiH) and manipulation stages (ManiS). We benchmarked various spatio-
temporal models with varied modalities and input types as well as segmentation
models, on these tasks. Our findings indicate that ChildPlay-Hand can serve as
a challenging benchmark for understanding hands in action from a third-person
view in uncontrolled settings.
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ChildPlay-Hand: A Dataset of Hand
Manipulations in the Wild

Supplementary Material

7 More Statistics from the ChildPlay-Hand Dataset
The dataset partitioning for training, validation and testing follows the same
splits introduced in [33], as we found them to be well balanced for the new
annotation task already. Specifically, the class distributions across these splits
were fairly similar, as can be shown in Figure 7. However, it is worth noting that
the classes with a low frequency evidently feature even fewer instances after
splitting (e.g . the throw action has only 36 and 21 frames in the validation and
test sets, respectively).
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Fig. 7: Distribution of annotations per train/val/test splits. We show the distribution
in frames (on top of each bar) and in percentage (y-axis).

8 Implementation Details
Training instances: To create training instances for recognition methods, we
sample key frames to serve as the target class for classification and take frames
around them to create a short segment. We use every frame in the training set
as the middle frame for classification, except for the background class, where
we sample every third frame. Frames where the person is occluded are excluded
from both training and evaluation.
Training details of recognition: When full-body information is used as in-
put, an instance is a person, so we use two classification heads, one for each
hand (left and right). During training, we apply horizontal flip as the only aug-
mentation, flipping the ground-truth hand labels accordingly. However, when
the hand is used as the input, an instance is a single hand of a person, so we
use only one classification head and do not flip the labels when horizontal flip
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Fig. 8: Examples of the ground-truth body and pseudo-hand bounding boxes in
ChildPlay-Hand. These bounding boxes are used in the cropping strategy described
in Sec. 4.2 of the main submission to create input volumes for the networks.

is applied. The classification head consists of two MLPs with a ReLU activation
in between, which map the temporally mean-pooled features to one of the C
categories. We fine-tune all recognition networks for 15 epochs. For PoseConv3D
and RGBPoseConv3D models, we use SGD optimizer and set the learning rate
of the backbone to 0.0018 and the MLP heads to 0.018, with linear decay at
epochs 9 and 13. For Hiera models, we use Hiera-B version and finetune it using
the AdamW [23] optimizer with a learning rate of 2e-5 for the backbone and 2e-4
for the MLP heads, applying cosine decay as the scheduler.
Training details of segmentation: We train MS-TCN for 50 epochs using the
Adam [16] optimizer with a learning rate of 0.0005, selecting the best checkpoint
based on the validation set. The number of layers is set to 10 for both SS-TCN
and MS-TCN, with the number of stages set to 4 for MS-TCN.

9 Generating Pseudo-Hand Bounding Boxes
We generate pseudo-hand bounding boxes as follows: (1) we define the center of
the box at the wrist keypoint, extended by 50% of the elbow-to-wrist limb, and
(2) set the box size to 40% of the smallest side of the body bounding box. Note,
while a hand detector could typically be used, detecting and associating hands
with body bounding boxes in our unconstrained setting is challenging. Using
hand keypoints from a whole-body pose estimator is another option, but these
keypoints can be noisy due to self/object occlusions, leading to inaccurate hand
bounding boxes. Instead, we find that the wrist and elbow keypoints from 2D
body pose estimators like HRNet [34] is robust enough for generating pseudo-
hand bounding boxes. See illustrations in Figure 8.

10 On confusion among manipulation categories
After looking at the confusion matrices in Fig. 9 and Fig. 10, we can see a com-
mon trend that the major confusion, especially for classes with fewer instances,
namely grasp and release, occurs with the majority classes, background and
operate. One way to mitigate this is to perform balanced sampling to create
balanced mini-batches or apply different weights for the classes at the loss level.
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Fig. 9: Confusion Matrices of PoseConv3D, RGBPoseConv3D, and Hiera networks
with body input.

Fig. 10: Confusion Matrices of PoseConv3D, RGBPoseConv3D, and Hiera networks
with hand input.

Moreover, there is an inherent confusion between hold and operate since these
two classes share the same OiH state, but what differentiates them is not only
motion but also intention, making it challenging to distinguish between them,
even during annotation. Gaze can potentially help in such cases by acting as a
cue to infer intention.
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