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Abstract

Heterogeneous Face Recognition (HFR) systems aim to
enhance the capability of face recognition in challenging
cross-modal authentication scenarios. However, the signif-
icant domain gap between the source and target modalities
poses a considerable challenge for cross-domain matching.
Existing literature primarily focuses on developing HFR ap-
proaches for specific pairs of face modalities, necessitating
the explicit training of models for each source-target com-
bination. In this work, we introduce a novel framework de-
signed to train a modality-agnostic HFR method capable
of handling multiple modalities during inference, all with-
out explicit knowledge of the target modality labels. We
achieve this by implementing a computationally efficient au-
tomatic routing mechanism called Switch Style Modulation
Blocks (SSMB) that trains various domain expert modula-
tors which transform the feature maps adaptively reducing
the domain gap. Our proposed SSMB can be trained end-to-
end and seamlessly integrated into pre-trained face recogni-
tion models, transforming them into modality-agnostic HFR
models. We have performed extensive evaluations on HFR
benchmark datasets to demonstrate its effectiveness. The
source code and protocols will be made publicly available.

1. Introduction
Face recognition (FR) technology has become a pop-

ular choice for access control due to its efficiency and
user-friendliness, often achieving human-level performance
[23]. However, FR systems typically operate within a ho-
mogeneous domain, using RGB camera-captured facial im-
ages for both enrollment and matching. Nevertheless, there
are situations where matching in a heterogeneous setting,
incorporating different sensing modalities is advantageous.
For instance, NIR cameras offer improved performance in
varying lighting conditions and spoofing resilience [26, 10],
yet developing an NIR-based FR system requires large-

scale annotated data which is often difficult to get. Hetero-
geneous Face Recognition (HFR ) systems address this by
enabling cross-domain matching without the requirement of
enrolling with the target modality, proving valuable in chal-
lenging conditions. Heterogeneous face recognition (HFR)
refers to the process of recognizing faces across different
sensor modalities or image domains. For example, an HFR
system can perform biometric matching between a gallery
of identities enrolled using RGB images with images cap-
tured from another sensor like NIR CCTV cameras, thermal
cameras, low-resolution video, and so on. In essence, HFR
systems enable cross-domain matching without the require-
ment of enrollment with each of the domains. Such systems
extend FR’s utility to scenarios like low-light or long-range
recognition using various imaging modalities. However,
the domain gap between modalities makes this challenging
[17]. Further, the limited availability of paired data makes
this even more challenging to train these models.

Most of the existing works in literature try to reduce the
domain gap using a pair of source target modality combi-
nations. Several methods have been reported in the litera-
ture to address the heterogeneous face recognition task. In-
variant Feature-based approaches like Difference of Gaus-
sian (DoG) and scale-invariant feature transform (SIFT)
have been proposed to mitigate the domain gap in HFR
[27, 21]. Common-space projection methods represent an-
other category, focusing on learning mappings that project
diverse facial modalities into a shared subspace to bridge
the domain gap [20, 16]. Recent advancements in HFR
methods, such as DVG and generative adversarial network
(GAN)-based synthesis, offer high-quality image genera-
tion, albeit at increased computational costs, limiting prac-
tical utility [9, 45]. A novel approach introduced in [5],
termed Domain-Specific Units (DSU), proposes that CNNs’
high-level features trained on visible spectrum data can en-
code images from other modalities, implying their domain-
independence. In contrast, Prepended Domain Transform-
ers (PDT) [14] augments a pre-trained FR network with a



dedicated module for the target modality, transforming it
into an HFR network. In a different approach, outlined
in [11], different modalities are treated as distinct styles
and cross-modal matching is achieved through the modula-
tion of feature maps in the target modality using conditional
adaptive instance modulation (CAIM).

In most of these works, HFR is addressed by using a pair
of modalities, a reference modality (often RGB images),
and a target modality such as thermal, NIR, SWIR, and so
on. Training with a pair of modalities requires one to know
what modalities to expect at test time, and the HFR model
needs to be trained for that specific pair of modalities. Also,
there exist separate computational paths for two modalities,
this is problematic in scenarios where this information is
not available, for instance in the case of low-resolution and
high-resolution images; passing high-resolution images in
the low-resolution path may degrade performance. This
limitation restricts their scalability as they need to be trained
for each pair of modalities, which is impractical when deal-
ing with a wide range of possible modalities. This becomes
rather challenging as HFR is already a data-limited prob-
lem.

Knowing that there is shared information due to the face
structure across modalities it could be possible to develop a
model which is modality-agnostic and universal for modali-
ties across the board. In this work, we propose Switch Style
Modulation Blocks (SSMB) which introduces modality-
agnostic HFR by automatically routing input images, elim-
inating the need to know the modality during testing. This
automatic routing mechanism enhances computational effi-
ciency and broadens the applicability of the model to vari-
ous face modalities using a single universal model. More-
over, this approach is data-efficient, requiring only a lim-
ited number of samples from different modalities for train-
ing. By exploiting shared information across face represen-
tation in various modalities, the SSMB approach addresses
key challenges in HFR, making it a versatile and efficient
solution for cross-modal face recognition.

The proposed approach is sensor-agnostic and capable
of processing input from diverse sources, including CCTV
cameras, mobile phones, infrared sensors, and hand-drawn
sketches. This versatility is vital in applications like surveil-
lance, where input varies widely. Even in scenarios with
low-quality images, such as old databases, sensor-agnostic
HFR systems can be useful for recognition tasks. They can
also seamlessly integrate with emerging technologies like
augmented reality, virtual reality, and robotics, which em-
ploy various sensors to capture facial data.

The main contributions of this work can be summarized
as follows:

• We introduce a modality-agnostic Heterogeneous Face
Recognition (HFR) approach, expanding the applica-
bility of HFR beyond pairs of specific modalities.

• The proposed approach is data and computationally ef-
ficient.

• We introduce new protocols to evaluate the perfor-
mance using the MCXFace dataset.

• We have performed a comprehensive evaluation of
the proposed approach across various protocols and
datasets demonstrating its effectiveness.

Finally, the protocols and source codes will be made
available publicly 1.

2. Related works
Heterogeneous Face Recognition (HFR) methods aim to

match faces from images taken with different sensing tech-
nologies. However, the domain gap between these modal-
ities can reduce the effectiveness of face recognition sys-
tems in directly comparing multi-modal images. Thus, it’s
essential for HFR approaches to bridge this modality gap.
This section reviews recent approaches proposed to tackle
the domain gap.

Invariant feature-based methods: In Heterogeneous
Face Recognition (HFR), various strategies have been pro-
posed in the literature to extract invariant features across
different sensing modalities. Liao et al. [27] presented a
method combining the Difference of Gaussian (DoG) filters
with multi-scale block Local Binary Patterns (MB-LBP) for
invariant feature extraction. Klare et al. [21] employed Lo-
cal Feature-based Discriminant Analysis (LFDA), incorpo-
rating Scale-Invariant Feature Transform (SIFT) and Multi-
Scale Local Binary Pattern (MLBP) as descriptors. Zhang
et al. [46] introduced Coupled Information-Theoretic En-
coding (CITE), aiming to maximize mutual information
across modalities in quantized feature spaces. The use of
Convolutional Neural Networks (CNNs) has been explored
for HFR, demonstrating its effectiveness in this domain
[16, 17]. Roy et al. [38] developed a Local Maximum Quo-
tient (LMQ) to identify invariant features in cross-modal fa-
cial images. In [31], a method for composite sketch recogni-
tion was proposed, using Scale-Invariant Feature Transform
(SIFT) and Histogram of Oriented Gradient (HOG) for fea-
ture extraction and integrating these at the score level with
a linear function to combine facial components.

Common-space projection methods: Common-space
projection methods aim to project facial images from di-
verse modalities into a single subspace, reducing the do-
main gap [20, 16]. Lin and Tang [28] introduced com-
mon discriminant feature extraction for cross-modal im-
age alignment. Yi et al. [44] applied Canonical Correla-
tion Analysis (CCA) to NIR and VIS images. Lei et al.

1https : / / gitlab . idiap . ch / bob / bob . paper .
ijcb2024_moe_hfr
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[24, 25] developed regression-based mappings for reduc-
ing the modality gap. Sharma and Jacobs [39] used Par-
tial Least Squares (PLS) for linear mapping across modal-
ities. Klare and Jain [22] projected face images onto a lin-
ear discriminant analysis subspace using prototype similar-
ities. De Freitas et al. [5] showed that CNN high-level fea-
tures are domain-agnostic, utilizing Domain-Specific Units
(DSUs) for domain gap minimization. Liu et al. [30]
introduced Coupled Attribute Learning for HFR (CAL-
HFR) and Coupled Attribute Guided Triplet Loss (CAGTL)
for shared space mapping without manual labeling. Re-
cently, Liu et al. [32] proposed a semi-supervised method,
Modality-Agnostic Augmented Multi-Collaboration repre-
sentation for HFR (MAMCO-HFR), leveraging network
interactions for discriminative information extraction and
introducing a technique for adversarial perturbation-based
feature mapping.

Synthesis based methods: Synthesis-based methods in
Heterogeneous Face Recognition (HFR) generate synthetic
images in the source domain from the target modality, en-
abling the use of conventional face recognition networks
[41, 9]. Wang et al. [42] developed a patch-based synthetic
approach using Multi-scale Markov Random Fields. Liu et
al. [33] utilized Locally Linear Embedding (LLE) for pixel-
wise matching between VIS images and sketches. Cycle-
GAN’s introduction for unpaired image translation [47] has
facilitated transforming target domain images to the source
domain [4]. Zhang et al. [45] employed Generative Adver-
sarial Networks (GANs) for generating photo-realistic VIS
images from thermal images via GAN-based Visible Face
Synthesis (GAN-VFS). The Dual Variational Generation
(DVG-Face) framework [9] leverages GANs for VIS image
synthesis, showing good performance in HFR benchmarks.
Liu et al. [29] introduced Heterogeneous Face Interpretable
Disentangled Representation (HFIDR) for latent identity in-
formation extraction and cross-modality synthesis. Luo et
al. [34] introduced a Memory-Modulated Transformer Net-
work (MMTN) which addresses HFR as an unsupervised,
reference-based generation problem, combining prototypi-
cal style patterns and style blending. Recently, George et
al. [14] proposed Prepended Domain Transformers (PDT),
a module prepended to a pre-trained FR network for cross-
domain feature alignment, eliminating the need for explicit
source domain image generation.

Limitations of HFR approaches: Many of the recent
HFR methods adopt a synthesis-based approach. However,
this requires the synthesis of high-fidelity RGB images from
the target modality and is computationally expensive. Fur-
ther, most of the methods are trained explicitly for a pair
of modalities, and they need to be trained for every pair of
modalities separately. This makes the problem more chal-
lenging as the HFR problem is already data-limited.

3. Proposed method

Most of the approaches proposed in HFR specifically fo-
cus on cross-domain matching between a pair of modalities
such as Visible-Thermal, Visible-Near Infrared, and so on.
This requires the HFR models to be trained for each pair of
modalities explicitly. This also reduces the opportunities to
capture generic features and cross-modal consistencies in an
already data-scarce domain like HFR. Further, most of the
methods available in the literature assume that the label for
modality is already known and uses an asymmetric pipeline
for processing the data– meaning the dataflow is different
for source and target modalities.

In this work, we go beyond the traditional notion of het-
erogeneous face recognition and design a framework that
can handle multiple face imaging modalities at the same
time without needing explicit labels for different modali-
ties. We propose to use an efficient mixture of expert-type
routing mechanism inside our framework which can auto-
matically infer the path for the specific input modality. The
proposed framework could be used for matching between
multiple modalities (not just reference and target) without
any labels on the modalities. This makes our approach a
universal way of doing cross-modality face matching.

3.1. Definition of HFR

In Heterogeneous Face Recognition (HFR ), we consider
a domain D containing samples X ∈ Rd with a marginal
distribution P (X) and dimensionality d. A face recogni-
tion (FR) system, T fr, aims to associate these samples with
labels Y through a model parameterized by Θ, described
by the conditional probability P (Y |X,Θ). During training,
this model learns from a dataset of faces X = x1, x2, ..., xn

and corresponding identity labels Y = y1, y2, ..., yn via su-
pervised learning.

In HFR , we differentiate between a source domain Ds =
Xs, P (Xs) and a target domain Dt = Xt, P (Xt), both
linked by the label space Y . The HFR problem involves
finding Θ̂ to align conditional probabilities across domains,
i.e., P (Y |Xs,Θ) = P (Y |Xt, Θ̂).

In our framework, we go beyond HFR and propose
a Modality Agnostic Heterogeneous Face Recognition
(MAHFR) which can include multiple modalities of images

Dt
j = Xt

j , P (Xt
j), for different modalities j such as ther-

mal, near infrared and so on.
And we formulate the MAHFR problem as estimating

Θ̂ to align conditional probabilities across domains, i.e.,
P (Y |Xs,Θ) = P (Y |Xt

j , Θ̂).

3.2. Overall architecture

The architecture of the framework proposed is shown in
Fig. 1. We start with a pre-trained face recognition model
and insert a trainable module between the frozen layers.
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Figure 1. Architecture of the proposed framework, the Switch Style Modulation Blocks adaptively routes the samples (SSMB ) such that
identities for multiple face modalities result in a modality agnostic unified embedding. The embeddings can be used for homogeneous or
heterogeneous matching between any pair of modalities.

The objective is that this architecture produces similar em-
beddings across different face modalities for a specific sub-
ject, such that embedding can be used for biometric match-
ing with a cosine similarity metric. The unified embedding
obtained is modality agnostic and can be used for both ho-
mogeneous and heterogeneous experiments. These SSMB
modules need to be adaptive in the sense that the operation
performed by these blocks should change based on the input
sample. The details of the components of this framework
are given in the following sub-sections.

3.3. Switch Style Modulation for HFR

The primary challenge in cross-modal face recognition
lies in bridging the domain gap between different modal-
ities. Conditional Adaptive Instance Modulation (CAIM),
as proposed in the works by George et al. [11, 12], ad-
dresses this issue by integrating instance modulation mod-
ules within the layers of a pre-trained Face Recognition
(FR) network. These modules, placed between the net-
work’s frozen layers, are controlled by an external gate,
leading to an asymmetric pipeline that necessitates modality
labels at the inference stage for selecting the computational
path to use.

Building on this, our approach introduces an adaptive
mechanism that automatically routes samples from differ-
ent modalities, eliminating the dependency on an external
gating mechanism. This allows for the development of
a modality-agnostic representation within a unified frame-
work making HFR more efficient. The architecture of our
proposed modulation block, denoted as the SSMB , is illus-
trated in Fig. 2. We simplify the design of the modulators
with a single fully connected layer. We use an adaptive rout-
ing mechanism based on a Mixture of experts framework for
sample-based routing.

Mixture of experts (MoE),[18, 19, 40] enables neural
networks to have sample dependant parameters thereby en-
hancing the abilities of the base model. In the context of
large language models (LLMs), MoE [40] routes a token

representation x dynamically to top-k experts, from a pool
of {Ei(x)}Ni=1 of N experts. A router module computes
logits over the number of experts available with a soft-
max operation and top-k gate values and experts are se-
lected. The output of the MoE layer can be computed as
the weighted combination of the gate values and expert out-
puts.

y =
∑
i∈T

pi(x)Ei(x). (1)

where, T is the set top-k experts selected, and Ei(x) the
output of ith expert.

Switch Transformers, as proposed by Fedus et al. [7],
introduced a concept of sparsely activated expert models
known as switch layers. In this design, for each input
sample, the network activates only a subset of its network
blocks, thereby maintaining a constant computational re-
quirement. Contrary to other works [40, 37] where the rout-
ing is performed to k > 1 expert, switch transformer route
only to a single expert, referred to as switch routing. The
gate value pi(x) in Equation 1 allows the differentiability
of the router module. They also add a load balance loss as
an auxiliary loss to balance the routing of samples to differ-
ent experts.

In this work, rather than establishing distinct models for
various segments of the data, we solely utilize modulators
within the Mixture-of-Expert (MoE) framework. Specifi-
cally, we diverge from the traditional MoE approach and
construct a StyleSwitch Layer, signifying that modulation is
exclusively conducted through routers. We adopt the switch
layers where only one expert is activated for a specific sam-
ple. This approach lets the model infer sample-dependent
modulation parameters at the same time keeps the compu-
tational burden small.

For a feature map F, of dimension C × H × W , we
first compute the mean and std deviation of the feature map
along channel dimension which are concatenated as the in-
put for the StyleSwitch layer.



RouterInput = [µ(F),σ(F)] (2)

The router is implemented as a single fully connected layer
with N output nodes and a softmax layer, where N is the
number of experts.

To estimate the modulation parameters – scale and shift,
we use a StyleExpert layer, which is implemented as a single
fully connected layer. The weight matrix of the StyleExpert
layer is initialized as an identity matrix so that the training
is stable. The StyleSwitch layer performs the routing and
obtains the final output. Only one expert is activated due to
the top-1 routing mechanism. The output of the StyleSwitch
module has the dimension 2C, where C is the number of
input channels, we split this to get the new modulation pa-
rameters.

σs, µs = split(StyleSwitchOutput) (3)

Finally, we scale and shift the instance normalized
feature-maps using the output of the StyleSwitch layer. We
further add a residual connection for stable training. Overall
the operation of the SSMB can be represented as:

SSMB(F) =
1

2
(σs

(
F− µ(F)

σ(F)

)
+ µs + F) (4)

3.4. Training paradigm

To train this module in an end-to-end fashion we use con-
trastive loss together with a teacher-student framework sim-
ilar to the one proposed in [13]. We will denote the network
we are training (Fig. 1) as a student network in this context.
For training, we need the labels for the reference modality
samples (VIS) during training, but explicit labels for non-
source modalities are unnecessary as they are grouped as a
target modality. We create pairs of samples from the source
modality and target modality, note that this target modality
includes any modality different from the source modality.
Pairs with the same identity have a label 1 and pairs with
dissimilar identity has a label 0. We use three loss functions
in our training.

First, we use a cosine contrastive loss function, denoted
by LC to align the embeddings of different modalities to-
gether, such that the same identity clusters together and dif-
ferent identities are pushed apart:

LC(eSsi
, eSti

, yi) =(1− yi) ·max

(
0,

eSsi
· eSti∥∥eSsi

∥∥
2

∥∥eSti

∥∥
2

−m

)

+ yi ·

(
1−

eSsi
· eSti∥∥eSsi

∥∥
2

∥∥eSti

∥∥
2

)
(5)
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Figure 2. Architecture of the Switch Style modulation block
(SSMB). The inputs and outputs of this module are feature-maps
of dimension C ×H ×W .

Where m denotes the margin, eSsi
and eSti

denote the
embedding for the source modality and target modality
from the student network (under training).

Second, due to the limited size of the HFR datasets we
use teacher-student supervision using an identity loss com-
puted from the same pretrained face recognition backbone.
It is to be noted that this is applied only to the images in the
reference modality as the teacher model is to be used for the
visible modality [13].

We use the following Teacher Student Identity loss
LTSI :

LTSI(eTsi
, eSsi

) =

(
1−

eTsi
· eSsi

∥eTsi
∥2∥eSsi

∥2

)
(6)

where eTsi
denotes the embedding for the source modal-

ity image from the pre-trained teacher.
Third, to balance the utilization of different experts we

also use a load balancing loss Lb [7].
The overall loss function to optimize can be written as:

L(eSsi
, eSti

, eTsi
, yi) =(1− γ) · LC(eSsi

, eSti
, yi) (7)

+ γ · LTSI(eTsi
, eSsi

) + α · Lb

(8)

where γ is a hyper-parameter that influences the relative
importance of contrastive loss and teacher-student supervi-
sion. Parameter α controls the contribution of load balanc-
ing loss in the overall loss.

3.5. Face Recognition backbone

For reproducibility, we utilized the publicly available
pre-trained Iresnet100 face recognition model from Insight-
face [1], trained on the MS-Celeb-1M dataset featuring over
70,000 identities 2. This model processes three-channel im-
ages of 112× 112 pixels. Faces are aligned and cropped to

2http://trillionpairs.deepglint.com/data
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match eye center coordinates with specific reference points
before analysis. For single-channel inputs (e.g., NIR or
thermal images), the channel is replicated across all three
channels without modifying the network structure follow-
ing [12].

3.6. Implementation details

The proposed approach is trained end-to-end, supervised
by three distinct loss functions as described in the previous
section. For images in the visible spectrum, we compute
the identity loss using both the pre-trained teacher back-
bone and the student model equipped with SSMB layers.
Additionally, a load balancing loss and a contrastive cosine
loss are incorporated into the optimization process during
training. The implementation framework utilizes PyTorch
and integrates with the Bob library [2, 3]3. We employ
the Adam Optimizer with an initial learning rate of 0.0001,
trained for 50 epochs with a batch size of 48. The margin
parameter m is set to zero, and the hyper-parameter γ is
set to 0.50. The α parameter is set as 0.01 in all the ex-
periments. We initialize the network layers of our student
model from the weights of the pre-trained face recognition
network. We use three SSMB blocks in the initial layers of
the student model. The weights of the StyleExperts layer
are initialized as an identity matrix so that it produces the
same embedding at the beginning of training. Throughout
the training phase, only the SSMB layers are adapted, while
the remainder of the layers remain frozen. During the in-
ference phase, the teacher network is removed, allowing
the same student network to process both source and tar-
get domain samples without the need for modality labels.
This enables the generation of modality-agnostic facial em-
beddings. Verification and identification of experiments are
then performed using cosine distance metric on these uni-
fied embeddings.

4. Experiments
Databases used: To evaluate the performance of

MAHFR we need to perform experiments on a dataset that
contains images of subjects in multiple different modalities.
We created new protocols in the MCXFace dataset to facil-
itate these evaluations.

MCXFace Dataset: The MCXFace Dataset [14] in-
cludes images of 51 individuals taken in diverse lighting
conditions across three sessions, featuring multiple chan-
nels such as RGB, thermal, near-infrared (850 nm), short-
wave infrared (1300 nm), depth, stereo depth, and RGB-
estimated depth. All channels are synchronized for spa-
tial and temporal consistency. The dataset is divided into
five folds per protocol, with subjects randomly divided into
training or development groups. Annotations for eye cen-

3https://www.idiap.ch/software/bob/

ters are included for all images. Protocols follow the nam-
ing scheme < SOURCE > − < TARGET > −split <
split >. The dataset is available at 4.

Protocols: The protocols shipped with the dataset in-
clude both homogeneous and heterogeneous experimental
protocols. For example, V IS−THERMAL− split4 de-
notes a heterogeneous experiment with RGB (VIS) as the
source for enrollment and THERMAL as the probe chan-
nel, aligning with the third split in the VIS-THERMAL five-
fold partitions. We have introduced a new set of protocols,
V IS − UNIV ERSAL − split < split >, to benchmark
MAHFR capabilities, where enrollment samples come from
the VIS domain and probe samples can be any modality
(Thermal, Near Infrared, or Shortwave Infrared). Each pro-
tocol features a training set with identities in both SOURCE
and TARGET modalities and a development (dev) set with
SOURCE images for enrollment and TARGET images for
probing. Training and model selection are conducted within
the training set, while the dev set scores are used solely for
comparison, not training or model selection. For thorough
evaluation, experiments should run across all five splits of
the protocol, reporting mean values and standard deviations.
We additionally compute the modality-wise performance
separately to compare different methods.

HFR datasets: In addition to performing experiments in
the MCXFace dataset, we also evaluate the performance of
the proposed approach in standard HFR benchmarks where
only one source target modality pair is present. The Tufts
Face Database [35], features face images across various
modalities, designed for face recognition tasks. Specifi-
cally, for assessing VIS-Thermal face recognition perfor-
mance, we use the thermal images within this dataset, with
113 identities, following standard protocol in [9]. The
SCFace dataset [15], consists of high-quality images for
enrollment, and lower-quality samples from surveillance
cameras at varying distances as probes. We use the most
challenging “far” protocol for reporting the results. The
CUHK Face Sketch FERET Database (CUFSF), introduced
by Zhang et al. [46], consists of 1194 faces from the FERET
dataset [36], each paired with an artist-drawn sketch. These
sketches, often exaggerated, present a challenge for the face
recognition task. We follow protocols in the previous works
for comparison [14].

Baseline methods: We compare the proposed approach
against different methods in recent literature specifically
the work on domain-specific units DSU [5], and its re-
implementation using Iresnet100 [14]. Prepended domain
transformer [14] and CAIM [11]. Since these methods were
originally designed for a pair of modalities, we maintain the
asymmetric nature for a fair comparison– meaning, separate
paths for the SOURCE and TARGET modalities. We use
the same pre-trained face recognition model and weights in

4https://www.idiap.ch/dataset/mcxface
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Table 1. Experimental results on VIS-UNIVERSAL protocol of the MCXFace dataset– aggregated performance.
Modality AUC EER Rank-1 VR@FAR=0.1% VR@FAR=1%

DSU [14] 95.57±0.80 10.24±0.88 84.21±0.94 67.89±1.05 78.13±1.20
PDT [14] 96.16±1.60 9.60±2.07 80.90±2.49 64.63±5.87 76.30±2.49

CAIM [11] 99.45±0.12 3.67±0.33 90.92±1.30 79.64±2.46 91.58±0.68

SSMB 99.70±0.08 2.59±0.28 92.80±0.71 84.04±1.71 94.50±1.44

Table 2. Experimental results on VIS-UNIVERSAL protocol of the MCXFace dataset–modality-wise performance breakdown.
Model Modality AUC EER Rank-1 VR@FAR=0.1% VR@FAR=1%

DSU [14] NIR 100.00±0.00 0.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00
PDT [14] NIR 99.89±0.15 0.98±1.34 97.72±3.58 91.23±12.48 96.48±4.87

CAIM [11] NIR 100.00±0.00 0.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00
SSMB NIR 100.00±0.00 0.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00

DSU [14] SWIR 100.00±0.00 0.21±0.10 99.80±0.20 99.38±0.47 99.94±0.13
PDT [14] SWIR 99.35±0.89 2.57±3.31 90.61±12.82 83.25±22.46 91.66±11.42

CAIM [11] SWIR 99.99±0.02 0.27±0.25 99.60±0.48 98.83±1.40 99.89±0.25
SSMB SWIR 100.00±0.00 0.18±0.11 99.86±0.27 99.67±0.26 100.00±0.00

DSU [14] THERMAL 90.05±2.23 17.86±1.97 55.12±3.21 27.92±6.15 51.13±5.48
PDT [14] THERMAL 91.38±3.80 16.07±4.14 56.55±9.41 30.33±10.34 52.74±11.01

CAIM [11] THERMAL 98.11±0.39 6.95±0.60 74.51±3.45 38.86±9.70 70.82±4.16
SSMB THERMAL 98.89±0.27 5.08±0.79 79.41±2.28 43.74±6.51 78.93±6.67

all these models and the proposed model.
Metrics: We evaluate the models based on several per-

formance metrics frequently used in recent literature, such
as Area Under the Curve (AUC), Equal Error Rate (EER),
Rank-1 identification rate, and Verification Rate at specific
false acceptance rates (0.01%, 0.1%, 1%, and 5%).

4.1. Experimental results

In this section, we compare the effectiveness of the pro-
posed approach for MAHFR. We further perform evalua-
tions with standard HFR datasets to show the effectiveness
of the proposed approach.

MAHFR performance on MCXFace dataset: We have
performed experiments on the baseline methods and the
proposed approach on the MCXFace dataset on the newly
introduced V IS−UNIV ERSAL protocols. Here the ag-
gregate performance over all the modalities is computed.
The results of these protocols are shown in Tab. 1. It can
be seen that the proposed approach outperforms other meth-
ods by a large margin. For three different probe modalities
combined (near-infrared, thermal, and shortwave infrared),
the proposed approach achieves an average verification rate
of 94.50 %. To analyze the performance further, we further

Table 3. Experimental results on VIS-UNIVERSAL protocol of
the MCXFace dataset.

Experts (N) AUC EER Rank-1

1 99.66±0.13 2.85±0.50 91.89±1.17
2 99.65±0.05 2.87±0.32 91.54±0.51
3 99.64±0.10 2.82±0.53 91.54±1.43
4 99.70±0.08 2.59±0.28 92.80±0.71
5 99.68±0.07 2.75±0.41 92.03±1.74

separate the performance of the models in different modali-
ties. The results are shown in Tab. 2. From this table, it can
be seen that out of the modalities present, thermal modality
is the most challenging one. The proposed approach sig-
nificantly improves the performance in the thermal channel
achieving an average verification accuracy of 78.9% at an
FAR (1%). The proposed method achieves 100 % verifica-
tion accuracy at FAR 1% operating point for both NIR and
SWIR modalities. Overall, the proposed approach signif-
icantly boosts the unified face recognition performance in
the MCXFace dataset.

Effect of number of experts: We have performed a set
of experiments to evaluate the change in performance with
the number of experts used. The results are shown in Tab.
3, it can be seen that we achieve the best performance when
the number of experts is four. Increasing the number of ex-
perts does not improve the performance further. It is to be
noted that the experts in our framework is a single fully con-
nected layer and the additional computational load required
for more experts is minimal.

Experiments with standard HFR datasets: We have
performed an extensive evaluation using three standard Het-
erogeneous Face Recognition (HFR) datasets to benchmark
our method against previously proposed approaches in the
literature. Specifically, the objective of these evaluations
was to compare the performance of our proposed method
in scenarios where only a single pair of source and target
modalities are present. We have conducted experiments us-
ing both one and two experts and have reported the per-
formance for both configurations. The Tufts Face dataset
evaluates the performance in the visible-thermal heteroge-
neous scenario. As seen in the results presented in Ta-



ble 4, our method outperformed other methods in terms of
the Verification rate (80.33% at 1% FAR) and achieved the
best Rank-1 accuracy with two experts. SCFace dataset ad-
dresses heterogeneity in terms of image quality, we specifi-
cally focus on the ‘far‘ protocol which has the lowest qual-
ity images. The results in Table 5, show that our method
attained the highest Rank-1 accuracy at 87.73% and the
second-best Equal Error Rate (EER) of 5.91%. Here the
best results are obtained with a single expert, this could be
because the source and target modality are RGB and the dif-
ference is only in the image quality. CUFSF dataset eval-
uates the performance of heterogeneous face recognition in
visible-to-sketch images, and from the results in Tab. 6 it
can be seen that the proposed approach achieves s Rank-
1 accuracy of 81.67% using two experts significantly out-
performing state-of-the-art methods. Overall, the proposed
method not only achieves competitive performance but of-
ten surpasses existing SOTA methods in the HFR dataset
protocols, highlighting its effectiveness.

Table 4. Experimental results on VIS-Thermal protocol of the
Tufts Face dataset.

Method Rank-1 VR@FAR=1% VR@FAR=0.1%

LightCNN [43] 29.4 23.0 5.3
DVG [8] 56.1 44.3 17.1
DVG-Face [9] 75.7 68.5 36.5
DSU-Iresnet100 [14] 49.7 49.8 28.3
PDT [14] 65.71 69.39 45.45
CAIM [11] 73.07 76.81 46.94

SSMB (N=1) 75.04 78.29 53.99
SSMB (N=2) 78.46 80.33 54.55

Table 5. Performance of the proposed approach in the SCFace
dataset.

Protocol Method AUC EER Rank-1

Far

DSU-Iresnet100 [14] 97.18 8.37 79.53
PDT [14] 98.31 6.98 84.19

CAIM [11] 98.81 5.09 86.05

SSMB (N=1) 98.77 5.91 87.73
SSMB (N=2) 98.67 6.36 86.82

5. Discussions
The proposed framework introduces a new way of

performing cross-domain face recognition in a modality-
agnostic manner. The model trained using our framework
can produce embeddings for any modality used in the train-
ing. The embeddings obtained share the same embedding
space and can be used for heterogeneous or homogeneous
matching. To enable this, we utilize a training paradigm
that leverages supervision from a teacher network – en-
abling stable training without overfitting. The addition of
multiple modalities at the training time with the adaptive
routing enables the network to dynamically adapt the pa-

rameters depending on the input feature maps. It is impor-
tant to note that specific modality labels are not required
at inference time, meaning any face image can be used as
the input to compute the representation of face embedding,
and the network routes the data automatically to produce
the embedding for the specific modality to maximize the
matching performance. This could be useful in scenarios
where specific source target modality pairs do not need to be
trained separately and greatly simplifies the HFR process.
It is worth noting that the StyleExperts in our framework is
lightweight, and the switch routing mechanism can be opti-
mized further to reduce computation at inference time.

Table 6. CUFSF: Rank-1 recognition rate in sketch to photo recog-
nition

Method Rank-1

IACycleGAN [6] 64.94
DSU-Iresnet100 [14] 67.06
PDT [14] 71.08
CAIM [11] 76.38

SSMB (N=1) 81.14
SSMB (N=2) 81.67

6. Conclusion

In this work, we introduce a novel modality-agnostic
framework capable of performing cross-domain face recog-
nition without the need for explicit modality labels. This
eliminates the need for training separate models for each
source-target pairing, allowing for the adoption of a single,
unified model. We achieve this by introducing trainable
Switch Style Modulation Blocks (SSMB) to dynamically
route input feature maps, effectively reducing the domain
gap with minimal computational overhead, thereby making
our solution both efficient and scalable. Our proposed ap-
proach thus facilitates mapping various face modalities into
a shared embedding space. Experiments on the MCXFace
dataset and standard HFR benchmarks demonstrate the ef-
fectiveness of our method. The source code and protocols
will be made available publicly.
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