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Abstract—Automatic classification of active tuberculosis
from chest X-ray images has the potential to save lives,
especially in low- and mid-income countries where skilled
human experts can be scarce. Given the lack of available
labeled data to train such systems and the unbalanced
nature of publicly available datasets, we argue that the
reliability of deep learning models is limited, even if they
can be shown to obtain perfect classification accuracy
on the test data. One way of evaluating the reliability
of such systems is to ensure that models use the same
regions of input images for predictions as medical experts
would. In this paper, we show that pre-training a deep
neural network on a large-scale proxy task, as well as
using mixed objective optimization network (MOON), a
technique to balance different classes during pre-training
and fine-tuning, can improve the alignment of decision
foundations between models and experts, as compared to
a model directly trained on the target dataset. At the
same time, these approaches keep perfect classification
accuracy according to the area under the receiver oper-
ating characteristic curve (AUROC) on the test set, and
improve generalization on an independent, unseen dataset.
For the purpose of reproducibility, our source code is made
available online.1

Index Terms—Computer-aided diagnosis, Tuberculosis,
Interpretability, Saliency mapping, Label balancing, Bias

I. INTRODUCTION

Chest radiography (CXR) has been a pivotal tool in
diagnosing and managing tuberculosis (TB) for over a
century, while its effectiveness largely depends on the
availability and expertise of human interpreters. Recent
advancements in artificial intelligence, particularly in

1https://biosignal.pages.idiap.ch/software/
paper-euvip24-refine-cad-tb/

computer-aided detection (CAD) software, have revolu-
tionized CXR analysis for TB detection. These software
applications not only automate CXR interpretation for
TB but also identify other non-TB radiographic abnor-
malities [1]. Recognizing the potential of CAD, the
World Health Organization (WHO) in 2021 endorsed a
conditional recommendation for using CAD solutions as
a substitute for human readers in TB screening and triage
for individuals aged 15 and above [2]. This endorse-
ment underscores the growing importance of CAD in
enhancing the accuracy and efficiency of TB diagnosis,
especially in contexts where skilled human readers are
scarce [3].

However, challenges arise in the deployment of CAD
software in medical diagnostics. The core algorithms
of these CAD products are often deep neural networks
(DNN), which are perceived as black boxes since their
decision-making processes are not transparent or not
easily understandable. This opacity in algorithmic func-
tioning makes it difficult to assess and validate existing
solutions and limits the trust in algorithmic forecasts [4].
Saliency mapping techniques can play a key role in
addressing the black-box nature of deep learning-based
CAD software for CXR interpretation. By visually high-
lighting detected radiological findings, these techniques
can assist radiologists in providing more accurate diag-
noses [4], [5]. Commercially available CAD software ap-
plications for TB interpretation typically include saliency
map visualizations, as such approaches have been shown
to improve diagnostic capabilities, particularly in com-
plex cases with multiple abnormalities [6], [7].

The lack of publicly available and well-curated
datasets for training DNNs for CXR interpretation in TB
applications hinders the ability to evaluate and develop
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models that can be deployed responsibly. Furthermore,
the small amount of specifically annotated data renders it
difficult to analyze if existing models, which claim high
accuracy, are actually exploiting spurious biases in the
data instead of more desirable and meaningful clinically
explainable factors.

In this context, we pose the question if naively training
a classifier on the largest publicly available dataset for
TB classification, TBX11K [8], containing more than
11’000 images, is sufficient to develop a model that
produces reasonable interpretation traits that resemble
human judgment. We further explore the best approaches
to achieve this using only publicly available data. Our
main contribution is methodological: training (or pre-
training) of DNN models while compensating for data
imbalances lead to improved interpretation alignment
with humans, while retaining comparable generalization
capabilities on test data. Concretely, we show that: i)
Naively training a DNN leads to a highly accurate
model that latches to undesirable image biases; ii) Pre-
training the weights of a classifier with a related proxy
multi-objective classification task containing far more
data reduces the interpretation biases and, finally, iii)
Balancing classes during pre-training and fine-tuning can
further align the final classifier to human expectations.

II. RELATED WORK

Before the Coronavirus Disease 2019 (COVID-19)
pandemic, TB was responsible for more deaths per
year than any other infectious disease [9]. Albeit the
alarming scenario, the number of public datasets that
can be used for developing and validating models for
CXR interpretation in this context remains relatively
low. Essentially, there exist four public datasets for the
development and evaluation of TB-related CAD tools,
three of which are relatively small, containing only a
few hundred images each and are, therefore, of limited
application to the development of DNN models. The
more recent TBX11K dataset [8] contains 11’200 CXR
images with corresponding bounding box annotations for
image areas that corroborate the attributed image classes,
which can be used to evaluate both classification and
radiological sign localization. The authors of the dataset
propose the development of two separate models for each
task, with relatively high performance. Compared to that
work, our proposed workflow only relies on a single
model trained for classification, which can adjacently
explain reasoning through saliency maps.

Research in automatic detection of Pulmonary TB
from CXR images has progressed, with DNNs such

as convolutional neural networks (CNNs) leading cur-
rent advancements, demonstrating high accuracy and
strong correlation with ground-truth labels, typically
derived from skin or sputum tests [10]. Despite all
improvements, realistic scenarios where CAD from CXR
imaging for TB could be useful are rather different
from lab conditions [11]. In high-burden countries, for
example, TB must be screened against the general pop-
ulation, with individuals potentially presenting various
other (pulmonary) diseases. Patients with positive skin or
sputum tests, in different stages of the disease, or due to
other co-morbidities (e. g. HIV-positive), may not present
classical TB symptoms clearly visible on CXR images.
Therefore, from a (human) interpretation point of view,
one may argue that CAD for TB, based exclusively on
CXR images, should be limited to identifying factual and
reportable radiological signs that can be detected on the
original CXR images. The availability of reproducible
baselines also remains low, as typical datasets used to
produce published results are not released due to privacy
restrictions that are especially prominent in medical data.

Saliency mapping techniques serve as post-hoc inter-
pretative tools that elucidate the decision-making process
of a model, thereby enhancing user trust and under-
standing. While these maps do not reveal the intricate
internal workings of a model, they contribute to its
interpretability by highlighting key areas in the input
data that influence the model’s outcomes. This feature
is particularly beneficial in applications like medical
diagnosis where it helps professionals by revealing biases
and crucial decision-influencing factors. However, the
degree of usefulness varies across different saliency
mapping techniques, necessitating a detailed examination
of selected methods to understand their specific contri-
butions and limitations [12].

Given the shortage of public data for training DNNs
to perform classification of CXRs for TB, it should be
possible to re-use similar proxy tasks with far more
data, to pre-train these models before fine-tuning on
existing, smaller TB datasets. For chest X-ray (CXR)
data, the NIH-CXR14 dataset [13] can be useful as such
a proxy dataset since it represents the largest publicly
available repository to date, encompassing more than
112,000 images containing up to 14 different labels
extracted from radiology reports. These labels are highly
unbalanced and do not align with signs that are typically
related to pulmonary TB onset, but pre-training on this
task can still help our final task. Fine-tuning this model
involves adjusting the weights of the pre-trained network
to make it more suited for our specific task. This can be



TABLE I: MODELS. This table lists training details of our models. Pre-training was performed on the proxy dataset
NIH-CXR14, while fine-tuning was performed on the target dataset TBX11K.

Model MU MB MU,U MU,B MB,B

Pre-training — — unbalanced unbalanced balanced
Fine-tuning unbalanced balanced unbalanced balanced balanced

done by retraining the entire network or just the final
layers.

Rudd et al. [14] addressed multi-label imbalance in
DNNs and introduced the mixed objective optimization
network (MOON). MOON re-weights losses for highly
imbalanced datasets, effectively balancing training across
classes for each objective individually.2 Compared to
other resampling strategies like over- or undersampling,
this method refrains from introducing additional biases
by retaining the inherent correlations between labels
and avoiding information loss in case of undersampling,
while also being more efficient during training than
oversampling. Weights w+

i and w−
i are adapted based on

the counts of samples in the positive S+
i and negative

class S−
i for each binary objective i:

w+
i =

{
1 if S−

i > S+
i

S−
i

S+
i

otherwise
w−
i =

{
1 if S+

i > S−
i

S+
i

S−
i

otherwise
(1)

In [14], these weights were used as probabilities to
sample the objectives for which loss values are back-
propagated, but they can also improve interpretability
when used as loss weights [15] in binary cross-entropy:

J = −
M∑
i=1

wti
i

[
ti log fi(x)+(1−ti) log(1−fi(x))

]
(2)

where i iterates all objectives, ti is the binary ground-
truth label, and fi(x) is the prediction of objective i in
sample x.

From this setup, we pose the question if it is beneficial
to re-use the partially unrelated NIH-CXR14 dataset
to pre-train a DNN system to perform accurate and
interpretable TB readout from CXR. We hypothesize
that: i) Pre-training with NIH-CXR14 helps improve
generalization compared to only using the largest TB
dataset available (i. e. TBX11K); ii) Balancing classes
during training will further remove spurious biases and
improve human interpretability of saliency maps pro-
duced by DNNs.

2Objectives in [14] were to classify the presence of different
attributes in facial images.

III. DATA AND METHODS

In this work, we make use of 3 publicly available
datasets: NIH-CXR14 [16], TBX11K [8] and Shen-
zhen [17]. Our proxy dataset NIH-CXR14 contains
112’120 images of 30’805 unique patients provided as
8-bit grayscale images with a resolution of 1024×1024.
The images of the dataset are split into 3 patient-disjoint
partitions for training (98’637), validation (6’350) and
testing (4’054). The 14 image-level labels in this dataset
are: atelectasis, consolidation, infiltration, pneumotho-
rax, edema, emphysema, fibrosis, effusion, pneumonia,
pleural thickening, cardiomegaly, nodule, mass and her-
nia.

The target dataset TBX11K is used to either directly
train a model from scratch or fine-tune an NIH-CXR14
pre-trained variant. This dataset consists of 11’702 24-bit
RGB recordings of CXRs of resolution 512×512. Each
sample is from a unique individual. There are 4 types of
labels for existing samples, stratifying the images into:
healthy, sick (non-TB), active TB, and latent TB. Here,
we only consider healthy (3’800) and active TB cases
(630), splitting existing data into 3 partitions for training
(2’767), validation (706) and testing (957), while pre-
serving healthy/active TB stratification. Beyond labels,
samples in the TBX11K dataset also contain bounding
boxes in the original CXR image where radiological
signs corroborate label assignment for TB cases (and
only in those cases). The precise type of radiological
sign is not further annotated, except for its relationship to
active TB or latent TB infection (e. g. scars from previous
active TB sickness).

Our external dataset is Shenzhen and consists of 662
8-bit RGB CXR recordings of variable resolution (up
to 3000×3000). The samples are classified as either
healthy (326) or active TB (336). This dataset is not
partitioned into subsets and is only used for evaluating
the generalization of our DNN models.

In this work, we use a standard DenseNet-121 model
architecture [18], for its excellent accuracy in image-
related problems and availability in various deep learn-
ing software libraries. This model architecture has also
shown to produce more accurate visualizations in con-



TABLE II: RESULTS. AUROC of all models on the test set of the target TBX11K dataset, and on the entire external
Shenzhen dataset. Additionally, the medians of Proportional Energy on the target test set are shown, after applying
Grad-CAM, HiResCAM, and Score-CAM to the last convolutional layer of all 5 DenseNet-121 models.

Metric AUROC Proportional Energy
Target External Grad-CAM HiResCAM Score-CAM

MU 1.00 0.79 0.077 0.077 0.088
MB 1.00 0.73 0.060 0.058 0.007
MU,U 1.00 0.86 0.109 0.118 0.155
MU,B 1.00 0.88 0.234 0.237 0.182
MB,B 1.00 0.88 0.295 0.301 0.326

juction with current saliency mapping techniques in
TB detection compared to the architecture proposed
by Pasa et al. [19]. Before training, each network is
pre-initialized with readily available ImageNet weights.
Training is done through a stock Adam optimizer with
default parameters, guided by the weighted binary-
cross entropy loss (2) in both the binary target task
and the multi-objective binary proxy task, either using
unbalanced training with ∀i : w+

i = w−
i = 1 or

balanced training using class weights according to (1).
Data augmentations included horizontal flips with 50%
probability during proxy pre-training and elastic defor-
mation [20] with 80% probability for the binary target
task. Fine-tuning followed the same training technique
with the same learning rate (1 × 10−4) as for the NIH-
CXR14 pre-training. Sample importance balancing was
performed using the loss-weighting technique (2). In
total, five models were trained, as listed in Tab. I.

To evaluate classification performance of TB
vs. healthy CXR images, we report the area under
the receiver operating characteristic curve (AUROC)
on the TBX11K test set. To assess generalization,
we report AUROC on the external Shenzhen dataset.
The level of interpretability of saliency maps for a
given DNN model is measured through the median
Proportional Energy [12] of the test set, where we
utilize the ground-truth bounding boxes provided in
our target dataset. Saliency maps are produced using
Grad-CAM [21] as a baseline for comparison with
HiResCAM [22] and Score-CAM [12], which from the
previous experience produce maps that best correlate
with human interpretability [23].

IV. RESULTS AND DISCUSSION

We have trained all five models, preserving the one
reaching the lowest loss on the validation set in the
respective setups. We then observed that all models

achieved an AUROC of 1.0 (perfect scoring) on the tar-
get test set (TBX11K). Subsequently, we cross-evaluated
all models against the full external dataset (Shenzhen)
to explore their generalization capabilities. As shown in
Tab. II, the unbalanced model MU reaches an AUROC of
0.79 when cross-evaluated, whereas the balanced model
MB AUROC for a cross-dataset evaluation slightly drops
to 0.73. All the other models achieved an AUROC of
at least 0.86, demonstrating higher generalization once
exposed to a larger dataset, with or without balancing.

We also evaluated each model’s (human-like) inter-
pretability using their median Proportional Energy over
all test samples with active TB of the target dataset (for
obvious reasons there exist no bounding-box labels for
the healthy cases), listed in Tab. II. As can be observed,
interpretability increases as more data and balancing
are introduced to the models’ training process, from
below 0.1 for MU to about 0.3 for all the saliency map-
ping techniques explored when balancing is applied to
both proxy training and target fine-tuning. Remarkably,
compared to model MU , the addition of balancing to
the simple binary classifier without adding more data
(MB) leads to a lower interpretability. Grad-CAM and
HiResCAM perform similarly on all models, whereas
Score-CAM shows more extreme penalization on model
MB with a median Proportional Energy of 0.007, and
slightly better improvement on model MB,B with 0.326.
We note that while a perfectly aligned model would
have its median equal to 1.0, the use of bounding boxes
to represent natural radiological signs compromises this
metric as such signs are rarely rectangular in nature.

Fig. 1(a) presents five HiResCAMs visualizations with
the lowest Proportional Energy scores obtained by the
unbalanced model MU . These samples, all correctly
identified as active TB, exhibit saliency maps with no-
table focuses on the center of the CXRs and outside
the lung areas, e. g., in the armpit or the bottom of the



(a) MU

(b) MB,B

Fig. 1: SALIENCY MAPS. In this figure, we show (a) Saliency maps for the unbalanced model MU featuring the
five cases from the TBX11K test set with the lowest Proportional Energy scores; (b) respective predictions of our
best balanced model MB,B . Human-annotated ground-truth regions including radiological signs are indicated by
bright magenta bounding boxes. The heatmaps (ranging from red to blue) indicate the contribution of different
regions to the models’ decision-making, with non-colored areas having no significant contribution.

image where typically diagnostic information is absent.
In Fig. 1(b), the same five samples are visualized with
the balanced model MB,B . In the left two images, the
saliency maps now correspond to human (ground-truth)
annotations, and results for the other three cases at least
exhibit a closer alignment with the patients’ bodies.
Hence, the MB,B model not only maintains accurate
classification but also demonstrates a marked refinement
in CAM localization.

V. CONCLUSION

Training deep neural networks (DNNs) in a naive
manner often results in models with undesirable bi-
ases. Contrary to previous experiences with large-scale
data [15], we found that training a balanced classifier
on target data decreased interpretability. However, pre-
training the classifier on a larger, related multi-objective
classification task significantly mitigated this issue and
improved model transferability to an external dataset.
Additionally, balancing classes during pre-training and
fine-tuning enhanced alignment with human expectations
without compromising utility on the target and external
datasets.

Our study has notable findings, but also some lim-
itations. While our models demonstrate utility on a
cross-dataset evaluation, this did not fully confirm their
generalization, suggesting the presence of residual bi-
ases. Specifically, models pre-trained on the NIH-CXR14
dataset exhibit better generalization capabilities. Despite
observed improvements in Proportional Energy, it is
important to acknowledge that the values remain signif-
icantly lower than the ideal score of 1. This discrepancy
highlights the necessity for further testing, particularly
with more precisely annotated radiological signs, and
more diverse datasets, to better understand the limits
of this metric. Moreover, while our study demonstrates
potential, it does not fully address how these methods
could be integrated into clinical settings and how they
would perform under these conditions. Finally, the hu-
man interpretability testing methodology proposed in this
study shows promise for debiasing other models while
preserving their utility.
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