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Abstract

Contextual cues related to a person’s pose and interactions

with objects and other people in the scene can provide

valuable information for gaze following. While existing

methods have focused on dedicated cue extraction methods,

in this work we investigate the zero-shot capabilities of

Vision-Language Models (VLMs) for extracting a wide

array of contextual cues to improve gaze following per-

formance. We first evaluate various VLMs, prompting

strategies, and in-context learning (ICL) techniques for

zero-shot cue recognition performance. We then use these

insights to extract contextual cues for gaze following, and

investigate their impact when incorporated into a state

of the art model for the task. Our analysis indicates that

BLIP-2 is the overall top performing VLM and that ICL

can improve performance. We also observe that VLMs are

sensitive to the choice of the text prompt although ensem-

bling over multiple text prompts can provide more robust

performance. Additionally, we discover that using the

entire image along with an ellipse drawn around the target

person is the most effective strategy for visual prompting.

For gaze following, incorporating the extracted cues results

in better generalization performance, especially when

considering a larger set of cues, highlighting the potential

of this approach.

1. Introduction

Understanding where a person is looking in a scene, also

known as gaze following, has diverse applications, includ-

ing human-robot interaction [1, 18, 34], conversation anal-

ysis [11, 27], and the study of neurodevelopmental disor-

ders [7, 21]. However, this is a challenging task, demand-

ing a model to interpret a large spectrum of contextual cues

such as the person’s interactions with objects and other peo-

ple in the scene. For instance, it has been shown that eye
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Figure 1. As humans, we rely on various sources of information

to predict a person’s gaze target. This image shows contextual

information that could be valuable.

and hand movements are coordinated during manipulation

activities [19]. Or that during conversations, people usu-

ally look at the person talking [37] and that leveraging this

information can help in gaze target selection in meeting set-

tings [28]. As seen in Figure 1, estimating the child’s gaze

target requires understanding their head and body pose, the

interaction between the child and the adult through pointing

and shared attention etc.

In order for a model to capture these cues and learn their

impact on gaze target selection, it would need to be trained

on a high-quality and large-scale labeled dataset. However,

existing gaze following datasets [7, 39] are small-scale, hin-

dering the effective utilization of these cues. To address

these challenges, prior works have relied on dedicated cue

extraction methods such as inferred body pose [13, 24],

and supplied them to models for improved performance.

However, these approaches focus on specific cues and do

not supply the larger array of contextual cues which could

be needed for accurate gaze target prediction. Traditional

methods to address this limitation include: (1) manually an-

notating for relevant cues; but it is cost-intensive and not

always available during inference, or (2) pseudo-labelling

with expert models; however this requires access to a multi-

tude of task specific models for each cue or a subset of cues.

Hence, it is evident that novel solutions are required.



Given these challenges, we investigate the potential of

Visual Language Models (VLMs) to extract valuable con-

textual cues for gaze following, aiming to overcome the

constraints of traditional labeling approaches. VLMs have

shown promising zero-shot performance for a variety of

tasks [30, 45], owing to their ability to learn visual-text as-

sociations at scale. Hence, a single model may be capable

of extracting all relevant contextual cues. At the same time,

given the zero-shot setting, the set of cues to be considered

can be adjusted based on the domain, further increasing this

approach’s applicability.

In this work, we consider cues related to pose, person-

person interactions, and person-object interactions. We first

evaluate the zero-shot performance of different VLMs for

recognising these cues (Section 3), and leverage the best

performing approach to extract them. We then investigate

whether incorporating these extracted cues can improve

gaze following performance (Section 4).

Challenges. While VLMs have shown impressive zero-shot

performance for a variety of tasks, these tasks (ex. image

classification) usually involve processing the entire image.

However, for accurate gaze following we also need to cap-

ture contextual cues related to each person in the scene.

Hence, we need to consider an appropriate visual prompt

to allow the VLM to focus on the person of interest. At

the same time, it is important to consider the choice of text

prompt as VLMs have been shown to benefit from prompt

engineering [29]. Finally, given the extracted cues from the

VLMs, we need to consider how to incorporate such infor-

mation into a gaze following model. Following these re-

search questions, we make the following contributions:

• VLMs for contextual cues extraction: We explore 4

state of the art VLMs [22, 23, 30] for this task. We also

investigate different visual prompts to focus on the per-

son of interest, and different text prompts to describe

the cue of interest. We show that VLMs can indeed

capture contextual cues although the choice of VLM,

visual prompt and text prompt impacts performance.

• Text improved Gaze Following: We incorporate the ex-

tracted contextual cues into a recent transformer based

gaze following model [14]. Our results indicate that in-

corporating these cues can result in better generaliza-

tion performance, especially when considering larger

sets of cues.

2. Related-Work

Vision-Language Models (VLMs). VLMs began receiv-

ing significant attention following the introduction of CLIP

(Contrastive Language-Image Pretraining) [30]. This con-

trastive learning framework learns effective multi-modal

representations using image-text pairs. CLIP demonstrated

impressive zero-shot classification performance on standard

image classification benchmarks. Subsequent VLMs, such

as BLIP [22] and BLIP-2 [23], have been introduced with

notable differences from CLIP. These include varied objec-

tives (incorporating additional losses beyond the contrastive

approach), the use of more curated training datasets, and en-

hanced image caption generation through caption filtering.

Specifically, BLIP-2 has introduced advanced pre-training

strategies, integrating a frozen image encoder and a Query-

ing Transformer (Q-Former), which enables a nuanced ex-

traction of visual representations. They have even shown

strong performance for video tasks such as action recogni-

tion [30] and text-to-video retrieval [22] despite not pro-

cessing the temporal dimension. However, their perfor-

mance for localizing the actions/cues of people in an image

has not been explored.

While there has been some work on video language mod-

els, they face certain limitations. Firstly, available video-

text pairs for pretaining is limited compared to the scale

of available image-text pairs [44], so these methods do not

generalize as well. To cope with this issue, some works

leveraged pre-trained image-based VLMs and adapted them

for video input, however, it harmed their zero-shot perfor-

mance [20, 42]. Secondly, these models are computation-

ally more expensive, and cannot be applied on static gaze

following datasets.

More recently, VLMs such as BLIP2 have leveraged

Large language models (LLMs) for generating textual out-

put. LLMs have shown an impressive ability to act as

models of the world, with a rudimentary understanding of

agents, beliefs and actions [3], and an ability to perform

commonsense and mathematical reasoning [8]. Hence, they

may also be capable of capturing complex relationships be-

tween people and objects in the scene to better extract con-

textual cues for human behaviour understanding. Further,

they have been shown to benefit from in-context learning [5]

(ICL), wherein a few demonstrations of the task are pro-

vided at inference time without any weight updates. VLMs

that exploit such LLMs have also displayed improvements

in performance using ICL [2, 41], by being provided with a

few sample visual and/or textual demonstrations. It is still a

research question whether LLMs and ICL can improve the

recognition of gaze contextual cues.

Visual and Textual Prompting. The recent work of Sht-

edritski et al. [35] explored different visual prompting ap-

proaches for CLIP. They compared cropping the visual area

of interest versus drawing a red ellipse around it, and found

the red ellipse approach to perform better for keypoint local-

ization and referring expression comprehension tasks. They

also observed that blurring or graying the region outside the

ellipse can provide additional benefits. However, the perfor-

mance of these approaches for action/cue recognition hasn’t

been explored. On the textual prompting side, the original

CLIP paper [30] showed that prompt engineering, such as

using the prompt ’a photo of a {label}’ improved perfor-



mance over using just the label text on ImageNet [33]. They

also observed that ensembling different prompts in the em-

bedding space can reliably improve performance. Recent

works [46, 47] introduced learnable prompts that were fine-

tuned on a specific task. However this approach requires

data to adapt, and hence cannot be applied in a zero-shot

manner. Also, although the learnable prompts can then be

included with prompts for unseen classes, the results lag

behind manual prompt engineering efforts [46]. In this

work, we evaluate different manual prompt engineering ap-

proaches that can be applied to any new set of classes.

Contextual Cues for Gaze Following. Previous works in

estimating the Visual Focus of Attention (VFOA) of a per-

son leveraged cues such as the head pose and speaking in-

formation of people [28, 34, 38] for improved performance.

However, these methods typically require access to frontal

views of people and knowledge of the 3D scene structure

(ex. using multiple calibrated cameras) for inference. This

makes it challenging to deploy these algorithms in new en-

vironments where such information may not be available.

Hence, Recasens et al. [32] proposed the Gaze Follow-

ing task to estimate the scene gaze target of a person in

an image using only the image and with no prior assump-

tions about the scene or camera placement. However, due

to the complexities of scenes and the lack of data, mod-

els have encountered challenges in capturing pertinent in-

formation, ultimately leading to sub-optimal predictions.

Hence, recent methods have shown that inferred cues such

as depth [4, 10, 13, 15, 18, 39, 40] and body pose [13, 24]

can be leveraged for improved performance. However, in-

corporating person-specific auxiliary information in these

models is not straightforward.

More recently, [14] proposed a new transfomer based

model for gaze following and social gaze prediction. They

showed that this architecture allows for easily incorporating

person-specific auxiliary cues, with improved performance

from the addition of people’s speaking status. Whether it

can benefit from additional cues remains to be explored.

3. Contextual Cues Extraction

In the first stage, we evaluate the zero-shot performance of

different VLMs and prompting approaches for recognition

of cues. Note that we interchangeably refer to a specific cue

as a class.

3.1. Method

We investigate different visual and textual prompting strate-

gies, as well as two different variants of VLMs for zero-

shot contextual cues extraction, namely image-text match-

ing (ITM) and visual question-answering (VQA).

Visual Prompting. In a complex scene involving multiple

people, ITM becomes challenging as our task requires con-

ditioning on a specific target person. To address this, we

investigate various visual prompting techniques that enable

ITM to focus on a chosen individual. We employ several

approaches, including no prompting, drawing a red ellipse

around the person following [36], blurring or graying the

background. These techniques are applied either to the en-

tire image (image-based) or to the cropped target person

(person-based), resulting in a total of eight distinct visual

prompting approaches. We provide an example of the dif-

ferent visual prompts in Figure 10 in the supplementary.

Text Prompting. In our approach to text prompting, we

employed a structured method for generating prompts sys-

tematically based on templates. This method allows us to

meticulously examine the impact of each textual component

within the prompt. A template, in this context, is a fixed

sentence where only specific parts can be altered. For ex-

amples, ”a {photo} of a {person} {class}”, and ”a {person}
is {class}”, are two instances of templates. Beyond the var-

ied sentence structures, the placeholders {photo}, {person},

and {class} can be substituted with semantically related

components. For instance, {photo} could be replaced with

”picture” or ”snapshot,” {person} might be substituted with

”individual” or ”human,” and {class} can refer to class syn-

onyms such as ”talking” or ”narrating” if the original class

is ”speaking”. In this work, synonyms refer to changes in

class synonyms otherwise mentioned explicitly. In the sup-

plementary, Figure 8 presents all the different templates and

synonyms used in this section.

Image-Text Matching (ITM). In ITM, the objective is to

compute a cosine similarity between the visual and textual

embedding. A high similarity suggests that the image con-

tains the textual description. Formally, given an image I of

size H × W × 3 and a set of K class names, we use the

visual and text encoders of a pre-trained VLM (e.g., CLIP)

to get a visual embedding eI ∈ R
d and K text embeddings

eT ∈ R
K×d. We perform the following matching:

  S = dot (e_{I} \cdot e_{T}^{\mathrm {T}})   



 (1)

where, S ∈ R
K are the resulting similarity scores. When

multiple textual prompts refer to the same class name k, i.e.

eTk
∈ R

P×d, we can perform an Ensemble to get the score.

  S_k = dot (e_{I} \cdot \frac {1} {P}\sum _{e\in e_{T_k}}e^{\mathrm {T}})   








 (2)

The Ensemble approach utilizes the mean embedding, act-

ing as a centroid for a given class and thus is expected to be

more robust. The scores for each class are then normalized

across samples to have a zero mean and a standard devi-

ation of one. In this work, we investigate three different

pre-trained VLMs such as CLIP [30], BLIP [22] and BLIP-

2 [23]. For more details regarding these models, we refer

the readers to the original papers and details in Sec. 2.

Visual Question Answering (VQA). In order to explore



the potential of LLMs for our task, we investigate a re-

cent VQA model, BLIP-2 VQA [23], that leverages a LLM

called FlanT5 [31]. In VQA models, a textual question is

jointly input with an image to the model, and the model

outputs a textual answer. We convert the text prompts de-

scribed previously into a set of questions that result in sim-

ple “yes” or “no” answers, which we then convert into a

binary score. Examples of prompts are displayed in supple-

mentary Fig 9. To further explore the benefits of ICL, we

provide additional textual context in the form of a generated

caption from the same model. Thus, the text input to the

model is of the form {generated caption} {text prompt}. It

is worth noting that the BLIP-2 VQA model is much slower

to run than the ITM models as (1) the model is much larger

due to the LLM, and (2) the answer is conditioned on the

image and question, so we need to run a forward pass for

each image-prompt pair. This is unlike the ITM models

where the images and prompts can be processed separately,

with a similarity score computed afterward.

3.2. Experiments

Datasets. We employ two datasets to shed light on the

VLMs’ ability to extract meaningful cues.

ChildPlay: We manually annotated 6 cues from the

ChildPlay [39] dataset, which is a recently proposed dataset

for gaze following. For each class, we selected around

50 clear positives and 50 clear negatives. The classes and

statistics are presented in the supplementary Table 5.

AVA-Actions: Then, to scale our evaluation we used the

validation split of the AVA dataset [12], which is a human

action localization dataset. This dataset is much more chal-

lenging since it is heavily unbalanced and large scale con-

taining around 41000 images. A subset of the classes of

interest was selected. In Table 1, a summary of the dataset

classes and distribution is shown.

Metrics. We leverage two metrics:

• AP: To evaluate the performance of different VLMs

and prompting approaches, we use Average Precision

(AP). It is computed per class between the ground truth

and the scores obtained from the VLMs. We also con-

sider the mean of the AP scores across all classes or

mean Average Precision (mAP).

• Accuracy: Since the output of the VQA variants is a

binary decision, we cannot compute AP; instead, we

compute accuracy. To compare with ITMs, we bina-

rize their output by applying a threshold of zero since

the scores are normalized with a zero mean (however

they may benefit from optimizing the threshold).

3.3. ITM Results

Visual prompting. We compare the performance of the

different visual prompts described in Section 3.1 in Fig. 2.

The results are aggregated across VLMs and different text

Selected Classes - AVA Support

Pose (P)

stand 23424

sit 16660

bend/bow (at the waist) 1512

Person-Person Interaction (P-P)

talk to (e.g., self, a person, a group) 25985

hug (a person) 340

hand clap 330

give/serve (an object) to (a person) 313

Person-Object Interaction (P-O)

carry/hold (an object) 17199

touch (an object) 5099

read 658

write 273

lift/pick up 118

text on/look at a cellphone 112

work on a computer 111

Table 1. Selected classes from the AVA Dataset (validation set)

categorized as Pose (P), Person-Person Interaction (P-P), and

Person-Object Interaction (P-O), including the number of samples

(support) for each.

Figure 2. Results of different visual prompting approach on Child-

play. Image corresponds to input the full image whereas person

refers to the use of person crop as input.

prompts, and categorized by the type of visual input, i.e.

image-based versus person-based. We see that image-based

approaches outperform person-based variants. This sug-

gests that a broader visual input provides additional context,

enhancing the zero-shot recognition for the target person in

the image. Furthermore, among the visual prompts, the red

ellipse approach outperforms others, aligned with findings

in [36]. Therefore, in subsequent experiments, we employ

the image-based red ellipse as the visual prompt.

VLMs. We compare the performance of three VLMs,

namely CLIP, BLIP, and BLIP-2. In Fig. 3, we present a

class-wise comparison of the three VLMs on AVA. Note

that, for each VLM, we aggregate the results from different



Figure 3. Results of different VLMs following the ITM approach

on AVA. Three VLMs are compared across different classes cate-

gorized as Pose (P), Person-Person Interaction (P-P), and Person-

Object Interaction (P-O).

Figure 4. Results of different templates using BLIP-2 on AVA. Six

templates are compared across different classes.

textual prompts. Firstly, we observe that no single model

always outperforms the others. However, BLIP and BLIP-2

surpass CLIP in pose and person-to-person classes, while

CLIP performs well when the class refers to a clear object,

such as work on a computer or text on a cellphone. This

may be related to differences in training data, and is a di-

rection for investigation. On average, BLIP-2 is the top per-

forming model. In the subsequent analysis, we continue fo-

cusing on BLIP-2 while varying the text prompting aspects.

Text prompting. We investigate the impact of the text

prompts described in Section 3.1 at two different levels, at

the template level and synonym level. When evaluating the

template, we aggregate results over the other text prompt

component variations. Similarly for when we evaluate the

class synonym. In Figure 4, performance for different tem-

plates are shown on AVA per class. Firstly, there is no best

template overall, which correlates to the finding of [30] that

Figure 5. Results of BLIP-2 vqa with and without in-context learn-

ing, vqa ICL and vqa respectively, on ChildPlay. It is compared

with the VLMs CLIP, BLIP and BLIP-2.

VLMs are prompt sensitive. However, using the Ensem-

ble approach described in Section 3.1 provides more robust

performance, often outperforming the best template, and al-

ways outperforming the worst template. In addition, the

wording in textual prompts matters, as can be seen in the

supplementary Figure 11, where different class synonyms

can change the performance by a large margin. However,

we notice that for most of the classes, including {person}
in the prompt improves performance. This suggests that

conditioning the prompt to an individual helps to extract

person-centric information.

3.4. VQA Results

To investigate the potential of LLMs and in-context learning

for contextual cues extraction, we evaluate the BLIP-2 VQA

model on the ChildPlay dataset, and compare it against ITM

based VLM models (Figure 5). Note that the results are

aggregated across all text prompts. As mentioned in Sec-

tion 3.1, the BLIP-2 VQA model is much slower to run

compared to the ITM based models which is why we use

the smaller ChildPlay dataset. We also use a smaller set of

templates and synonyms in the text prompt (Fig. 9 in sup-

plementary) to reduce computation time.

Benefit of LLM. Comparing the performance of BLIP-2

against BLIP-2 VQA (BLIP-2 and vqa in the figure), we

see that BLIP-2 VQA does much better for the ’child’ class,

but on par of worse for the other classes. This suggests

that the LLM in the BLIP-2 VQA model is not necessarily

providing better results. However, as mentioned previously,

this model uses a smaller set of templates and synonyms in

the text prompt for computational reasons so may benefit

from using a larger set.

In-Context Learning. We see that the BLIP-2 vqa model

with ICL improves for all classes except the ’child’ class

compared to no ICL. This is in contrast to the observa-

tions in the original paper where the architecture is intro-



duced [23], and suggests the potential of leveraging ICL for

contextual cues extraction.

4. Text-Improved Gaze Following

In the second stage, we apply insights from Section 3 and

leverage BLIP-2 along with the red ellipse visual prompt-

ing approach, and the Ensemble text prompting approach

to extract contextual cues. We then evaluate the impact of

incorporating these cues into a gaze following model.

4.1. Method

We employ the static version of the recently proposed

MTGS [14] model. This model is a transformer-based ar-

chitecture designed for multi-person gaze following and so-

cial gaze prediction. Given an input image and head crops

of people in the scene, it first produces two types of tokens:

image tokens (ximage ∈ R
N×D), similar to those in a stan-

dard Vision Transformer (ViT) architecture [9], and person

gaze tokens (xgaze ∈ R
P×D), where P represents the num-

ber of people in the scene. Person tokens are generated us-

ing head crops, a gaze backbone, and a subsequent linear

projection layer. This formulation naturally supports incor-

porating contextual cues for each person, as the information

can be fused with the corresponding person token.

Given the success of additive fusion in the case of po-

sition embeddings for transformers [9], and early fusion of

body pose and depth information for gaze following mod-

els [13], we aim to incorporate contextual information de-

rived from VLMs in an early fusion and additive manner.

To this end, as illustrated in Fig. 6, we use a linear pro-

jection layer (Φ) to project the vector of predicted scores

(Svlm ∈ R
P×K , K is the number of classes) and gener-

ate person context tokens matching the dimensions of the

person gaze tokens (Φ(Svlm) ∈ R
P×D). We then apply

the add operation to combine the person context tokens

from the VLMs with the corresponding person gaze tokens.

Following this, the enriched person gaze tokens, now with

added contextual cues, and the image tokens are fed into

MTGS, where, people and scene tokens interact through

self and cross-attention modules across multiple blocks.

  \text {x}_{\text {out}} = \text {MTGS}\left ( \left [ \text {x}_{\text {gaze}} + \Phi \left ( \text {S}_{\text {vlm}} \right ), \text {x}_{\text {image}} \right ] \right )        (3)

Finally, a prediction module takes the updated tokens (xout)

and predicts the visual attention heatmap for each person,

as well as pair-wise social gaze labels. For a more compre-

hensive understanding of the architecture, we direct readers

to the original paper [14].

4.2. Experiments

Datasets. We leverage two gaze following datasets:

GazeFollow [32] is a large-scale static dataset for gaze

following, featuring 122K images. Most images are anno-

tated for a single person with their head bounding box and
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Figure 6. An overview of Text-Improved Gaze Following: Given

an image containing P persons, image tokens and person tokens

are generated via a Linear Projection (LP) and a person module

(PM) respectively. To incorporate VLM contextual information,

we use a VLM to obtain P score vectors, each with the dimension

as the number of classes (K). We then linearly project these vec-

tors and perform early fusion by adding them to the corresponding

person tokens. Scene and updated person tokens are subsequently

passed to MTGS [14] to model person and scene interactions us-

ing self and cross-attention modules across multiple blocks.

gaze target point. The test set contains annotations by mul-

tiple annotators. Despite lower quality images and annota-

tions, it’s diversity makes it a good dataset for pre-training.

ChildPlay [39] is a recent video dataset for gaze follow-

ing, featuring children playing and interacting with other

children and adults. It is annotated with the head bound-

ing box, gaze point and gaze label (consisting of 7 non-

overlapping classes) of people in the scene.

Following [14], we pre-process both datasets to extract

pair-wise social gaze labels for two tasks:

• LAH: It stands for looking at humans and occurs when

a person looks at another person’s head. In terms

of positive/negative pair statistics, it is 27k/493k for

GazeFollow, and 59k/682k for ChildPlay.

• LAEO: It stands for looking at each other and occurs

when two people engage in mutual gaze. In terms of

positive/negative pair statistics, it is 0/0 for GazeFol-

low, and 7k/351k for ChildPlay.

Contextual Cues. We define three sets of contextual cues:

• AVA+CP: These are the set of 24 cues defined in Sec-

tion 3 for AVA and ChildPlay that were used for eval-

uating different VLMs and prompting strategies.

• HICO: The HICO dataset [6] is human-object interac-

tion dataset that defines a list of 117 interaction verbs.

We leverage these verbs as contextual cues.

• SWIG: The SWIG-HOI dataset [43] is a large-scale

human-object interaction dataset that defines 406

verbs. We leverage these verbs as contextual cues.

We provide the manually curated synonyms and templates

used for generating different text prompts for AVA+CP in

Figures 8,9 of the supplementary. For HICO and SWIG, we

use the same set of templates, but generate 4 synonyms for



Model AUC↑ Avg. Dist↓ Min. Dist↓ F1LAH↑

Fang [10] 0.922 0.124 0.067 -

Tonini [40] 0.927 0.141 - -

Jin [18] 0.920 0.118 0.063 -

Bao [4] 0.928 0.122 - -

Hu [16] 0.923 0.128 0.069 -

Tafasca [39] 0.936 0.125 0.064 -

Chong [7] 0.921 0.137 0.077 -

Gupta [13] 0.933 0.134 0.071 -

Jin [17] 0.919 0.126 0.076 -

MTGS [14] 0.929 0.118 0.062 0.639

MTGS + AVA + CP 0.936 0.118 0.061 0.643

MTGS + HICO 0.934 0.116 0.060 0.639

MTGS + SWIG 0.933 0.119 0.061 0.619

Table 2. Results for incorporating VLM context with different sets

of classes on the GazeFollow dataset. AVA+CP has 24 classes,

HICO has 117 classes and SWIG has 406 classes. Best results are

given in bold, second best results are underlined.

each cue using ChatGPT [26].

Training and Validation. Following [14], we train the

model for 20 epochs on GazeFollow using a learning rate

of 1e-4 and the AdamW [25] optimizer. We supervise using

the standard MSE loss for gaze heatmap prediction, and bi-

nary cross entropy loss for LAH prediction. For validation,

we use the split proposed by [39].

Metrics. We use the standard gaze following metrics:

• AUC: the predicted heatmap is compared against a bi-

nary GT map with value 1 at annotated gaze point po-

sitions, to compute the area under the ROC curve.

• Distance (Dist.): the arg max of the heatmap provides

the gaze point. We can then compute the L2 distance

between the predicted and GT gaze point on a 1 × 1
square. We compute Minimum (Min.) and Average

(Avg.) distance against all annotations.

In addition, we compute F1 scores for LAH (F1LAH) and

LAEO (F1LAEO). For LAH, we check if the predicted gaze

point falls inside the target person’s head bounding box. For

LAEO, we check the reverse as well. 1

4.3. Results

GazeFollow. We provide results for incorporating VLM

context on the GazeFollow dataset in Table 2. We observe

that performance does not change much for the distance

score. In contrast, for LAH, we observe a slight improve-

ment with the addition of AVA+CP cues, and a degradation

with the addition of SWIG cues. However, the GazeFol-

low test set is very small (approx. 5k instances), and often

contains simple scenes with a single salient target such as

the held object. Also, annotations on GazeFollow are not

always reliable as mentioned in Section 4.2. Hence, analyz-

ing results on GazeFollow alone is not sufficient.

1The predicted LAH scores can also be used for these tasks but were

shown to have slightly lower performance [14].

Method Dist.↓ F1LAH ↑ F1LAEO ↑

Tafasca [39] 0.115 - -

Gupta [13] 0.142 - -

MTGS [14] 0.122 0.588 0.376

MTGS + AVA + CP 0.129 0.586 0.371

MTGS + HICO 0.119 0.601 0.407

MTGS + SWIG 0.117 0.600 0.426

Table 3. Cross-dataset results for the models trained on GazeFol-

low and evaluated on the ChildPlay dataset. Best results are given

in bold, second best results are underlined.

Method AUC↑ Avg. Dist↓ Min. Dist↓ F1LAH↑

Multi Fusion 0.932 0.119 0.062 0.633

Early Fusion 0.936 0.118 0.061 0.643

Table 4. Ablation on early vs multi-stage fusion of VLM context

using the AVA+ChildPlay classes on the GazeFollow dataset. Best

results are given in bold.

ChildPlay. To further investigate the properties of our mod-

els, we perform cross-dataset evaluation on ChildPlay. The

ChildPlay test set has a large number of instances (approx.

20k), and contains challenging scenes with multiple salient

targets (ex. toys, other children/adults), making it an in-

teresting benchmark. We observe that incorporating the

AVA+CP classes results in a drop in performance for the

distance score. However, with the larger set of HICO and

SWIG classes, there is an improvement in performance for

distance, LAH and LAEO. In particular, incorporating the

SWIG classes gives the most improvements, with gaze fol-

lowing results comparable to the state of the art [39] and

contrasts with our observations on GazeFollow. This sug-

gests that incorporating gaze contextual cues can result in

more robust performance with better generalization.

Ablation: Early Fusion vs Multi-Stage Fusion. We per-

form an ablation with two different fusion mechanisms for

incorporating VLM contextual information in MTGS. The

first is early fusion, and follows the approach described in

Section 4.1. The second is a multi-stage fusion approach,

where the VLM context is fused with the person tokens at

every block of the architecture (4 times). We observe that

the early fusion approach slightly outperforms the multi-

stage fusion approach, especially for LAH, so we followed

the early fusion approach for all our experiments.

Qualitative results. We provide qualitative results for

MTGS, with and without the use of contextual cues in Fig-

ure 7. We observe that incorporating contextual cues can

improve performance, helping identify the gaze target in

challenging situations with multiple salient people and ob-

jects. For instance, in row 1, person 2 has a high score for

carrying, which might indicate that this person is looking

towards their hand. In row 2, person 3 has a high score for



Person 1 
   carrying 4.31
   straddling 3.85
   hopping on 3.62
Person 2
   straddling 3.43
   carrying 3.42
   lassoing 2.99
Person 3
   eating 1.72
   blowing 1.18
   milking 0.9

   

Person 1 
   texting on 1.83
   reading 1.13
   typing on 0.99
Person 2
   watching 0.91
   hunting 0.53
   opening 0.48
Person 3
   talking on 1.36
   texting on 1.31
   opening 1.17

   
Figure 7. Qualitative results of MTGS [14] trained on GazeFollow and evaluated on ChildPlay. For each person, we display the predicted

gaze point as well as social gaze task along with the associated person id. We provide results without contextual cues (left) and with

contextual cues from the HICO classes (right). We also display the top three classes with the highest normalized score for each person.

talking on, which suggests social interaction such as LAH.

5. Discussion

Our observations in Section 4.3 suggest that incorporating

a larger set of contextual cues can improve generalization

performance for gaze following. As the set of cues becomes

larger, it can capture more specific situations (ex. unlock-

ing, sewing in SWIG) which are usually associated with

certain gaze targets. It is worth noting that increasing the

number of classes has a negligible impact on computation

time. As mentioned in Section 3.1, the ITM approach pro-

cesses the text prompts and images independently to obtain

text and image embeddings. The final score is then a dot

product of the two. Hence, all the text embeddings can be

computed and saved at the start, and then used with any new

image.

We also note that the set of HICO and SWIG classes uti-

lized in our study are obtained from HOI datasets, hence,

scores for the different cues could alternatively be obtained

from HOI models. This is another interesting direction of

investigation, but its main drawback is that the set of cues

that can be considered is fixed depending on the chosen

model. On the other hand, leveraging VLMs in a zero-

shot manner allows us to consider any set of cues, including

larger sets than the ones we considered (with a negligible

impact on computation time), or more domain specific cues

tailored for specific applications.

6. Conclusion

In this work, we explored the zero-shot capabilities of

VLMs for extracting contextual cues related to a person’s

pose or interactions with objects and other people, and eval-

uated the impact of incorporating these cues into a gaze

following model. We learned that VLMs can indeed ex-

tract contextual cues, and that considering the entire image

with a red-circle drawn over the person of interest serves

as the best visual prompt, and that ensembling scores from

different textual prompts serves as the best text prompting

strategy. We also observed that BLIP-2 is the overall best

performing VLM, and that ICL can potentially bring fur-

ther benefits. In the second part, we observed that incorpo-

rating the extracted cues into a gaze following model can

provide better generalization performance, especially when

considering a larger set of classes. In future work, we plan

to investigate other VLMs and further explore prompting

strategies such as ICL. We also plan to explore the option

of predicting the different cues rather than providing them

as input to the model.
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7. Appendix

7.1. Example of visual prompts

As described in Section 3.1, we investigate different vi-

sual prompting approaches to focus on a specific individ-

ual in the scene. An example of each prompt is provided

in Fig. 10. These techniques are implemented on either

the whole image or specifically on the cropped image of

the target person. In total, this leads to eight distinct visual

prompting strategies.

7.2. Details of the Childplay dataset

In Table 5, we detail the number of annotated negative and

positive samples for each class in the ChildPlay dataset.

7.3. Details of Text Prompts

ITM. Fig. 8, lists different text prompt variations as de-

scribed in Section 3.3 for the ITM approach. A final

prompt is a combination of {template},{person}, {photo}
and {synonym} such as ”this individual is grabbing” or ”a

snapshot of a human handling”.

VQA. For the VQA approach, for computational reasons,

we consider a single template in the form of a question, and

reduce the number of synonyms for the classes. We provide

the template and synonyms in Fig. 9.

7.4. Impact of class synonyms

In Fig. 11, we provide the results for varying the class syn-

onym in the text prompt. We observe that performance can

change depending on the used synonym by a large margin.

Contrary to popular belief, Lorem Ipsum is not simply

random text. It has roots in a piece of classical Latin litera-

ture from 45 BC, making it over 2000 years old. Richard

McClintock, a Latin professor at Hampden-Sydney Col-

lege in Virginia, looked up one of the more obscure Latin

words, consectetur, from a Lorem Ipsum passage, and going

through the cites of the word in classical literature, discov-

ered the undoubtable source. Lorem Ipsum comes from sec-

tions 1.10.32 and 1.10.33 of ”de Finibus Bonorum et Mal-

orum” (The Extremes of Good and Evil) by Cicero, written

in 45 BC. This book is a treatise on the theory of ethics, very

popular during the Renaissance. The first line of Lorem Ip-

sum, ”Lorem ipsum dolor sit amet..”, comes from a line in

section 1.10.32.

Classes negative positive

looking at hand 36 35

reaching 36 34

sitting 60 52

child 59 58

manipulation 59 59

speaking 31 30

Table 5. Classes and statistics of the ChildPlay dataset annotation.

Figure 8. List of the different prompts variations used as de-

scribed in section 3.3. A final prompt is a combination of

{template},{person}, {photo} and {synonym} such as ”this in-

dividual is grabbing” or ”a snapshot of a human handling”.

Figure 9. List of the different prompt variations used for VQA

model. A final prompt is a combination of {template},{person},

and {synonym} such as ”Is this individual grabbing? Answer yes

or no.” .



Figure 10. Different visual prompts are used to focus on the person of interest. Row-wise, the image-based and person cropped-based

variants are displayed. Column-wise, various visual prompts such as ellipse, blur, and gray are presented.

Figure 11. Performance when varying the class synonym in the text prompt. We display the mean and variance of results, as well as the

best and worst synonym.
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