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ABSTRACT 
Many industrial tasks—such as sanding, installing fasteners, and 
wire harnessing—are difcult to automate due to task complexity 
and variability. We instead investigate deploying robots in an assis-
tive role for these tasks, where the robot assumes the physical task 
burden and the skilled worker provides both the high-level task 
planning and low-level feedback necessary to efectively complete 
the task. In this article, we describe the development of a system 
for fexible human-robot teaming that combines state-of-the-art 
methods in end-user programming and shared autonomy and its 
implementation in sanding applications. We demonstrate the use 
of the system in two types of sanding tasks, situated in aircraft 
manufacturing, that highlight two potential workfows within the 
human-robot teaming setup. We conclude by discussing challenges 
and opportunities in human-robot teaming identifed during the 
development, application, and demonstration of our system. 

CCS CONCEPTS 
• Human-centered computing → Collaborative interaction; • 
Computer systems organization → Robotic autonomy. 
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1 INTRODUCTION 
Collaborative robots, or cobots, are designed to work in human envi-
ronments and ofer new ways to engage with industrial workers. For 
example, a cobot can serve as an intelligent teammate, ofoading 
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Figure 1: In this paper, we describe the development of a 
human-robot teaming solution for variable industrial sand-
ing tasks that combines the strengths of the operator and 
robot through end-user programming and shared autonomy. 

physically demanding or repetitive actions across a range of tasks. 
However, the use of cobots in practice falls short of this vision. With 
currently available methods to task robots (e.g., teach pendants), 
the majority of collaborative robots are programmed to execute 
basic skills, such as pick and place, and deployed to primitive tasks 
such as machine tending [37]. Looking beyond these basic applica-
tions, there are opportunities to deploy cobots to more complex and 
physically demanding jobs, such as sanding or sealant application, 
to minimize hazardous worker conditions (e.g., high force loads, 
enclosed spaces). Moving toward complex industrial tasks requires 
moving from highly structured and deterministic task settings (e.g., 
moving objects in known locations) to less structured and highly 
variable task settings (e.g., sanding a surface with intermittent de-
fects). This shift poses a number of challenges for task automation. 
The required robustness and planning for variability is outside the 
scope of traditional task automation pipelines and current research 
technologies are not yet enabling reliable automation for many 
complex, contact-rich tasks [48]. For example, in auto body repair, 
each sanding task will be a diferent shape and require removing 
diferent amounts of damaged material. As human workers already 
possess the expertise (e.g., sensing, reasoning) required to com-
plete such tasks, there is a need for human-in-the-loop approaches, 
where a skilled operator controls the robot to assure reliable task 
outcomes. In this paper, we propose a human-robot teaming system 
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that balances the task workload to leverage the strengths of the 
robot, such as precision and ofoading the physical task burden, 
and the strengths of the human operator, including reasoning about 
the task parameters and planning. 

The split of workload in human-robot teams is often identifed by 
the level of automation [40], which provides a score for how often 
and through what means a human interacts with a robot system. 
Examples of these levels include manual teleoperation, shared con-
trol, supervisory control, and full automation. Within these levels, 
the human and robot assume diferent roles; such as acting, decid-
ing, and suggesting [15]. Many methods select fxed human and 
robot roles based on the needs of a particular task. In limited cases, 
methods allow role-shifting throughout a task based on task and 
user modeling [4, 38] to address diferent requirements for human 
intervention. Following a similar premise, we posit that successfully 
addressing variability in complex industrial tasks requires skilled 
human teammates to interact with the system at multiple times 
with varying levels of feedback. Rather than pursuing techniques 
for role shifting, we base our human-robot teaming approach on ex-
plicitly identifed needs for the skilled worker throughout industrial 
tasks. Specifcally, we desire to leverage the reasoning capabilities 
of the human to help defne the task and the low-level action plan-
ning and perception of the human to react to variability when the 
process outcome is unexpected. Our resulting system meets these 
needs by fusing two modern techniques within the human-machine 
interface: end-user programming [5] and shared autonomy [45]. 

In contrast to previous work, we target separate types of hu-
man interaction for the specifcation and execution phases of a task. 
End-user programming aims to develop intuitive interfaces for task 
specifcation that remove the burden of traditional robot program-
ming while maintaining expressiveness for operators to specify 
nuanced and complex task plans. Shared autonomy aims to tightly 
couple the human in the robot’s control loop such that the human 
and robot can work together to plan appropriate actions during task 
execution. By combining techniques that address the diferent ele-
ments of task variability, the resulting system can allow operators 
to provide sufcient feedback to ensure reliable task outcomes. 

This paper describes our development of a system for complex 
industrial tasks that leverages the respective strengths of a human 
operator and a robot. The main contributions of this work are: 

• Describing a novel human-robot teaming approach that combines 
techniques in end-user programming and shared autonomy to 
achieve fexible automation for variable tasks; 

• Developing a prototype system and corresponding workfows that 
instantiates the human-robot teaming approach to complete rep-
resentative sanding tasks in aviation manufacturing. 

We believe that systems enabling fexible automation can ex-
tend the use cases of cobots (including ergonomically hazardous 
tasks like sanding) and increase adoption of cobot technology. In 
the remaining sections, we frst describe motivating scenarios in 
aviation manufacturing and resulting technological requirements 
for our system. We then describe our prototype implementation 
and system workfows, which were used to complete representative 
tasks in both a lab setting and on-site at an aviation manufacturing 
facility. We conclude by discussing results and opportunities. 

2 RELATED WORK 

2.1 Industrial Human-Robot Collaboration 
Given the relative advantages of robots over human workers, such 
as precision and repeatability, industrial robots have become per-
vasive in modern manufacturing. Industrial robots are deployed 
across a range of jobs, including handling, welding, assembling, and 
painting [20]. While in most cases, robots operate autonomously in 
sequestered spaces and often employ custom hardware and tooling 
(e.g., gantry systems for automated tape layup in aviation [44]), 
there is a desire to develop methods that promote fexibility and 
collaboration through the use of general-purpose robotic hard-
ware (e.g., cobots). For example, Fujii et al. [18] developed a semi-
autonomous system where an operator hand guides an industrial 
robot when handling large components and the robot also com-
pletes some automatic subtasks, like fetching materials. Carmichael 
et al. [10] similarly created a system for abrasive blasting where an 
operator drives the robot behavior via physical interaction while 
the robot assumes the physical burden of the task. Maric et al. 
[33] apply a similar paradigm where the human guides a robot 
through sanding of complex surfaces, from which the robot learns 
object-centric trajectories. Other methods focus on scheduling of 
interdependent tasks and timing in human-robot collaboration. For 
example, Wilcox et al. [49] develop a scheduling paradigm that 
adapts to temporal disturbances and synchronizes activities. Pearce 
et al. [42] develop an optimization for task assignment for a human-
robot team that considers both time on task and ergonomic risk. 

2.2 End-User Programming 
End-user programming aims to reduce barriers for users without 
formal programming experience to participate in the technology 
development process. In robotics, end-user programming solutions 
have been proposed across a range of development phases; includ-
ing during the setup, authoring, editing, and verifcation of robot 
programs [5]. The use of end-user programming in our work fo-
cuses on the authoring phase. Authoring solutions employ a variety 
of modalities to task the robot, including physical demonstrations 
[41], visual programming [35], and extended reality. Our implemen-
tation uses screen-based augmented reality and focuses on iterative 
workfows where the operator provides either partial task speci-
fcation or programming to complete complex tasks. Augmented 
reality has been leveraged in many prior authoring methods to pro-
vide contextualized visual programming [8, 9, 19, 32]. For example, 
Akan et al. [6] use a robot-mounted camera to program manipu-
lations (i.e., pick and place) of objects using a gripper-mounted 
robot camera. Several recent technologies focus on augmented re-
ality interfaces through tablets or other mobile devices [17, 29]. 
Our tangible interface was inspired by the Boston Dynamics Spot 
controller’s touchscreen and game pad functionality [3] and was 
focused on addressing common manufacturing challenges (e.g., 
registration, parameterization for surface-fnishing tasks). 

2.3 Shared Autonomy 
Shared autonomy methods blend together the input of a human and 
robot policy to provide adjustable assistance [45]. In this section, we 
mainly focus on examples of methods involving assistance based on 
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goal inference, methods for dynamic role allocation, and methods 
to provide corrections to robot behaviors during execution. Dragan 
et al. [14] proposed an early method where the system ofered 
conditional assistance based on likely operator goals. Many works 
build on this formulation, such as to partially observable settings 
with unknown goals [25] and to completely remove ex-ante goals 
through a model-free deep reinforcement learning approach [43]. 

Dynamic role allocation methods use operator cues and task 
modeling to identify appropriate human interventions with a robot 
system. Medina et al. [36] devise a dynamic assistance scheme based 
on measuring unexpected (i.e., disagreeing) interaction forces to 
inform between model-free and model-based assistance. Similarly, 
Evrard et al. [16] use physical interactions during collaborative tasks 
to shift agents between leader and follower roles using a homotopy-
based controller. Li et al. [30] explore mixed role assistance by 
modeling the shifting assistance problem as a game theoretic two-
agent system. Abbink et al. [4] explore practical factors related to 
role shifting, such as smooth transitions and hand-ofs of assistance. 

Finally, corrective methods aim to address variability in a task or 
environment. Many works rely on physical intervention to a robot 
manipulator to infer desired changes to a behavior or underlying 
policy [7, 31, 39]. Most relevant to the system developed in this 
paper are methods that create intuitive real-time correction inter-
faces; including to modify the states of UAVs [34], mobile robots 
[11], and robotic manipulators [23, 24]. The key diference from 
existing technology is that the corrective interface in this work 
is highly coupled with the uncertainty of task specifcation (e.g., 
proving a more expressive corrections interface when the robot 
behavior is coarsely defned through visual programming). 

3 OVERVIEW OF SOLUTION 
Industrial environments pose many challenges toward designing 
systems for human-robot teaming. To illustrate some of the key 
challenges, we consider a motivating example in aviation manufac-
turing before describing our system approach. 

3.0.1 Motivating Example. Imagine you are a factory worker on 
the fnal assembly foor for a wide-body aircraft. Many of your 
manual tasks, such as sanding, are highly variable. Each sanding 
task may have diferent amounts of material to be removed and 
may be subject to subtle variables including the sandpaper condi-
tion and wear of the sanding tool. Workers are incredibly adept at 
adjusting their work to react to these nuanced diferences. Thus, 
an efective teaming solution should enable reactivity to the large 
degree of expected process variability. Additionally, each task will 
have very diferent requirements. Some tasks may require following 
a predetermined procedure, whereas certain tasks, such as rework, 
may require working with engineers to plan a specifc interven-
tion. Thus, an efective teaming solution needs to enable fexible 
tasking, where the end user can easily program or modify robot 
behaviors to match the specifc needs of a task. Finally, over the 
course of a shift, you may spend time completing work in several 
areas of the aircraft. For example, you may perform surface prep for 
a large mating area of the fuselage sections and localized rework 
(e.g., sanding) across areas of the fuselage with excess composite 
resin. Thus, the platform requires mobility to move with workers. 

Figure 2: Proposed approach. The worker leverages a mo-
bile augmented-reality interface and custom haptic device to 
program and augment a robot completing a task. The robot 
is on a mobile base and mounted with a RGB-D camera for 
localization and contextualized programming. 

3.0.2 System Approach. To meet these requirements, we developed 
a system that tightly couples a skilled operator to an adjustable 
robot platform, as illustrated in Figure 2. The setup consists of a 
robot manipulator mounted to a mobile base. In this work, we con-
sider a basic setup with casters that can be manually repositioned, 
however, future technologies could enhance mobility by mounting 
the manipulator on an automated ground vehicle [27]. The robot 
is equipped with a camera near the end efector to provide visual 
grounding during robot programming and localization between the 
robot platform and environment as the platform is relocated. 

End-user programming – The robot is programmed by the 
worker through a mobile interface (e.g., tablet) where workers 
graphically specify tasks on an overlaid view from the robot camera 
[47]. The operator’s role is to select and register objects (in the 
case that the task model is known) and to select boundaries and 
parameters for the robot behavior when the task is unknown. 

Shared Autonomy – We follow the approach of Hagenow et al. 
[23] and allow diferential robot corrections of the form: 

x = x� + �x, x� ∈ R�, �y ∈ � (R� ) (1) 

where x is the fnal robot command (consisting of � controlled 
variables), x� is a nominal command from a task model or user 
parameterization, and �x is a diferential correction applied by the 
operator. During execution, the role of the operator is to monitor 
the robot execution and intervene with the diferential corrections 
(e.g., force, pitch, alignment, reversing) when the robot behavior 
performs poorly. The specifcs of the corrections (including dimen-
sionality and state variables) are discussed in the next section. 

4 INTEGRATION AND WORKFLOWS 
To better understand the potential of the proposed human-robot 
teaming approach, we developed a prototype implementation. While 
such a system should support a range of industrial tasks, we focused 
our initial implementation on sanding. The choice was mainly based 
on the prevalence of sanding tasks in industrial applications and the 
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recent interest in fexible robot sanding platforms in the research 
literature [26, 33] and industry (e.g., GrayMatter Robotics [1] and 
Norbo Robotics [2]). Additionally, sanding tasks are a desirable 
candidate for human-robot teaming given the physical challenges 
of manual sanding and the high degree of process variability that 
makes broad robotic automation challenging. 

4.1 Tasks 
Our prototype sanding platform was designed to support two use 
cases that are based on the needs of common manual sanding tasks 
in aviation manufacturing. The frst is the sanding of interior com-
posite structures, such as section dividers and overhead bins. There 
is a large number of diferent geometries that furnish the fuselage 
interior. There is also a range of volumes from unique structures 
(e.g., forward galley) to higher volume, common geometries (e.g. 
window panels, overhead bins). Ideally, there exists enough repeti-
tion to partially automate such tasks. The geometries of the pieces 
are known a priori and while there are difcult curvatures (e.g., tight 
radii, concave features) and defects from upstream manufacturing 
processes, the availability of the task geometry and possibility to 
collect task data enables higher degrees of task planning. 

The second task is inspired by fuselage rework. While the process 
of fber layup has been mostly automated for composite fuselage 
sections, the composite structures still often require manual sanding 
following the curing process. After exiting the autoclave, fuselage 
sections are typically inspected for any problematic areas, for ex-
ample if there are areas with excess resin buildup. The areas that 
require sanding will vary on a section by section basis and assume 
various shapes and sizes. Given that each sanding job is unique, 
this rework is less amenable to automation. 

Figure 3: Overview of implementation. The worker’s inter-
face uses a touchscreen gamepad and (optional) low degree-
of-freedom haptic device to interact with the robot. The robot 
has a custom stand and end efector for sanding. 

Figure 4: Example interfaces for the structured and unstruc-
tured workfow. The structured workfow mostly leverages 
the scanned 3D view of the geometry. The unstructured work-
fow is programmed as an overlay on the current robot cam-
era view. Both workfows include state indicators (e.g., robot 
state) and sandpaper monitoring. 

4.2 System Setup 
Our prototype setup is shown in Figure 3 and consists of a Franka 
Emika robot mounted to a modifed genie lift. The lift allows for a 
worker to manually position the robot for a given task and make 
manual adjustments to the robot height through a jackscrew at-
tached to the base of the robot. The robot is equipped with an 
ATI Axia80 force-torque sensor and a random orbital sanding tool 
as the end efector. The random orbital sander interfaces to the 
force-torque sensor via a 3d-printed fexible vibration isolator that 
helps to reduce the transmission of vibrations to the robot base. 
To facilitate better contact control with the environment, the ro-
bot is operated in a compliance control mode using the measured 
forces from the force-torque sensor. The orbital sander is powered 
pneumatically and toggled through a computer-controlled solenoid 
valve. Additionally, a Kinect Azure RGB-D camera on the robot’s 
distal link is used for visual grounding and localization. 

The operator programs and interacts with the robot through a set 
of mobile interfaces. 1 The robot programming is achieved through 
a mobile touchscreen interface. The interface was developed using 
React javascript, and is served to the user via a webpage on a 
touchscreen mobile phone (Google Pixel 3a XL). The phone has 
an attached external gamepad to capture additional user input. 

1Open source code (and CAD fles) available at: https://github.com/mhagenow01/ 
panda_uli_demo 
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The operator provides corrections either through the gamepad or 
optionally through a one degree-of-freedom haptic input [13]. 

4.3 Supported Workfows 
The prototype system was designed to support two workfows 
inspired by the use cases in aviation manufacturing. The frst use 
case is designed for more structured tasks, such as sanding the 
interior composite pieces, where it is possible to plan a priori and 
leverage previous task data to minimize the required input from the 
operator. The second use case is designed for less structured tasks, 
such as the composite fuselage rework, where few details of the task 
are known a priori and instead the focus is on allowing end-users 
to efectively specify the parameters for the desired sanding task. 
Both workfows use a common back-end which supports features 
such as reachability checking of the robot behavior poses, real-time 
corrections, and basic sandpaper monitoring (i.e., keeping track of 
the time the current sandpaper has been in use). Examples of the 
mobile interface for each workfow are shown in Figure 4. The two 
workfows are explained in the following subsections, illustrated in 
Figures 5-6, and shown in the supplementary video. 

4.3.1 Structured Tasks. The high-level approach for structured 
sanding tasks (e.g., interior composite structures) uses a data-driven 
task model to identify the robot behavior and to inform the cor-
rections an operator can make during the robot execution. The 
workfow assumes that the object geometry, task model (i.e., robot 
trajectories), and corrections that the operator can make are known. 

The role of the operator is to position the robot and workpiece, 
register the task geometry, and correct the robot as the task model 
progresses. Given that not all areas of the workpiece may be reach-
able from a single static robot and workpiece confguration, the 
robot sands the reachable section of the task from its current con-
fguration and keeps memory of the parts of the task that have been 
completed. While in some cases, it may be possible to complete an 
entire sanding task from one robot confguration, in many cases 
the geometry is larger than the dexterous robot workspace and 
thus, our workfow for structured tasks is iterative in nature, where 
the human re-positions the robot or workpiece (whichever is more 
feasible for a given task) multiple times to complete the overall task. 
The full workfow consists of the following steps: 
(1) The operator sets up the task by specifying the geometry (i.e., 

CAD model) and providing demonstrations with an instru-
mented tool (our implementation task model was hard-coded 
for simplicity) that are mapped to the object coordinate frame. 

(2) The robot and mobile base are moved into position for the 
sanding task. When the robot e-stop is engaged, the manipulator 
can be guided to a pose where the robot’s end-efector camera 
can view the task geometry. The robot e-stop is disengaged 
which begins active control of the robot. 

(3) Using the mobile interface, the operator presses a button to scan 
the environment. The robot performs panning motions relative 
to its current pose from which a 3D map of the environment is 
built based on the robot-localized depth images [28]. 

(4) The worker is presented with the 3D scan of the environment 
to identify the task geometry. The interface leverages a human-
in-the-loop method for geometrically registering objects [21]. 
The system attempts to automatically determine the task model 

and object pose from the 3D scan. The operator verifes the ft 
and provides any required modifcations, such as switching the 
geometry if it is incorrectly identifed or adjusting the pose of 
the ft using the interface gamepad controls. Leveraging this 
registration process circumvents the need for custom tooling 
to fxture the workpieces in a known location, enabling more 
agile deployment to new tasks with varied geometries. 

(5) Once the operator indicates a satisfactory ft, the system com-
putes the portion of the robot task model that can be completed 
from the current workpiece and robot confguration (based on 
reachability). The robot path is overlaid on the task geometry 
with colors highlighting previously completed parts of the task 
(gray), reachable sanding paths (blue), and paths that cannot be 
reached from the current confguration (red). If the operator is 
satisfed, they can proceed with the sanding. If not, the operator 
can reposition the workpiece and restart the workfow. 

(6) The robot executes the sanding task. As the robot executes, the 
operator provides input. The operator can interrupt the work-
fow if the sanding disc is too worn, which pauses the sanding, 
moves the robot to a confguration where the sanding disc can 
easily be changed, then resumes the workfow where it left 
of. The operator can issue corrections to the robot as it sands. 
Given that the robot task model is based on previous success-
ful task data, we aim to decrease the need for and complexity 
of operator corrections. For example, in our implementation 
the operator can provide corrections to the abrasiveness when 
sanding areas with defects (a combination of speed, force, and 
tool pitch). The operator can also reverse the execution (i.e., 
backtrack) using a button when the sanding is insufcient. 

(7) Once the sanding is complete, the interface changes the color 
of the completed portion of the task from blue to gray. If there 
are still remaining areas to be sanded, the operator can then 
reposition the workpiece (e.g., rotating the piece 180 degrees to 
sand the other side) and iterate through the workfow steps. 

4.3.2 Unstructured Tasks. The approach for unstructured tasks 
(e.g., sanding a defect on the fuselage) combines a graphical method 
for task specifcation with real-time user corrections. The premise is 
to further leverage the expertise of the operator to compensate for 
the lack of prior knowledge about the requirements of the sanding. 
In this way, the unstructured task workfow can be more easily 
applied to new sanding tasks, but requires more operator efort. 
The role of the operator is to position the robot and workpiece, 
identify the bounds of the required sanding and associated sanding 
parameters, and to provide corrections as the robot executes the 
task. The full workfow consists of the following steps: 
(1) Similar to the frst workfow, the robot camera is positioned to 

provide a satisfactory view of the desired sanding area. 
(2) The worker directly programs the desired sanding on the mobile 

interface. The worker annotates the sanding bounds by posi-
tioning a set of markers on top of the robot camera view. As the 
target sanding area is moved, the system provides reachability 
checks on the interface as a grid of points that are colored based 
on whether the point is reachable (green) or not (red). 

(3) The operator specifes desired sanding parameters, such as the 
number of passes, orientation (i.e., horizontal or vertical), ap-
plied force, tangential velocity, and tool pitch. 
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Figure 5: Workfow for structured tasks. The task is to sand white paint of a curved composite structure. The workpiece is large 
enough such that it requires multiple confgurations of sanding to complete. Event timing (MM:SS) is reported in parentheses. 

(4) Once the operator is satisfed with the sanding parameterization, 
the execution is started and the operator provides feedback. 
Similar to the structured workfow, the operator can change 
sandpaper when necessary and issue real-time corrections to 
the robot behavior. Because the task model is programmed and 
not data-driven, the operator may need to provide corrections 
to any robot variable which is accomplished by mapping the 
gamepad joysticks and triggers to corrections to diferent robot 
state variables (e.g., force, path, pitch). 

(5) If the task is completed successfully, there is no additional work 
for the operator. If the sanding was insufcient, the operator 
can trivially execute the same sanding program a second time. 
The operator can also make any required modifcations, such as 
adjusting the sanding area or parameters. Thus, this workfow 
can also be completed iteratively for a given sanding task. 

4.4 Case studies 
Representative tasks were constructed for both workfows to demon-
strate the proposed prototype system (as seen in Figures 5-6). The 
system was tested in two ways. First, we conducted a series of in-
formal lab tests (as shown in the supplementary video). Second, we 
arranged a series of on-site sessions where the proposed system and 

workfows were demonstrated to end users and engineers in an avi-
ation manufacturing facility. Due to confdentiality agreements, we 
are unable to report specifc data from these on-site demonstrations 
and instead generalize the fndings in the next section. 

For the structured worfklow, the task consisted of sanding spray 
paint of of a curved composite structure. The structure was large 
enough such that the robot could not sand the entire piece from 
a single confguration and thus the task requires two iterations of 
the workfow. While the robot behavior and corrections could be 
learned directly from expert demonstrations [24], for simplicity, 
the robot task behavior used a hard-coded set of passes over the 
surface. The corrections the operator could make were limited to 
be one-dimensional (a combination of force, speed, and pitch) such 
that they could be provided using a one-degree-of-freedom input. 

For the unstructured workfow, the task consisted of removing 
spray paint from a vertical composite structure (a similar orien-
tation to what would be expected during fuselage sanding) with 
an identifed area for sanding. The area to be sanded was marked 
using a sharpie marker similar similar to the inspection process for 
composite rework. Given that the robot behaviors were specifed 
using a basic parameterization, the operator was able to provide 
corrections to all key robot state variables (e.g., force, path, speed) 
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Figure 6: Workfow for unstructured tasks. The task is to sand the white paint in the area highlighted in sharpie marker. Event 
timing (MM:SS) is reported in parentheses. 

independently using the joysticks and triggers on the mobile inter-
face gamepad. While this increased control space complicates the 
required user input during robot execution, the required expres-
siveness of the corrective input is a consequence of the lack of task 
knowledge and simplicity of the programming interface. 

5 DISCUSSION 
In this section, we summarize the results from assessing our system 
in the lab setting. We then discuss the outcomes and lessons learned 
related to shared autonomy and end-user programming in our 
prototype system. Finally, we describe key end-user feedback from 
our on-site session and resulting opportunities identifed for the 
development of future human-robot teaming systems. 

We generally found that the proposed system achieved appropri-
ate sanding quality (i.e., visibly removing all paint in the expected 
regions) for the case study tasks in the lab setting. In a small few 
instances, there were regions that were missed (e.g., boundaries 
between sanding iterations or edges), however, we envision ad-
dressing these challenges by (1) tuning the overlap of broken-up 
behaviors or (2) accepting there will be some manual cleanup re-
quired as, in practice, perfect automation would be too costly to 
achieve. No concerns about sanding quality were raised during our 
on-site demonstrations, which included the two case study tasks 
and two additional surface preparation tasks. 

Both EUP and shared autonomy were critical technologies in the 
performance of the prototype system. EUP was required by design 
for successful use of our system (i.e., each workfow had required 
steps for the user to program at the task level). In the structured 
workfow, we found that operator input through EUP was crucial 
during registration (when the object was geometrically non-unique) 
and in iterating on workpiece placement based on reachability. 
For the unstructured workfow, the visual programming enabled 

fast, iterative specifcation of robot behaviors. Given the coarse 
specifcation (i.e., selecting the boundary on the touch screen), such 
a technique would be best suited for tasks without needs for a 
precision boundary (i.e., rework where a margin of sanding around 
the damage is desired). We also observed that real-time operator 
corrections were critical to achieve quality sanding, even for a well 
tuned task model. For the structured workfow, the task model was 
sufcient to achieve coverage and operator corrections could focus 
on the sanding quality in each area. Even with a tuned task model, 
we found that corrections were needed for the majority of the task 
execution. These included corrections to the pitch to modulate 
the material removal rate and to reverse and repeat the execution 
for areas with excess paint. Without corrections, the robot would 
undersand and oversand some areas. For the unstructured task, we 
found found similar value in high-frequency corrections, such as 
repeating passes with updated paths and adjusting the tool pitch. 

Our feedback from industrial technologists during the on-site 
demonstration identifed three key limitations for future study. 

(1) The collaborative robot solution is too slow and small. 
Other industrial sanding solutions can sand wider areas 
much faster for surface-scufng (i.e., light sanding) tasks. 
Collaborative robots are designed to work safely alongside hu-
man workers. However, this safety comes at the cost of robot 
size and speed. As discussed in the introduction of the prototype 
platform, the dexterous reach of collaborative robot platforms is 
limited and often prohibitive for surface-fnishing tasks. In par-
ticular, if the duration of the work is short (e.g., scuf sanding), 
the preliminary process of setting up and resetting the robot 
greatly afects efciency. Additionally, for tasks involving large, 
fast motions, allocating the work to a collaborative robot (e.g., 
breaking up the task, slower completion times) might be inef-
cient. We believe it is crucial for adoption to develop a model 
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to assess whether a manufacturing task is well suited to the 
cobot’s capabilities and limitations. For example, a composite 
scarf repair may be amenable to a collaborative robot solution 
as the sanding task typically involves localized, low-force, and 
prolonged sanding to penetrate the many composite layers. 

(2) It would be useful if the technology business case in-
cluded both improved ergonomics and improved worker 
efciency. Our solution clearly demonstrated improved phys-
ical ergonomics by distancing the worker from the force and 
vibration loads associated with manual sanding during high 
variability tasks. However, compared to existing sequestered ro-
bot sanding solutions where workers can set up tasks and then 
complete secondary responsibilities, our workfows required 
signifcantly greater user involvement (i.e., time). Coupled with 
decreases in speed induced by the the platform velocity limits, 
there was a desire to investigate ways to improve worker ef-
ciency. We imagine achieving this increased efciency through 
several means. First, we believe it may be possible to increase 
the automation of the unstructured workfow by employing 
automated suggestions for parameterization. For example, if 
the damage is outlined or we could build a database of previous 
sanding instances, it might be possible to classify the likely sand-
ing parameters and only require human input for verifcation 
and corrections (similar to the registration process). Addition-
ally, for tasks requiring intermittent corrections (i.e., difcult 
curvatures of sanding), we envision scaling opportunities where 
a worker supervises multiple robots [22]. 

(3) Future research should focus on the interaction mecha-
nisms and workfows, rather than the full system devel-
opment. We found that the graphical interface and reduced-
dimensionality corrective input garnered the most interest dur-
ing the on-site demonstration. While an original system goal 
was to design a fexible platform for sanding tasks, specifcally 
for tasks that could leverage the same type of end-of-arm tool-
ing (e.g., a random orbital sander), we found that users were less 
interested in the platform fexibility (i.e., completing multiple 
types of work as needed by factory workers) due to a number of 
environmental and certifcation challenges that limit the broad 
applicability of a human-robot teaming solution. For example, 
a painting application requires diferent hardware (e.g., electro-
static protection) from a setup for working in confned spaces 
(e.g., kinematics and payload). Thus, rather than focusing on 
the full robot platform , we believe future work should focus 
on a human-machine interface for fexible tasking with fexible 
hardware (e.g., manipulators tailored to specifc factory tasks). 
Development and adoption of such an interface could poten-
tially decrease required training for workers completing many 
diferent jobs across the factory. For example, we imagine using 
the same tools developed in this work to enable robotic fastener 
insertion, where the operator uses end-user programming to 
select locations for fastener installations and provides low-level 
corrections to address alignment error during the insertions. 

5.1 Limitations & Future Work 
In this section, we discuss the limitations of our human-robot team-
ing system. Our approach was only evaluated informally. Going 

forward, user studies are needed to quantify the benefts of the pro-
posed approach and workfows. This includes studies that measure 
the impact of the human-robot teaming solution on performance 
and ergonomics as well as studies that estimate end-user acceptance 
[12] by evaluating the system with representatives of the target 
user populations, including users of varied expertise. Additionally, 
building toward our vision of fexible human-robot teaming will 
require evaluating our approach across a range of physically de-
manding and variable tasks (i.e., evaluations beyond sanding – such 
as fastening/assembly and composite layup). In addition to tasks 
where the robot assumes full execution, the approach can be ex-
tended to consider tasks that require interdependent tasks by the 
robot and the worker (e.g., highly dexterous and low risk sanding 
where the operator can outperform the robot) [46]. 

There are also limitations in our implementation that we plan to 
address in future system iterations. First, for assessment in realistic 
industrial applications, signifcant eforts are needed to raise the 
technological readiness level of the prototype system (e.g., com-
putational efciency and robustness). Second, each workfow con-
tained tools related to reachability that were solved point-wise (i.e., 
not considering path-wise continuity). Future work will explore 
how to include better tools for reachability that balance accuracy 
with speed for use in human-in-the-loop workfows. Regarding 
mobility, our case study focused on tasks where the workpiece was 
repositioned (e.g., interior structures), but did not investigate repo-
sitioning the robot platform (e.g., large fuselage sections). Similarly, 
our approach to monitor sandpaper health was based on a simple 
model and not formally validated. In the future, we would like to 
explore predictive methods that may enable better sanding through 
accurate sandpaper tracking. Finally, the robot behavior for our 
structured workfow was manually specifed. Future work should 
explore how end users can provide demonstrations to the robot. 

6 CONCLUSION 
In this work, we proposed a system for human-robot teaming that 
leverages end-user programming and shared autonomy and imple-
mented an instantiation of our approach for sanding tasks. In our 
approach, the operator is engaged throughout the full task work-
fow, including the initial programming and specifcation of the 
task as well as during the robot’s execution. The implementation, 
contextualized in sanding, involved two workfows targeted toward 
more and less structured tasks where the operator interacts with 
the robot via an augmented-reality tablet interface and custom 
haptic device. We designed representative lab tasks to demonstrate 
each workfow and discussed takeaways from our testing with avi-
ation manufacturing stakeholders, including remaining challenges 
and recommendations for driving human-robot teaming forward 
in physically demanding industrial applications. 
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