Parkinson’s Disease Detection through Formant and
Fy Analysis at Syllable Level

1%t Sevada Hovsepyan
Speech & Audio Processing Group
Idiap Research Institute
Martigny, Switzerland
https://orcid.org/0000-0001-8640-4206

Abstract—In a recent publication, we put forth a novel
approach to syllable-based feature extraction for the detection
of Parkinson’s disease. The method entails the calculation of
standardised spectrotemporal patterns of syllable-like segments
(fixed number of frequency and temporal bins), which are then
employed as a feature vector for the detection of Parkinson’s
disease. As the classification performance based on the syllable-
level features increased with the inclusion of more frequency bins,
we postulated that the standardised spectrotemporal patterns
bear resemblance to, or contain, the formant transitions that
have been demonstrated to be altered in Parkinson’s disease.
In this study, we initially demonstrated that the extraction of
syllable-level features based on spectrogram energy under the
formant and F0 patterns resulted in a significant improvement
in classification outcomes. To further test our hypothesis, we sta-
tistically compared the eGeMAPS feature set across conditions.
This revealed that features related to fundamental frequency and
formants are statistically different between Parkinson’s disease
and healthy conditions. Taken together, our results suggest that
syllable-level, formant-informed feature selection can provide
reliable PD detection with a relatively small number of features.

Index Terms—Parkinson’s disease, speech pathology detection,
syllables, formants

I. INTRODUCTION

Parkinson’s disease is one of the most prevalent neurodegen-
erative diseases, affecting a significant number of patients each
year [1], [2]. An early diagnosis is of the utmost importance
for a more successful treatment [3]. Consequently, in recent
years, numerous studies have proposed non-invasive methods
for the detection of Parkinson’s disease [4], [5]. A significant
proportion of this research has been based on speech analysis
[6]-[8], where various feature extraction methods were used:
starting from hand-crafted feature sets [6], [9], [10] to the use
of deep learning methods [11]-[14]. A few notable examples
are listed below.

In their 2019 study, Moro-Velazquez and colleagues in-
vestigated the potential of distinct phonemic groups for the
automated detection of Parkinson’s Disease (PD) in speech
[15]. The study put forth a novel phonemic grouping technique
for the analysis of three distinct speech corpora. The method
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achieved AUC values between 91% and 98% within individual
corpora and between 84% and 95% in cross-corpora trials.
The study identified plosives, vowels, and fricatives as key
phonemic groups for successful PD detection.

In another study, Lie et al. (2021), the authors initially pro-
posed an automatic, language-independent formant extraction
method and demonstrated its efficacy in assessing impairment
in vowel articulation in PD patients [16]. The method enabled
them to compare datasets from different languages (Finnish,
English, and Spanish) and to demonstrate that the vowel artic-
ulation of PD patients is impaired in a language-independent
manner, thereby substantiating the potential of formants as a
means of discerning these differences.

Another recent study [17] suggested a novel speech behav-
ioral test, altering auditory feedback during various speech
production tasks (e.g., DDK, whispering). They then used
supervised machine learning algorithms to classify between
PD and HC groups, achieving an accuracy of 85.4%.

Previously, we proposed a new method [18] for syllable-
level feature (SLF) extraction based on standardized spectro-
grams of syllables, inspired by a number of neurocomputa-
tional models of speech perception [19], [20]. Although the
proposed method performed well (AUC=78%-89%) [18], it
was unclear what underlying information SLFs contained for
successful classification. In this paper, in light of previous
work showing that formant patterns are altered in the speech
of Parkinson’s disease patients [6], [7], [21], [22], we hy-
pothesized and attempted to demonstrate that the standardized
spectrograms of syllables contain information about formant
patterns. We modified the construction of previously reported
SLFs [18], and instead of using constant binning for the
frequency channels, we calculated the average energy under
the formant patterns and FO. In addition, we performed a
statistical analysis of the eGeMAPS [23] feature set across
conditions to corroborate our findings.

The remainder of the manuscript is structured as follows:
In Section II, we provide an overview of our previous work
on syllable-level feature extraction for the detection of Parkin-
son’s disease from speech. Section III outlines the proposed
modification to the original approach. It also includes infor-
mation about the used dataset, baseline feature set, as well as
classification analysis and statistical tests. Section IV presents
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Fig. 1. Overview of the proposed methods: The top panel (green) corresponds
to the originally proposed syllable-level feature extraction, which takes
the average activity within equally spaced frequency channels within T=8
temporal bins. The second panel (orange) represents the currently proposed
methodology for syllable level feature extraction, which, unlike the original
method, averages the energy under the formant patterns. Finally, SLFs or
SLFFs are used for the classification process, providing both syllable-level
and utterance-level scores.

the new classification results, comparisons with the results
from the original investigation, as well as the results of the
statistical analysis. Section V concludes our findings.

II. BACKGROUND

In this section, we provide a detailed explanation of the
syllable-level feature (SLF) extraction proposed in our prior
investigation [18]. The proposed approach rests on the notion
that the spectrogramm of each syllable is divided into equal
temporal bins (e.g., eight bins) and that the average energy
of each frequency channel/bin within each temporal bin is
calculated (Fig 1, green box). This method draws inspiration
from a series of neurocomputational models of speech percep-
tion [19], [20], thereby enabling a standardised representation
of spectrotempral patterns of syllables, irrespective of their
original duration. Consequently, it offers a straightforward
and intuitive approach to utilising linguistic markers, such as
syllables, as a "frame” window for feature extraction, ensuring
a consistent number of features for each window.

In the original study we have tested different numbers of
frequency channels, different spectrorgam types and linguistic
markers for syllable segmentation and found that the best
classification results are obtained with STFT and peak-to-
peak segmentation (roughly corresponding to syllable nuclei
to syllable nuclei) [18]. The performance increased with
the inclusion of more frequency channels and the optimal

performance (mean AUC = 83.2%) was achieved with the 46-
channel short-term Fourier transform (STFT), whereby each
SLF was based on 46 homogeneously separated frequency bins
spanning from O up to around 10kHz. We attribute this finding
to the idea that the more channels there are, the more spectral
information is available for classification.

III. METHODS

In this section we outline the main steps for replicating
the study. We start by explaining the proposed methodology
and highlighting the differences from the original study. We
then describe the dataset used and the baseline feature set.
Next, the classification protocol used is described and the
section concludes with the description of the statistical analysis
performed.

A. Proposed Methodology

In this section, we have described the modification of the
previously proposed approach [18] to extract formant (and FO)
features at the syllable level. The modification is based on the
idea that instead of using constant binning for the frequency
channels, we calculated the average energy under the formant
patterns (Fig. 1, orange box, Fig. 2).

The procedure consists of the following steps: 1. for each
utterance, the power STFT and the syllable boundaries are
extracted. 2. additionally, the patterns of the fundamental fre-
quency (FO) and the first 4 formants (F1-F4) are extracted. 3.
for each syllable-like segment (between 2 consecutive syllable
boundaries), the energy (spectrogram amplitude) under the
pitch (FO) and formant (F1-F4) patterns was derived (Fig.
2). Then the syllable segment was divided into T=8 equal
temporal bins and the average energy under FO and F1-F4
patterns was derived. This results in a 5x8 representation of a
syllable.

Finally, the flattened representation (1x40) is used for the
classification procedure (Fig. 1 blue box). Syllable level for-
mant (&F0) features (SLFFs) from each utterance are used
for the classification proposal, then the classification score
corresponding to each utterance is combined to derive the
utterance level score.

B. Dataset

In this study, we used a Spanish speech corpus database con-
taining recordings from 50 patients with Parkinson’s disease
[24]. As a control, the database also includes recordings from
50 healthy patients. Both groups are gender and age matched.
The PD dataset consists of 25 males (mean age 62.2+11.2
years) and 25 females (mean age 60.1+7.8 years). Similarly,
the HC group consists of 25 men and 25 women with a mean
age of 61.2+11.3 years and 60.7+7.7 years respectively. All
subjects perform the same set of speech tasks, e.g. vowel
sustaining, free speech, diadochokinetic (DDK) utterances, etc.
All recordings in the dataset are sampled at 44.1 kHz with 16-
bit resolution.

In this study, we have only used DDK utterances as they
are designed to stress the articulatory system - and therefore
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Fig. 2. Example of DDK utterance (PD condition), where we show detected
onsets (a). full spectrogram with FO and F1-F4 and reduced spectorgrams

may better reveal differences in articulation due to Parkinson’s
disease. Each participant utters 6 different DDK utterances
(papapa, tatata, kakaka, pataka, pakata, petaka).
Therefore, for each type of DDK utterance there are 100
recordings, 50 corresponding to the PD condition and 50 to
the HC.

C. Baseline feature set

As baseline feature sets, we considered the ComParE [25]
and eGeMAPS [23] feature sets, which, although primarily de-
signed for paralinguistic challenges, have also been used suc-
cessfully for PD detection [26], [27]. Here, we use eGeMAPS
as baseline because, first, in our initial investigation [18], we
saw that on average (mean AUC = 76.2%) it provides better
classification results on the used dataset compared to ComParE
(mean AUC = 65.33%). Second, it consists of 88 carefully
selected features, so its features are more interpretable and
can be conditionally divided into two subgroups: those related
to either the source or the system of speech production [28].

D. Classification protocol

We applied the leave-one-subject-out (LOSO) protocol for
each DDK utterance type. Therefore, for each utterance,
we first extracted (SLFFs) and used them as test set. The
SLFFs for the remaining utterances were used for training the
classifier. In this case, we used a cubic kernel support vector
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Fig. 3. ROC curves and AUC values for syllable- and utterance-level scores

machine without hyperparameter optimisation. For each fold,
the classifier outputs the classification scores for each syllable
of omitted utterance, which we then combined by averaging
to obtain the utterance level score.

E. Statistical analysis

We ran a linear mixed random effects model to test whether
eGeMAPS features were statistically different between condi-
tions. To do this, we modelled the linear model with fixed
effects of eGeMAPS features and PD vs. HC condition, with
speakers coded as a random effect. We then looked specifically
at the interaction term between features and conditions and
extracted which features were statistically significant (p<0.05)
across conditions (corrected for multiple comparisons using
the false discovery rate).

E Toolboxes

The following toolboxes were used for during this study:
The syllable segmentation was performed with the Python
implementation of syllable segmentation algorithm based on
sonority envelope and neural oscillations [29]. STFT spec-
trograms were calculated with the librosa library [30],
whereas formats and fundamental frequency were extracted
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Fig. 4. Comparison with SLF and baseline eGeMAPS

with Python implementation of Praaat software [31] with the
parselmount library [32]. Finally, eGeMAPS [23] feature
set was extracted with the OpenSMILE toolbox [33].

IV. RESULTS

In this section we present the classification results for each
DDK utterance type with the LOSO protocol as well as the
statistical test analysis.

A. Classification analysis

Subpanel a) in Fig. 3 is based on the classification results
based on the syllable level scores, while subpanel b) cor-
responds to the classification results based on the utterance
level scores. As we have also seen from the original study,
combining the scores of all syllables within an utterance
and using the utterance level score for classification leads to
better classification results. Overall, we see good classification
results and in all cases well above chance level.

Moreover, in Fig. 4 we compare the results of the original
study with 46-channel SLF (mean AUC = 83.23%) and the
baseline with eGeMAPS (mean AUC = 76.2 %), the new
formant-based features perform at the same level (mean AUC
= 81.6 %), despite having a significantly lower number of
features per syllable. The SLFF also outperform, the original
SLF approach with the similar number of features (6 channel
STFT, mean AUC = 78% ).

In the original paper [18], we also showed that there is a
performance gain when syllable-level features are extracted
based on peak-to-peak segmentation (46-channel STFT, mean
AUC=83.23%) compared to valley-to-valley segmentation (46-
channel STFT, mean AUC=80.1%). This observation was
consistent across all tested spectrogram types and number
of frequency channels. We attributed this observation to the
notion that peak-based segmentation might capture consonant
transitions that might be more informative. However, as can
be seen in TABLE I, for SLFFs, both peak- and valley-based
segmentation lead to similar results, which may be due to
the notion that features are based on FO and formants (which
are primarily vowel attributes), information about consonants
is missing. This can also explain why the 46 channel STFT

still performs better (Fig. 2), since it contains more details
(possibly also about consonants).

TABLE I
PEAK AND VALLEY BASED SEGMENTATION

task peaks  valleys
papapa | 84.04 83.20
tatata 73.68 77.92
kakaka | 81.00  80.08
pataka | 86.32 82.68
pakata | 82.64 80.92
petaka | 81.64 85.40
mean 81.6 81.7

B. Significant features across conditions

The results of the statistical analysis (see Methods: Statisti-
cal analysis for details) are presented in TABLE II, where we
have listed all statistically significant (p<<0.05) features and
whether they were related to FO or formats. The numbers in
the table represent how many signficicant interection were for
each DDK utterance type and feature category (e.g. related to
FO) pair. Interestingly, all the significant features were related
to either the fundamental frequency or formats. We can also
see that the DDK utterances of tatata and kakaka have the
fewest number of significant features, which seems to agree
with the classification results, as this number was also the
lowest for these utterance types. Its is also worth mentioning,
that the DDK utterances with higher performance are those
that show differences in both source (FO) and system-related
(formants) features, suggesting that PD affects both aspects of
speech production.

TABLE I
STATISTICALLY SIGNIFICANT FEATURES ACROSS CONDITIONS

task FO Fl F2 F3 | total

papapa 4 1 1 2 8

tatata 2 - 1 1 4

kakaka | 2 - - - 2

pataka 4 2 1 2 9

pakata 4 1 1 2 8

petaka 4 1 1 2 8

total 20 5 5 9

V. CONCLUSIONS

The revised syllable-level feature extraction method was
found to be an effective approach overall. The classification
results were consistent with those of the original approach, but
with a reduction in the number of features per syllable, thereby
enhancing efficiency. The results support the hypothesis that
reduced spectrograms in SLF capture formant dynamics,
which aid in PD vs. HC classification. Statistical analysis
demonstrated that the features most affected are related to
fundamental frequency and formants. Therefore, it can be
concluded that syllabic-based feature extraction effectively
captures articulatory differences due to PD, especially when
frequency binning is based on formant (FO)-informed variable
frequency patterns.



[1]

[2]

[3]

[4]

[5]

[6]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

REFERENCES

Jinee Goyal, Padmavati Khandnor, and Trilok Chand Aseri, “Classifica-
tion, Prediction, and Monitoring of Parkinson’s disease using Computer
Assisted Technologies: A Comparative Analysis,” Engineering Applica-
tions of Artificial Intelligence, vol. 96, pp. 103955, Nov. 2020.

M. C. de Rijk, L. J. Launer, K. Berger, M. M. Breteler, J. F. Dar-
tigues, M. Baldereschi, L. Fratiglioni, A. Lobo, J. Martinez-Lage,
C. Trenkwalder, and A. Hofman, “Prevalence of Parkinson’s disease in
Europe: A collaborative study of population-based cohorts. Neurologic
Diseases in the Elderly Research Group,” Neurology, vol. 54, no. 11
Suppl 5, pp. S21-23, 2000.

Melissa J. Armstrong and Michael S. Okun, “Diagnosis and Treatment
of Parkinson Disease: A Review,” vol. 323, no. 6, pp. 548-560.

Quoc Cuong Ngo, Mohammod Abdul Motin, Nemuel Daniel Pah, Peter
Drotér, Peter Kempster, and Dinesh Kumar, “Computerized analysis of
speech and voice for Parkinson’s disease: A systematic review,” vol.
226, pp. 107133.

Liaqat Ali, Ashir Javeed, Adeeb Noor, Hafiz Tayyab Rauf, Seifedine
Kadry, and Amir H. Gandomi, “Parkinson’s disease detection based
on features refinement through L1 regularized SVM and deep neural
network,” vol. 14, no. 1, pp. 1333.

Sabine Skodda, Wenke Visser, and Uwe Schlegel, “Vowel Articulation
in Parkinson’s Disease,” vol. 25, no. 4, pp. 467-472.

Yuanyuan Liu, Mittapalle Kiran Reddy, Nelly Penttild, Tiina Ihalainen,
Paavo Alku, and Okko Risidnen, “Automatic Assessment of Parkinson’s
Disease Using Speech Representations of Phonation and Articulation,”
vol. 31, pp. 242-255.

Clayton R. Pereira, Danilo R. Pereira, Silke A. T. Weber, Christian Hook,
prefix=de useprefix=true family=Albuquerque, given=Victor Hugo C.,
and Jodo P. Papa, “A survey on computer-assisted Parkinson’s Disease
diagnosis,” vol. 95, pp. 48-63.

Bjorn Schuller, Stefan Steidl, Anton Batliner, Alessandro Vinciarelli,
Klaus Scherer, Fabien Ringeval, Mohamed Chetouani, Felix Weninger,
Florian Eyben, Erik Marchi, Marcello Mortillaro, Hugues Salamin, Anna
Polychroniou, Fabio Valente, and Samuel Kim, “The INTERSPEECH
2013 computational paralinguistics challenge: Social signals, conflict,
emotion, autism,” in Interspeech 2013. Aug. 2013, pp. 148-152, ISCA.
Max A. Little, Patrick E. McSharry, Eric J. Hunter, Jennifer Spielman,
and Lorraine O. Ramig, “Suitability of dysphonia measurements for
telemonitoring of Parkinson’s disease,” vol. 56, no. 4, pp. 1015.
Marek Wodzinski, Andrzej Skalski, Daria Hemmerling, Juan Rafael
Orozco-Arroyave, and Elmar Noth, “Deep Learning Approach to Parkin-
son’s Disease Detection Using Voice Recordings and Convolutional
Neural Network Dedicated to Image Classification,” in 2019 41st Annual
International Conference of the IEEE Engineering in Medicine and
Biology Society (EMBC), pp. 717-720.

Anu Iyer, Aaron Kemp, Yasir Rahmatallah, Lakshmi Pillai, Aliyah
Glover, Fred Prior, Linda Larson-Prior, and Tuhin Virmani, “A ma-
chine learning method to process voice samples for identification of
Parkinson’s disease,” vol. 13, no. 1, pp. 20615.

Maté Hire§, Matej Gazda, Peter Drotdr, Nemuel Daniel Pah, Moham-
mod Abdul Motin, and Dinesh Kant Kumar, “Convolutional neural net-
work ensemble for Parkinson’s disease detection from voice recordings,”
vol. 141, pp. 105021.

Awais Mahmood, Muhammad Mehroz Khan, Muhammad Imran, Omar
Alhajlah, Habib Dhahri, and Tehmina Karamat, “End-to-End Deep
Learning Method for Detection of Invasive Parkinson’s Disease,” vol.
13, no. 6, pp. 1088.

Laureano Moro-Velazquez, Jorge A. Gomez-Garcia, Juan 1. Godino-
Llorente, Francisco Grandas-Perez, Stefanie Shattuck-Hufnagel, Virginia
Yagiie-Jimenez, and Najim Dehak, ‘“Phonetic relevance and phonemic
grouping of speech in the automatic detection of Parkinson’s Disease,”
vol. 9, no. 1, pp. 19066.

Yuanyuan Liu, Nelly Penttild, Tiina Thalainen, Juulia Lintula, Rachel
Convey, and Okko Risdnen, “Language-Independent Approach for
Automatic Computation of Vowel Articulation Features in Dysarthric
Speech Assessment,” vol. 29, pp. 2228-2243.

Angeles Pifia Méndez, Alan Taitz, Oscar Palacios Rodriguez, Ildefonso
Rodriguez Leyva, and M. Florencia Assaneo, “Speech’s syllabic rhythm
and articulatory features produced under different auditory feedback
conditions identify Parkinsonism,” vol. 14, no. 1, pp. 15787.

Sevada Hovsepyan and Mathew Magimai.-Doss, “Syllable Level Fea-
tures for Parkinson’s Disease Detection from Speech,” in ICASSP 2024

(19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

- 2024 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP). pp. 11416-11420, IEEE.

Sevada Hovsepyan, Itsaso Olasagasti, and Anne-Lise Giraud, “Com-
bining predictive coding and neural oscillations enables online syllable
recognition in natural speech,” Nature Communications, vol. 11, no. 1,
pp. 3117, June 2020.

Izzet B. Yildiz, Katharina von Kriegstein, and Stefan J. Kiebel, “From
Birdsong to Human Speech Recognition: Bayesian Inference on a
Hierarchy of Nonlinear Dynamical Systems,” PLoS Computational
Biology, vol. 9, no. 9, pp. €1003219—-1003219, Sept. 2013.

Rachel B. Convey, Tiina Ihalainen, Yuanyuan Liu, Okko Résénen,
Sari Ylinen, and Nelly Penttild, “A comparative study of automatic
vowel articulation index and auditory-perceptual assessments of speech
intelligibility in Parkinson’s disease,” pp. 1-11.

Daniel Escobar-Grisales, Tomds Arias-Vergara, Cristian David Rios-
Urrego, Elmar Noth, Adolfo M. Garcia, and Juan Rafael Orozco-
Arroyave, “An Automatic Multimodal Approach to Analyze Linguistic
and Acoustic Cues on Parkinson’s Disease Patients,” in INTERSPEECH
2023. pp. 1703-1707, ISCA.

Florian Eyben, Klaus R. Scherer, Bjorn W. Schuller, Johan Sundberg,
Elisabeth André, Carlos Busso, Laurence Y. Devillers, Julien Epps, Petri
Laukka, Shrikanth S. Narayanan, and Khiet P. Truong, “The geneva
minimalistic acoustic parameter set (gemaps) for voice research and
affective computing,” IEEE Transactions on Affective Computing, vol.
7, no. 2, pp. 190-202, 2016.

Juan Rafael Orozco, Julian D. Arias-Londofio, J. Vargas-Bonilla, Maria
Gonzdlez-Rétiva, and Elmar Noeth, “New Spanish speech corpus
database for the analysis of people suffering from Parkinson’s disease,”
May 2014.

Bjorn Schuller, Stefan Steidl, Anton Batliner, Julia Hirschberg, Judee K.
Burgoon, Alice Baird, Aaron Elkins, Yue Zhang, Eduardo Coutinho, and
Keelan Evanini, “The INTERSPEECH 2016 Computational Paralinguis-
tics Challenge: Deception, Sincerity & Native Language,” in Interspeech
2016. Sept. 2016, pp. 2001-2005, ISCA.

Alireza Bayestehtashk, Meysam Asgari, Izhak Shafran, and James
McNames, “Fully Automated Assessment of the Severity of Parkinson’s
Disease from Speech,” Computer Speech & Language, vol. 29, no. 1,
pp. 172-185, Jan. 2015.

Bjorn Schuller, Stefan Steidl, Anton Batliner, Felix Burkhardt, Laurence
Devillers, Christian Miiller, and Shrikanth S. Narayanan, “The INTER-
SPEECH 2010 paralinguistic challenge,” in Interspeech 2010. Sept.
2010, pp. 2794-2797, ISCA.

S.  Pavankumar Dubagunta, Mathew Magimai.-Doss, Eleni
Theocharopoulos, and Mathew Magimai Doss, “Towards Automatic
Prediction of Non-Expert Perceived Speech Fluency Ratings,” .

Okko Risinen, Gabriel Doyle, and Michael C. Frank, “Pre-linguistic
segmentation of speech into syllable-like units,” Cognition, vol. 171,
pp- 130-150, Feb. 2018.

Brian McFee, Colin Raffel, Dawen Liang, Daniel PW Ellis, Matt
McVicar, Eric Battenberg, and Oriol Nieto, “librosa: Audio and music
signal analysis in python,” in Proceedings of the 14th python in science
conference, 2015, vol. 8.

Paul Boersma and David Weenink, “Praat: doing phonetics by computer
(version 5.1.13),” 2009.

Yannick Jadoul, Bill Thompson, and Bart de Boer, “Introducing
Parselmouth: A Python interface to Praat,” Journal of Phonetics, vol.
71, pp. 1-15, 2018.

Florian Eyben, Martin Wollmer, and Bjorn Schuller, “Opensmile: The
munich versatile and fast open-source audio feature extractor,” in
Proceedings of the 18th ACM International Conference on Multimedia,
Firenze Italy, Oct. 2010, pp. 1459-1462, ACM.



