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ABSTRACT

Early detection of Parkinson’s disease (PD), one of the most com-
mon neurodegenerative diseases, is crucial for successful treatment
and symptom management. In this study, we propose a novel ap-
proach inspired by neurocomputational models of speech perception,
for PD detection from speech samples. Our proposal emphasises the
importance of acoustic/linguistic markers to extract features at the
syllable level, in contrast to conventional methods that extract fea-
tures at the frame or state level. Through the use of syllable-level
features (SLF), we successfully identify PD in recorded speech sam-
ples. Remarkably, the results not only match but potentially exceed
the effectiveness of traditional feature sets used for this purpose. We
hope that the proposed approach will provide a new basis for in-
tegrating linguistic insights into the identification of speech-related
diseases.

Index Terms— syllable-level-features, Parkinson’s disease,
SVM, language disorder, classification

1. INTRODUCTION

Parkinson’s disease (PD) is a prevalent neurodegenerative condition
that affects many patients, impacting both motor (e.g. motor plan-
ning, tremor, bradykinesia) and non-motor systems (cognitive, gas-
trointestinal, neuropsychiatric) [1, 2]. These systems also affect how
PD patients articulate speech, which is typically described as sad,
monotonic, slow, disconnected, etc [3]. Therefore, in recent years,
several studies have been conducted on the automated detection of
Parkinson’s disease based on speech articulation [4, 5, 6].

The primary speech feature of Parkinson’s disease (PD) patients
is phonation impairment, with articulation being the second most
affected subsystem [7]. Therefore, sustained vowel recordings are
traditionally used to evaluate phonation impairment, and diado-
chokinetic (DDK) exercises are conducted to assess articulatrion
impairment. When assessing PD’s effects on speech over extended
timescales, prosody analysis is frequently included. However, to
conduct a full analysis of speech in PD patients, it is essential to
consider all these factors, as shown in [7]. In their study the au-
thors undertake an acoustic evaluation of the speech of PD patients,
specifically exploring their phonation, articulation, and prosody.
The speech corpus utilized in this study consists of recordings from
46 individuals who are Czech natives. Among these participants,
23 individuals were identified as having early stage idiopathic PD
by neurologist experts, while the remaining 23 individuals were
healthy controls (HC). The collection of recordings encompasses
the DDK task, sustained phonation of the vowel /i/, aloud readings,
and monologues. Traditional features such as formant frequencies,
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articulation rate, pause characteristics, and voice intensity, coupled
with non-standard attributes like relative intensity range variations
and spectral distance variations, were adopted to demonstrate that
78% of early untreated PD patients manifest compromised vocal
functionality affecting speech subsystems such as phonation, articu-
lation, and prosody, oftentimes in a combination.

In their study, Bayestehtashk et al. 2014 [5] examined the au-
tomated assessment of PD severity through speech analysis. The
corpus comprised 168 patients at varying stages of the disease who
were all native English speakers. The data collected included sus-
tained phonation of the vowel /a/, DDK utterances and reading aloud
text. The ComPareE2010 (Computational Paralinguistic Challenge)
feature set from INTERSPEECH2010 [8] was used for classifica-
tion. According to the findings, assessing the severity of the disease
is best achieved through reading text and DDK tasks.

In their study, Orozco-Arroyave et al. 2014 [9] investigate var-
ious acoustic measures derived from sustained vowel recordings in
the PC-GITA database [9]. The analysis comprises various acous-
tic measures, including the first two formants, pitch, jitter, shimmer,
vowel articulation index, triangular vowel space area (tVSA), and
three novel tVSA-based metrics. The accuracy of pitch variation
measurements is deemed crucial amongst these features. Further-
more, the integration of vocal tract shaping and voice quality at-
tributes resulted in an advancement of the outcomes, attaining an
81.3% accuracy rate of PD classification task.

A recent study [6] utilised a convolutional neural network to
investigate the effectiveness of different speech signal segments in
automatically detecting PD. The speech corpus included recordings
from 268 Lithuanian natives who pronounced phonetically balanced
four-word sentences. The feature sets comprised of Mel-frequency
spectrograms, first and second derivatives, and other feature maps.
Image interpolation was employed to obtain a fixed-length spectro-
gram. The study demonstrates that dividing speech into segments
and fusing the classification decisions from the segments results in
better PD detection than classification based on the sentences.

In this study, we present a novel approach for the automatic de-
tection of PD from speech. Our method draws inspiration from neu-
rophysiologically plausible models of speech perception that focus
on syllables [10, 11]. When sound enters the ear, it travels through
the cochlea and is decomposed into frequency components based on
which hair cells in the cochlea were activated. During the process
of speech perception, information consistently enters the cortex, and
a crucial step for subsequent processing involves segmenting this
information into syllabic units [12]. As such, syllables are conven-
tionally considered to be the basic blocks of both speech perception
and production [13]. Therefore, we suggest that speech impairment
related to PD can be detected at the syllable level. Furthermore,
in line with [6], we recommend that continuous speech signals are
segmented into syllables and syllable-level features (SLFs) are ex-
tracted, which may be more advantageous for PD detection.

The central concept of the proposed methodology is that PD



affects motor control, leading to impaired speech articulation, in-
cluding difficulties in pronouncing syllables. Two types of syllable
segmentation can be considered. Valley-based segmentation, which
entails syllable onset segmentation, concentrates primarily on the in-
formation concerning vowel articulations. Thus provides informa-
tion on phonation impairments. On the other hand, peak-based seg-
mentation centres on consonant information, which requires more
refined motor control and can be more challenging for PD patients.
Taken together, we hypothesise that peak-based segmentation may
yield better PD detection.

The manuscript is divided into the subsequent sections: In Sec-
tion 2, we present information regarding the neurocomputational
models mentioned above. In Section 3, we describe in detail the
syllable-level features extraction. In Section 4, we present the
dataset and experimental protocols used throughout the study, the
baseline features sets and outcomes from conducted experiments.
Lastly, in Section 5, we conclude our findings and accentuate the
potential prospects of the proposed method.

2. BACKGROUND

In this section, we will provide more details on how some syllable-
based neurocomputational models of speech perception represent
syllable level information. The basic concept behind syllable level
representation is that a syllable can be represented as a pattern in
a spectral space, with a series of spectral vectors making up each
syllable. One straightforward method to accomplish this is by col-
lapsing the spectral energy of a syllable’s time-frequency (TF) de-
composition into a fixed number of frequency channels and tempo-
ral bins. In several neurocomputational models of speech percep-
tion [10, 11, 14], the spectral pattern of a syllable or a single word
(taken from models of the auditory periphery [15]) is reduced to 6
channels, by averaging the activity of adjacent frequency bands. The
duration of the speech segment is then divided into 8 (arbitrarily cho-
sen) equal parts, and the average activity of each frequency channel
within each temporal bin is calculated. Finally, an additional step
was undertaken to translate these patterns into the Hopfield space
[16]. As a result, each of the 8 6-dimensional spectral vectors of
a syllable serve as a global attractor, thus rendering the patterns of
different syllables more distinguishable from one another. This rep-
resentation sufficed to obtain approximately 98.4% accuracy in digit
recognition [10] and approximately 40% (with an 8% chance level)
accuracy for online syllable recognition [11].

3. PROPOSED METHODOLOGY

In this section, we detail the process for our proposed method, com-
prising of four steps: 1. the segmentation of continuous speech utter-
ances into syllable-like segments, 2. the calculation of a standardized
spectrogram for each syllable, 3. the construction of a feature vector,
and finally, 4. the classification of PD from HC based on these fea-
ture vectors. Further elaborations of each step are presented below,
while Figure 1 illustrates the flowchart of the proposed algorithm.

1. Segmentation: There are several algorithms for automatic
syllable onset detection, to name a few [17, 18, 19]. For our cur-
rent implementation, we have chosen neurophysiologically inspired
model utilising theta oscillations and sonority envelope [20]. This
approach allows to perform the syllable segmentation either based
on syllable onsets (i.e. valleys on the envelope) or syllable nuclei
(where typically vowels appear, represented by peaks in the enve-
lope). However, it is worth noting that the proposed approach is

Fig. 1. Flowchart of proposed methodology

agnostic to the segmentation method, and any other syllabification
algorithm can, in principle, be used.

2. Standardised spectrogram: The subsequent stage in-
volves calculating a standardised spectrogram - in essence, a time-
normalised (fixed temporal bins) and frequency-normalised (same
frequency range, number of channels) representation of a sylla-
ble. For the frequency domain, we can either follow the procedure
described in the Background section (averaging the activity of neigh-
bouring channels and reducing the dimensionality to F - channels),
or we can directly compute the time-frequency decomposition with
the desired number of channels. Standardisation in the time domain
proceeds similarly to the procedure described above: dividing the
duration of a syllable’s time-frequency decomposition into T equal
temporal bins and calculating the average energy of each frequency
channel in each bin. As a result, each syllable is presented as a
standardised frequency-time matrix (FxT). It should be noted that
the number of channels and temporal bins is flexible and can be
adjusted to suit a specific task.

3. Syllable level features: Next, for each syllabic segment the
feature vector is constructed from the standardised spectrogram by
transforming the FxT matrix into a 1x(FxT) vector. Consequently,
each speech utterance is presented by a series of feature vectors (as
many as detected syllabic segments) that can be utilised for classifi-
cation. The feature vector of each syllabic segment is used as a data
point for the classification procedure.

4. Classification: Finally, the extracted features vectors from
each syllabic segment is used for classification to distinguish be-
tween PD and HC conditions.

4. RESULTS AND EXPERIMENTAL PROTOCOLS

This section comprises four subsections. In subsection 4.1, we pro-
vide information about the dataset used, baseline feature sets, eval-
uation, and experimental protocols. Subsection 4.2 focuses on the
impact of the dimension of the feature vector (specifically the num-
ber of frequency channels) on the classification results and its com-
parison with baseline feature sets. Additionally, other approaches
for the time-frequency decomposition are explored. Subsection 4.3
is dedicated to examining the syllable segmentation process and in-
vestigating whether peak-based segmentation, which centres on the
information surrounding consonant articulation, is more beneficial
for the detection of PD compared to valley-based segmentation. It
could be argued that consonant articulation is more challenging for
patients with PD, as it requires more refined motor control - thus
peak based segmentation might be more feasible for PD detection.



We also examine whether the segments must be based solely on syl-
lables. Additionally, in subsection 4.4, we assess the feasibility of
applying the suggested methodology to unseen syllables and other
speech types (e.g., monologues).

4.1. Dataset and protocols

The dataset used in this study consists of diadochokinetic (DDK) ut-
terances from the PC-GITA speech corpus [9]. The corpus includes
recordings of 50 individuals with PD, comprising 25 men with a
mean age of 62.2±11.2 years and 25 women with a mean age of
60.1±7.8 years, as well as 50 HC, consisting of 25 men with a mean
age of 61.2±11.3 years and 25 women with a mean age of 60.7±7.7
years. All recordings were sampled at 44.1 kHz with 16-bit resolu-
tion. Recordings are available for each participant for six different
DDK tasks, as listed in the first column of Table 1. Thus, there are
100 recordings for each DDK task, consisting of 50 PD and 50 HC
conditions.

We applied the leave-one-subject-out method for each DKK-
task, excluding a single utterance as a test case for each fold. The
remaining utterances’ syllables were used for training the classifier.
Our study employed a Support Vector Machine with a cubic kernel
to perform classification without hyperparameter optimization, al-
though other classifiers could be used. Each syllable’s feature vector
was entered as a separate data point for classification. Hence, the
AUC (area under the receptive-optimized-curve) along with the cor-
responding classification performance score is obtainable at the syl-
lable level. However, scores at the utterance or state level can also
be obtained by aggregating the scores from related syllable segments
(e.g. by arithmetic mean, reported as utterance/state level AUC).

As a baseline features sets we have selected ComParE2016 [21]
and eGeMAPSv2 [22]. The ComParE2016 feature set comprises
6373 features, which were also utilized in INTERSPEECH2015
for assessing the severity of PD [23]. Consequently, it serves as a
dependable benchmark for validating our proposed approach. The
eGeMAPS, or extended Geneva Minimalistic Acoustic Parameter
Set, consists of 88 carefully selected features [22]. Its purpose is
to provide a standard baseline for speech emotion recognition ex-
periments. We suggest that the inclusion of eGeMAPS as a reliable
baseline feature set will enhance the validation of our approach,
due to the potential perception of sadness, monotony, or depres-
sion in the speech of Parkinson’s disease patients. [3]. State-level
baseline features were calculated using the OpenSMILE toolbox
[24] for each utterance in each DDK task. The AUC values derived
from these feature sets to be compared with the AUC values at the
utterance level of the proposed method.

4.2. Impact of the number of frequency channels and compari-
son with the baseline

In this subsection, we examine how the number of channels in a
standardised spectrogram, and thus the dimension of the SLF vector,
impacts classification results. Additionally, we tested the suitability
of more conventional time-frequency decomposition, such as Mel
spectrogram or Short-Term Fourier Transform (STFT), in compari-
son to neurophysiologically plausible auditory spectrogram [15] for
the current task.

Following the procedures described in the Section 2, we started
with SLF calculated on the valley-based segmentation (Figure 2) and
the auditory spectrogram. Table 1 presents the classification results
for each DDK task for SLF based on different frequency channel
numbers. Our proposed approach outperforms chance-level (50%)

task 6 ch. 22 ch. 46 ch. ComParE eGeMAPS
papapa 64.83 69.15 67.67

72.08 74.12 72.6 68.4 77.66
tatata 62.1 65.16 62.4

64.32 65.12 63.76 40.2 73.92
kakaka 73.2 72.74 71.33

77.96 75.84 75.64 58.54 70.74
pataka 64.66 67.88 67.07

73.68 77.08 74.05 74.82 76.82
petaka 59.07 63.46 62.04

67.28 68 66.04 76.56 83.32
pakata 63.23 65.18 63.88

70.24 74.08 69.84 73.48 74.72
mean 64.52 67.26 65.73

70.93 72.37 70.32 65.33 76.2

Table 1. SVM classification results based on SLF extracted from
the auditory spectrogram. For each DDK-task the first row indi-
cates the syllable-level AUC, while the second row represents the
utterance/state-level AUC. Column indicates the number of channels
used to extract SLF. The last two columns indicate the classification
results based on the baseline feature sets.

performance for all tasks. Also, in agreement with [6], the classifi-
cation results at the utterance level are superior to those at the syl-
lable level (hereafter the reported results would be based on the ut-
terance level score, if not specified otherwise). On average, the pro-
posed model achieves superior results based on 22 channel SLF rep-
resentations compared to the average score based on ComParE2016
by approximately 7%, but underperforms the average score of the
eGeMAPSv2 feature set by approximately 4%.

Fig. 2. Segmentation based on valleys (dashed red lines) or peaks
(dashed blue lines) of the sonority envelope (black solid line).

Furthermore, in addition to the auditory spectrogram, we exam-
ined two alternative methods of computing the time-frequency de-
composition of utterances, namely the Mel-spectrogram and Short-
Term Fourier Transform (STFT). We adjusted the number of nft
points and channels/mels (using the LibROSA library [19]) to pro-
duce standardized syllable representations with different number of
channels. To ensure that the STFT (or Mel-spectogram) have the
highest frequency channel at around 10kHz, to produce F=6 chan-
nel STFT(Mel-spectrogram), we first generated F=6+2 to generate
8 channel spectrogram and then excluded the last 2 channels for
SLF calculation. Same procedure was performed for the other num-
ber of frequency channels. The comparison between outcomes de-
rived from the Mel or STFT spectrograms, and those produced by
the auditory spectrogram are presented in Figure 3. SLF based on
the 46-STFT representations provides the highest classification per-
formance, outperforming the baseline feature sets (by an average
of 14.77% over the ComParE2016 feature set and 3.9% over the
eGeMAPSv2 feature set). The results reported in the following sec-



task valleys peaks ∆T1 ∆T2 ∆T3

papapa 78.68 81.96 70.92 67.68 67.24
tatata 75.64 78.84 71.68 73.28 66.72
kakaka 77.96 79.24 65.76 58.92 64.68
pataka 83.64 89.04 77.84 83.82 80.56
petaka 80.48 84.88 73.23 70.12 74.84
pakata 84.2 85.44 71.68 75.16 73.88
mean 80.1 83.23 71.85 71.48 71.32

Table 2. SVM classification results based on SLF extracted from
46-channel STFT spectrogram, where ∆T1 = 25-50ms, ∆T2 = 50-
450ms, ∆T3 = 300-600ms

tions are therefore based on the 46-channel STFT representations,
unless otherwise specified.

Overall, it can be asserted that the proposed approach, which is
based on syllable-level features, has merits and provides impressive
classification results compared to the baseline feature sets. More-
over, it is worth emphasising that the score at the level of the utter-
ance, which incorporates the classification results of every syllable,
generates superior performance.

Fig. 3. Performance gain with Mel (solid bars) or STFT (dashed
bars) spectrogram versus auditory spectrogram.

4.3. Segmentation: peaks or valleys

All the previous reported results were reported when the segmen-
tation was performed on the local minima (valley) of the sonority
envelope, constituting the ”syllable” onset. In this section, we inves-
tigate 1) whether segmentation methods based on energy peaks (syl-
lable nuclei) would be more advantageous and 2) whether segments
should necessarily be based on linguistic/acoustic cues (syllable on-
set or nuclei). Therefore, we repeated the above-mentioned experi-
ment with peak-based segmentation and random segments (different
duration ranges were tested) not necessarily aligned with linguis-
tic/acoustic markers. As can be observed (Table 2), the results are
further enhanced with peak-based segmentation, and both syllable-
based segmentations outperform segments of similar duration range
that lack acoustic/linguistic markers. To summarise, the proposed
model’s advantage stems from the segments being based on syllabic
markers (thus utilizing acoustic/linguistic information), more so if
the segment boundaries are based on syllabic nuclei/energy peaks.

tasks papapa tatata kakaka
papapa 81.76 82.84 84.55
tatata 89.76 75.51 84.4

kakaka 87.4 86.75 79.16

Table 3. Cross-task SVM classification results based on 46-channel
STFT spectrogram with peak-based syllable segmentation.

duration (s) 3.5 10 12
AUC 65.52 75.68 78.16

Table 4. SVM classification results based on 46-channel STFT spec-
trogram for monologue extracts. The peak-based segmentation is
used.

4.4. Generalization to unseen syllables

All experiments described above were performed on specific DKK
tasks. However, in order to test how generalisable our approach is
we conducted a cross-task experiment: features extracted from one
task (e.g. papapa) were used for classification for the other task
(e.g. kakaka). To ensure that the experiment is speaker-independent,
we adapted the LOSO protocol for the cross-task design: the utter-
ance of the ”left-out” speaker was excluded from the training set.
Moreover, to ensure that the same syllable is not included in both
test and train sets, we only used the DDK tasks with single syllable.
Results, presented in Table 3, indicate that SLF captures differences
between conditions not specific to the DDK task, hence the proposed
approach is generalisable to unseen syllables.

Encouraged by these findings, we conducted further tests to as-
certain the feasibility of the proposed approach by using monologue
extracts from the PC-GITA database. Table 4 presents the results
for different extract durations (10 s being approximately the average
duration of a DKK task) and suggests that SLF can be applied to
broader speech samples.

5. CONCLUSIONS

Overall, the findings suggest that the proposed approach of using
a syllable-level feature set for detecting Parkinson’s disease from
speech samples holds promise. Our results are comparable, if not
superior, to classification results based on more typical feature sets
like ComParE2016 and eGeMAPSv2 [24, 21, 22]. We have shown
that spectrotemporal patterns of syllable-segments, based on STFT,
provide sufficient information for distinguishing PD from HC.

Additionally, the results suggest that peak-based segmentation is
more effective and supports our initial hypothesis that patients with
Parkinson’s disease may experience difficulty in articulating conso-
nants. Furthermore, we have noted that the proposed methodology is
adaptable and can extract speech-related features applicable to dif-
ferent types of speech, be it a monologue or otherwise.

The proposed approach is versatile in its processing steps and
is applicable for detecting speech impairments such as stuttering,
dysarthria, and drowsiness in addition to Parkinson’s disease. Re-
sults indicate that features driven linguistic markers can efficiently
detect Parkinson’s disease through speech. In the future, further it-
erations of this study should be undertaken to customize the method
for other speech- related disorders.
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