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Abstract

This paper presents a computational model for distinguish-
ing between healthy speech and pathological speech, specifi-
cally speech from patients with Parkinson’s disease. The model
is based on neurophysiologically plausible computational mod-
els of speech and syllable recognition. These models were de-
signed to uncover the functional roles of brain activity during
speech perception. The proposed model is a two-level gener-
ative model that uses predictive coding to identify whether the
input syllable corresponds to the healthy or Parkinson’s disease
condition. During inference, the model accumulates the evi-
dence associated with each condition. Although early results
are modest (around 60% AUC), they suggest that this approach
has merit and should be further investigated.

Index Terms: neurocomputational models, speech recognition,
Parkinson’s disease detection, predictive coding

1. Introduction

Although both automatic speech recognition (ASR) models and
neurocomputational models of speech perception share a simi-
lar task of recognising words and syllables from speech wave-
form, their goals are largely different. While the former is more
focused on achieving high accuracy scores, the latter is focused
on neurophysiological plausibility, aiming to replicate and ex-
plain brain functioning during speech perception. Throughout
history, there has been mutual benefit between the two fields
of research. For example, artificial neural networks have been
inspired by cortical networks [1], transformers have been in-
spired by selective attention in the brain [2], and Hopfield net-
works have been used as a model of associative memory [3].
Additionally, online automatic syllabification has been achieved
using cortical oscillations [4, 5], and the GPT architecture has
been used to explain brain activity during speech perception
[6, 7]. However, while linguistic (ASR) and paralinguistic
speech analysis often share similar methodologies (e.g. fea-
ture extraction), the connection between the latter and neuro-
computational research has not yet been fully explored. The
present paper focuses on that aspect to demonstrate the use of
neurocomputational models for paralinguistic speech analysis,
including the detection of pathological speech such as Parkin-
son’s disease.

One prominent characteristic of speech perception in the
brain is its hierarchical organization, spanning multiple cortical
areas that communicate with each other through feedforward
and feedback connections [8]. There are several mathematical
models that quantify hierarchical processing in the brain, such
as predictive coding [9] and Free Energy Principle (FEP) [10,
11]. The latter is of particular interest as it describes a unified
theory that accounts for learning, recognition and action [11].

In a series of papers [12, 13] Yildiz and colleagues used
Dynamic Expectation Maximization (DEM) [14] implementa-
tion of FEP to construct two-level generative model for birdsong
generation [12] and human speech recognition [13]. The Hop-
field network [3] is used in the model to represent the ampli-
tude modulation of the spectrogram of the input sound, whether
it is birdsong or speech. The input to the Hopfield network
is defined with a stable heteroclinic channel (SHC) [15]. De-
pending on the active unit, the global attractor of the Hopfield
network changes, encoding the spectro-temporal pattern of the
birdsong or speech segment. The authors demonstrated that the
model achieved high levels of performance in digit recognition
task, comparable to state-of-the-art ASR models, despite hav-
ing considerably fewer parameters [13]. In recent years, Hov-
sepyan and colleagues have expanded the model to include the
notion of neural oscillations and applied it to an online syllable
recognition task [16, 17]. By utilizing the added coupled theta-
gamma oscillation, the model successfully segmented continu-
ous speech into syllable segments and identified them with an
accuracy of approximately 50-60%, compared to a chance level
of around 8%.

In this paper, we draw inspiration from the aforementioned
models to propose a neurophysiologically plausible model for
detecting speech pathology. The proposed model also has a
two-level hierarchy. The SHC is used to determine the global
attractor of the Hopfield network, which encodes the amplitude
modulations of the input speech spectrogram. In addition, we
have included evidence accumulators (as in [16, 17]) to deter-
mine whether the input speech sample corresponds to a healthy
condition (HC) or Parkinson’s disease condition (PC). Our ul-
timate objective is to develop a neurophysiologically plausi-
ble model of speech production/perception that can manipulate
(learn, generate, infer) both linguistic and paralinguistic aspects
of speech independently. This study demonstrates the proof of
concept by showing that existing neurocomputational models of
speech perception already possess the capacity to engage with
paralinguistic scenarios

The remainder of the paper is structured as follows: Section
2 details the proposed methodology, including the mathematical
description of the model and classification procedure. Section
3 outlines the speech database and data preprocessing. Finally,
Section 4 presents the results, and Section 5 concludes the find-
ings and provides an outlook.

2. Proposed algorithm

In this section, we describe the proposed algorithm. First, we
provide a mathematical description of the generative model us-
ing equations adapted from [13, 16]. For further details, please
refer to these papers. We then outline the classification proce-
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Figure 1: This is a diagram of the proposed generative model.
The top level contains evidence accumulators for PC and HC,
as well as timing units. Depending on the active timing unit
(dark circle), the respective spectral vector of each condition
weighted with the respective amount of accumulated evidence
is sent to the bottom level as input to the Hopfield network.
The latter encodes the frequency amplitude fluctuations that
are compared with the input spectrogram. The model operates
within a predictive coding framework, with arrows indicating
the flow of information between levels of hierarchy: top-down
predictions and bottom-up prediction errors.

dure.

2.1. The generative model

Similar to the models mentioned previously, we utilised a pre-
dictive coding framework to identify speech pathology. How-
ever, there is a significant conceptual difference. In Hovsepyan
et al. (2020) [16], the model inferred the identity of the sylla-
bles by selecting the pattern in the model’s memory that most
closely matched the syllable input. In our proposed model, we
only retain two patterns in memory: one for the healthy con-
dition (HC) and one for the pathological condition (PC) (Fig-
ure 1). During inference, the model is tasked with identifying
the corresponding condition of the input syllable. The sylla-
ble’s identity in the input and the model’s memory is always the
same for all simulations. For example, if the input syllable is
’-pa’, the spectrotemporal patterns in the model’s memory cor-
respond to ’-pa’, with one for HC and the other for PC. The
presented generative model has two levels of hierarchy, where
the dynamics of each level are determined by the corresponding
hidden states and the information from the level above (if appli-
cable) via the causal states. The DEM [14] algorithm was used
to invert the generative model for the inference process. The
equations of the dynamics (time derivatives) of the hidden states
for each level are described below. The information sent to the
level below is described by the corresponding causal states. The
observation noise for hidden and causal states for each level is
described by ¢ and 7 respectively, where the superscript refers
to the hierarchical level of the model and the subscript describes
the functional group.

At the Top level, there are two functional groups: evi-
dence accumulators and timing units. The evidence accumu-
lators are perfect integrators (Equation 1) that accumulate ev-
idence for either the HC or PC condition (Equation 2). The
information about the accumulated evidence is then sent to the
level below with the corresponding causal states (Equation 3).

Here, they are scaled with the softmax, which represents the
model-estimated probabilities of whether the input syllable cor-
responds to the HC or PC.
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Timing units (Equation 4), on the other hand, are modelled as
stable heteroclinic channel [15, 13], thus they have sequential
activation: meaning that each moment of time only one unit is
active and correspond part of the syllable is deployed in time.

GC% =ra[-Az—p(l4+e ) +1]+e? 4)
here x is a vector of 8 units forming the stable heteroclinic
channel, p is the connectivity matrix, indicating the inhibition
strength from unit j to 4, k2 = 0.525, A = 0.1 . To ensure that
the heteroclinic channel is scaled between [0 1], the following
transformation was used.
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The respective causal states (Equation 6) send the scaled SHC
to the level below.

ol =y +n? (6)

The Bottom level uses information from the top level to
model amplitude fluctuations of the frequency channels (Figure
1). This is achieved through the Hopfield network [3] (Equa-
tion 7), with the input (Equation 8) changing depending on
which timing unit is active. The input is constructed based on
the standardized representation of syllables (Figure 2), where
each spectral vector serves as a global attractor in the Hopfield
network. For each condition, two sets of global attractors are
calculated, as detailed in the next section (Equation 9). The
weighted average of these two attractors is then used as input to
the Hopfield network. During inference, the model aims to min-
imize prediction errors by accumulating evidence for each con-
dition (Figure 3). The weighted average global attractor assigns
weight based on the accumulated evidence for each condition.

(1)
dfit = k1 [-AzD + Wtanh(zP) + 1)+ )

A is the diagonal self-connectivity matrix, while W is an asym-
metric synaptic connectivity matrix with values ranging from -1
to 1. These matrices are designed to satisfy special conditions
that ensure the Hopfield network has a global attractor, the lo-
cation of which depends on I. For more details, refer to Yilidz
et al. (2011) [12].
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Where PJHYC and Pff are spectrotemporal patterns in the
Hopfield space associated with HC and PC respectively. Those
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Figure 2: The figure presents an example of a DDK utterance:
the waveform is shown at the top, with dashed red lines aligned
with local minima of the sonority envelope (dark blue) indicat-
ing syllable onsets. At the bottom, the collapsed 6-channel audi-
tory spectrogram is displayed. The spectrogram of each syllable
(contained between two consecutive syllable onsets) is divided
into eight equal temporal bins. The average activity across six
[frequency channels within each bin is calculated to parameter-
ize the syllable.

are calculated based on the global attractor in the Hopfield space
of each syllable o with the following equation:
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In the Equations 8 and 9 S, denotes to the standardized
spectrogram of a syllable o (Figure 2), f and «y index frequency
bands and timing units respectively. Finlay, ¢ represents the in-
dex of the row (column) during matrix multiplication.

The causal states (Equation 10) at this level determine the
amplitude fluctuations of the generated frequency, which are
then compared with the spectrotemporal patterns of the input
syllable.
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Implementation of the algorithm was carried out by adapt-
ing the publicly available code from [16]. The latter is designed
to recognize syllables with natural duration’s from continuous
speech, however for our current purposes, a more streamlined
approach with a single, normalized (in duration) syllable as in-
put (as in [13]) is more applicable.

2.2. Classification procedure

For the classification process the generative model was inverted
with DEM algorithm [14] and an inference was performed for
each syllable. Figure 3 presents a typically dynamics of evi-
dence accumulators during the inference process. The accumu-
lated evidence at the end of the inference and the average across
the inference are stored (Figure 3), representing the model’s es-
timated probabilities for which health condition the input sylla-
ble corresponds to.

3. Experimental setup

The proposed algorithm is, in principle, independent of the par-
alinguistic scenario. The objective of this study is to test, as a
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Figure 3: An example of the dynamics of evidence accumulation
during the inference process. It specifically refers to the input
syllable in the HC condition.

first attempt, whether neurocomputational models can be used
for speech pathology detection. The specific question we are in-
terested in is the ability of the model to determine whether the
input speech sample corresponds to a healthy patient or a pa-
tient with Parkinson’s disease - a neurodegenerative disease that
is often associated with impairment of motor control and, con-
sequently, speech articulation [18]. For a such scenario, diado-
chokinetic (DDK) utterances are suitable recordings [19, 20], as
they assess speech articulation.

3.1. Database

In this study we utilized DDK utterances from the PC-GITA
database [19], which includes recordings (in Spanish) of 50 in-
dividuals with PD (25 male, 62.2+11.2 years old, 25 female
60.1£7.8 years old) and 50 HC individuals (25 male, 61.2+11.3
and 25 female 60.7+7.7 years old). All recordings in the PC-
GITA database are sampled at 44.1kHz with 16-bit resolution.
The database contains recordings of 6 different DDK utter-
ances. However, for this study, we only selected DDK utter-
ances that repeat the same syllable (-pa, -ta, or -ka). This deci-
sion was made to test the model’s ability to detect differences in
the input speech sample due to pathological conditions, rather
than differences in syllable identity.

3.2. Data preprocessing

The speech data from the PC-GITA database was preprocessed
before being used for simulations (Figure 2). The preprocessing
involved resampling recordings to 16kHz, dividing each utter-
ance into syllables, computing the condensed spectrogram of
each utterance and parameterized representation of each sylla-
ble. The preprocessing steps are explained below.

Segmentation. The DDK utterance is segmented into syl-
lables using a neurophysiologically plausible model that iden-
tifies local minima of the sonority envelope corresponding to
syllable onsets [21]. A syllable segment is defined as the seg-
ment of speech between two consecutive onsets. Although any
other automatic syllabification algorithm could have been used
for this task (e.g. [22, 23]), this model has the advantage of be-
ing neurophysiologically plausible and uses theta oscillations to
identify syllable onsets [4, 5].

Time-frequency decomposition. The calculation of the
auditory spectrogram was the second step of the preprocessing.
As with segmentation, a neurophysiologically plausible model
of the auditory periphery [24] was used to compute the time-
frequency decomposition. The model decomposes the speech
waveform into logarithmically spaced 128 frequency channels
spanning from approximately 150Hz to 8kHz. Following the
procedures described in previous studies [16], we then col-
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Figure 4: Receiver operating curve for each DDK utterance

lapsed the 128-channel auditory spectrogram into 6 channels by
averaging the activity of the adjacent channels. The main rea-
son for this step is to reduce the computational load, while still
retaining enough information for intelligible speech [25]. How-
ever, it is worth noting that since our goal is not syllable recog-
nition, the dimensionality of the collapsed spectrogram may be
different and more selective (something to be explored in future
iterations of the study).

Syllable parameterization. The collapsed spectrogram
was segmented into syllabic segments using the syllable onsets
(Figure 2). From each DDK utterance, the spectrotemporal de-
composition of each syllable was extracted. To ensure consis-
tency, we resampled each syllabic spectrogram to have a fixed
number of samples (200 samples, as in [13]). Using the same
procedure, the duration of each syllable was further divided into
8 equal temporal bins and the average value of each frequency
band within the corresponding temporal bin was calculated, re-
sulting in a 6x8 matrix (Figure 2). This matrix represents a
syllable in a time-invariant manner, indicating a sequence of
spectral vectors (each column) that must be deployed in time to
generate the syllable’s spectrogram.

3.3. Experimental protocol

A leave-one-subject-out protocol was used for the classification
procedure. The global pattern of P and PP for HC and PD
conditions was calculated by averaged across all syllables cor-
responding to each condition. The syllable patterns correspond-
ing to the left out utterance were excluded from the calculation
of the global patterns for each fold. Moreover, to obtain the es-
timate for each utterance, the scores of the left-out utterance’s
syllables are averaged. The receiver operating curves (ROC)
(Figure 4) as well as the corresponding AUC values (Figure 5)
were calculated using the resulting scores.

4. Results

This section presents the investigation results. Figure 3 displays
the time course of evidence accumulators during the inference.
Initially, both conditions have equal probabilities, but as the in-
ference progresses, the accumulated evidence changes. From
around the 110th sample, the model ’selects’ the correct con-
dition. It is important to note that the selection process is not
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Figure 5: The graph displays the area under ROC for each DDK
utterance, as well as the mean across utterance types. Thick
dashes correspond to the AUC values from the proposed algo-
rithm, whereas narrow dashes correspond for the baseline taken
from [26].

gradual, and the model can update its ’decision’ and switch be-
tween selections based on the available evidence.

Figure 4 displays the resulting ROC for each DDK utter-
ance based on the mean accumulated evidence. However, using
scores based on the end-values yields very similar results, as
shown by the area-under-the-curve (AUC) values in Figure 5
(thick dashes). The results show that performance is dependent
on the DDK utterance. The 'ka-ka-ka’ utterance generally re-
sults in better classification with an AUC value of around 65%,
while the ’ta-ta-ta’ utterances generally result in lower perfor-
mance, reaching around 57% AUC value. Noteworthily, for
all conditions, the performance is higher than the chance level
(50%).

In a recent study [26], in a similar manner, syllable-level
features were extracted and classified using SVM. The results
showed that ‘ka-ka-ka‘ performed the best, while ‘ta-ta-ta‘ had
the worst results. Although the classification was better over-
all by around 10% in terms of AUC value, the trend was sim-
ilar. Additionally, the study found that traditional feature sets
like ComParE2016 (6373 features) [27] and eGeMAPS (88 fea-
tures) [28] resulted in 55.71% and 74.1% AUC, respectively
(SVM results in Figure 5).

5. Conclusion and Outlook

This paper presented an investigation on whether (neuro-) phys-
iologically plausible models, which are often linked with lin-
guistic/ASR challenges, can be useful also for paralinguistic
scenarios. As a case, we explored whether the neurocomputa-
tional model of speech recognition would be suitable for speech
pathology (more specifically, Parkinson’s disease speech) de-
tection tasks. The results, although modest, suggest that the
proposed methodology has merit and warrants further investiga-
tion. However, there are several ways to improve the model re-
sults, such as increasing the temporal/spectral resolution (num-
ber of timing units/frequency bands), changing the FEP min-
imisation method, interrupting the decision process based on a
predefined threshold of accumulated evidence, removing the re-
striction of normalised syllable duration and the requirement of
single syllable utterances. Overall, this paper serves as a proof-
of-principle and paves the way for further research on the use
of (neuro-)physiologically plausible models for paralinguistic
challenges.
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