
A Stochastic Approach to
Contact-rich Manipulation

THIS IS A TEMPORARY TITLE PAGE
It will be replaced for the final print by a version

provided by the registrar’s office.

Thèse n. 1234 2024
présentée le 2 octobre 2024
à la Faculté des sciences et techniques de l’ingénieur
Laboratoire de l’IDIAP
Programme doctoral en génie électrique
École polytechnique fédérale de Lausanne

pour l’obtention du grade de Docteur ès Sciences
par

Julius Jankowski

acceptée sur proposition du jury :
Prof Colin Neil Jones, président du jury
Prof Jean-Philippe Thiran, directeur de thèse
Dr Sylvain Calinon, co-directeur de thèse
Prof Stelian Coros, rapporteur
Prof Georgia Chalvatzaki, rapporteur
Prof Marc Toussaint, rapporteur

Lausanne, EPFL, 2024

All models are wrong,
but some are useful.

— George Box

To my mother and my father,
for their unconditional love and support.

Acknowledgements

After four years of research in robotics and even more years of studies leading up to
this thesis, I am deeply grateful to all the people who have made this journey possible
in one way or another.
First, I would like to thank my advisors, Prof. Jean-Philippe Thiran and Dr. Sylvain
Calinon, for giving me the opportunity to pursue this journey and for their guidance
and support throughout. I would also like to thank my colleagues in the RLI group
for all the fun and fruitful collaborations. A special thanks goes to Hakan and Mattia,
who helped me with my first steps during my doctoral studies. I would also like to
especially thank Teguh, Teng, and Ante for great collaborations and discussions that
contributed to this thesis.
During my undergraduate time, I was lucky enough to work with much more expe-
rienced researchers, who taught me about the art of controlling robots. A special
thanks goes to my early mentors, Johannes Kühn, Nico Mansfeld, Ahmed Wafik, Jonas
Wittmann and Daniel Wahrmann.
Next, I would like to thank my family for their continuous support. My father, who has
nurtured my curiosity for physics, electronics, and programming from an early age,
and my mother, who has always believed in me, even when I did not.
This journey would not have been possible without the most amazing people that I am
lucky enough to call friends and family since my childhood. They have always been a
reminder that life is about special moments with the people you love.
Last, I would like to thank Lara, my partner in every imaginable way. We share the
same passion for robotics, work together on our projects, and we even write love papers
(cf. Chapter 4). But most importantly, we always manage to stick together even over
long distances. I am looking forward to everything that is yet to come.

Lausanne, October 2, 2024 J. J.

i

Abstract

For robots to operate in unstructured environments, they are required to interact with
objects through contact. Those contacts may be used to push objects to the side,
deform objects, or manipulate objects in-hand. This thesis addresses the problem of
controlling robots to exploit contacts to manipulate objects. Being able to anticipate
the outcome of such physical interactions is essential for robots to gain true autonomy.
However, contact interactions are particularly challenging to reason over in model-
based control approaches due to the discontinuous nature of contacts. Moreover,
interacting with objects the robot has not interacted with before will naturally lead
to uncertainty in the prediction of contact dynamics. For instance, the robot can not
anticipate the mass distribution of an object before making contact, which requires
the robot to reason over possible outcomes before touching the object in a potentially
unfavorable or unsafe way.
Throughout this thesis, we formulate the problem of contact-rich manipulation with
a robot manipulator as a model-predictive control problem. We explore stochas-
tic optimization to plan for robot control trajectories in realtime. We show that the
stochasticity in the optimization process enables the algorithm to explore the space of
contacts without relying on local gradients or discretization of the contact space. We
furthermore study how uncertainties in the physical properties of the object propagate
through the contact dynamics and how the robot can actively reduce such uncertainty
by exploiting favorable contact modes and sequences. We integrate the above contribu-
tions into a planning and control framework for robots to manipulate objects through
contacts in realtime. The framework is evaluated in a series of robot experiments,
demonstrating robots autonomously performing dynamic hand-overs, push objects to
a moving target, play air hockey, and manipulate objects robustly using two arms in
the presence of uncertainty in the dynamics of the object.

Keywords: Trajectory Optimization, Underactuated Systems, Contact-Rich Manipula-
tion, Stochastic Optimization, Model Predictive Control, Stochastic Dynamics, Robust
Control.

iii

Zusammenfassung

Damit Roboter in unstrukturierten Umgebungen arbeiten können, müssen sie mit
Objekten durch Kontakt interagieren. Diese Kontakte können genutzt werden, um
Objekte zur Seite zu schieben, Objekte zu verformen oder Objekte in der Hand zu
manipulieren. Diese Arbeit befasst sich mit dem Problem der Regelung von Robotern
zur Manipulation von Objekten durch Kontakte. Um echte Autonomie zu erlangen,
müssen Roboter in der Lage sein, das Ergebnis solcher physischen Interaktionen
vorherzusehen. Kontaktinteraktionen sind jedoch aufgrund der diskontinuierlichen
Natur von Kontakten besonders schwierig in modellbasierten Regelungsansätzen zu
berücksichtigen. Darüber hinaus führt die Interaktion mit Objekten, mit denen der
Roboter zuvor noch nicht interagiert hat, zu Unsicherheiten bei der Vorhersage der
Kontaktdynamik. Zum Beispiel kann der Roboter die Massenverteilung eines Objekts
nicht vorhersehen, bevor er es berührt. Dies erfordert, dass der Roboter über mehrere
mögliche Ergebnisse schlussfolgert, bevor er das Objekt auf eine potenziell ungünstige
oder unsichere Weise berührt.
In dieser Arbeit formulieren wir das Problem der kontaktreichen Manipulation mit
einem Robotermanipulator als ein Model-predictive Control Problem. Wir untersuchen
die stochastische Optimierung zur Planung von Robotertrajektorien in Echtzeit. Wir
zeigen, dass die Stochastik im Optimierungsprozess es dem Algorithmus ermöglicht,
den Raum der Kontakte zu erkunden, ohne sich auf lokale Gradienten oder eine Dis-
kretisierung des Kontaktraums zu verlassen. Darüber hinaus untersuchen wir, wie
sich Unsicherheiten in den physikalischen Eigenschaften des Objekts durch die Kon-
taktdynamik ausbreiten und wie der Roboter diese Unsicherheiten aktiv reduzieren
kann, indem er günstige Kontaktmodi und -sequenzen nutzt. Wir integrieren die oben
genannten Beiträge in Planungs- und Regelungsalgorithmen für Roboter, die Objek-
te durch Kontakte in Echtzeit manipulieren. Die Algorithmen werden in einer Reihe
von Roboterexperimenten evaluiert, die zeigen, dass Roboter autonom dynamische
Übergaben durchführen, Objekte zu einem sich bewegenden Ziel schieben, Airhockey
spielen und Objekte robust mit zwei Armen manipulieren, wenn Unsicherheiten in
der Dynamik des Objekts vorhanden sind.

Schlüsselwörter: Trajektorienoptimierung, unterbetätigte Systeme, kontaktreiche Ma-
nipulation, stochastische Optimierung, Model Predictive Control, stochastische Dyna-
mik, robuste Steuerung.

v

Contents

Acknowledgements i

Abstract (English/Deutsch) iii

1 Introduction 1
1.1 Main Challenges . 2

1.1.1 Discontinuity of Contact Dynamics 2
1.1.2 Uncertainty in Contact Dynamics 3

1.2 State-of-the-Art in Contact-Rich Manipulation 4
1.2.1 Contact-Implicit Trajectory Optimization 4
1.2.2 Mixed Discrete/Continuous Optimization 5
1.2.3 Reinforcement Learning . 6
1.2.4 Sampling-based Planning and Control 7

1.3 Core Contributions & Thesis Outline . 8
1.3.1 Optimal Basis Functions for Efficient Trajectory Synthesis 8
1.3.2 VP-STO for Making-and-Breaking Contacts in Realtime 8
1.3.3 Belief Prediction through Contacts for Robust Pushing 9

1.4 Thesis Statement . 9

2 Background 11
2.1 Low-level Robot Control . 11

2.1.1 Direct Force Control . 12
2.1.2 Stiffness Control . 12

2.2 Modeling Contact Dynamics . 13
2.2.1 Second-Order Models . 14
2.2.2 Quasi-Static & Quasi-Dynamic Models 14
2.2.3 Collision Models . 15

2.3 Trajectory Optimization . 15
2.3.1 Direct Transcription . 16
2.3.2 Direct Shooting . 16

2.4 Trajectory Representation . 17
2.4.1 Discretization in Time . 17
2.4.2 Superposition of Basis Functions 18

2.5 Zero-order Optimization . 18

vii

Contents

2.5.1 Cross-Entropy Method (CEM) . 19
2.5.2 Covariance Matrix Adaptation - Evolution Strategy (CMA-ES) . . 19

2.6 Belief-Space Control . 20
2.6.1 Covariance Steering Approach 20
2.6.2 Trajectory Optimization for Non-Gaussian Belief Spaces 20

3 From Optimal Control to Time-Parameterized Basis Functions 23
3.1 Optimal Basis Functions . 24

3.1.1 Minimal-Effort Trajectories with Linear Constraints 25
3.1.2 Optimal Trajectory as a Linear Mapping of Constraints 27

3.2 Optimal Time Parameterization . 29
3.2.1 Direct Minimization of the Trajectory Duration 30
3.2.2 Iterative Optimization of the Timing of Key Positions 33

3.3 Skill Learning from Sparse Key Positions 35
3.3.1 Learning a Distribution of Optimal Trajectories 38
3.3.2 Control Phase . 40
3.3.3 Experimental Evaluation in a User Study 41

4 Via-point-based Stochastic Trajectory Optimization 47
4.1 Related Work . 49
4.2 Preliminaries: Trajectory Representation 50
4.3 Via-Point-based Stochastic Trajectory Optimization 51

4.3.1 Informed Sampling with a Gaussian Prior 52
4.3.2 Synthesis of Kinodynamically Admissible Trajectories 54
4.3.3 Cost Evaluation . 54

4.4 Online VP-STO (MPC) . 55
4.4.1 No-Via-Point Trajectory for Stopping Behavior 56
4.4.2 Initialization: Exploration vs. Warm-Starting 56
4.4.3 Impedance Control . 57

4.5 Experiments . 57
4.5.1 Simulation . 58
4.5.2 Real-World Experiments . 59
4.5.3 Ablation Studies . 61

5 Stochastic Impact Control in Real-Time 65
5.1 Related Work . 67
5.2 Learning Stochastic Contact Models . 68

5.2.1 Mixture of linear-Gaussian Contact Dynamics 69
5.2.2 Learning Model Parameters from Data 70
5.2.3 Piecewise-linear Kalman Filtering 71
5.2.4 Probability of Hitting the Goal . 71

5.3 Fast Contact Planning under Uncertainty 73
5.3.1 Stochastic Optimal Control for Shooting 74

viii

Contents

5.3.2 Shooting Angle as Reduced Action Space 74
5.3.3 Training an Energy-based Shooting Policy 75
5.3.4 Online Inference with Warm-Starting 76

5.4 Experiments . 77
5.4.1 Implementation Details . 77
5.4.2 Experimental Setup . 77
5.4.3 Experimental Results . 78

6 Belief-space Planning through Contacts 79
6.1 Related Work . 81

6.1.1 Contact-rich Manipulation . 81
6.1.2 Robust Manipulation . 82
6.1.3 Modeling Uncertainty in Contact Dynamics 83

6.2 Problem Formulation & Approach . 84
6.3 Belief Dynamics through Contacts . 85

6.3.1 Stochastic Quasi-Static Dynamics for Pushing 85
6.3.2 Object Belief Dynamics . 88
6.3.3 Variance Prediction . 90

6.4 Stochastic Optimization for Robust Manipulation 93
6.4.1 Variance Gain Control . 94
6.4.2 Trajectory Sampling with a Contact Prior 96

6.5 Receding-horizon BS-VP-STO . 103
6.6 Experiments . 105

6.6.1 Implementation Details . 105
6.6.2 Open-Loop Single-Hand Pushing 105
6.6.3 Open-Loop Bimanual Pushing 107
6.6.4 Closed-Loop Bimanual Pushing 112

6.7 Discussion . 113

7 Conclusion 115
7.1 Limitations . 116

7.1.1 Limitations of Current Models of Contact Dynamics 116
7.1.2 Limitations of Gaussian Trajectory Priors 117
7.1.3 Limitations of Local Optimization 117

7.2 Future Work . 118
7.2.1 Physics-based Learning of Stochastic Contact Dynamics 118
7.2.2 Learning Generative Trajectory Priors 118
7.2.3 Reasoning over Tactile Feedback 119

A Appendix to Chapter 6 121

Bibliography 133

ix

1 Introduction

Enabling robots to interact with the world physically is a key challenge in robotics.
In particular, the ability to move, reorient, or localize objects through contact is a
fundamental capability for robots to perform tasks in unstructured environments.
Making-and-breaking contact is therefore a fundamental aspect of manipulation.
Research in robotic manipulation has traditionally focused on prehensile manipu-
lation, where robots grasp objects with their end-effectors and manipulate them by
moving the end-effector. Robots do not require physical models of contact interac-
tions to perform prehensile manipulation tasks, as the object may be assumed to be
rigidly attached to the robot once the grasp is achieved. Consequently, the control task
becomes a problem of controlling the robot’s end-effector towards the grasp config-
uration without touching anything, closing the gripper to grasp the object, and then
moving the end-effector with the object to the desired configuration again without
touching anything. While this is a capability that is sufficient in many applications
situated in structured environments where objects are known and the environment is
predictable, prehensile manipulation fails if, for instance, the target object is too large
for the gripper or if other objects block the path of the gripper to enclose the object.

In this thesis, we study control approaches that not only allow robots to safely estab-
lish contacts with their environment, but to exploit contacts to manipulate objects
in more versatile ways. This problem has been approached in the literature as non-
prehensile manipulation, where robots interact with objects through contact. One
class of approaches uses contact-implicit constraints on the state of the underactuated
system to enforce physically feasible trajectories when optimizing jointly over robot
and object states. Such an approach is prone to local minima and thus requires good
initial solutions to find the desired contact interactions. Another class of approaches is
based on a discretization of the contact space and a subsequent mixed-integer pro-
gramming formulation to discover promising contact interactions. Such an approach
is known to not scale well with the number of contact modes and the number of po-
tential switching times. Learning-based approaches on the other hand have shown
successful synthesis of contact-rich manipulation actions for complex tasks such as

1

Chapter 1. Introduction

in-hand manipulation. One of the keys to the success of learning-based approaches
is the stochastic process of sampling control actions during policy search. Another
important aspect is the deployed stochasticity of the dynamics, known as domain
randomization, which enables robust simulation-to-real transfer. However, in contrast
to (explicit) model-based approaches, learning-based approaches typically require
large amounts of data and cannot thus synthesize new skills ad-hoc. Towards scalable
dexterous robotic manipulation, the contributions of this thesis aim to bring together
the ad-hoc generalizability of model-based approaches and the stochastic and robust
aspects of learning-based approaches.

In the following, we discuss the main challenges that arise when reasoning over con-
tacts is required. Then, the core contributions of this thesis are presented, and an
outline of the thesis is given.

1.1 Main Challenges

The gap between what we want robots to do – operating autonomously in an unseen,
unstructured environment – and what robots are currently capable of – operating for
a few minutes in a lab environment – is still very large. In this section, we discuss
the main challenges that make current approaches to controlling robots fail when
reasoning through contacts is required.

1.1.1 Discontinuity of Contact Dynamics

In non-prehensile manipulation, the discontinuity of contact dynamics is a major
challenge. The tools that have been developed for controlling fully-actuated and even
underactuated systems typically rely on gradients that inform the robot how to correct
its sequence of actions in order to improve the outcome of the task. However, if the
objective of the task is to change the state of the object, the gradient with respect to the
object state is zero for any sequence of actions that do not involve contact. Figure 1.1
illustrates this problem in a simple example of a robot aiming to push an object. Even
in such a simple scenario, gradient-based optimization methods fail to generate a plan
for moving the object to the right if the initial guess for the solution does not involve
contact. Moreover, making contact with an object is still not enough for the robot to
arbitrarily move the object (assuming the contact is not adhesive). For non-prehensile
actions, such contacts can only be used to push into the object and not to pull the
object. Thus, the applicable range of forces is defined by friction cones (see Lynch and
Park (2017) for more details). In the example of Figure 1.1, the robot would have to first
move around the object to be able to push it to the left. This limited control authority
makes planning and control for non-prehensile manipulation prone to local minima.

2

1.1 Main Challenges

Figure 1.1: A 1D toy example showcasing
the fundamental challenge of discontinu-
ous contact dynamics. In robotic manip-
ulation, we are interested in changing the
state of the object. However, this requires a
robot to first make contact with the object.
Since there is no gradient guiding the robot
towards a meaningful contact mode, algo-
rithms either rely on heuristics or on a sys-
tematic exploration of the contact space.

As a result, the fundamental challenge of reasoning over discontinuous contact dynam-
ics requires exploration of the contact space without fully relying on gradients. But
how can this exploration be done efficiently? Exploring the space of contacts involves
not only the single point in time where the robot is in contact with an object. It also
involves a longer time horizon for exploring the ways the robot is able to move through
space before those contacts are made and for exploring how an object can be moved
after contact is made. This not only requires exploration in space but also in variable
horizon lengths. A short horizon may not allow the robot to reach the object due to
the dynamic limits of the robot, while a long horizon increases the complexity of the
problem.

1.1.2 Uncertainty in Contact Dynamics

Robots that should operate autonomously in uncertain, unstructured environments
are required to manipulate a large range of different, possibly previously unseen
objects. In other words, there will always be objects the robot is uncertain about and
consequently, it is not sufficient to train or plan a robot’s skill for a specific set of object
parameters. This is a natural source of uncertainty that robots have to deal with in
realtime. Even with a high-fidelity physics engine, it is impossible to accurately predict
the outcome of physical interactions if the object’s properties such as mass, friction,
or shape are uncertain. The highly non-linear nature of contact dynamics may even
amplify the effect of small uncertainties if the contact mechanics are unfavorable, e.g.
when the contact surfaces are convex. Figure 1.2 illustrates this problem for a simple

3

Chapter 1. Introduction

Figure 1.2: Top view of a robotic finger • pushing
an object open-loop after a couple of time steps.
The object particles • illustrate possible outcomes
of the interaction due to uncertain dynamics. The
convex contact geometries lead to a build-up of
uncertainty in the object’s position over time.

example of a robot with a convex geometry pushing an object with a convex geometry.
Even if the initial object location is known, the object may move tangentially to the
contact surface due to imperfect mass distribution or sliding conditions. Thus, the
uncertainty in the object’s position may build up over time, leading to a failure of the
manipulation task. When generating open-loop plans by assuming an accurate model
of the dynamics, those plans are likely to fail as they do not take into account the
underlying uncertainty. Rodriguez (2021) describes this effect with an experiment of
repeatedly picking and placing a queen chess piece, which fails if the queen is picked
from the top. In contrast, picking the queen from the side stabilizes the repeated
pick-and-place process. This raises the question of how to let robots deal with this
uncertainty autonomously. Deploying fast feedback loops is an implicit approach
to compensate for uncertain dynamics, such as done in model-predictive control
schemes. Yet, modeling uncertainties and reasoning over an anticipated distribution
of outcomes, i.e. a belief, is a more explicit way of coping with uncertain dynamics.

1.2 State-of-the-Art in Contact-Rich Manipulation

This section reflects on different approaches to contact-rich manipulation categorized
into four groups: contact-implicit optimization, mixed discrete/continuous optimiza-
tion, reinforcement learning, and sampling-based planning and control. Based on
the main challenges described in the previous section, we will discuss advantages and
limitations of each approach.

1.2.1 Contact-Implicit Trajectory Optimization

Contact-implicit optimization is a framework that allows for gradient-based opti-
mization of the motion of a robot while considering the discontinuous dynamics of
contacts (Posa et al. (2014)). The idea is to encode the contact dynamics as constraints
in the optimization problem and to optimize over the system state as described in

4

1.2 State-of-the-Art in Contact-Rich Manipulation

Section 2.3.1. Contact-implicit trajectory optimization has shown to be successful in
non-manipulation applications, i.e. controlling robots by exploiting contacts (Manch-
ester et al. (2019); Cleac’h et al. (2021); Aydinoglu et al. (2022)). Such optimization
algorithms are typically combined with techniques for smoothing the dynamics to
enable the discovery of new contact modes in the vicinity of the current solution.

Recently, Aydinoglu et al. (2024) have shown that contact-implicit optimization can be
used to manipulate objects in a closed loop. However, as contact-implicit trajectory
optimization remains local and gradient-based, the capability of discovering contact
modes heavily depends on the initialization of the optimization problem and thus on
task-specific heuristics.

Last, contact-implicit optimization approaches to date depend on accurate and differ-
entiable models of the contact dynamics. Especially if used in an open-loop fashion,
deviations from the modeled dynamics can lead to failure of the generated plan. This
limits the use of such approaches to manipulating objects with known properties or to
tasks where the robot has time to learn the dynamics of the object before executing
the plan.

1.2.2 Mixed Discrete/Continuous Optimization

An explicit way of dealing with discontinuous contact dynamics is to discretize the
space of making contact. The problem of making and breaking contact is thus turned
into a discrete decision-making problem. Mixed-integer programming approaches
combine the search for sequences of discrete contact modes with continuous optimiza-
tion of the system within the selected modes. The problem is thus reduced to multiple
continuous optimization problems that are connected through the discrete decisions,
rather than attempting to optimize over the entire discontinuous system. Marcucci
et al. (2017) use this approach for stabilizing a humanoid robot in a push recovery
task. Contacts between the hands of the robot and the surrounding walls are encoded
as contact modes such that the robot decides which wall to use for stabilization and
how to generate control actions for that particular wall. Chen et al. (2021) combine
tree search with trajectory optimization for planning multi-fingered manipulation of a
box-shaped object. The search is performed not only over combinatorial sequences of
contacts, but also over combinations of multiple contact points, i.e. one potential con-
tact point per finger. The subsequent trajectory optimization generates plans for the
robot to realize the discrete plan of multi-contact sequences. Toussaint et al. (2022a)
present a general framework for combining sequences of discrete decisions with con-
tinuous optimization. Here, the discrete decisions are encoded as constraints for the
underlying continuous optimization problem. The method is showcased on a pushing
task, e.g. by encoding the contact between the robot and the object as a constraint
that can be activated or deactivated. Most recently, Graesdal et al. (2024) propose to

5

Chapter 1. Introduction

translate the problem of planning through contacts into a graph of convex sets, where
each convex set represents a contact mode or a convex set of the contact-free space.
The approach is demonstrated on a 2D pushing task with the robot abstracted as a
circle in the task space.

Ha et al. (2020) have shown that mixed-integer programming can be extended to
include uncertainty in the contact dynamics in individual continuous optimization
problems. This enables discrete reasoning about contact modes and sequences that
are robust against uncertainties in the contact dynamics. In an experiment, they show
that their approach successfully reasons that using two fingers to push an object is
more robust than using one finger.

The great benefit of mixed discrete and continuous optimization is that it decomposes
the planning for making and breaking contacts into combinations of tractable subprob-
lems. While there are applications that naturally provide a finite set of contact modes,
such as footstep planning for legged robots or manipulation of objects with a finite
number of flat surfaces, the approach is limited by the combinatorial explosion of the
number of contact modes that can be combined in time, i.e. sequence of contacts, and
in space, i.e. number and location of contact points.

1.2.3 Reinforcement Learning

Reinforcement learning has shown great success in learning manipulation skills for
robots. Examples include learning to push objects (Shetty et al. (2024)) and learning
for in-hand manipulation (Andrychowicz et al. (2020); Handa et al. (2023)). Reinforce-
ment learning techniques benefit from stochastic rollouts in simulated environments,
allowing those techniques to explore the space of possible interactions with the envi-
ronment without explicitly relying on gradients of the reward function with respect to
the parameters of the policy. This explorative aspect of the learning process is crucial
for learning manipulation skills that entail making-and-breaking contacts without
relying on close-to-optimal initializations of the policy.

Moreover, in many reinforcement learning approaches (Haarnoja et al. (2019); Schul-
man et al. (2015, 2017)), domain randomization is a natural way of informing the skill
learning process about all the possibilities that may be encountered when moving from
simulation to reality. Domain randomization may include probability distributions
over parameters of the dynamics model such as friction coefficients, object mass, or
object geometry (Andrychowicz et al. (2020); Muratore et al. (2022)). By simulating
a large number of combinations of policy samples and domain samples, the policy
ideally converges to a behavior that is robust against the uncertainty modeled through
domain randomization. Domain randomization as an interface for modeling uncer-
tainties in physical interactions is a key aspect for successful sim-to-real transfer even

6

1.2 State-of-the-Art in Contact-Rich Manipulation

if objects are encountered for the first time.

However, exploration and domain randomization in reinforcement learning approaches
come at the cost of long training times involving many rollouts in the simulator. While
resulting policies are often usable in slightly different scenarios or objects if those
changes are within the training domain, skills or plans can not be generated ad-hoc
for new out-of-domain tasks without retraining. This is in contrast to model-based
planning and control techniques, which are limited by the underlying model rather
than the training setup and the reward function used at training time.

1.2.4 Sampling-based Planning and Control

Sampling-based planning and control techniques aim to overcome the limitations of
gradient-based optimization by sampling the space of possible actions and states. In
the spirit of shooting methods for trajectory optimization, sampling-based methods
draw candidate control actions, simulate the system forward using a model of contact
dynamics, and evaluate the resulting state. Howell et al. (2022) show that a simple
algorithm that rolls out many sampled candidates and selects the best one can be
successfully used to control contact-rich manipulation in a model-predictive control
fashion. Such an approach is purely based on rapidly exploring contact modes, without
refining plans. Thus, resulting plans are suboptimal and jerky, and thus have not yet
been shown to transfer from simulation to real systems. However, it highlights that
controlling through contacts does not require plans to be optimal with respect to a
designed objective function, but rather requires the system to rapidly find a feasible
plan.

More recently, Pang et al. (2023) propose to combine traditional sampling-based plan-
ning (RRT) with a locally smoothed model of contact dynamics. While the sampling-
based planner provides a way to explore the space of possible contact modes by
sampling set points of a stiffness controller, the locally smoothed model guides the
planner towards contact modes that let the robot move the object towards the desired
state. However, the approach is an offline planning method and thus relies on accurate
models of the contact dynamics for successful execution of the open-loop plan.

To summarize, sampling-based planning and control techniques are a promising
approach to efficiently explore the space of possible contact interactions. The main
shortcoming of discussed state-of-the-art methods is the lack of efficient, informative
sampling strategies to generate feasible manipulation plans in realtime. This thesis
aims to address this shortcoming to achieve closed-loop manipulation of objects.

7

Chapter 1. Introduction

(a) Pushing a box towards a moving
target.

(b) Controlling collisions with a
highly dynamic puck.

(c) Bi-manual pushing under
uncertainty.

Figure 1.3: A selection of experiments on contact-rich manipulation conducted in the
context of this thesis.

1.3 Core Contributions & Thesis Outline

Towards robots that decide to robustly make and break contacts in realtime, this
thesis investigates and develops algorithms for controlling robots through contacts.
All algorithms presented in this thesis are deployed on real robots, showcasing the
applicability of the developed methods to real-world manipulation tasks. Figure 1.3
illustrates three example experiments on controlling objects by exploiting contacts.
The following provides an overview of the core contributions of this thesis.

1.3.1 Optimal Basis Functions for Efficient Trajectory Synthesis

To search over the space of possible contact interactions in realtime, efficient synthesis
of feasible robot trajectories is required. In Chapter 3, we introduce a novel set of
basis functions that are derived from the analytical solution to a constrained linear
optimal control problem. We furthermore derive an algorithm for directly1 optimizing
the duration of the trajectory. The derived online algorithm generates smooth and
timing-optimal trajectories for a fully actuated robot given a set of via-points, i.e. a
small number of positions that represent the trajectory. Since the basis functions can
be pre-computed offline, computing smooth and timing-optimal trajectories can be
performed online at high replanning frequencies.

1.3.2 VP-STO for Making-and-Breaking Contacts in Realtime

In Chapter 4, we further exploit our proposed low-dimensional representation of
trajectories as a superposition of optimal basis functions inside a zero-oder shooting
approach, which we call Via-point-based Stochastic Trajectory Optimization (VP-STO).
We optimize for a low-dimensional set of via-points, which are used to synthesize
trajectories from the optimal basis functions, via stochastic optimization. This setup
enables highly efficient optimization loops, as well as probabilistic warm-starting. The

1Direct optimization refers to a non-iterative optimization algorithm.

8

1.4 Thesis Statement

key advantage of this approach is its ability to handle discontinuous cost landscapes,
such as optimizing for contact-making trajectories. In Chapter 5, VP-STO is combined
with stochastic optimal impact control to control a robot to shoot a puck for playing
air hockey.

1.3.3 Belief Prediction through Contacts for Robust Pushing

Beyond the ability to efficiently optimize for timing-optimal contact trajectories, the
robot will also require mechanisms to anticipate contact dynamics and their stochas-
ticity when touching an object, which is influenced by typically unknown object prop-
erties, such as mass distribution, friction, or shape. Hence, in Chapter 6, we study
how uncertainties propagate through contacts using quasi-static models for contact
dynamics. We derive a new metric measuring the variance in the predicted object
belief dynamics given a candidate control sequence, which we use to generate robust
pushing plans.

1.4 Thesis Statement

This thesis aims to push the boundaries of contact-rich manipulation. The contri-
butions of this thesis enable robots to achieve reactive, robust, and autonomous
manipulation of objects in structured lab environments. Moreover, the developed
theoretical insights and algorithms should also serve as a basis for further research
toward robots that can operate in naturally unstructured environments. In summary,
this thesis aims to show that:

Reactive, robust, and autonomous contact-rich manipulation in unstructured
environments requires efficient sampling-based control algorithms to

reason through stochastic models of contact dynamics.

While achieving this level of autonomy will require a strong interplay between advance-
ments in robotic hardware, perception, state estimation, and control, the insights
gathered within our robot experiments should help us anticipate what control algo-
rithms are suited for the challenges that arise from operating in the wild.

9

2 Background

This chapter provides a brief overview of the main concepts and tools that are used as
building blocks throughout this thesis. The main focus is on fundamental concepts
for low-level robot control, modeling contact dynamics, optimal control, zero-order
optimization and belief-space control. The goal of this chapter is to discuss different
concepts within the sub-categories in the context of contact-rich manipulation.

2.1 Low-level Robot Control

In order to develop algorithms for manipulating objects, it is essential to establish
low-level controllers that allow us to control the robot manipulator in a stable way
even in the presence of contacts. The dynamics of the robot manipulator govern the
motion of the robot and are defined as

M(q)q̈ + C(q, q̇)q̇ + g(q) = u + τext, (2.1)

where q are the generalized coordinates of the robot, M(q) is the inertia matrix, C(q, q̇)
are the Coriolis and centrifugal forces, and g(q) are the gravitational forces. The
generalized forces generated by the robot’s actuators are denoted as a control input
u. Note that this assumes that the actuators of the robot can accurately output a
desired generalized force. This is typically a fair assumption for direct drive actuators
or actuators equipped with a torque sensor and a motor-level control loop tracking the
desired torque. In addition, the robot manipulator is also subject to external forces
τext. In non-prehensile manipulation, these external forces are used to move objects.

For the goal of object manipulation, we are interested in controlling the motion and
interaction forces of the robot. In the following, we will discuss two different control
strategies that are widely used in manipulation: direct force control and stiffness
control.

11

Chapter 2. Background

2.1.1 Direct Force Control

An intuitive way of abstracting the robot dynamics is to compensate for the Coriolis,
centrifugal and gravitational forces. Consequently, the control law becomes

u = C(q, q̇)q̇ + g(q) + τdes, (2.2)

with τdes being the desired generalized forces acting on the compensated system. The
direct force controller is particularly useful if the robot is already in contact with its
environment and we are interested in exerting a desired force on the environment. In
this case, we may assume that the robot does not accelerate as a result of a non-zero
desired force, i.e. q̈ = 0, which corresponds to a quasi-dynamic equilibrium of the
system with

τext = −τdes. (2.3)

As a result, the auxiliary control variable τdes can be used to control the force τext that
the robot exerts on the environment. However, if the robot is not in contact with its
environment, i.e. τext = 0, the direct force command results in accelerating the robot
in the direction of the desired force with

q̈ = M−1(q)τdes. (2.4)

This second-order relationship between the auxiliary control command and the motion
of the robot entails practical challenges when directly optimizing for τdes in down-
stream algorithms. First, good initial solutions for the force trajectory are difficult to
obtain for contact-rich manipulation. Second, deviations from the model of the robot
dynamics in (2.1) can lead to large deviations in the state trajectory of the robot, even if
the deviation in the acceleration of the robot is small. This sensitivity to model errors,
such as friction within the robot joints, makes direct force control challenging for tasks
that require precise control. Thus, deploying a closed-loop controller that handles
these low-level model errors and abstracts the motion and force response of the robot
facilitates planning and control for manipulation tasks.

2.1.2 Stiffness Control

Impedance control is a widely used control strategy for robots interacting with the
environment (Hogan (1984)). It is based on the idea of imposing mass-spring-damper
dynamics on the robot while compensating for other dynamic effects of the robot.
However, shaping the inertia of the robot manipulator is practically challenging as it
requires feeding back the joint accelerations. Since joints are typically only equipped
with a position encoder, the estimate of the joint acceleration is noisy. Impedance
control is therefore usually reduced to stiffness control by adopting the actual robot
inertia M for the imposed dynamics. In practice, the terms impedance control and

12

2.2 Modeling Contact Dynamics

stiffness control are typically used interchangebly while usually referring to stiffness
control. The stiffness control law is given by

u = C(q, q̇)q̇ + g(q)−K(q − qdes)−D(q̇ − q̇des) + M(q)q̈des, (2.5)

where K and D are the stiffness and damping matrices, respectively, and qdes, q̇des,
and q̈des are the desired position, velocity, and acceleration of the robot, respectively.
By tuning the parameter of the virtual spring, i.e. the resulting stiffness of the robot,
the robot becomes more or less compliant while having Lyapunov-stability guarantees
even when facing unmodeled contact interactions (Albu-Schäffer et al. (2007)). As a
result, the closed-loop dynamics of a stiffness-controlled robot are given by

M(q)(q̈ − q̈des) + D(q̇ − q̇des) + K(q − qdes) = τext. (2.6)

Using stiffness control as a low-level control layer, the robot manipulator itself is stable
and robust against errors in the robot dynamics while exposing the time-varying set
point of the controller in (2.5) as an auxiliary control command. Virtually moving
the set point qdes into the penetration of the environment or an object will result in a
force that is linear with respect to the penetration depth q − qdes. Let’s consider the
steady-state case where the robot is in contact with the environment, i.e. q̇ = q̈ = 0
and the commanded velocity is zero. We can see that the stiffness of the robot linearly
maps the penetration depth to the force the robot exerts on the environment with

τext = K(q − qdes). (2.7)

Moreover, we can see that the robot converges to the desired position with q = qdes if
the robot is not in contact with the environment. In both steady-state cases, the robot
position and the interaction force τext are affine in the auxiliary control command qdes,
which is beneficial for optimization. This relationship is exploited in the remainder of
this thesis for simultaneously planning for the robot’s motion and interaction forces by
using optimal control approaches that optimize the set point of the stiffness controller.

2.2 Modeling Contact Dynamics

In Section 2.1, we have discussed the dynamics of a robot manipulator (cf. (2.1)), i.e.
how the robot responds to contact, and how stiffness controllers help to tune the
response of the controlled robot to contact. However, to manipulate an object, we are
interested in the dynamics of this object as a response to such contact interactions.
Thus, we are interested in models of contact dynamics that describe the interaction of
two bodies in contact in a mathematical form. Those models can be used to predict
the state trajectory of objects manipulated by a robot. In non-prehensile manipulation,
the full system describing the robot and the manipulated object is often described as

13

Chapter 2. Background

an underactuated system. It consists of an actuated part of the system, i.e. the robot,
and an unactuated part of the system, i.e. one or multiple objects. Systems governed
by contact dynamics can thus be described by a state vector

x =
(

xr

xo

)
, (2.8)

that contains the state of the robot xr and the state of the object xobject. Assuming
that the robot is fully actuated with a control input ur, the discretized dynamics of the
underactuated system can generally be described by(

xr
k+1

xo
k+1

)
= f

((
xr

k

xo
k

)
, ur

k

)
, (2.9)

where k denotes the discretized time step. The function f encapsulates the model
of the contact dynamics. In robotics, different models of contact dynamics are used
depending on the downstream algorithms and the level of detail required. In the
following, we will briefly discuss different types of models of contact dynamics focused
on rigid bodies. Note that the dynamics of deformable objects are out of the scope of
this thesis.

2.2.1 Second-Order Models

Second-order models of contact dynamics resolve contacts at force level, resulting in
a second-order differential equation. The state of the system consequently contains
the generalized coordinates as well as the generalized velocities. Second-order models
typically combine Newtonian mechanics of rigid bodies with soft contact models
such that forces are assumed to be the result of small penetrations/deformations
of the bodies without explicitly computing deformations. Physics engines such as
Bullet (Coumans (2015)), MuJoCo (Todorov et al. (2012)), or Drake (Tedrake and the
Drake Development Team (2019)) are typically based on such models with the goal
of providing as accurate and as generic models as possible. Due to the modeling of
contacts between rigid bodies at force level, the differential equations are stiff and
require small time steps for numerical integration. Thus, computing rollouts using
second-order models can be computationally expensive. However, second-order
models are particularly popular for applications that do not demand fast rollouts, such
as for training policies or testing control algorithms.

2.2.2 Quasi-Static & Quasi-Dynamic Models

Quasi-static and quasi-dynamic models have been used to simplify the prediction
of slow physical interactions between robots and objects (Mason (2001); Koval et al.

14

2.3 Trajectory Optimization

(2016); Hogan and Rodriguez (2020); Cheng et al. (2021); Pang (2021); Pang et al. (2023)).
Both classes of models assume that effects that are related to velocities and acceler-
ations can be neglected as they do not affect the outcome of the prediction. As a
result, the system state only contains the generalized coordinates of the robot and the
object(s). This limits the range of applications to slow interactions such as pushing
tasks, insertion tasks, or in-hand manipulation. Yet, the benefits of quasi-static and
quasi-dynamic models are the lower dimensionality of the system state, i.e. half the
number of states compared to second-order models, and the lower temporal resolution
required to compute stable predictions of the system state. Both aspects effectively al-
low for faster simulated rollouts of robot plans and thus for more efficient downstream
algorithms such as model-based planning and control.

2.2.3 Collision Models

In contrast to models that specifically capture slow contact interactions as described
in Section 2.2.2, collision models are simplified models that capture the interaction of
two bodies only at the moment of contact. The dynamics of high-impact contacts are
typically governed by a short period of time (in the range of milliseconds) in which the
bodies in contact exchange energy, deform, and change their states. Thus, collision
models aim to capture this fast and complex interaction by predicting the state of the
system after the collision based on the state of the system before the collision. In some
robotic applications such as legged locomotion (Wieber et al. (2016)), catching objects
(Yan et al. (2024)), or playing table tennis (Koç et al. (2018)), the dynamics of the system
can be described by a combination of decoupled robot and object dynamics and a
collision model for a single point in time. Such a simplification allows for fast and
efficient rollouts as the contact dynamics only have to be evaluated at the moment of
contact.

2.3 Trajectory Optimization

In this thesis, we encode the desired behavior of the robot for contact-rich manipula-
tion as an optimal control problem. Let’s consider a simple optimal control objective J

that only depends on the state of the object after K time steps with respect to a desired
state xo

des, i.e.
J = ∥xo

K − xo
des∥

2 . (2.10)

As we do not specify any desired behavior for the robot (for the sake of simplicity), the
state and the controls of the robot should be optimized such that it makes contact
with the object to subsequently move the object toward the desired state. The solution
may be constrained by actuation limits of the robot, for instance ur

k ∈ Ur. The discon-
tinuous, and thus non-linear, nature of contact dynamics make the optimal control

15

Chapter 2. Background

problem non-linear and non-convex. Since Dynamic Programming, i.e. computing
the value of every possible state, for non-linear optimal control problems does not
scale well with the dimensionality of the state space, such optimal control problems
are typically transcribed into trajectory optimization problems. In contrast to Dynamic
Programming, trajectory optimization yields a single open-loop trajectory of the sys-
tem. However, we can design closed-loop controllers by continuously replanning the
trajectory based on the current state of the system, i.e. model-predictive control. In
the following, we discuss two classes of approaches to solve trajectory optimization
problems that mainly differ in the definition of the optimization variable and how the
system dynamics are enforced. For a more rigorous review, please refer to Betts (2010).

2.3.1 Direct Transcription

In direct transcription techniques, we search over the space of state and control tra-
jectories jointly. Thus, we jointly optimize for the robot and the object trajectory as
well. As a result, the system dynamics are enforced through explicit constraints on the
decision variables. The trajectory optimization problem can then be formulated as

min
ur

0:K , xr
0:K , xo

0:K
J

s.t.

(
xr

k+1
xo

k+1

)
= f

((
xr

k

xo
k

)
, ur

k

)
,

ur
k ∈ Ur.

(2.11)

Including the object trajectory in the set of decision variables has the advantage that
the gradient of the objective with respect to the optimization variable is continuous
and informative. However, in the case of contact-rich manipulation, the non-convexity
of constraints from the contact dynamics make the optimization problem prone to
local minima. In addition, the decision variables are subject to equality constraints.
This is particularly challenging for stochastic optimization techniques that rely on
sampling from the decision space, as the equality constraints have to be satisfied for
each sample. As a result, direct transcription techniques for contact-rich manipulation
require gradient-based optimization techniques that rely on good initial solutions to
evade undesirable local minima.

2.3.2 Direct Shooting

In contrast to direct transcription techniques, direct shooting techniques only optimize
for the control trajectory of the system. Instead of enforcing the contact dynamics
through constraints on the decision variables, they are now part of the evaluation of
the objective function. A candidate solution is evaluated by simulating the system dy-
namics forward in time using the control trajectory. In contact-rich manipulation with

16

2.4 Trajectory Representation

fully actuated robots, this leads to decision variables that are not subject to equality
constraints, which allows us to exploit stochastic optimization techniques. This is a
key aspect to overcome the challenges associated with the discontinuous nature of
contact dynamics and is exploited throughout this thesis to plan for non-prehensile
manipulation actions. A drawback compared to direct transcription techniques is that
the gradient of the objective with respect to the decision variables is not informative
if the robot does not make contact with the object as discussed in Section 1.1.1. This
thesis addresses this by combining zero-order optimization with probabilistic priors
that facilitate efficient exploration of the contact space.

2.4 Trajectory Representation

In Section 2.3, we have introduced trajectory optimization as a tool for controlling
robots to manipulate objects. In general, a trajectory is a continuous function that
describes a variable, typically a spatial variable, over time, e.g. the generalized coor-
dinates of the system over time q(t). Optimizing over the space of continuous func-
tions is mathematically challenging. Therefore, trajectory optimization is oftentimes
made tractable by representing trajectories using a finite set of variables. This enables
kinematic planning of trajectories, e.g. for planning collision-free movements, or for
planning dynamically constrained trajectories using direct transcription or shooting
methods as described in Section 2.3, e.g. for contact-rich manipulation. In the follow-
ing, we will discuss two different ways of representing trajectories that are commonly
used in robotics.

2.4.1 Discretization in Time

The most common way of encoding a trajectory is to discretize it along a finite number
of time steps, i.e. {qk}Kk=0. The discretization is typically tightly linked to the discretized
model of the system dynamics, as shown in (2.11). The underlying assumption is that
the state of the system does not change significantly within a time step. For this
assumption to be valid, the time step has to be chosen small enough such that the
dynamics of the system are well approximated by the discretized model. However,
a higher temporal resolution results in a higher number of discretized points and
thus in a higher-dimensional optimization problem. This trade-off between temporal
resolution and dimensionality of the decision variable is a key aspect of setting up direct
transcription formulations for trajectory optimization. Especially if the computation
time for the optimization is limited, this becomes an unfortunate trade-off, which
oftentimes requires compromise on the temporal resolution or the horizon length.

17

Chapter 2. Background

2.4.2 Superposition of Basis Functions

Discretizing the trajectory in time provides a generic tool for making trajectory opti-
mization problems tractable. However, given the trade-off mentioned above, it might
be desirable to decouple the number of decision variables from the temporal resolu-
tion with which the dynamics of the system are enforced. One way of achieving this is
to represent the trajectory as a superposition of basis functions, i.e.

q(t) =
N∑

n=1
ϕn(t)wn, (2.12)

where ϕn(t) is the n-th basis function and wn is the weight of the corresponding basis
function. The weights are used as the decision variables for optimizing the trajectory,
such that the number of basis functions N directly corresponds to the dimensionality
of the optimization problem. Due to the superposition of continuous functions in
time, the trajectory is continuous in time as well. This enables evaluating constraints
on the trajectory at arbitrary temporal resolutions. However, this decoupling entails
that we limit the expressiveness of the trajectory to the span of the basis functions.
Thus, for underactuated systems, such as robots manipulating objects, we cannot use
a superposition of basis functions to represent the trajectory of the full system.

However, we may still use the benefits of decoupling the number of decision variables
from the temporal resolution by using shooting methods to optimize for the system’s
control trajectory as described in Section 2.3.2. For this, we can use the superposition
of basis functions to represent the control trajectory, i.e. the control input of the system
over time. The dynamics of an underactuated system are then used to compute the
state trajectory, which enforces the dynamics without posing additional constraints
on the control trajectory. In Section 2.1, we discussed the role of stiffness control as
a low-level control layer that abstracts the motion and force response of the closed-
loop robot into an auxiliary control variable, the set point of the stiffness controller.
Representing the set point of the closed-loop robot using basis functions, i.e.

qdes(t) =
N∑

n=1
ϕn(t)wn, (2.13)

corresponds to a shooting method that can be used to optimize through contacts. This
concept is used throughout this thesis to plan for non-prehensile manipulation.

2.5 Zero-order Optimization

In Section 1.1, we have discussed the challenges of optimizing through contacts due to
the discontinuous nature of contact dynamics. Zero-order optimization techniques
provide an aspect of exploration that can help to overcome the pitfalls associated with

18

2.5 Zero-order Optimization

discontinuous contact dynamics and in general with local minima. The general idea
of zero-order optimization techniques is to generate candidate solutions by sampling
from a probabilistic approximation of the local cost landscape. By evaluating the
objective for each candidate solution, a new approximation of the local landscape
can be computed. Apart from the exploration aspect, sampling-based optimization
techniques can benefit heavily from parallelizing the evaluation of sampled candidate
solutions. This make zero-order optimization techniques suitable for model-predictive
control loops. The following provides a non-exhaustive discussion on zero-order
optimization techniques that are commonly used in robotics.

2.5.1 Cross-Entropy Method (CEM)

Different variations of the cross-entropy method have been used for offline trajectory
optimization for robotics (Kalakrishnan et al. (2011); Kobilarov (2012)). In addition,
these ideas have been extended to online optimization in model-predictive control
loops, e.g. model-predictive path integral control (MPPI) introduced by Williams
et al. (2017). CEM approaches have in common that the cost function - defining the
desired behavior of the system - is translated into a probability distribution using an
exponential transformation, e.g.

p(ur
0:K) ∝ exp (−J(ur

0:K)) , (2.14)

Evaluated samples are then used to update the parameters of the approximated prob-
ability distribution with the goal of minimizing the cross-entropy between the cost-
induced distribution and the approximated distribution. Most approaches based on
cross-entropy methods do not update the covariance of the approximated distribution
but introduce a temperature parameter for tuning the exploration of the search space.
This is because the number of samples is typically too low compared to the dimension-
ality of the optimization variable, which makes it challenging to robustly estimate the
covariance of the evaluated samples. This leads to optimization approaches with a
constant exploration rate, which may be too low for discovering vicinities of desired
local minima, or too high for exploiting the local minima.

2.5.2 Covariance Matrix Adaptation - Evolution Strategy (CMA-ES)

A zero-order optimization approach that does take covariance updates into account
is the Covariance Matrix Adaptation - Evolution Strategy (CMA-ES, Hansen (2016)).
Compared to CEM, CMA-ES is not widely adopted for trajectory optimization. While
CMA-ES is based on the same principle as CEM of updating a probability distribu-
tion to approximate the cost-induced distribution, CMA-ES introduces an improved
update step that also includes the covariance of the distribution taking information
from previous candidate populations into account. In Chapter 4, we will see that

19

Chapter 2. Background

the combination of low-dimensional trajectory representations (cf. Section 2.4) and
CMA-ES can be used for optimizing trajectories in realtime.

2.6 Belief-Space Control

As discussed in Section 1.1.2, contact-rich manipulation is prone to be subject to
uncertainty in the dynamics of the underactuated system which can be taken into
account by using a stochastic model of the contact dynamics. Rolling out a control
trajectory using a stochastic model yields a probability distribution over the system’s
state, i.e. the belief. Belief-space control aims to not only control the mean trajectory of
the system, but also to control higher-order moments of the system state distribution,
for instance the covariance. Since the predicted state of the system becomes a random
variable, control objectives are thus defined by stochastic measures of the belief, e.g.
the expected value of the control error at the end of the trajectory:

J = E
[
∥xo

K − xo
des∥

2
]

. (2.15)

For systems with linear-Gaussian dynamics and observation models, the solution of an
unconstrained, quadratic optimal problem can be computed analytically, known as the
Linear Quadratic Gaussian (LQG) controller (Atrom (1971)). In the following, we discuss
concepts for belief-space control problems with different objectives/constraints and
for non-linear systems.

2.6.1 Covariance Steering Approach

Goldshtein and Tsiotras (2017) have shown that the control of the belief can be sepa-
rated into a mean-steering and a covariance-steering control problem if the belief is
Gaussian. This formulation generalizes the LQG controller to handle costs and con-
straints on the covariance of the state distribution beyond minimizing the expectation
of the control error (Okamoto et al. (2018); Zheng et al. (2022)). However, analytical
solutions still only exist for linear-Gaussian systems.

2.6.2 Trajectory Optimization for Non-Gaussian Belief Spaces

For non-Gaussian belief spaces, belief-space control can be framed as a trajectory
optimization problem (Platt et al. (2010)) in order to find locally optimal solutions.
However, the tractablity of the optimization problem depends on the complexity of the
belief model and the respective belief representation. Instead of constraining the belief
space to Gaussian distributions, Platt et al. (2010); Nikandrova et al. (2014) use a non-
parametric particle-based representation to track the belief, which is more suitable
for the discontinuous dynamics of contact-rich manipulation but has been limited

20

2.6 Belief-Space Control

to 2D uncertainty. Platt et al. (2017) project the belief space onto a set of competing
hypotheses in the underlying state space. The control problem is then formulated by
finding an action sequence that will generate observations distinguishing between
the competing hypotheses. This can be solved via standard solvers for trajectory
optimization, such as sequential quadratic programming (SQP) or sampling-based
methods, like probabilistic roadmap planners (PRM).

While the general assumption in belief-space control is that observations gathered
upon execution of the control trajectory reduce the uncertainty in the system belief, in
the case of non-linear dynamics, the system dynamics can also reduce the uncertainty
in the system belief. More specifically, the non-linear dynamics allow us to consider
particular modes of the dynamics that result in a decrease in uncertainty even without
any observations. This is particularly useful for contact-rich manipulation where
the dynamics of the system are discontinuous and non-linear. In Chapter 6, we will
see how belief-space control can be used to generate robust plans for contact-rich
manipulation by exploiting this insight.

21

3 From Optimal Control to Time-
Parameterized Basis Functions

Publication Note

The material presented in this chapter is adapted from the following publication:

• Jankowski, J., Racca, M., and Calinon, S. (2022). From Key Positions to Optimal Basis
Functions for Probabilistic Adaptive Control. IEEE Robotics and Automation Letters,
7(2):3242–3249

M. Racca helped in the conception and execution of the user study and writing the paper.

Supplementary Material

Video related to this chapter is available at: https://youtu.be/bqWNzkSiFl0.

Optimal control can be used as an implicit way of designing and parameterizing
trajectories with desirable properties such as smoothness and satisfying boundary
constraints. However, the tractability of the optimal control problem depends on the
dimensionality of the state space, as well as the temporal resolution and horizon of the
trajectory. Therefore, in this chapter, we derive how to leverage optimal control in order
to compute minimal-effort trajectories that are parameterized by a low-dimensional
set of key positions acting as constraints on the trajectory for fully actuated systems.
The key positions, which will be the solution to the optimal control problem, can
be interpreted as parameters of the trajectory. We show that the optimal trajectory,
synthesized from the key positions, and its derivatives are linear in the key positions.
This allows us to reformulate the optimal trajectory as a linear combination of optimal
basis functions that are computed once and that can be reused when changing the key
positions. This not only enables highly efficient process of synthesizing trajectories,
but also allows us to map Gaussian distributions over single key positions to Gaussian
distributions over optimal trajectories. While in later chapters we investigate how these
properties can be used for efficient exploration of making and breaking contacts, this
chapter validates the effectiveness of optimal basis functions in a user study. We show
that demonstrating a few key points to a dynamic pick-and-place task is sufficient for
a non-expert to teach the robot within less than a minute.

23

https://youtu.be/bqWNzkSiFl0

Chapter 3. From Optimal Control to Time-Parameterized Basis Functions

In robotics, planning and control is oftentimes concerned with optimizing or gener-
ating robot state trajectories that achieve a desired robot behavior. As discussed in
Section 2.4, trajectories can be represented in various ways depending on the tech-
nique used to compute them. When planning for more complex robot behavior such
as contact-rich manipulation, the optimization of robot trajectories typically becomes
a non-convex problem. At the same time, robot trajectories are still subject to con-
straints that are related to the kinodynamic limits of the robot, such as velocity limits,
and acceleration limits. In addition, trajectories are typically subject to boundary
constraints acting on the first and last time step, e.g. zero velocities. To facilitate
planning or learning for more complex behavior, it is beneficial to search and learn
in low-dimensional spaces. The low-dimensional solutions can then be mapped to
continuous timing-optimal trajectories while ensuring that the above task-agnostic
constraints are satisfied.

In the following, we first derive how optimal control can be used as a tool for parame-
terizing trajectories with only a few key positions as constraints on the trajectory, and
show that the optimal trajectory is a superposition of optimal basis functions that pass
that pass through the key positions in Section 3.1. In Section 3.2, we then develop
algorithms for directly optimizing the duration of the trajectory and the timing of key
positions to enforce dynamic constraints such as joint velocity and acceleration limits.
Last, in Section 3.3, we show that the efficiency of representing trajectories with just a
few key positions enables learning from demonstrations of dynamic robot behavior
with less than ten demonstrations.

3.1 Optimal Basis Functions

In this section, we derive optimal basis functions from the analytical solution to a
minimal-effort trajectory problem. The key positions are imposed as linear constraints
on the trajectory and thus parameterize the optimal trajectory. Optimal basis functions
are closely related to B-splines that are parameterized by so called control points.
Both sets of basis functions are composed of piecewise polynomial functions that are
superposed to form a continuous trajectory. In contrast to B-splines, optimal basis
functions explicitly expose the boundary velocities of the trajectory as parameters.
Furthermore, the optimal basis functions are derived from the analytical solution to
an optimal control problem and are thus optimal in the sense of minimizing the effort
of the trajectory. The main difference to B-splines, however, is that the key positions
are not control points that pull the trajectory towards them, but are constraints that
the trajectory has to pass through. Figure 3.1 illustrates the optimal trajectory for a
two-degrees-of-freedom system with three key positions. Optimal basis functions
allow us to compute this trajectory efficiently as a linear mapping.

24

3.1 Optimal Basis Functions

0.0 0.2 0.4 0.6 0.8 1.0

xq

0.0

0.2

0.4

0.6

0.8

1.0

y
q

q0

q1

q2

q3

(a) Optimal path.

0.00

0.25

0.50

0.75

1.00

x
q

0

2

x
q′

0.0 0.2 0.4 0.6 0.8 1.0

s

−50

−25

0

25

50

x
q′
′

(b) Optimal position, velocity and acceleration
profiles in xq-direction.

Figure 3.1: Example of a minimal-effort trajectory that passes through key positions.
The trajectory is furthermore constrained in position and velocity at the first and last
time step. The acceleration is constrained to be continuous on the interval s ∈ [0, 1].

3.1.1 Minimal-Effort Trajectories with Linear Constraints

We first consider the problem of generating a trajectory that passes through a set of
key positions with minimal control effort. The trajectory is denoted as a function that
maps a continuous phase variable s ∈ [0, 1] to a position q ∈ Rndof of a robot that has
ndof degrees of freedom. The phase variable is a linear function of time t with s = t/T ,
where T is the total duration of the trajectory, which will be discussed in more detail in
the subsequent section. In the following, the control effort of a respective trajectory is
defined as a function of its second derivative with respect to the phase, i.e. acceleration.
The trajectory is constrained to pass through a set of N key positions qn at given phase
values sn, i.e. qn = q(sn). The problem of generating a trajectory of smoothness class
C2 that passes through a set of key positions with minimal effort can be formulated as
an optimal control problem, i.e.

q∗(s) = arg min
q(s)

∫ 1

0
q′′(s)⊤q′′(s)ds, (3.1)

s.t. q(0) = q0, q(sn) = qn, (3.2)

q′(0) = q′
0, q′(1) = q′

N , (3.3)

0 < sn < sn+1, n = 1, ..., N − 1, sN = 1. (3.4)

The solution to the optimization problem in (3.1)-(3.4) is a continuous trajectory q∗(s).
Zhang et al. (1997) have shown that the resulting trajectory is a polynomial spline in

25

Chapter 3. From Optimal Control to Time-Parameterized Basis Functions

the phase space. The spline is computed by decomposing the optimization problem in
(3.1)-(3.4) into multiple more simple optimization problems that are linked through
variable boundary conditions. Note that the trajectories of the individual degrees of
freedom can be optimized independently since the objective, as well as the constraints,
are separable. Thus, in the following, we derive the analytical solution for a trajectory
with a single degree of freedom.

Zhang et al. (1997) show that for a linear system xy, with system matrices

A =
(

0 1
0 0

)
, b =

(
0
1

)
, (3.5)

the acceleration

q̈(t) = b⊤e−A⊤t

(∫ T

0
e−Aτ bb⊤e−A⊤τ dτ

)−1(
e−AT

(
qT

q̇T

)
−
(

q0
q̇0

))
(3.6)

minimizes the functional J=
∫ T

0 q̈2(τ)dτ among all controls that move a linear sys-
tem***, i.e. (

q̇

q̈

)
= A

(
q

q̇

)
+ bq̈, (3.7)

with system matrices

A =
(

0 1
0 0

)
, b =

(
0
1

)
, (3.8)

from q0, q̇0 to qT , q̇T within T seconds. The acceleration in (3.6) can be used to drive
the system from key point qn to the subsequent key point qn+1, defined as a segment
n with s ∈ [sn, sn+1], with minimal effort. As the acceleration is a function of the
boundary conditions for each segment n, the optimal trajectory can only be computed

if the velocities at the intermediate key positions, i.e. v=
(
q′

1, q′
2, . . . , q′

N−1

)⊤
, are known.

With the optimal acceleration in (3.6) being linear in v, the velocities can be computed
by solving a linear system of equations that enforces continuity of the acceleration at
the individual key positions. This means that the resulting trajectory is of smoothness
class C2. We concatenate the given parameters, comprising the boundary variables,
as well as the key positions, into a single vector w= (q0, q1, . . . , qN , q′

0, q′
N)⊤ ∈ RN+3,

where N denotes the number of key positions. Imposing the C2 constraint at the key
positions, we obtain a linear system of equations, i.e. Pvv=Pww, with Pv∈RN−1×N−1

and Pw∈RN−1×N+3, that can be solved for v=P −1
v Pww. Given the solution for v, the

optimal acceleration for each segment n can be computed via (3.6). Note that the
optimal acceleration in (3.6) is linear in both phase and time space since

e−A⊤t =
∞∑

k=0

(−t)k

k! Ak =
(

1 0
−t 1

)
. (3.9)

26

3.1 Optimal Basis Functions

−0.5

0

0.5

1

0 s1 s2 = 1

s

A
ct
iv
a
ti
o
n

Optimal Basis Functions

ϕq0(s) ϕq1(s) ϕq2(s) ϕq′
0
(s) ϕq′

2
(s)

Figure 3.2: Basis functions constructed from the optimal control problem in (3.1) for a
single DoF and N = 2 key positions.

Accordingly, the optimal velocity and position can be computed by integrating the
acceleration, i.e. q′(s)=

∫ s
0 q′′(τ)dτ and q(s)=

∫ s
0 q′(τ)dτ . Figure 3.1 illustrates the opti-

mization problem for a system with two degrees of freedom and three key positions.
The resulting trajectory can be interpreted as a function that is not only parameterized
by the phase variable but also by the constraints, i.e. the set of N key positions qn and
boundary velocities q′

0 and q′
N , that are encapsulated in the vector w.

In robotics, optimal control problems are typically subject to non-linear dynamics,
such as contact dynamics, as well as non-linear constraints, such as avoiding collisions.
Nevertheless, even these more complex problems encapsulate the minimal-effort
trajectory problem with boundary conditions as a sub-problem. Thus, these problems
can be formulated as an optimization problem of the constraint parameters that
parameterize the optimal trajectory. This entails the following questions: What if we
change the key positions which are used as constraints in the optimization problem
in (3.1)-(3.4)? Can we exploit the mathematical structure of the analytical solution to
this problem to efficiently compute a new optimal trajectory from a new set of key
positions? In the following, we show that the optimal trajectory is a linear function
of the key positions, which allows us to compute optimal basis functions that can be
reused when changing the key positions.

3.1.2 Optimal Trajectory as a Linear Mapping of Constraints

Inserting the optimal velocities v, derived in the above, back into (3.6), we obtain the
optimal acceleration for segment n as a linear function of the given parameter vector

27

Chapter 3. From Optimal Control to Time-Parameterized Basis Functions

w with

q′′
n(s) = b⊤e−A⊤(s−sn)

(∫ sn+1

sn

e−Aτ bb⊤e−A⊤τ dτ

)−1
(

e−A(sn+1−sn)
(

qn+1
q′

n+1

)
−
(

qn

q′
n

))
= b⊤e−A⊤(s−sn) (wLnw + vLnv)

= b⊤e−A⊤(s−sn)
(

wLn + vLnP −1
v Pw

)
w,

(3.10)

with wLn∈R2×N+3 and vLn∈R2×N−1. As a result, the optimal acceleration for the entire
interval s ∈ [0, 1] can be expressed as a scalar product of two vectors, i.e.

q′′(s) = ϕ′′(s)w, (3.11)

where only the vector ϕ′′(s) depends on the phase variable s, while the parameter
vector w is independent of s. The optimal trajectory is thus also a linear function of w

with
q(s) = ϕ(s)w. (3.12)

This mathematical structure allows us to interpret the optimal trajectory in (3.12)
as a linear combination of optimal basis functions ϕ(s) that are weighted by the
given parameter vector w, i.e. the key positions and the boundary velocities. When
changing a key position in (3.1)-(3.4), the optimal trajectory can be computed without
recomputing its basis functions ϕ(s). Figure 3.2 illustrates the optimal basis functions
for a single degree of freedom system with two key positions at s1 = 0.4 and s2 = 1.

For systems with ndof degrees of freedom such that w=
(
q⊤

0 , . . . , q⊤
N , q′

0
⊤, q′

N
⊤
)⊤
∈

R(N+3)ndof , the optimal trajectory is given by q(s)=Φ(s)w, where the basis function
matrix is given via Kronecker product, i.e. Φ(s)=ϕ(s)⊗Indof , with Indof∈Rndof×ndof being
the identity matrix.

28

3.2 Optimal Time Parameterization

0.0 0.2 0.4 0.6 0.8 1.0

xq

0.0

0.2

0.4

0.6

0.8

1.0

y
q

q0

q1

q2T = 2

T = 1

T = 0.5

(a) Optimal path.

0.00

0.25

0.50

0.75

1.00

x
q

0

2

4

x
q̇

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

t

−40

−20

0

20

x
q̈

(b) Optimal position, velocity and acceleration
profiles in xq-direction.

Figure 3.3: Illustration of the impact of scaling the trajectory duration on the optimal
path (a) and the trajectory over time (b). The system has an initial velocity of q̇ = (5, 0)⊤.

3.2 Optimal Time Parameterization

In Section 3.1, we derived the optimal trajectory in (3.12) as a function of the phase
variable s ∈ [0, 1]. As introduced above, we define the phase variable as a linear
function of time t, i.e. s = t/T , where T is the total duration of the trajectory. Assuming
that the duration is given, the optimal trajectory can be parameterized in time as

q(t) = Φ
(

t

T

)
w. (3.13)

Accordingly, the optimal velocity and acceleration with respect to time are given by

q̇(t) = ∂q(t)
∂t

= 1
T

Φ′
(

t

T

)
w, (3.14)

q̈(t) = ∂2q(t)
∂t2 = 1

T 2 Φ′′
(

t

T

)
w. (3.15)

Note that the optimal trajectory in (3.13) suggests that the optimal path does not
change when the duration of the trajectory is changed. However, the boundary ve-
locities in w, i.e. q̇0, q̇N , scale with the duration of the trajectory T and not with
respect to the phase variable s, since we are interested in constraining the velocity
with respect to time. Thus, the parameters of the optimal trajectory are given as
w= (q⊤

0 , . . . , q⊤
N , T q̇0

⊤, T ˙qN
⊤)⊤.

29

Chapter 3. From Optimal Control to Time-Parameterized Basis Functions

3.2.1 Direct Minimization of the Trajectory Duration

Given the ability to efficiently recompute the optimal trajectory for a new set of key
positions and a trajectory duration parameter T , the solution to the optimization
problem in (3.1)-(3.4) is a unique mapping from inputs describing spatial and temporal
aspects to an optimal trajectory. The optimal velocity profile scales linearly with the
inverse of the duration T , while the optimal acceleration profile scales quadratically
with the inverse of the duration T . Hence, in this section, we aim to find the minimal
duration T such that the resulting velocity and acceleration profiles do not exceed
user-defined limits. Note that this section assumes the key positions, as well as the
boundary velocities q̇0, q̇N to be fixed and known. The optimization problem is thus
given by:

Topt = min T,

s.t. T > 0,

q̇(t) = 1
T

Φ′
(

t

T

)
w ∈ [−q̇max, q̇max], ∀t ∈ [0, T],

q̈(t) = 1
T 2 Φ′′

(
t

T

)
w ∈ [−q̈max, q̈max], ∀t ∈ [0, T].

(3.16)

The optimization problem in (3.16) is a non-convex optimization problem due to the
non-linear constraints on the velocity and acceleration profiles. However, we can
exploit the mathematical properties of the optimal velocity and acceleration profiles to
derive an algorithm for computing the minimal trajectory duration in a finite amount
of operations (direct optimization). For this, we make use of the observation that either
the velocity or the acceleration reaches the maximum value at least one point in time
if the trajectory duration is minimal. If the velocity and the acceleration do not reach
their maximum values, the system could move faster, resulting in a shorter trajectory
duration.

Pointwise Maximization of Velocity

The optimal velocity at phase s is given by (3.14) with t = Ts. However, note that the
trajectory parameter w depends on the duration of the trajectory, since

w =

q0
...

qN

T q̇0
T q̇N .

(3.17)

Thus, the velocity at phase s can be rewritten by separating the basis function matrix
Φ(s) into a part for the key positions, i.e. Φq(s), and a part for the boundary velocities,

30

3.2 Optimal Time Parameterization

i.e. Φq̇(s), such that

q̇(s) = 1
T

Φ′ (s) w = 1
T

(
Φ′

q (s) wq + Φ′
q̇ (s) Twq̇

)
= 1

T
Φ′

q (s) wq + Φ′
q̇ (s) wq̇,

(3.18)

with wq = (q⊤
0 , ..., q⊤

N)⊤ and wq̇ = (q̇⊤
0 , q̇⊤

N)⊤. In the limit case of T → ∞, the velocity
profile is governed by the transition between the boundary velocities, i.e.

lim
T →∞

q̇(s) = Φ′
q̇ (s) wq̇. (3.19)

The transition velocities between the boundary velocities are bound by the boundary
velocities themselves, such that the following element-wise inequality holds:

min(q̇0, q̇N) ≤ lim
T →∞

q̇(s) ≤ max(q̇0, q̇N), ∀s ∈ [0, 1]. (3.20)

Thus, we can conclude that there exists a trajectory duration T such that the velocity
limits are satisfied iff the boundary velocities are within the velocity limits. Next, we
determine the duration such that the velocity limits are not only satisfied but also
exploited such that there is at least one degree of freedom i with iq̇(s) = iq̇max for a
given s ∈ [0, 1]. The corresponding duration Topt,iq̇(s) for the i-th degree of freedom is
given by

Topt,iq̇(s) =
ϕ′

q (s) iwq

ϕ′
q̇ (s) iwq̇ ± iq̇max

. (3.21)

Note that the computation in (3.21) has two results, one for the upper and one for the
lower limit of the velocity. Since one of the two results is negative, and the other result
is positive, we discard the negative result and use the positive duration. Due to the
monotonic relationship between the velocity and the duration, the pointwise optimal
duration in (3.21) serves as a lower bound for the optimal duration Topt for the entire
interval in (3.16).

Given the pointwise optimal duration with respect to velocity limits, the optimal
duration Topt,q̇ can be computed by selecting the maximum of the pointwise optimal
durations for all phases s ∈ [0, 1] and among all degrees of freedom. This involves
solving a non-linear optimization problem in s to determine the maximum of (3.21).
However, since the phase space is one-dimensional and bounded between zero and
one, the optimal duration Topt,q̇ can be approximated efficiently by discretizing the
phase space and evaluating the pointwise optimal duration for each phase.

31

Chapter 3. From Optimal Control to Time-Parameterized Basis Functions

Pointwise Maximization of Acceleration

Analog to maximizing the velocity for a given phase, acceleration limits can be used to
determine the optimal duration as well. For this, the acceleration at phase s is given by

q̈(s) = 1
T 2 Φ′′ (s) w = 1

T 2

(
Φ′′

q (s) wq + Φ′′
q̇ (s) Twq̇

)
= 1

T 2 Φ′′
q (s) wq + 1

T
Φ′′

q̇ (s) wq̇.
(3.22)

In the limit case of T →∞, the acceleration profile is equal to zero:

lim
T →∞

q̈(s) = 0. (3.23)

Thus, there exists a trajectory duration T such that the acceleration limits are satisfied.
Similarly to determining the pointwise optimal duration with respect to the velocity
limits in (3.21), the pointwise optimal duration with respect to the acceleration limits
can be computed by solving for T such that the resulting acceleration is equal to either
the lower or the upper acceleration limit. For this, the following quadratic function has
to be solved for the corresponding duration Topt,iq̈(s) for the i-th degree of freedom:

±iq̈maxTopt,iq̈(s)2 − ϕ′′
q̇ (s) iwq̇Topt,iq̈(s)− ϕ′′

q (s) iwq = 0. (3.24)

The lower and the upper acceleration limit yield two results each, such that

uTopt,iq̈(s) = 1
2iq̈max

(
−ϕ′′

q̇ (s) iwq̇ ±
√(

ϕ′′
q̇ (s) iwq̇

)2
− 4ϕ′′

q (s) iwq
iq̈max

)
, (3.25)

lTopt,iq̈(s) = 1
2iq̈max

(
ϕ′′

q̇ (s) iwq̇ ±
√(

ϕ′′
q̇ (s) iwq̇

)2
+ 4ϕ′′

q (s) iwq
iq̈max

)
. (3.26)

Each result may be negative, positive, or complex. We discard the negative and complex
results and use the highest positive duration, which serves as a lower bound for the
optimal duration Topt in (3.16).

Given the pointwise optimal duration with respect to acceleration limits, the optimal
duration Topt,q̈ can be computed by selecting the maximum of the pointwise optimal
durations for all phases s ∈ [0, 1] and among all degrees of freedom. However, since
the acceleration profile is a linear spline in phase, the highest acceleration can only
appear at the boundary of two phases, i.e. s = sn. Thus, it is sufficient to evaluate the
pointwise optimal duration at the N + 1 phase boundaries to exactly determine the
optimal duration Topt,q̈ = maxn,i Topt,iq̈(sn).

32

3.2 Optimal Time Parameterization

0.2 0.4 0.6 0.8

xq

0.0

0.2

0.4

0.6

0.8

1.0

y
q

q0

q1

q2

q3

q4

xq̇max = 1
xq̇max = 1.5
xq̇max = 2

(a) Optimal path.

0.2

0.4

0.6

0.8

x
q

−2

−1

0

1

2

x
q̇

0.0 0.5 1.0 1.5 2.0 2.5 3.0

t

−20

0

20

x
q̈

(b) Optimal position, velocity and acceleration
profiles in xq-direction.

Figure 3.4: Illustration of the timing-optimal path (a) and the timing-optimal trajectory
(b) for different velocity limits in xq-direction. The trajectory duration is directly
optimized for and used to scale the basis functions accordingly.

Maximum of Lower Bounds

The optimal duration Topt is given by the maximum of the lower bounds for the
optimal durations with respect to the velocity and acceleration limits, i.e. Topt =
max(Topt,q̇, Topt,q̈). Assuming that errors introduced by discretizing the phase space for
computing Topt,q̇ are negligible, the optimal duration Topt is guaranteed to be the global
minimizer of the optimization problem in (3.16). Figure 3.4 illustrates timing-optimal
trajectories for different velocity limits. It can be seen that the velocity profiles are
scaled such that velocity limits are maximally exploited at one or multiple points in
time. Due to the analytical result, the implementation of the optimization problem
is efficient and can be solved in batch form for multiple trajectory parameters. Fur-
thermore, the complexity of the computation is O(ndof), where ndof is the number
of degrees of freedom. In later chapters, this analytical computation of the optimal
duration is used within model-predictive control problems to uniquely map a set of
key positions not only to a trajectory but also to a minimal duration of the trajectory.

3.2.2 Iterative Optimization of the Timing of Key Positions

In the previous section, we derived an analytical solution to compute the optimal
duration of a trajectory for a given set of key positions and a given relative timing of
the key positions, e.g. equally spaced in time. However, a heuristic choice of the timing
of the key positions may not lead to the minimal duration of the trajectory if the key

33

Chapter 3. From Optimal Control to Time-Parameterized Basis Functions

0.0 0.1 0.2 0.3 0.4 0.5

xq

−0.4

−0.2

0.0

0.2

0.4

y
q

q0 q1
q2 q3

q4

q5

(a) Optimal path.

−0.50

−0.25

0.00

0.25

0.50

q

xq
yq

−1.0

−0.5

0.0

0.5

1.0

q̇

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

t

−5.0

−2.5

0.0

2.5

5.0

q̈

(b) Optimal position, velocity and acceleration
profiles.

Figure 3.5: Example of the optimal path (a) and the optimal trajectory (b). The duration
is indirectly optimized for by iteratively optimizing the timing of the key positions.

positions are not evenly distributed in space. Thus, in scenarios in which key positions
are provided and are not subject to further optimization, the overall trajectory may
be improved by optimizing the timing of the key positions. To denote the relative
timing of key positions, we introduce a timing parameter h = (h0, . . . , hN−1)⊤, such
that the timing of the n-th key position is given by tn =

∑n−1
i=0 hi and the total duration

of the trajectory is given by T =
∑N−1

n=0 hn. The optimization problem for the timing
parameter is formulated as follows:

Topt = min
h

N−1∑
n=0

hn,

s.t. hn > 0, n = 0, . . . , N − 1,

q̇(t) = 1
T

Φ′
(

t

T

)
w ∈ [−q̇max, q̇max], ∀t ∈ [0, T],

q̈(t) = 1
T 2 Φ′′

(
t

T

)
w ∈ [−q̈max, q̈max], ∀t ∈ [0, T].

(3.27)

The computation of the basis functions depends on the timing parameter h, such that
the optimization problem in (3.27) is non-convex. Therefore, an iterative optimization
method such as sequential least squares quadratic programming (Kraft (1988)) is
required to locally minimize the duration of the trajectory. The result depends on the
initial guess provided and it is not guaranteed that the result is the global minimizer
of the trajectory duration. In the following, we exploit the iterative optimization for
finding the optimal timing of key positions provided through human demonstrations.

34

3.3 Skill Learning from Sparse Key Positions

3.3 Skill Learning from Sparse Key Positions

For robots to be widely adopted across applications and environments, it is critical
that a wide range of users can program robots with as little effort as possible. State-of-
the-art Learning from Demonstration (LfD) techniques enable robots to learn from
demonstrations, i.e. exemplary behaviors of a target task. Demonstrations often
consist of the time series of relevant variables, e.g. the robot’s end-effector position or
its joint configuration. Movement primitive methods learn from such full trajectory
demonstrations, providing mechanisms to adapt the robot’s motion to situations
unseen during teaching.

Typically, methods based on movement primitives provide little prior knowledge to the
learning procedure. As a consequence, the demonstrations need to teach the robot not
only the task at hand but also desirable characteristics of the robot’s motion, such as the
smoothness of the trajectory. Even with intuitive interfaces like kinesthetic teaching,
it can be challenging for novice users to provide full trajectory demonstrations that
successfully complete the task and, simultaneously, convey the desired characteristics
(Weiss et al. (2009); Wrede et al. (2013); Ajaykumar et al. (2021)).

As an alternative to full trajectories, the literature has explored the use of key position
demonstrations, requiring the user to demonstrate only a sparse set of consecutive
poses. This alternative interface alleviates some issues of kinesthetic teaching, chiefly
the need of teachers to provide smooth trajectories (Akgun et al. (2012b)), letting the
user focus on the task of programming (Huang and Cakmak (2017); Ajaykumar et al.
(2021)) or teaching a successful task execution (Akgun et al. (2012a)). Furthermore, the
teacher is not required to demonstrate at the same pace as the desired robot executions,
allowing for e.g. more accurate placements of key positions. We expect this aspect to
facilitate in particular the kinesthetic teaching of high-precision robot tasks such as
peg-in-hole.

We propose an approach that learns adaptive movement primitives from key position
demonstrations, as illustrated in Figure 3.6. Given an ordered set of key positions, our
method fills the gaps between them by recovering the temporal information missing
from the demonstrations (i.e. when to reach the key positions) and generating a
smooth-by-design distribution of trajectories (i.e. how to reach the key positions).
Similarly to other motion primitive approaches, the learned trajectory distribution is
encoded as a stochastic, linear combination of basis functions. To learn the timing for
the robot to reach the key positions a cascaded time-optimal control problem is solved
for each key position demonstration, and a common set of basis functions that capture
a conservative timing is extracted. Furthermore, by including information about the
task context and leveraging variability in the demonstrations, our method can adapt
the generated robot trajectories to unseen scenarios. Paired with the robot controller
presented in Jankowski et al. (2021), the generated trajectories adapt on the fly based

35

Chapter 3. From Optimal Control to Time-Parameterized Basis Functions

Figure 3.6: Teaching Phase: The user provides contextualized demonstrations as a set
of ordered key positions (asterisks) and dynamic limits. Learning Phase: Time-optimal
trajectories (blue-dashed curve) are computed in order to construct an optimal basis
for the stochastic key position space. Control Phase: By computing the distribution
of the key positions in the given context (red ellipses), a probability distribution of
optimal trajectories (blue area) is computed and used to efficiently infer an optimal
reference trajectory (black-dashed curve) based on the current robot state yrobot.

on the current state of both the robot and the environment.

To evaluate the proposed LfD pipeline, we conducted a user study, where 16 par-
ticipants provided either full trajectory or key position demonstrations to teach a 7
DoF manipulator a pick-and-place task. Results show that the proposed key posi-
tion method can generate trajectories as successfully (in terms of task completion)
as a Probabilistic Movement Primitive (ProMP) (Paraschos et al. (2018)) learned from
full trajectories while being smoother. Furthermore, we showcase how our method
can be used to solve a peg-in-hole task and a pushing task purely from key position
demonstrations.

Related Work on Learning from Key Positions

Demonstrating a motion, either by showing the full trajectory or by recording a
sequence of via-points, is a commonly adopted interface for programming robots
(Lozano-Perez (1983); Billard et al. (2008); Calinon (2019a)). Both modalities provide
the user with an intuitive programming interface while differing in terms of advantages
and disadvantages. Full trajectory demonstrations, especially when paired with gravity-
compensated robots and kinesthetic teaching, are an intuitive interface for novice
users. While allowing expert users to demonstrate the dynamics of motions, demon-
strating high-quality full trajectories can be challenging, especially as the number of
degrees of freedom rises (Chernova and Thomaz (2014)). Programming robots with
key positions can produce more readable and editable robot programs while removing
the dynamic component from the demonstration and letting the user focus solely on
the definition of key positions (Akgun et al. (2012b); Ajaykumar et al. (2021)). It has
been shown however that users find more mentally taxing to specify key positions and

36

3.3 Skill Learning from Sparse Key Positions

to form mental models of collision avoidance, compared to full trajectories (Akgun
et al. (2012b)).

Via-Point Movement Primitives (VMPs) (Zhou et al. (2019)) are a hybrid approach that
learns from full trajectories that can be later offset to pass through desired via-points.
While allowing for skill extrapolation, VMPs still require full trajectory demonstrations
to learn, therefore inheriting the aforementioned limitations. Another hybrid learning
approach that accepts as input both full trajectory and key position demonstrations is
proposed by Akgun et al. (2012a,b), converting full trajectory demonstrations into a
key position representation in order to merge them.

While showing successful skill reproduction capabilities, these approaches can not
learn solely from key position demonstrations a skill with variations. Furthermore, they
lack the capability to generalize the skill to unseen situations (e.g. novel starting robot
configurations or target object locations), and to adapt on the fly as the environment
changes (lack of adaptability).

Related Work on Adaptive Movement Primitives

While both modalities (and their hybrids, like e.g. automatic extraction of via-points
from demonstrations (Steinmetz et al. (2019); Ajaykumar et al. (2021))) have been
thoroughly adopted in robot programming interfaces, the literature on learning adap-
tive movement primitives has been tightly linked to the concept of full trajectory
demonstrations.

To represent a single trajectory or a distribution of trajectories in a compact form,
Dynamical Movement Primitives (DMPs) (Ijspeert et al. (2002)) and ProMPs (Paraschos
et al. (2018)) rely on a predefined set of basis functions (typically, radial basis functions
with uniform spacing and constant bandwidth). Alternatively, approaches based
on (Bayesian) Gaussian Mixture Regression (GMR) (Calinon (2019b)) first encode
the trajectories as a joint distribution of space and time/phase variables, and then
use the conditional property of Gaussians for regression, providing an approach to
automatically estimate the number and placement of the basis functions. As shown
by Calinon et al. (2014), probabilistic trajectory learning and adaptation can also be
formulated as an optimal control problem, by considering a standard Linear Quadratic
Regulator (LQR) with full precision matrices and a virtual system in the form of a
simple or double integrator.

Jankowski et al. (2021) propose a controller for ProMPs that enables online adaptation
to dynamically changing task contexts. In the following, we show how our approach
learns, starting from key position demonstrations, a probabilistic movement prim-
itive with optimally chosen basis functions. This allows us to reuse the controller
from Jankowski et al. (2021) and obtain adaptable movement primitives from key posi-

37

Chapter 3. From Optimal Control to Time-Parameterized Basis Functions

tion demonstrations. In Section 3.3.3, we, therefore, compare the proposed approach
against a baseline of ProMPs learned from full trajectories.

Related Work on Learning from Demonstrations using Product of Experts

Calinon (2016) proposes to learn the statistics of the demonstrations in multiple frames
(e.g. in an object-centric frame) and to retrieve a trajectory as the mean of the product
of the individual distributions. We reuse this approach, however, we fuse the distribu-
tions in the space of key positions. Using the product of expert distributions to model
more complex distributions in robotics has been introduced more generally by Pignat
et al. (2020).

3.3.1 Learning a Distribution of Optimal Trajectories

During the learning phase, the user input is processed into a distribution of optimal
trajectories. The user provides a set of K demonstrations D = {Dk}Kk=1, with N key
positions per demonstration, i.e. Dk = {{kyn}Nn=1, sk}. The proposed approach can
be applied in the robot joint space as well as in the robot’s end-effector space. In
the latter case, the presented approach applies to the end-effector position only and
needs to be complemented by an additional orientation controller (see Section 3.3.2).
sk reflects the state of the environment during the k-th demonstration. While the K

demonstrations show different solutions for one task, we assume that the number
of key positions is constant among all demonstrations and that the order of the key
positions is given by the user. In contrast to learning from full trajectories, there is
no information about the timing of the demonstrated task (except for the order in
which key positions are given). We recover this information by means of optimal
control by exploiting the velocity and acceleration limits we want to impose. These
limits are given (e.g. by the user) in the form of element-wise symmetric intervals, e.g.
ẏi ∈ [−ẏi

lim, ẏi
lim] and ÿi ∈ [−ÿi

lim, ÿi
lim] for the i-th DoF.

The learning phase consists of (1) constructing optimal basis functions as presented
in Section 3.1 and (2) learning a distribution of optimal trajectories by learning a
probability density function of the basis function weights plus correlations with the
task context. In our approach, the basis function weights explicitly correspond to the
N key positions and the start and end velocities, i.e. w = (y⊤

1 , y⊤
2 , . . . , y⊤

N , ẏ⊤
1 , ẏ⊤

T)⊤.

Probability Distribution of Optimal Trajectories

The result of the previously described cascaded optimization is a common basis Φ(t)
for all demonstrated key positions. Note that the mathematical structure of an optimal
trajectory in (3.12) given a set of key positions resembles the structure of a ProMP.

38

3.3 Skill Learning from Sparse Key Positions

Unlike the hand-crafted basis functions of ProMPs, the basis functions of our ap-
proach are implicitly learned from the demonstrations by means of optimal control.
By demonstrating ordered key positions for a given task context, the user provides
direct samples of an underlying joint distribution p(w, s) modeling the task through
correlations between key positions and task contexts. We assume that the provided
samples D can be modeled by a Gaussian Mixture Model (GMM) with a finite number
of components, i.e.

w, s|D ∼
∑

c

N (cµw,s, cΣw,s). (3.28)

Each component of the GMM is translated into a controller that is activated if the
system state and the task context can be explained through the corresponding demon-
strations of the component (see Jankowski et al. (2021) for details). Thus without loss
of generality, we consider a single Gaussian distribution in the remainder for the sake
of readability.

The optimal, contextualized robot position at a given time t can be inferred as

y(t)|s, D ∼ N
(

Φ(t)µw|s, Φ(t)Σw|sΦ⊤(t)
)

, (3.29)

with w|s, D ∼ N (µw|s, Σw|s) being the basis function weight distribution conditioned
on the state of the environment s. The blue area in the right-hand block in Figure 3.6
depicts a time-dependent Gaussian distribution resulting from (3.29).

Learning in Multiple Frames

The task model in (3.28) captures piecewise linear relations between the key positions
and the state of the environment. However, orientations of objects in the environment
can impose nonlinear relations that would require multiple components in (3.28).
In Calinon et al. (2014), poses of objects in the environment are specifically handled
by learning the movement statistics in a coordinate system that is attached to the
corresponding object. The same can be applied to our approach, resulting in multiple
probability distributions of optimal trajectories, with pM(w|s, D) = N (µM

w|s, ΣM
w|s)

being the distribution learned in a coordinate systemM. Since the timing of the task
is equal in all coordinate systems, the optimal basis functions Φ(t) remain the same in
all coordinate systems. The online fusion of multiple distributions can thus be done in
the basis function weights by computing a product of Gaussians, after transforming all
basis function weight distributions into a world-fixed coordinate systemW , as

w|s, D ∼ N (µW
w|s, ΣW

w|s)

=
∏
M
N (R̄MµM

w|s + t̄M, R̄MΣM
w|sR̄⊤

M), (3.30)

39

Chapter 3. From Optimal Control to Time-Parameterized Basis Functions

where R̄M and t̄M transform a w that is expressed in frameM into the world-fixed
coordinate systemW .

3.3.2 Control Phase

During the control phase, a controller generates motor commands allowing the robot to
reproduce the learned behavior by feeding back the robot state as well as the state of the
environment. In Section 3.3.2, we recall the concept of probabilistic adaptive control
and apply it to the previously derived movement primitive. Section 3.3.2 provides a
controller design for the orientation to complete the control of the end-effector pose.
The control commands derived in different spaces are composed in the robot’s joint
space in realtime as an information fusion problem (product of Gaussians).

Probabilistic Adaptive Control

In Jankowski et al. (2021), we designed the controller as a force/torque control action,
which has the benefit that the time-varying feedback gains are interpretable as me-
chanical compliance. However, for composing multiple control policies as in Ratliff
et al. (2018), acceleration control actions are better suited. Thus, we define a trajectory
tracking controller, i.e.

a = −K(y −Φw)−D(ẏ − Φ̇w) + Φ̈w, (3.31)

that forces the system to track an optimal trajectory that is given by ydes(t) = Φ(t)w.
Here, the matrices K and D are design parameters. As the basis function weights w

are Gaussian-distributed, the mean of the acceleration control action is inferred as

µa|x,s = −K̃(y −ΦµW
w|s)− D̃(ẏ − Φ̇µW

w|s) + Φ̈µW
w|s, (3.32)

with x being the robot state composed of position and velocity, and

K̃ = K − (KΦ + DΦ̇ + Φ̈)ΣW
w|x,sΦ⊤Σ−1

y ,

D̃ = D − (KΦ + DΦ̇ + Φ̈)ΣW
w|x,sΦ̇⊤Σ−1

ẏ .
(3.33)

The matrix ΣW
w|x,s is the covariance of the basis function weights conditioned on the

current robot state and the state of the environment. The matrices Σy and Σẏ represent
the expected tracking error, e.g. due to modeling errors of the system dynamics.

Orientation Control

For full pose control of the robot end-effector, we propose to combine the probabilistic
adaptive controller learned from the key positions with a reactive orientation controller

40

3.3 Skill Learning from Sparse Key Positions

learned from the corresponding key orientations. We adopt the idea of probabilistic
adaptive control for orientations by defining an angular velocity control command
as ωd = Kori(∆θ −∆θd), with ∆θ = Logq(µq) the logarithmic map at the robot’s end-
effector quaternion q and ∆θd ∼ N (0, Σθd

). In this formulation, the parameters µq

and Σθd
are directly learned from the orientations provided during the demonstrations

within the coordinate system of interest (e.g. the coordinate system of an object to
grasp). Analogue to the tracking error matrices Σy and Σẏ, we introduce a control error
matrix for the orientation controller by modeling ∆θ ∼ N (∆θd, Σθ). Consequently,
the conditional mean of the desired angular velocity simplifies to

µωd|∆θ = Kori

(
Σ−1

θ + Σ−1
θd

)−1
Σ−1

θd
∆θ. (3.34)

Finally, the angular acceleration control command is defined as aθ = −Dori(ω −
µ̄ωd|∆θ), with ω being the angular velocity of the robot end-effector and µ̄ωd|∆θ being
the clipped result of (3.34) in order to limit the angular velocity on-the-fly.

3.3.3 Experimental Evaluation in a User Study

We here present the results of a user study comparing the effectiveness of teaching
through key positions (Method KP) against full trajectories (Method FT). We conducted
a study where 16 novice robot users (mean age 28.8, SD 3.2) provided demonstrations
to solve a pick-and-place task with a 7 DoF FRANKA EMIKA Panda arm. This study
was approved by Idiap Research Institute’s Data and Research Ethics Committee.

Experimental Setup

The task consisted of picking a toy drill (from the YCB dataset by Calli et al. (2015)) and
placing it inside one of two boxes, as shown in Figure 3.7. The participants provided
8 demonstrations by displacing the gravity-compensated robot arm. The number of
demonstrations was selected as a trade-off between data collection and a sensible du-
ration of the study (mean duration of 25 minutes). For each demonstration, a drill pose
was randomly selected from a pool of predefined demonstration scenarios, along with
a corresponding robot’s starting configuration. Variability in the selection of scenarios
was systematically enforced to prevent participants from providing uninformative
demonstrations, e.g. multiple demonstrations with the same drill pose.

Conditions and Protocol

Participants first filled a brief questionnaire consisting of three 7-point Likert scale
statements, aimed at assessing their robotics expertise. An average score of 1.95 was ob-
served (Cronbach’s α = 0.9), indicating novice users. After a brief familiarization phase

41

Chapter 3. From Optimal Control to Time-Parameterized Basis Functions

Figure 3.7: Experimental setup of the user study: drill pick-up (1-8, left figure) and
drop locations (T1 and T2) used for the demonstration collection, and test locations
used in the evaluation phase (1-5, right figure).

with the gravity-compensated robot, each participant provided 8 demonstrations for
the aforementioned pick-and-place task, for one of two methods (between-subjects
study design): the proposed via-points demonstrations (Method KP, presented in Sec-
tion 3.3.1), and full trajectory demonstrations (Method FT, acting as baseline). Each
method was therefore used by 8 participants.

For Method KP, the participants were instructed to perform the task by using 5 key
positions, i.e. 3 for the pick action (including the starting pose), and 2 for the place
action. Participants displaced the robot in its workspace (kinesthetic teaching) and
added key positions by uttering a verbal command (e.g. “Insert here!”). For Method
FT, the participants solely needed to verbally specify the beginning and the end of
their demonstrations. For Method FT, the number of radial basis functions was set
to 24, evenly split between the pick and the place actions. Since the basis functions
of Method FT are equally distanced in time, a larger number of them compared to
Method KP is required, in order to capture local details (e.g. the grasping pose). For
both methods, the task context (i.e. the drill pose) is captured by learning in multiple
frames (as presented in Section 3.3.1), thus no explicit task context variable s was used
for the user study. The trajectory of the robot end-effector pose in the world frame
(at the base of the robot) and in the object frame (located on the drill) was recorded,
although Method KP used only the provided key positions for the learning. To facilitate
the learning for Method FT, we pre-processed the recorded end-effector position
trajectory by automatically finding the start- and end-time step of each demonstration
and cutting off the idle parts of the trajectory. The pre-processed data is then used
to learn a ProMP representation of the task for Method FT, following the algorithm
in Gomez-Gonzalez et al. (2020).

The average computation time of the learning phase with 8 demonstrations for one

42

3.3 Skill Learning from Sparse Key Positions

participant is 4.6 seconds for Method KP and 4.2 seconds for Method FT. For learning
the key position timing for Method KP, we empirically set the velocity limit to ẏi

lim =
0.15 m

s and the acceleration limit to ÿi
lim = 2 m

s2 (equal for all axes). Since both learning
approaches result in the mathematical form given in (3.28), we apply the inference
in (3.30) to both task representations (with slight modifications for the ProMP) and
consequently use the control design in Section 3.3.2 for both approaches with the
same hyper-parameters. A demonstration was considered failed if either the pick or
the place actions were unsuccessful (e.g. the drill slipped from the robot gripper or was
placed outside of the designated boxes). Failed demonstrations were excluded from
the learning and no corrective demonstrations were collected.

Evaluation

For each participant, we learned task-parameterized trajectory distributions, following
the method in Section 3.3.1 for the participants providing demonstrations consisting
of key positions (Method KP), and by learning a ProMP for Method FT. Three feedback
controllers as in (3.32) were learned for each participant, with as input the first 4,
6, and all successful demonstrations to evaluate how this impacts the quality of the
skill reproduction. Each controller was tested on 5 novel static scenarios, different
from the ones used during the demonstration collection (see Figure 3.7). These static
drill poses are prerecorded and provided to the controllers, avoiding computer vision
inaccuracies to impact the results. We additionally tested the controllers in a mock-up
handover task, where a second robot arm1 pushes the drill on the table towards the
controlled robot, equipped with a camera at the wrist to track the drill’s pose. This
scenario requires the trajectory to be adapted on the fly, therefore testing the online
adaptation capabilities of the proposed approach. For each reproduction on a novel
static scenario, we computed the acceleration effort e, defined as

e =
∫ T

0
ÿ(t)⊤ÿ(t)dt, (3.35)

where ÿ(t) is the recorded acceleration of the robot end-effector, therefore measuring
the smoothness of the reproduced trajectory.

We further adopted a scoring system to operationalize the success of the task: 1 point
for a successful pick (0 otherwise), and 1 point for a successful place (0 otherwise), for
a maximum of 2 points per reproduction. The pick action was considered successful
if the drill did not slip from the closed gripper during the transport. The place action
was considered successful if the drill landed in either of the two boxes. We refer to the
cumulative success obtained by a participant with e.g. 4 demonstrations and Method
KP as σ4

KP, ranging from 0 (failure on all 6 novel scenarios) to 2 × 6 = 12 (complete

1The second robot performs two fixed (although unknown to the first robot) pushing actions with a
short intermediate pause, ensuring a consistent experimental scenario.

43

Chapter 3. From Optimal Control to Time-Parameterized Basis Functions

4 6 all (max 8)

0

2

4

6

8

10

12

Number of demonstrations

S
u
cc
es
s
S
co
re

σ

Method KP Method FT Participants Median

(a) Distribution of cumulative success score σ,
separated by method and by number of demon-
strations utilized for training.

Training 4 6 all (max 8)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Number of demonstrations

E
ff
o
rt

e

Method KP

Method FT

Training

Trajectories

Median

(b) Distribution of acceleration effort e of trajec-
tory reproductions, separated by method and
by the number of demonstrations utilized for
training. The leftmost violin instead shows e of
the collected demonstrations.

Figure 3.8: Illustration of the optimization problem for different trajectory durations.

success).

Results

We compare the participants’ effectiveness of teaching with Method KP and Method
FT and with different numbers of demonstrations, in terms of the success of the task
reproductions and of quality of the reproduced trajectory. Informed by the literature
on teaching through key positions (Akgun et al. (2012b); Ajaykumar et al. (2021)), we
expected

1. the two methods to achieve similar success scores (with the score improving with
a larger number of demonstrations), and

2. Method KP to produce smoother trajectories than Method FT, thanks to the
optimization procedure described in Section 3.1.

We furthermore expected both methods to improve, in terms of trajectory smoothness,
over their input, i.e. the participants’ demonstrations.

Figure 3.8a compares the distribution of cumulative score σ for each teaching method.
We observe a statistically significant score difference between methods when trained
with 4 and 6 demonstrations (Mann–Whitney U test2, p< .01∗∗), with a median score
of 9.5 for Method KP vs 4.5 for Method FT when trained with 4 demonstrations. This
difference can be explained by the fact that Method KP needs to learn in a lower-
dimensional space than Method FT; a relevant difference when learning from a few

2Data was tested for normality, always rejecting the null hypothesis (Shapiro-Wilk test, p< .01∗∗). We
therefore used non-parametric tests.

44

3.3 Skill Learning from Sparse Key Positions

demonstrations. As expected, σ improves for both methods with more than 6 demon-
strations, with negligible differences between methods.

Figure 3.8b compares the distribution of acceleration effort e for each teaching method
and for the participants’ demonstrations. Unsurprisingly, we see how the reproduced
trajectories of both methods require lower acceleration effort e compared to the partic-
ipants’ kinesthetic demonstrations. Method KP produces however trajectories with
significantly lower e compared to Method FT (Mann–Whitney U test, p< .01∗∗ for any
number of demonstrations used in the training). This is a direct consequence of the
optimization process presented in Section 3.1 and Section 3.2.2.

The differences between Method KP and Method FT are further accentuated when
looking at the hand-over task (see the accompanying video for qualitative results). With
4 demonstrations, Method KP succeeded at the task for 5 participants out of 8. The
number of successful executions goes to 6 when trained with all the available demon-
strations. In contrast, no successful execution was possible with Method FT, when
trained with 4 and 6 demonstrations. Even when using all available demonstrations,
Method FT obtains successful executions only for 2 of the 8 participants.

We observe that the main reason for failing to grasp the drill is that the robot, with a
camera mounted on its wrist, loses track of the moving object while approaching it due
to abrupt movements not directed toward the drill. The presented results, including
the higher effort required for static scenarios (see Figure 3.8b), indicate that Method
FT is more prone to produce those abrupt movements compared to Method KP.

As also observed in previous work (Akgun et al. (2012b)), participants are almost
twice as fast when providing full trajectory demonstrations (median 18 s) compared to
key position demonstrations (median 28 s). However, the success score achieved by
Method KP trained with 4 demonstrations (σ4

KP, median = 9.5) is comparable with the
one of Method FT with twice the demonstrations (σ8

FT, median = 9.5). We argue that, in
a real scenario, operations other than the demonstration collection, such as setting
the environment or the robot arm’s initial configuration, would dominate the process,
making the aforementioned time difference negligible.

45

4 Via-point-based Stochastic Trajectory
Optimization

Publication Note

The material presented in this chapter is adapted from the following publication:

• Jankowski, J., Brudermüller, L., Hawes, N., and Calinon, S. (2023). VP-STO: Via-point-
based stochastic trajectory optimization for reactive robot behavior. International
Conference on Robotics and Automation (ICRA)

L. Brudermüller helped in co-developing the framework, the execution of the experiments
and the writing of the paper.

Supplementary Material

Webpage with supplementary videos and code related to this chapter is available at:
https://sites.google.com/oxfordrobotics.institute/vp-sto.

In Chapter 3, we introduced a low-dimensional representation of robot trajectories
based on via-points that allow us to efficiently solve for an optimal duration. In
this chapter, we embed this trajectory representation into a stochastic optimization
framework, Via-Point-based Stochastic Trajectory Optimization (VP-STO), that enables
us to synthesize smooth and timing-optimal robot trajectories in joint space. Achieving
reactive robot behavior in complex dynamic environments is still challenging as it
relies on being able to solve trajectory optimization problems quickly enough, such
that we can replan the future motion at frequencies that are sufficiently high for
the task at hand. For contact-rich manipulation that requires online reasoning over
making-and-breaking contacts such as pushing, gradient-based optimization fails due
to discontinuous contact dynamics. In this chapter, we investigate sampling-based
model-predictive control (MPC) as an approach that does not rely on closed-form
gradients and is thus able to combine online exploration and exploitation. We argue
that current limitations in sampling-based MPC for robot manipulators arise from
inefficient, high-dimensional trajectory representations and the negligence of dynamic
limits in the trajectory synthesis process. Therefore, we propose a motion optimization
framework that optimizes jointly over space and time, generating smooth and timing-
optimal robot trajectories in joint space. While being task-agnostic, our formulation

47

https://sites.google.com/oxfordrobotics.institute/vp-sto

Chapter 4. Via-point-based Stochastic Trajectory Optimization

can incorporate additional task-specific objectives, such as pushing progress, and yet
maintain real-time control rates, demonstrated in simulation and real-world robot
experiments on closed-loop manipulation.

We consider the problem of generating continuous, timing-optimal and smooth tra-
jectories for robots operating in dynamic environments. Such task settings require the
robot to be reactive to unforeseen changes in the environment, e.g. due to dynamic
obstacles, as well as to be robust and compliant when operating alongside or together
with humans. However, generating this kind of reactive and yet efficient robot behavior
within a high-dimensional configuration space is significantly challenging. This is es-
pecially the case in robot manipulation scenarios with many degrees of freedom (DoFs)
as the resulting high-dimensional and multi-objective optimization problems are diffi-
cult to solve on-the-fly. A widespread approach in robotics is to formulate the task of
motion generation as an optimization problem. Such trajectory-optimization based
methods aim at finding a trajectory that minimizes a cost function, e.g. motion smooth-
ness, subject to constraints, e.g. collision avoidance. Solution strategies can either
be gradient-based or sampling-based. Approaches falling in the former category, e.g.
CHOMP (Zucker et al. (2013)) and TrajOpt (Schulman et al. (2014)), typically employ
second-order iterative methods to find locally optimal solutions. However, they require
the cost function to be once or even twice-differentiable, which constitutes a major
limitation for manipulation tasks as they usually involve many complex, discontinuous
cost terms and constraints. In contrast, sampling-based methods (Kalakrishnan et al.
(2011); Rubinstein (1999)) can operate on discontinuous costs by sampling candidate
trajectories from a proposal distribution, evaluating them on the objective, and up-
dating the proposal distribution according to their relative performance. Compared
to gradient-based optimization, stochastic approaches typically also achieve higher
robustness to difficult reward landscapes due to their exploratory properties (Hansen
(2016)). Yet, achieving reactive robot behavior is challenging as it requires solving
trajectory optimization problems at frequencies that are sufficiently high for the task
at hand. This issue can be alleviated in Model Predictive Control (MPC) settings by
optimizing over a shorter receding time horizon. Stochastic, gradient-free trajectory
optimization, such as Model-Predictive Path Integral (MPPI) control (Williams et al.
(2017)) and the Cross-Entropy-Method (CEM) (Rubinstein (1999)), combined with
MPC, also known as sampling-based MPC, has proven state-of-the-art real-time per-
formance on real robotic systems in challenging and dynamic environments (Williams
et al. (2016); Bangura and Mahony (2014); Bhardwaj et al. (2022)). However, these
works still suffer from limited long-term anticipation, e.g. getting stuck in front of
obstacles, due to the optimization over a short receding horizon.

Motivated by the above, we propose Via-Point-based Stochastic Trajectory Optimization
(VP-STO), a framework that introduces the following contributions:

1. A low-dimensional, time-continuous representation of trajectories in joint space

48

4.1 Related Work

Figure 4.1: Experiment settings. Left: Pick-and-place scenario, where the task is to
grasp a bowling pin that is arbitrarily handed over to the robot and to place it upright
in the middle of the table. Right: Pushing scenario, where the robot has to push the
center of the green coffee packet to a moving target location indicated by the tip of the
metal stick.

based on via-points that by design respect the kinodynamic constraints of a
robot.

2. Stochastic via-point optimization, based on an evolutionary strategy, aiming at
minimizing movement duration and task-related cost terms.

3. An MPC algorithm optimizing over the full horizon for real-time application in
complex high-dimensional task settings, such as closed-loop object manipula-
tion.

4.1 Related Work

In the context of closed-loop object manipulation with MPC, successful approaches to
producing reactive robot behavior typically optimize in joint space subject to kinody-
namic constraints. While Fishman et al. (2020) use gradient-based MPC in order to
find trajectories for human-robot handovers, Bhardwaj et al. (2022) employed STORM,
a sampling-based MPC framework, on prehensile manipulation tasks. It is able to
generate particularly smooth trajectories via low discrepancy action sampling, smooth
interpolation, and careful cost function design. Moreover, the parallelizability of
sampling-based MPC is exploited by deploying the stochastic tensor optimization
framework on a GPU. However, in contrast to our work, the approach relies on opti-
mizing over a short receding horizon.

In the realm of time-parametrization of trajectories, most existing approaches fix the

49

Chapter 4. Via-point-based Stochastic Trajectory Optimization

overall motion duration or do not specify it at all. For instance, the majority of MPC-
based approaches only handle time implicitly via kinodynamic constraints. While the
works of Van den Broeck et al. (2011); Rosmann et al. (2017) progress the state of the
art in time-optimal MPC, their applicability to high-dimensional robotic systems yet is
limited. In the context of motion planning, T-CHOMP (Byravan et al. (2014)) jointly
optimizes a trajectory and the corresponding via-point timings. Yet, the total execution
time is still fixed in advance. The way we approach the minimization of the movement
duration is most similar to the work of Toussaint et al. (2022b). However, in contrast to
our work, their approach optimizes via-points and their timing separately.

4.2 Preliminaries: Trajectory Representation

The way we represent trajectories is based on the optimal basis functions presented in
Chapter 3. The basis function weights w include the trajectory constraints consisting
of the boundary condition parameters wbc = [q⊤

0 , q′⊤
0 , q⊤

T , q′⊤
T]⊤ and N via-points the

trajectory has to pass through qvia = [q⊤
1 , . . . , q⊤

N]⊤ ∈ RndofN , such that w =
[
q⊤

via, w⊤
bc

]⊤.
Throughout this chapter, the via-point timings sn are assumed to be uniformly dis-
tributed in s ∈ [0, 1]. Note that boundary velocities map to boundary derivatives w.r.t.
s by multiplying them with the total duration T , i.e. q′

0 = T q̇0 and q′
T = T q̇T . Further-

more, the optimization problem in (3.1) minimizes not only the objective w.r.t. q′′(s),
but also the integral over accelerations, since q′′(s) = T 2q̈(s) and thus the objective is∫ 1

0
q′′(s)⊤q′′(s)ds = T 4

∫ 1

0
q̈(s)⊤q̈(s)ds, (4.1)

corresponding to the control effort. The control effort is minimal iff the objective
in (3.1) is minimal. As a result, this trajectory representation provides a linear map-
ping from via-points, boundary conditions and the movement duration to a time-
continuous and smooth trajectory.

In the remainder of the chapter, we exploit this explicit parameterization with via-
points and boundary conditions by optimizing only the via-points while keeping the
predefined boundary condition parameters fixed. Thus, we write the computation of
the trajectory as a superposition of a via-point term and a boundary constraints term,
i.e.

q(s) = Φvia(s)qvia + Φbc(s)wbc. (4.2)

The matrices Φvia(s) and Φbc(s) are extracted from the basis function matrix Φ(s).

50

4.3 Via-Point-based Stochastic Trajectory Optimization

Figure 4.2: An illustration of the via-point-based stochastic trajectory optimization
loop. First, a new population of M via-points qvia is sampled from a Gaussian distribu-
tionN (µvia, Σvia). Then, the sampled via-points are transformed into a population of
candidate trajectories subject to kinodynamic limits. Next, the resulting trajectories
are ranked according to their cost evaluations. Last, the parameters of the Gaussian
sampling distribution are updated via CMA-ES using the cost rankings and the via-
point sets themselves.

4.3 Via-Point-based Stochastic Trajectory Optimization

In the following, we introduce our stochastic trajectory optimization framework. The
core idea is to find via-points qvia such that the synthesized trajectory minimizes a
task-related objective, i.e.

min
qvia

c [q(s), q̇(s), q̈(s), T] . (4.3)

Based on these via-points, we efficiently synthesize high-quality trajectories, i.e. qvia →
ξ with ξ = {q(s), q̇(s), q̈(s), T}. We aim at synthesizing trajectories that by-design
minimize task-agnostic objectives, i.e. minimum time and smoothness, and satisfy
task-agnostic constraints, i.e. equality constraints on the initial and final state and
inequality constraints on joint-space velocities and accelerations. We employ stochas-
tic black-box optimization, namely Covariance Matrix Adaptation (CMA-ES) Hansen
(2016) to optimize for the via-points. As each trajectory constructed from the sam-
pled via-points already provides the optimal solution to the optimization problem
given in 3.1, the CMA-ES optimization in the low-dimensional via-point space is par-
ticularly fast, evaluating only high-quality trajectories. Moreover, with CMA-ES we
are not only able to quickly converge to a local minimum but to also leverage the
exploration aspect of the evolutionary strategy (ES). In more detail, this nested opti-
mization process, which is also illustrated in Figure 4.2, comprises the following steps.
First, a new population of M via-points qvia is sampled from a Gaussian distribution
N (µvia, Σvia). As qvia is a vector of the stacked via-points, note that µvia ∈ Rndof N and
Σvia ∈ Rndof N×ndof N . By taking M samples in this higher-dimensional space, instead
of MN samples for all via-points separately in the configuration space, we are able to
sample M sets of correlated via-points. Then, as described in detail in Section 4.3.2,
the sampled via-points are transformed into a population of candidate trajectories

51

Chapter 4. Via-point-based Stochastic Trajectory Optimization

that are evaluated according to cost terms as outlined in Section 4.3.3. Finally, we
use CMA-ES in order to update the parameters µvia, Σvia of the Gaussian distribution
of via-points. This optimization setup enables us to find a valid local minimum or
even the global minimum at rates sufficient for reactive robot behavior in closed-loop
manipulation tasks, as we demonstrate in our experiments outlined in Section 4.5.

4.3.1 Informed Sampling with a Gaussian Prior

Let’s consider that we are given a Gaussian distribution on the via-points pprior(qvia),
which is a prior on the via-points encoding a probabilistic initial guess. For this prior
to be informative, it has a higher probability density at optimal via-points compared
to a naive initialization, e.g. white noise with a scaled variance. We use the via-point
prior distribution pprior(qvia) as a probabilistic initial guess for optimizing robot tra-
jectories with CMA-ES. Instead of directly sampling via-point candidates qvia from an
uninformed distribution, e.g. white noise, we sample the latent variable ε ∈ RndofN .
For a given ε, we compute qvia through an affine transformation as follows:

qvia = q̄via + Lpriorε. (4.4)

Here, Lprior is the Cholesky decomposition of the covariance matrix Σprior of the Gaus-
sian prior. The parameter q̄via is the mean of the Gaussian prior. The idea of this
additional transformation is to decouple the optimization variable ε from the partic-
ular prior. In each iteration of VP-STO, we obtain the new population of candidate
solutions by sampling M robot trajectories via

qvia ∼ N
(
q̄via + Lprior ε̄, LpriorΣεL⊤

prior

)
. (4.5)

Here, the mean ε̄ and the covariance matrix Σε of the latent variable ε are given by the
current solution of the CMA-ES algorithm. When initializing the CMA-ES distribution
as white noise, i.e. ε̄ = 0 and Σε = I, we effectively sample the first population from
the informed distribution pprior(qvia), as inserting the initial parameters into (4.5) yields

qvia ∼ N
(
q̄via, LpriorL

⊤
prior

)
= pprior(qvia). (4.6)

Next, we describe how the Gaussian prior can be computed to encode a prior on
smooth trajectories.

Gaussian Smoothness Prior

The smoothness prior incorporates temporal correlations between via-points by com-
puting a Gaussian distribution that expresses a high likelihood for low-acceleration
profiles. A typical objective in trajectory optimization is to minimize the integral over

52

4.3 Via-Point-based Stochastic Trajectory Optimization

squared accelerations of the candidate trajectory, i.e.

Js = 1
2

∫ 1

0
q̈⊤(s)Rq̈(s)ds. (4.7)

The positive definite matrix R encodes the desired smoothing for the individual de-
grees of freedom. Using the parameterization in (4.2), this objective can be expressed
using the via-point parameter qvia and the boundary conditions for the trajectory wbc.
In fact, the acceleration is an affine function of the via-point parameter qvia, i.e.

q̈(s) = Φ̈via(s)qvia + Φ̈bc(s)wbc. (4.8)

We exploit this affine dependency on the via-points and the boundary conditions by
rewriting the acceleration as a linear function in a combined trajectory parameter w,
i.e.

q̈(s) = Φ̈(s)w, (4.9)

where the new basis function matrix and the new trajectory parameter are given by

Φ̈(s) =
(
Φ̈via(s) Φ̈bc(s)

)
, w =

(
qvia

wbc

)
. (4.10)

As a result, the smoothness objective is equivalent to

Js = 1
2

∫ 1

0
w⊤Φ̈(s)⊤RΦ̈(s)w ds,

= 1
2w

∫ 1

0
Φ̈(s)⊤RΦ̈(s) ds w,

= 1
2wRww.

(4.11)

The solution of the integral yields a smoothness matrix Rw that can be written in block
form as

Rw =
∫ 1

0
Φ̈(s)⊤RΦ̈(s) ds =

(
Rqvia Rqvia|wbc

R⊤
qvia|wbc

Rwbc

)
. (4.12)

With this result, the smoothness objective is in fact a quadratic function in w.

Next, we use an exponential transformation to express the smoothness prior as a
probability distribution parameterized with the negative objective in (4.7), i.e.

pprior(w) ∝ e−Js . (4.13)

Due to the quadratic form in (4.11), the prior is in fact a zero-mean Gaussian distribu-
tion in the trajectory parameter w, i.e.

pprior(w) = pprior(qvia, wbc) = N
(
0, R−1

w

)
. (4.14)

53

Chapter 4. Via-point-based Stochastic Trajectory Optimization

This Gaussian distribution is a joint distribution over the via-point parameter qvia and
the boundary conditions wbc. At the time of constructing the smoothness prior, the
boundary conditions are given. Consequently, we obtain the smoothness prior for qvia

by conditioning on the boundary conditions, i.e.

pprior(qvia|wbc) = N
(
q̄via, R−1

qvia

)
,

q̄via = R−1
qvia

Rqvia|wbc
wbc.

(4.15)

This smoothness prior is used throughout the remainder of this chapter. However,
note that the framework is not limited to the smoothness prior, but can be extended
to any informative prior. In Chapter 6, a probabilistic prior is used to improve the
chances of making contact with an object given a belief about the object’s position.

4.3.2 Synthesis of Kinodynamically Admissible Trajectories

In this section, we show how we translate the sampled via-points qvia into kinody-
namically admissible trajectories. So far, the trajectory is implicitly given in phase
space as described in Section 4.2. Given the via-points and the boundary conditions
q0, q̇0, qT , q̇T , the computation of the explicit continuous trajectory only depends on
the total movement duration T . It is determined by the dynamic limits on velocity
q̇min, q̇max and acceleration q̈min, q̈max and is thus given as the minimum positive du-
ration such that the resulting velocity and acceleration profiles satisfy the limits. We
compute the optimal trajectory duration T using the direct optimization algorithm
presented in Section 3.2.1. This procedure will result in trajectories where either the
velocity or the acceleration profile reaches the limit in at least one evaluation point.
Finally, having determined T , we are able to explicitly compute the kinodynamically
admissible trajectory ξ.

4.3.3 Cost Evaluation

Given the sampled and synthesized population of trajectories, we evaluate the perfor-
mance, i.e. the cost c of each trajectory, independently. The gradient-free optimizer
allows for sharp cost function profiles, e.g. trajectory constraints expressed through
discontinuous barrier functions (cf. Section 4.5 for examples). We approximate c(ξ)
by sampling the given trajectory with a predefined resolution ∆s in the phase space
S and accumulating the costs at these K evaluation points. In the time domain, this
can still map to varying resolutions of individual trajectories, as ∆t = T∆s. Note that
the evaluation points at sk are not equivalent to the via-points at sn, as depicted in
Figure 4.2. The resolution of sk can be higher than that of sn in order to have a better
approximation of the trajectory cost while keeping the actual optimization variable
qvia low-dimensional.

54

4.4 Online VP-STO (MPC)

4.4 Online VP-STO (MPC)

In order to perform closed-loop control via continuous online re-optimization, we
embed the VP-STO framework into an MPC algorithm. In this online setting, the
main focus lies on rapidly finding valid movements connecting the current robot state
q, q̇ with a goal state qT , q̇T and re-optimizing them at a sufficient rate fmpc = 1

∆tmpc
.

Algorithm 1 outlines a single MPC step that, given the current robot state, attempts
to find an optimal full-horizon trajectory and to extract a short-horizon reference to
be tracked by a lower-level impedance controller. The details of the algorithm will be
outlined in the remainder of this section.

Algorithm 1: Online VP-STO: i-th MPC Step
Input: q, q̇, qT , q̇T , q̇min, q̇max, q̈min, q̈max, ∆tmpc, Tstop

Output: Short-horizon reference qd(t), q̇d(t), q̈d(t)
toptimize ← 0
q0, q̇0 ← q, q̇
ξdirect ← synthesize() // 4.4.1

if ξdirect is valid and ξdirect is shorter than Tstop then
ξ∗

i ← ξdirect
else

if ξ∗
i−1 is valid then
0µvia, 0Σvia, N ←warmStart

(
ξ∗

i−1
)

// 4.4.2

else
0µvia, 0Σvia, N ← exploreInit() // 4.4.2

end
j ← 0
while toptimize < ∆tmpc do
{qvia}Mm=1 ← sample

(
jµvia, jΣvia

)
// 4.3.1

{ξ}Mm=1 ← synthesize
(
{qvia}Mm=1

)
// 4.3.2

{c}Mm=1 ← evaluate
(
{ξ}Mm=1

)
// 4.3.3

µj+1
via , Σj+1

via ← sep-CMA-ES
(
{qvia, c}Mm=1

)
j ← j + 1

end

ξ∗
i ← synthesize

(
µj

via

)
end
qd(t), q̇d(t), q̈d(t)← shortHorizon(ξ∗

i) // 4.4.3

In the online setting, the number of via-points N used to parameterize the trajectory
plays an important role. A large number of via-points can capture highly complex
movements and may find more optimal solutions. However, it also implies a higher-
dimensional decision space which increases the computational complexity of the
optimization loop. Consequently, a particular focus within the MPC algorithm lies in
the selection of N .

55

Chapter 4. Via-point-based Stochastic Trajectory Optimization

4.4.1 No-Via-Point Trajectory for Stopping Behavior

VP-STO is based on optimizing the locations of a given number of via-points. However,
the trajectory synthesis, described in Section 4.3.2, also works without any via-points,
i.e. N=0. The resulting trajectory connects the current robot state and the desired
state by a third-order polynomial that minimizes the smoothness objective in (3.1) and
satisfies the kinodynamic limits. As this no-via-point trajectory is a unique solution,
it can not account for any other movement objectives, e.g. to avoid collisions. Yet,
the advantage is a cheap-to-construct trajectory that has no stochasticity, which is
useful for driving the robot to the target configuration and stopping with zero velocity.
Therefore, at the beginning of each optimization cycle, we first check if this simple
direct trajectory is valid, e.g. collision-free, and if the corresponding duration of the
movement is below the user-defined threshold Tstop. By setting the threshold rather
small, we let the mechanism take over towards the final part of the total trajectory to
achieve robust stopping behavior for reaching the goal. If the direct solution is not
used, we perform a VP-STO optimization cycle.

4.4.2 Initialization: Exploration vs. Warm-Starting

The use of an evolutionary optimization strategy, such as CMA-ES, allows us to initialize
the optimization not only with an initial guess of the via-points µvia, but also to set
the corresponding initial variance Σvia as an estimate of how certain we are about
the initial solution. The initial variance can thus be interpreted as an exploration
parameter influencing how the very first population of candidate trajectories will be
sampled. Therefore, in each MPC step we use two possible modes on how to initialize
these parameters. The effects of each mode on the resulting candidate trajectories are
shown in Figure 4.3.

Exploration. If a MPC step is not successful in finding a valid trajectory, the successive
MPC step will be used to explore a larger area of the trajectory space to ideally discover a
valid solution, as can be seen from the sampled trajectories in the left of Figure 4.3. We
initialize the mean solution µvia with a naive straight-line guess with high uncertainty,
i.e. large diagonal values of Σvia. The number of via-points used to parameterize the
trajectory is set to N = Nmax. Nmax needs to be specified by the user and depends on
the complexity of the task, as well as on the available computational resources.

Warm-Starting. If a valid solution was found in an MPC step, we shift the solution
forward in time and use it to warm-start the mean µvia in the successive MPC step,
potentially further improving the current solution. In this case, we initialize the co-
variance matrix Σvia with low values on the diagonal as we are more certain about the
proximity of the current solution to a valid local minimum, as can be seen on the right
of Figure 4.3. In order to determine the number of via-points N for the successive MPC

56

4.5 Experiments

Figure 4.3: An illustration of the stochastic optimization process within the proposed
MPC algorithm. Left: In the exploration mode, trajectories are sampled and synthe-
sized with a large initial variance in order to discover valid solutions. Right: If a valid
solution is available from the previous MPC step, we warm-start the optimization
by shifting the solution and sampling from a lower-variance initial distribution. All
sampled trajectories are shown in red. The initial guesses 0µvia of an MPC step are
depicted by the black solid lines, while the blue trajectories illustrate the mean solution
20µvia after 20 optimization iterations.

step, we use the movement duration of the current solution as a proxy for how complex
the remainder of the movement will be. We therefore set N = max(1, min(⌈αT ⌉, Nmax)),
where T is the total duration of the current solution and α a user-defined scaling pa-
rameter.

4.4.3 Impedance Control

At a lower control level, we deploy an impedance controller that runs at a control
rate of 1 kHz, which requires a finely sampled reference trajectory. Due to our time-
continuous representation of the optimized trajectory, we can sample configurations
from it with arbitrarily small temporal resolution. Each MPC step yields an optimized
trajectory ξ∗

i , from which we extract a position-, velocity- and acceleration-reference
enabling the robot to track the current movement plan.

4.5 Experiments

We evaluate the effectiveness and performance of the VP-STO framework in simulation,
as well as in real-world experiments with a Franka Emika robot arm.

57

Chapter 4. Via-point-based Stochastic Trajectory Optimization

Figure 4.4: Offline VP-STO. Left: The resulting trajectories from 100 experiment runs
when initializing with a straight-line guess between the start position (black circle) and
the target position (black asterisk). The number of convergence indicates how often
VP-STO converged to the corresponding color-coded solution. Right: The velocity and
acceleration profiles for each degree of freedom correspond to the valid solutions on
the left.

4.5.1 Simulation

We begin by evaluating our framework in an offline planning setting for a 2D point mass
in a cluttered toy environment adopted from Bhardwaj et al. (2022). In this experiment,
we run VP-STO (cf. Section 4.3) for 100 times with a straight-line initialization. The
left plot in Figure 4.4 shows the resulting 100 trajectories after convergence. The
majority of the found solutions converged to 3 valid local optima, i.e. 28 solutions to
the red, 69 to the blue, and one to the green trajectory. Only 2 runs produce a non-valid
solution, shown in yellow. We note here that gradient-based trajectory optimization
methods given the straight-line initial guess in such a challenging environment would
only converge to this non-valid local optimum. Moreover, this also shows that the
choice of CMA-ES as a solver for our framework helps to converge to the present local
optima with negligible error, despite the stochasticity in the sampling of the via-points.
Last, the corresponding velocity and acceleration profiles (only shown for the valid
solutions), depicted on the right of Figure 4.4, reflect the timing-optimal property
of the generated trajectories. After applying maximum acceleration at the start of
the movement, the robot moves at maximum speed within the limits before it again
applies the maximum acceleration to stop at the goal. This implies that our framework
generates trajectories that not only respect the given dynamic limits but also exploit
them in the spirit of timing optimality.

For the online setting, as described in Section 4.4, we compare VP-STO to STORM
Bhardwaj et al. (2022), which we consider as state-of-the-art in sampling-based MPC
for producing reactive robot behavior. Again using the scenario from above, we run 5

58

4.5 Experiments

Figure 4.5: Online VP-STO (MPC). Left: The trajectories taken by the robot when
deploying VP-STO in an MPC setting (blue), as opposed to using STORM Bhardwaj
et al. (2022) (red). Right: The velocity and acceleration profiles for each degree of
freedom correspond to the found solutions on the left.

experiments in which we deploy VP-STO within the MPC-algorithm (cf. Algorithm 1).
The resulting trajectories are shown in blue in Figure 4.5 alongside the 5 solutions in red
generated by STORM. It can be seen that STORM is not able to reach the goal. Especially,
due to the short-horizon optimization scheme, the robot first follows the path with
the shortest distance towards the goal while not being able to anticipate moving
around the obstacle early enough. Therefore, it gets stuck in front of the obstacle. In
contrast, Online VP-STO produces solutions that allow the robot to smoothly navigate
to the goal while exploiting its velocity and acceleration limits. The given setting and
experiment emphasize the advantage of our efficient formulation which allows us to
always optimize over the full horizon.

4.5.2 Real-World Experiments

We demonstrate VP-STO on a real robot using the manipulation scenarios in Figure 4.1:
a pick-and-place and a box pushing task. We increase the complexity of both scenarios
by disturbing the robot and the target objects. This requires a fast feedback loop
provided by Online VP-STO.

Setup. Both experiments are performed on a Franka Emika robot arm. The framework
was run on Ubuntu 20.04 with an Intel Core i7-8700 CPU@3.2GHz and 16GB of RAM.
The poses of the objects were tracked with a Vicon motion capture system and post-
processed with an extended Kalman filter. The MPC steps are executed at a fixed
control rate (specified below). In a single MPC step, we run optimization iterations
until the next MPC step starts.

Pick-and-Place. First, we consider a pick-and-place scenario under human interven-

59

Chapter 4. Via-point-based Stochastic Trajectory Optimization

tion. The robot’s task is to grasp a pin, i.e. the picking phase, and to place it in an
upright position in a given target location in the workspace, i.e. the placing phase. In
the picking phase, the pin can be either handed over to the robot in arbitrary poses
or the robot needs to pick it up from the table. This phase requires real-time collision
avoidance in narrow configuration passages, i.e. the robot has to avoid collisions
between its hand, including the fingers, and the pin while reaching a configuration
where the hand encloses the pin. For the grasp pose, we run a separate pose opti-
mization process in parallel to VP-STO, providing the final robot configuration qT .
After a successful grasp, the robot continues with the placing phase. The challenge
here is that the pin might still move within the gripper due to its own weight or due
to interference from a user. Consequently, feedback of the current pin pose is needed
to avoid collisions between the pin and the environment and to correctly place the
pin. We parameterize the sampled trajectories with a maximum number of via-points
Nmax=4 and α=2. VP-STO replans with a rate of 12.5 Hz.

Box Pushing. In the second scenario, we address the task of planning and control
through physical contacts, i.e. the robot is supposed to push a box towards a moving
target position. Such a task requires the robot to deliberately make and break contacts,
which is subject to discontinuous cost-landscapes. Here, we exploit the presented
trajectory parameterization by setting the final robot configuration qT of each MPC
step such that the end-effector moves towards the center of the box. This enforces all
sampled candidate trajectories to make contact with the box. The point of contact and
the resulting dynamics of the box depends on the location of the via-points which are
subject to minimizing the distance between the box position and the target. For the
sake of fast simulations of the contact dynamics, we use a quasi-dynamic model for
the box dynamics parallel to the table surface. VP-STO is executed with a constant
number of via-points N=3 at a control rate of 20 Hz.

Cost Terms. We begin with the task-agnostic terms and conclude with more task-
specific terms.

Movement Duration. The movement duration is used explicitly as part of the cost
function in order to minimize the time needed for the remaining robot movement.

Smoothness. In order to optimize not only for fast but also efficient movements, we
use the same metric as in (3.1) as the smoothness cost term.

Joint Limit Avoidance. For keeping the robot configuration inside the joint angle limits,
we deploy a discontinuous metric that accounts for joint limit violations, i.e.

cjla(q) =

1 + q − qmax, if q ≥ qmax

1 + qmin − q, if q ≤ qmin

0, otherwise

. (4.16)

60

4.5 Experiments

We consider a trajectory to be invalid if it results in a joint limit violation, i.e. q ≥ qmax
or q ≤ qmin.

Collision Avoidance. In order to efficiently evaluate the validity of a trajectory regard-
ing collisions between the robot and the environment, we perform binary collision
checks for each configuration evaluated along the trajectory, instead of computing
a distance between two geometries. Thus, the collision cost for a single trajectory is
equal to the number of evaluation points that are in collision. Similarly to the joint
limit avoidance cost, we consider a trajectory to be invalid if it results in a collision.

Pushing Progress. In the case of a pushing task, we further require a cost term that
rewards trajectories that let the robot move the box closer to the current desired target
xdes

box. We evaluate the pushing progress of a single trajectory by first simulating the
contact dynamics that result in a trajectory of the box xbox(t); and then computing
the box position error at the beginning ebox,0 = ||xbox(0) − xdes

box||
2
2 and at the end

ebox,T = ||xbox(T) − xdes
box||

2
2 of the robot movement. The final pushing progress cost

is given by cpush(ξ) = exp(ebox,T − ebox,0). Additionally, we consider trajectories that
move the box away from the target, i.e. ebox,T ≥ ebox,0, to be invalid. In that case, the
exploration mode in the next MPC step (cf. Section 4.4.2) is triggered.

Results. First, we note that throughout the experiments, the robot did not collide
with any objects in the workspace and did not violate the joint limits. When the
experimenter perturbs the robot, i.e. disturbing it through physical interaction or
pulling the pin out of the gripper, the robot is compliant and adapts its motion. In
the pick-and-place scenario, it robustly picked up the pin from various locations in
the workspace, including handovers by the experimenter; and placed it at the desired
target location in all runs. In the box-pushing scenario, the robot manages to find
pushing motions from arbitrary configurations and box locations and to eventually
push the box into the target. We note, however, that some changes in the target location
resulted in the robot not finding a valid pushing motion quickly enough, which in turn
made the robot push the box out of the workspace. This could only be recovered by the
experimenter. Recordings of the experiments and additional material can be found in
the supplementary material.

4.5.3 Ablation Studies

In this chapter, we present design choices that we want to further justify via ablation
studies.

61

Chapter 4. Via-point-based Stochastic Trajectory Optimization

Figure 4.6: A study of the impact of the number of via-points in a 1D time-optimization
problem. Top-Left: Impact on the resulting movement duration. The dotted black line
illustrates the duration of the optimal bang-bang solution. Bottom-Left: Impact on
the number of iterations required until convergence. Right: Velocity and acceleration
profiles for evaluated numbers of via-points.

Impact of the Number of Via-points

In this ablation study, we investigate the impact of the number of via-points used
to represent the robot movement. This hyper-parameter has a high impact on the
overall framework performance. On the one hand, it directly sets the dimensionality of
the optimization problem to solve; on the other hand, it directly spans the space of
movements that can be synthesized. From an optimization perspective, tuning the
number of via-points gives us an intuitive way of increasing/decreasing resources on
an optimization result with a decreasing/increasing cost. We illustrate this relationship
in Figure 4.6, where we let a 1D double-integrator move from q0 = 0.0, q̇0 = 0.0 to
qT = 1.0, q̇T = 0.0 in minimal time, subject to a maximum velocity |q̇| < 0.1 and an
acceleration limit |q̈| < 0.2; with a varying number of via-points. This time-optimal
control problem is known to be solved by a bang-bang acceleration profile, such that we
know the analytic limit of the minimal time to be cbang-bang = Tbang-bang = 10.5, which
is depicted as a dashed black line in the upper-left plot. We observe that the solution
cost exponentially converges to cbang-bang as we increase the number of via-points.
The lower-left plot shows the number of CMA-ES iterations required to converge as a
function of the number of via-points. Here, we detect convergence if |ck − ck−1| < 10−6

in the k-th iteration. Interestingly, the number of iterations grows linearly with the
number of via-points. Note that this does not mean that the computational cost
grows linearly with the number of via-points, since the computational cost for a single
iteration is either linear (sep-CMA-ES) or quadratic (CMA-ES) in the number of via-
points. Nevertheless, those results motivate to use a low number of via-points as with
a growing number of via-points, the benefit of adding a via-point is not worth the extra
computational cost.

62

4.5 Experiments

Figure 4.7: A study of the impact of the Cholesky factorization of the Covariance Matrix
Σvia in a 2D time-optimization problem with obstacle avoidance. Left: The configu-
ration space including the obstacle in gray, the initial guess as dashed line, and the
optimal solution around the obstacle as a solid line together with the corresponding
via-points as circles. Center: The via-point covariance matrix is explicitly updated, i.e.
Σvia = ΣCMA. Right: The via-point covariance matrix is updated through a Cholesky
factorization, i.e. Σvia = LΣCMAL⊤. Top: sep-CMA-ES iterates on diagonal covari-
ance matrices only, i.e. ΣCMA = diag(σCMA), with linear computational complexity
O (ND). Bottom: CMA-ES iterates on full covariance matrices ΣCMA with quadratic
computational complexityO

(
N2D2).

Impact of the Cholesky Factorization of the Covariance Matrix

In this ablation study, we look at a 2D minimal-time planning problem including
an obstacle that is to be avoided. We fix the number of via-points to N = 6 and set
up four different optimization loops that are supposed to solve the same problem.
Each setup uses either CMA-ES or sep-CMA-ES and runs with or without the Cholesky
factorization of the covariance matrix as described in Section 4.3.1. For comparison,
we look at the cost evolution over the number of iterations. The dashed black line in
all plots (except for the left-hand plot) indicates the minimum cost measured in any
experiment. Note also the jump in all the cost profiles from≈ 103 − 104 to≈ 100 − 101,
which reflects if the updated solution is collision-free. We observe that the choice of
CMA-ES vs. sep-CMA-ES does not have a substantial impact on the cost evolution for
this particular problem, indicating that it is justified to use sep-CMA-ES with linear
complexity. However, we observe a substantial impact when using the presented
Cholesky factorization, imposing smoothness on the candidate trajectories. In all
experiments using the Cholesky factorization, it converged to a collision-free solution
after 3 iterations at maximum. This is an especially important result justifying the use
of the Cholesky factorization inside the MPC loop, as the real-time requirements limit
the number of iterations.

63

5 Stochastic Impact Control in Real-Time

Publication Note

The material presented in this chapter is adapted from the following publication:

• Jankowski, J., Marić, A., Liu, P., Tateo, D., Peters, J., and Calinon, S. (2024b). Energy-
based contact planning under uncertainty for robot air hockey

A. Marić implemented the learning pipeline of the energy-based model and helped write the
paper. P. Liu implemented the real-robot setup and conducted the experiments. D. Tateo
provided guidance on the project and helped write the paper.

Supplementary Material

Video related to this chapter is available at: https://youtu.be/7L-iJgs87gM.

Planning robot contact often requires reasoning over a horizon to anticipate outcomes,
making such planning problems computationally expensive. After developing a frame-
work that enables realtime control through slow contact interactions such as pushing
in Chapter 4, this chapter addresses the problem of controlling impacts, i.e. collisions
between the robot and the object. We propose a learning framework for efficient
contact planning in realtime subject to uncertain contact dynamics. We implement
our approach for the example task of robot air hockey. Based on a learned stochastic
model of puck dynamics, we formulate contact planning for shooting actions as a
stochastic optimal control problem with a chance constraint on hitting the goal. To
achieve online re-planning capabilities, we propose to train an energy-based model to
generate optimal shooting plans in realtime. The performance of the trained policy
is validated in simulation and on a real-robot setup. Furthermore, our approach was
tested in a competitive setting as part of the NeurIPS 2023 Robot Air Hockey Challenge.

Planning and control through non-prehensile contacts is an essential skill for robots to
interact with their environment. Model-based approaches enable robots to anticipate
the outcome of contact interactions given a candidate action allowing them to find
an action with the desired outcome. While model-based planning approaches are
shown to be successful at generating contact-rich plans for slow tasks (Pang et al.
(2023); Jankowski et al. (2024a)), highly dynamic tasks require the agent to regenerate
contact plans at a sufficiently high rate for reacting to inherent perturbations. Highly

65

https://youtu.be/7L-iJgs87gM

Chapter 5. Stochastic Impact Control in Real-Time

Figure 5.1: The proposed control framework enables a robot arm to autonomously play
matches of air hockey. First, a learned stochastic model of contact dynamics is used to
predict the trajectory of a puck. An energy-based contact planner is then trained to
generate agile behavior in realtime.

dynamic tasks not requiring reasoning through contacts have historically been used
as a testbed for hardware and algorithms in robotics. These tasks include different
types of games and sports, such as ball-in-a-cup (Kawato et al. (1994); Kober and
Peters (2008)), juggling (Ploeger et al. (2021); Ploeger and Peters (2022)), diabolo (von
Drigalski et al. (2021)). Dynamic tasks involving contacts, such as soccer (Haarnoja
et al. (2024)), tennis (Zaidi et al. (2023)), table tennis (Mülling et al. (2011); Büchler
et al. (2022)), and air hockey (Liu et al. (2022, 2024)), are typically approached with
reinforcement learning methods to off-load the computationally expensive reasoning
through contacts to an offline exploration phase. Yet, these tasks have in common that
contacts with the ball or puck are instantaneous, i.e. the contact happens in a short
period of time, resulting in a jump in the state of the object. The reasoning over the
contact between the robot and the object of interest can therefore be divided into three
segments of the planning horizon: i) Moving the robot into contact, ii) the contact
itself at a single time instance, and iii) the passive trajectory of the object after contact.

In this chapter, we exploit the separability in the planning horizon by combining a
model-based control approach for moving the robot into contact with a learning-based
approach for planning the next best contact that results in the desired trajectory of the
object. Towards this end, we learn a mixture of linear-Gaussian modes for modeling
the object dynamics from data, which allows us to extract a stochastic model for the
contact between the robot and the object. Based on the learned model, we train an
energy-based contact policy by generating example contacts that are optimal w.r.t.
a stochastic optimal control objective offline. During the online phase, we retrieve
optimal contact plans from the energy-based policy using derivative-free inference in
realtime.

66

5.1 Related Work

Figure 5.2: Overview of the interplay between puck state estimation • and robot control
• in our framework for agile robot air hockey. The contact planner uses the estimated
puck state to predict the puck trajectory based on the learned model. It subsequently
plans a shooting angle that is used to construct an optimal control objective solved
within a model-predictive controller. All modules are updated at a control rate of 50
Hz.

In the following, we present our approach in the context of the highly dynamic game
air hockey. Figure 5.2 illustrates the online control framework that consists of state
estimation, the proposed learning-based contact planner (shooting policy), and a
subsequent model-based robot controller (MPC). For the robot controller, we use VP-
STO (see Chapter 4) that enforces the execution of the contact plan while respecting
safety constraints such as collision avoidance with the walls. We summarize our key
scientific contributions as follows:

• We present an approach for learning the parameters of a stochastic model for
discontinuous contact dynamics as a mixture of linear-Gaussian modes.

• We formulate the planning of contacts as a chance-constrained stochastic opti-
mal control problem.

• We propose an approach for training an energy-based model to capture the
optimal policy according to the chance-constrained stochastic optimal control
problem.

Our approach is experimentally validated in a dynamic air hockey shooting task with
comparisons to control-based and reinforcement learning baselines. We additionally
deploy our framework in a competitive setting as part of the NeurIPS 2023 Robot Air
Hockey Challenge (see Figure 5.1). Our framework outperforms all other approaches
in real-robot matches, establishing a new state-of-the-art in robot air hockey.

5.1 Related Work

The air hockey task has been part of the robotics literature for a long time (Bishop
and Spong (1999)). One of the first works using the air hockey task as a benchmark

67

Chapter 5. Stochastic Impact Control in Real-Time

focused on skill learning of a humanoid robot (Bentivegna et al. (2004a,b)). In more
recent years, this benchmark has been used in combination with planar robots due to
high-speed motion requirements (Namiki et al. (2013); Shimada et al. (2017); Igeta and
Namiki (2017); Tadokoro et al. (2022)), and the possibility of adapting the playing style
against the opponent (Igeta and Namiki (2015)). This benchmark has been recently
extended to the cobot setting, where a 7-DoF robotic arm controls the mallet and
maintains the table surface while striking (AlAttar et al. (2019); Liu et al. (2021); Chuck
et al. (2024)).

Another use of the robot air hockey setting is as a testbed for learning algorithms.
In Taitler and Shimkin (2017), deep reinforcement learning techniques are used to
learn on planar robots, while in Liu et al. (2022), both the planar 3-DoF and the 7-DoF
cobot air hockey tasks are used to learn control policies in simulation. More recent
techniques directly use the real 7-DoF air hockey setting as a testbed for learning algo-
rithms: in Kicki et al. (2023), the authors use learning-to-plan techniques to generate
air hockey hitting trajectories in the real-world setting, while in Liu et al. (2024), this
task is used to perform real-world reinforcement learning.

In general, existing solutions to the robot air hockey problem can be categorized in
two main directions: learning-based approaches (Bentivegna et al. (2004b); Taitler
and Shimkin (2017); Liu et al. (2024)), and control-based approaches (Tadokoro et al.
(2022); AlAttar et al. (2019); Liu et al. (2021)). Generally speaking, pure control-based
approaches lead to better and faster solutions than learning-based methods but require
considerable efforts in engineering and model identification, and are particularly
challenging to implement to run at realtime control rates. Instead, pure learning-
based approaches obtain a worse-quality solution but make it possible to obtain more
robust behaviors by relying on domain randomization and fine-tuning on the real
platform. In this chapter, we aim to combine the advantages of learning-based and
control-based approaches. We exploit the optimality of control-based approaches for
controlling the robot without consideration of the puck and exploit the robustness and
flexibility of learning-based approaches to efficiently generate plans for the contact
between the robot and the puck to maximize the chance of scoring.

5.2 Learning Stochastic Contact Models

Planning and controlling the contacts of the robot with the puck requires the anticipa-
tion of puck trajectories. To enable this, we learn a simplified stochastic model of the
puck dynamics for i) estimating the current state of the puck online, ii) predicting the
trajectory of the puck online, and iii) solving a stochastic optimal control problem to
plan the next best contact between the robot and the puck.

68

5.2 Learning Stochastic Contact Models

Figure 5.3: Illustration of three modes of the puck dynamics that are parameterized as
linear-Gaussian models. Mode 1) captures the dynamics of the puck •when floating
on the surface of the table. Mode 2) captures collisions between puck and walls. Mode
3) models collisions between puck and the mallet • in a contact-aligned frame C. The
parameters for the nominal dynamics and the corresponding uncertainty are learned.

5.2.1 Mixture of linear-Gaussian Contact Dynamics

Suppose that xp
k ∈ R2 is the position of the puck w.r.t. the surface of the air hockey table

at time step k. The robot interacts with the puck by making contact with its mallet,
i.e. the circular part of the robot’s end-effector. The position of the mallet is denoted
with xm

k ∈ R2 w.r.t. the surface of the air hockey table. We assume that the robot arm
is controlled such that the mallet maintains contact with the table at all times. In
order to efficiently perform rollouts of the puck dynamics, we impose a piecewise-
linear structure on the model. Figure 5.3 illustrates the three modes that we present
in the following: 1) Floating, 2) Puck-Wall Collision, and 3) Puck-Mallet Collision. To
account for modeling errors introduced through the piecewise-linear structure, we
model each mode as a conditional Gaussian distribution, resulting in a mixture of
linear-Gaussian contact dynamics. In the following, we present the individual modes
and their respective parameters that are learned subsequently. Note that the learnable
parameters define the stochastic prediction of the puck velocity, while the one-step
prediction of the position is derived from numerical integration and is deterministic.

Floating

The first mode captures the dynamics of the puck when it is freely floating on the table
and is not in collision with the wall or mallet. The prediction of the puck velocity is
modeled stochastically with

Pr1
(
ẋp

k+1|ẋ
p
k

)
= N

(
Θ1ẋp

k + θ1, Σ1
)

, (5.1)

where Θ1, θ1, Σ1 are parameters of the conditional Gaussian distribution.

69

Chapter 5. Stochastic Impact Control in Real-Time

Puck-Wall Collision

The second mode models the dynamics of the puck reflecting against the wall. The
prediction of the velocity is modeled in a coordinate system C that is aligned with the
contact surface of the corresponding wall. The one-step prediction of the puck velocity
is modeled with

Pr2
(

cẋp
k+1|

cẋp
k

)
= N

(
Θ2

cẋp
k + θ2, Σ2

)
, (5.2)

where cẋp is the puck velocity in the contact-aligned coordinate system. Θ2, θ2, Σ2 are
parameters of this mode.

Puck-Mallet Collision

As a third mode, we model the interaction between the puck and the mallet as a
collision in which the velocity of the puck changes instantaneously at the time of
contact. We also model this mode using a conditional Gaussian distribution

Pr3
(

cẋp
k+ |cẋp

k− , cẋm
k

)
= N

(
Θp

3
cẋp

k− +Θm
3

cẋm
k +θ3, Σ3

)
. (5.3)

The velocities of the puck cẋp and of the mallet cẋm, respectively, are expressed in the
contact-aligned coordinate system C. The index k+ corresponds to time step k after
applying the collision model, while k− describes the instant right before the collision.
The model parameters for the third mode are Θp

3, Θm
3 , θ3, Σ3.

5.2.2 Learning Model Parameters from Data

Given recorded trajectories of the puck and the mallet, the data is fragmented into
consecutive puck velocity pairs together with the mallet velocity, i.e. ẋp

k, ẋp
k+1, ẋm

k , and
the corresponding mode is assigned to each data sample. As a result, we assume to
obtain a dataset {yi,n, ξi,n}Ni

n=0 for each mode i, where yi,n is the n-th velocity prediction
sample for mode i, e.g. y1 = ẋp

k+1, and ξi,n is the n-th prediction condition sample
for mode i, e.g. ξ1 = ẋp

k. To learn the parameters of the model, we fit a Gaussian
distribution to the dataset for each mode modeling the joint probability distribution of
prediction and condition with

Pri(yi, ξi) = N
((

µyi

µξi

)
,

(
Σyi Σyiξi

Σ⊤
yiξi

Σξi

))
. (5.4)

Given the parameters of the joint probability distribution, the parameters of the linear-
Gaussian models can be computed by conditioning the probability distribution on the

70

5.2 Learning Stochastic Contact Models

input ξ. The parameters are thus given by

Θi = Σyiξi
Σ−1

ξi
,

θi = µyi −Σyiξi
Σ−1

ξi
µξi

,

Σi = Σyi −Σyiξi
Σ−1

ξi
Σ⊤

yiξi
.

(5.5)

5.2.3 Piecewise-linear Kalman Filtering

The learned linear-Gaussian models allow us to update the estimated state of the puck
using the Kalman filter. As a result, an estimate of the puck state at time step k, i.e.

ŝk =
(
x̂p⊤

k , ˙̂xp⊤

k

)⊤
, is obtained based on a noisy measurement of the puck position

x̃p
k. For this, the mode of the dynamics is detected at each time step such that the

corresponding parameters are used within the Kalman filter update. The parameters
are translated into linear-Gaussian state-space dynamics, i.e.

Pri (sk+1|sk) = N (Aisk + bi, Qi) , (5.6)

with system parameters Ai, bi and process noise covariance matrix Qi computed with

Ai =
(

Ai,xx Ai,xẋ

0 Θi

)
; bi =

(
0
θi

)
; Qi =

(
0 0
0 Σi

)
. (5.7)

Here, the model parameters Ai,xx, Ai,xẋ determine the prediction of the puck position
at the next time step given the current puck position and velocity. These parameters
are derived using numerical integration and are constant.

5.2.4 Probability of Hitting the Goal

For the robot to anticipate whether a candidate shot may lead to scoring a goal, we
predict the probability of hitting the goal based on the learned linear-Gaussian puck
dynamics. Note that the probability of hitting the goal does not account for a defending
opponent. Without loss of generality, suppose that the collision between mallet and
puck happens at k = 0. Given the puck state at the time of collision ŝ0− and the
corresponding mallet state xm

0 , ẋm
0 , the expected puck velocity after the collision is

computed as defined in (5.3), resulting in the expected puck state ŝ0+ . By rolling out
the discretized stochastic model with

ŝk+1 = Aik
ŝk + bik

,

Pk+1 = Aik
PkA⊤

ik
+ Qik

,
(5.8)

a Gaussian distribution of puck states, i.e. sk ∼ N (ŝk, Pk) is obtained for each time step
k > 0. The rollout is initialized with ŝ0 = ŝ0+ and P0 = Q3, exploiting the separated

71

Chapter 5. Stochastic Impact Control in Real-Time

Figure 5.4: A qualitative comparison of the probability of hitting the goal Ĝ for different
shooting angles and shooting speeds. The shooting angles are indicated by the mallet
position •w.r.t. the puck position • at the time of contact. The shooting speed, i.e. the
speed of the mallet at the time of contact, is 1.2 m

s for a) and c), while the shooting
speed is 2 m

s for b).

stochastic model of collisions between mallet and puck.

To evaluate the probability of scoring a goal, we perform the stochastic rollout as
defined in (5.8) until the expected puck position x̂p

k crosses the goal line. We denote
this time step with kgoal. In the following, we denote the probability of scoring a goal,
i.e. G = 1, given a puck position as a Bernoulli distribution with

Pr
(
G = 1|xp

k

)
=

1, if xp
k ∈ Xgoal

0, else.
(5.9)

The subset in puck position space Xgoal represents the goal region. Consequently, we
can compute the probability of scoring a goal given the initial conditions of a shot by
marginalizing over the puck position at time step kgoal with

Pr (G = 1|ŝ0− , xm
0 , ẋm

0) =
∫

Xgoal
Pr
(
xp

kgoal

)
dxp

kgoal
. (5.10)

We compute the probability in (5.10) using Monte-Carlo approximation by sampling
NG puck positions from the Gaussian distribution at prediction time step kgoal and
counting the number of samples that would hit the goal

Pr (G = 1|ŝ0− , xm
0 , ẋm

0) ≈ 1
NG

NG∑
n=1

Pr
(
G = 1|xp

kgoal,n

)
, (5.11)

with xp
kgoal,n

∼ Pr(xp
kgoal

). In the following, we denote the approximated probability of

72

5.3 Fast Contact Planning under Uncertainty

Figure 5.5: Examples of differently tuned shooting plans and corresponding energy
landscapes. Shooting direction and mallet speed are displayed for varying initial puck
positions. Instance a) evaluates only scoring probability (λ1 = 1, λ2 = 0, β = 0.5); b)
adds additional weight on expected puck speed at the goal line (λ1 = 1, λ2 = 0.2, β =
0.5); c) evaluates only the expected puck speed at the goal line (λ1 = 0, λ2 = 1, β = 0.5).
The energy landscape and sampling process at time steps j ∈ {1, 12, 25} are visualized
for an example shot denoted in red. All pucks are static at j = 0.

hitting the goal, corresponding to the right-hand side of (5.11), with Ĝ.

Figure 5.4 illustrates stochastic rollouts for various initial conditions of a shot. Evaluat-
ing Ĝ as defined in (5.11), we observe that those initial conditions have a significant
effect even if the expected puck trajectory hits the center of the goal for all condi-
tions. Fast shots (Figure 5.4-b) accumulate less uncertainty compared to slow shots
(Figure 5.4-a) due to the fact that the modeled process noise is constant over time.
Compared to bank shots, direct shots accumulate less uncertainty during rollout since
collisions with a wall add significant process noise (Figure 5.4-c).

5.3 Fast Contact Planning under Uncertainty

The learned dynamics model enables the prediction of uncertain puck trajectories for
contact planning. In particular, we aim to find contact states of the mallet that result
in desired puck trajectories after contact. The proposed contact planning module is
based on stochastic optimal control, optimizing for the mallet state at contact. We
combine the optimization of the contact state with a model-based robot controller that
drives the robot to the desired contact state at the desired contact time (cf. Figure 5.2).

73

Chapter 5. Stochastic Impact Control in Real-Time

5.3.1 Stochastic Optimal Control for Shooting

Given the desired time of contact and the corresponding estimate of the puck state
s0− at that time, we pose contact planning for shooting as a stochastic optimal control
problem searching for the mallet state xm

0 , ẋm
0 at the time of contact. For this, we aim

to maximize a tradeoff between the probability of hitting the goal Ĝ and the expected
puck speed vpuck at the goal line. The expected puck speed is computed as the norm of
the mean puck velocity at kgoal according to Sec. 5.2.4. While the probability of hitting
the goal Ĝ does not account for a defending opponent, we use the speed of the puck
as a measure of the difficulty of defending against the shot. The stochastic optimal
control problem is given as

max
xm

0 ,ẋm
0

λ1Ĝ + λ2vpuck

s.t. Ĝ > β,
(5.12)

where we deploy an additional chance constraint to enforce the probability of hitting
the goal to be higher than a threshold β based on the learned stochastic model. The
weights λ1 and λ2 are used for tuning for the desired behavior. Based on the qualitative
comparison illustrated in Figure 5.4, we expect that solely optimizing for the probability
of hitting the goal results only in direct shots, as bank shots induce uncertainty. Yet,
due to the kinematics of the robot, the puck speed may be increased with bank shots.
Thus, depending on the puck state, the tuned objective can produce both straight
shots and bank shots, increasing the chances of scoring.

5.3.2 Shooting Angle as Reduced Action Space

The goal of the shooting policy is to find the optimal mallet state at the time of contact,
i.e. xm

0 and ẋm
0 , respectively. Due to the underlying contact geometry and constraints,

for a given puck position x̂p
0 we parameterize the mallet position as a shooting angle

u ∈ U between the mallet and puck. Note that a shooting angle of u = 0 corresponds to
a straight shot that is parallel to the side walls of the table. We reduce the dimensionality
of the action space further by imposing two heuristic constraints on the mallet velocity
ẋm

0 : i) The mallet velocity at the time of contact aligns with the shooting angle, such
that ẋm

0 = v(cos u, sin u)⊤ with scalar velocity v > 0 encoding the norm of the mallet
velocity. While this constraint excludes shooting angles that are not aligned with the
mallet velocity, it enforces maximum transmission of kinetic energy from the robot
to the puck; ii) We impose that the norm of the mallet velocity is maximal given a
shooting configuration q0 of the robot and velocity limits Q̇ of the joints of the robot,

74

5.3 Fast Contact Planning under Uncertainty

such that

v∗ = max v

s.t. veu = J(q0)q̇0,

q̇0 ∈ Q̇.

(5.13)

Note that the unit vector eu ∈ R3 encodes the shooting direction including zero con-
tribution in the z-direction. Accordingly, J(q0) ∈ R3×ndof corresponds to the Jacobian
w.r.t. the Cartesian position of the mallet.

As a result, the shooting angle u is the action that we optimize for. With the imposed
constraints, a shooting angle uniquely maps to a mallet state at the time of contact.
Thus, in the following, we denote the probability of scoring a goal as a function of the
shooting angle with Pr (G = 1|ŝ0− , u).

5.3.3 Training an Energy-based Shooting Policy

The long-horizon predictions required to plan shooting actions make it difficult to
operate at a rate that is sufficient for agile behavior. We address this challenge by
training an energy-based model to reproduce the solutions to the stochastic optimal
shooting problem in (5.12) in realtime. Due to implicit policy representation, energy-
based models are particularly well-suited for multi-modal solution spaces Florence
et al. (2022). In the case of shooting, different modes of the policy include straight
shots, single bank shots, and double bank shots.

We train the energy-based model by solving the computationally expensive shooting
angle optimization offline and using the results as training data. Namely, we first gener-
ate a dataset of shooting angles for N different scenarios, i.e. puck states at the time of
contact {si}Ni=1. Due to the one-dimensional parametrization of the action space, we
efficiently explore the space of shooting angles for each initial puck state by sampling
M candidate shooting angles {uj

i}Mj=1. We subsequently compute the stochastic rollout
of the puck trajectory as presented in Sec. 5.2.4 and evaluate the objective and chance
constraint from (5.12). The best-performing sample ûi is then used as a positive exam-
ple for training, and the remaining M − 1 samples as negative counter-examples. We
finally obtain a dataset of M ×N state-action pairs {si, ûi, {uj

i}
M−1
j=1 }Ni=1 and train the

energy model Eθ(s, u) using an InfoNCE-style (van den Oord et al. (2018)) loss

LInfoNCE =
N∑

i=1
− log

(
p̃θ

(
ûi|si, {uj

i}
M−1
j=1

))
, (5.14)

75

Chapter 5. Stochastic Impact Control in Real-Time

Algorithm 2: Shooting policy (EBM inference)

Input: Puck state ŝ0− , variance σ, samples {p̃i, ũi}Ni=1
Output: Shooting angle û, new samples {p̃i, ũi}Ni=1
{ũi}Ni=1 ←∼Multinomial(N, {p̃i}Ni=1, {ũi}Ni=1)
{ũi}Ni=1 ← {ũi}Ni=1+ ∼ N (0, σ)
{ũi}Ni=1 ← clip {ũi}Ni=1 to U
{Ei}Ni=1 ← {Eθ(ŝ0− , ũi)}Ni=1
{p̃i}Ni=1 ← softmax(−{Ei}Ni=1)
û← argmax({p̃i}, {ũi})

where p̃θ

(
ûi|si, {uj

i}
M−1
j=1

)
represents a likelihood with

p̃θ

(
ûi|si, {ui

j}M−1
j=1

)
= e−Eθ(si,ûi)

e−Eθ(si,ûi) +
∑M−1

j=1 e−Eθ(si,ui
j) . (5.15)

The described loss function reduces energy Eθ(s, u) for shooting angles that solve the
optimization problem in (5.12), while increasing the energy of non-optimal shooting
angles. Once the model is trained, this allows us to infer optimal shooting angles using
sampling-based optimization.

5.3.4 Online Inference with Warm-Starting

To solve (5.12) given the estimated puck state ŝ0− , we search for the state-action pair
that minimizes energy, i.e.

û = arg min
u∈U

Eθ(ŝ0− , u). (5.16)

For realtime optimization, we leverage direct access to the learned energy landscape of
the EBM by executing sampling iterations concurrently with other components of the
control loop. This allows us to simultaneously refine contact plans as trajectories are
being executed on the robot. The online retrieval of optimal shooting angles is based
on the derivative-free optimization procedures used in Florence et al. (2022). As in
the offline scenario, we initiate an online shooting action by uniformly sampling N

candidate actions. Based on the corresponding energies, candidates are resampled
with replacement to warm-start optimization at each following . To converge towards
a solution with minimum implicit energy, reductions to the sampling scale σ are
applied at each time step, keeping the optimal contact angle û as a reference for the
mid-level trajectory planner. A full iteration of the EBM optimization is outlined in
Algorithm 2. We observe that the learned energy models and utilized optimization
procedure efficiently retrieve multimodal contact plans to produce desired behaviors,
as shown in Figure 5.5.

76

5.4 Experiments

5.4 Experiments

This section details the simulated and real-world experiments used to validate our
approach in an online contact planning setting. We evaluate the shooting performance
of a robot arm controlled by our framework and compare it against state-of-the-art
approaches for robot air hockey.

5.4.1 Implementation Details

Data Collection for Puck Dynamics

We use data collected in a physics-based simulator to learn model parameters of
puck dynamics as presented in Sec. 5.2. One set of data is collected by randomly
moving the robot’s end-effector into contact with the puck and the other set of data is
collected without moving the robot and by initializing the puck with a high random
velocity. In total, the training set consists of 100 episodes with 50 time steps each,
which corresponds to a total of 100 seconds of observations of the puck dynamics.

EBM Architecture and Training

The energy-based shooting model consists of a multilayer perceptron with 2 hidden,
fully connected layers of 128 neurons each. The model is trained on N =3000 initial
puck states, with M = 100 action samples. Training required between 500 and 1000
epochs to converge for satisfactory performance using the Adam (Kingma and Ba
(2014)) optimizer with a decaying learning rate.

5.4.2 Experimental Setup

The experiment is conducted with a KUKA iiwa14 LBR manipulator equipped with
a mallet end-effector that is attached to a passive joint for seamless contact with
the table surface. Experiments are carried out in a simulated MuJoCo environment
and on a real-world setup (cf. Figure 5.1) for evaluation of sim2real transfer. We
evaluate three instances of the proposed approach by using different parameters
for the chance-constrained optimization problem in (5.12). Ours #1: a conservative
policy that prioritizes accuracy (λ1 = 1, λ2 = 0, β = 0.5); Ours #2: a balanced policy
that compromises between accuracy and puck speed (λ1 = 1, λ2 = 0.2, β = 0.5); and
Ours #3: an aggressive policy that prioritizes puck speed (λ1 = 0, λ2 = 1, β = 0.5).
Simulated results are also illustrated in Figure 5.5 for initial puck velocities of zero.
We compare the three instances of our contact planner with: CB, a baseline that
utilizes conventional planning and control methods (Liu et al. (2021)); and ATACOM, a
reinforcement learning approach for learning a robot policy (Liu et al. (2022)). Note that

77

Chapter 5. Stochastic Impact Control in Real-Time

Score Puck Speed
[

m
s

]
Num. Banks

CB 0.51 0.52 ± 0.24 0.00
Atacom 0.90 0.55 ± 0.05 0.00
Ours #1 0.93 1.00 ± 0.20 0.00
Ours #2 0.80 1.44 ± 0.63 0.53
Ours #3 0.61 1.97 ± 0.49 1.13

Table 5.1: Simulated experiments.

Score Puck Speed
[

m
s

]
Num. Banks

0.49 1.09 ± 0.24 0.00
0.13 0.66 ± 0.15 0.31
0.78 1.72 ± 0.20 0.00
0.60 2.02 ± 0.35 0.37
0.31 2.37 ± 0.50 0.90

Table 5.2: Real-world experiments.

the ATACOM policy is trained in simulation and deployed in the physical experiment
without additional tuning or retraining.

We perform 100 shots with each policy and report the accuracy score, puck speed at
the goal line, and the number of bank reflections for successful shots. Each shot is
initialized by placing the puck within a grid in front of the robot. Due to imperfect air
flow on the air hockey table, the puck moves after release, requiring the controlled
robot to adapt for a good shot.

5.4.3 Experimental Results

Recorded metrics are reported in Table 5.1 for the simulated environment and in
Table 5.2 for the real-world environment. Compared to CB and ATACOM, we observe
that our framework is capable of achieving higher scoring accuracy and significantly
higher puck speeds in both environments. It can be seen that different instances of our
policy obtain either a high score or high puck speeds according to the corresponding
parameters of the stochastic optimal control problem. For example, when compared
to Ours #1, it can be seen that Ours #3 compromises scoring accuracy for faster puck
speeds and a high number of bank reflections, potentially making the shots more
difficult to defend against. The higher number of bank reflections produced by Ours
#3 indicates that the robot kinematics allow for higher shooting speeds when hitting
laterally, at the risk of missing the goal due to uncertainty gained with every bank
reflection. Note that the score of Ours #3 is lower than the score chance threshold
β = 0.5 for this instance. This indicates that the learned model either has an error in
the nominal dynamics or expects too little uncertainty gain due to bank reflections.
We further note a decrease in performance for all agents due to the sim2real gap, with
ATACOM showing the highest sensitivity to transfer as it requires fine-tuning on the
real environment. CB shows the least decrease in performance, as it is parameterized
for the real system. However, note that the shooting trajectory optimization loop of
CB is slower than required to run at 50 Hz, making it prone to errors due to the puck
moving unpredictably during the shooting motion. Additionally, we note higher puck
speeds in the real setting for all agents as a result of differences in real and simulated
contact dynamics. Examples of physical shots of all approaches can be found in the
supplementary video.

78

6 Belief-space Planning through Contacts

Publication Note

The material presented in this chapter is adapted from the following publication:

• Jankowski, J., Brudermüller, L., Hawes, N., and Calinon, S. (2024a). Robust pushing:
Exploiting quasi-static belief dynamics and contact-informed optimization

L. Brudermüller helped in writing the paper.

Supplementary Material

Video related to this chapter is available at: https://youtu.be/-37Gm7NX6eg.

Non-prehensile manipulation such as pushing is typically subject to uncertain, non-
smooth dynamics. However, modeling the uncertainty of the dynamics typically results
in intractable belief dynamics, making data-efficient planning under uncertainty dif-
ficult. Chapter 5 addressed the problem of planning for the optimal impact through
stochastic object dynamics. This chapter dives deep into the mechanics of slow push-
ing and how uncertainty propagates through such contact dynamics. We focus on the
problem of efficiently generating robust open-loop pushing plans using VP-STO (see
Chapter 4). First, we investigate how the belief over object configurations propagates
through quasi-static contact dynamics. We exploit the simplified dynamics to predict
the variance of the object configuration without sampling from a perturbation distribu-
tion. In a sampling-based trajectory optimization algorithm, the gain of the variance
is constrained in order to enforce the robustness of the plan. Second, we propose an
informed trajectory sampling mechanism for drawing robot trajectories that are likely
to make contact with the object. This sampling mechanism is shown to significantly
improve chances of finding robust solutions, especially when making-and-breaking
contacts is required. We demonstrate that the proposed approach is able to synthesize
bimanual pushing trajectories, resulting in successful long-horizon pushing maneu-
vers without exteroceptive feedback such as vision or tactile feedback. We furthermore
deploy the proposed approach in a model-predictive control scheme, demonstrating
additional robustness against unmodeled perturbations.

Enabling robots to interact with the world physically is a key challenge in robotics.
In particular, the ability to move, reorient, or localize objects through contact is a

79

https://youtu.be/-37Gm7NX6eg

Chapter 6. Belief-space Planning through Contacts

fundamental capability for robots to perform tasks in unstructured environments.
Model-based planning techniques aim to synthesize robot control actions by using a
given model to reason over anticipated outcomes of actions. However, there are two
core challenges of model-based planning through contacts. First, contact dynamics
are inherently discontinuous, i.e. a robot control action may have no effect on the state
of a target object if the robot does not make contact. This translates into a vanishing
gradient of the associated manipulation objective, making traditional gradient-based
optimization difficult.

Second, the mechanics of non-prehensile contacts are subject to uncertainty. This is
due to the fact that dynamic effects such as friction between surfaces are difficult to
predict, especially when manipulating objects without knowing their physical proper-
ties, such as friction coefficients or mass distribution (Lynch and Mason (1995); Dogar
and Srinivasa (2011); Ha et al. (2020)). Thus, when generating open-loop plans by
assuming an accurate model of the dynamics, those plans are likely to fail as they do
not take into account the underlying uncertainty. In Rodriguez (2021), this effect is
described with an experiment of repeatedly picking and placing a queen chess piece,
which fails if the queen is picked from the top. In contrast, picking the queen from the
side stabilizes the repeated pick-and-place process. Uncertainty about the physical
parameters of objects is particularly unavoidable when robots interact with objects for
the first time. This raises the question of how to let robots deal with this uncertainty
autonomously. Deploying deterministic models in fast feedback loops is an implicit
approach to compensating for uncertain dynamics, such as done in model-predictive
control schemes. Yet they require accurate sensory measurements and achieve robust-
ness against perturbations or modeling errors only by correcting the observed control
errors. Modeling uncertainties and reasoning over an anticipated distribution of out-
comes, i.e. a belief, is a more explicit way of coping with uncertain dynamics. Planning
in belief space enables open-loop execution of plans while still exhibiting robustness
against modeled perturbations, thus not requiring sensors. Moreover, control errors
are anticipated at planning time and can thus be prevented before they happen, po-
tentially making manipulation under uncertainty more efficient. Closed-loop control
in belief space can then be achieved by continuously updating the belief based on
observations and subsequent replanning, combining the benefits of reactivity with
respect to unmodeled perturbations and the effectiveness of preventing control errors
at planning time.

In this chapter, we present an approach for modeling the uncertainty of contact dy-
namics in order to synthesize robust manipulation behavior. Toward this end, we make
the following contributions:

i) We study how a belief over an object’s configuration propagates through uncertain
contact dynamics. We derive a prediction of the variance of object configurations
upon contact, allowing us to anticipate the reduction of uncertainty without sampling

80

6.1 Related Work

Figure 6.1: Our model-based optimization
approach synthesizes bimanual pushing
trajectories by controlling the variance of
the object configuration, without explicitly
modeling contact modes. We show that the
robustness of the pushing trajectories is suf-
ficient to successfully push an object over
long horizons. The red cubes on the table
and the yellow content of the can act as
additional perturbations to the contact dy-
namics.

perturbations to the contact dynamics.

ii) We introduce a contact prior for sampling candidate robot trajectories that are likely
to create contacts between the robot and the object.

iii) Last, we propose a sampling-based trajectory optimization algorithm that con-
strains solutions to be robust based on the predicted variance (i)). The informed
trajectory distribution (ii)) serves as a proposal distribution that guides the sampling-
based optimization process.

In real-world experiments we demonstrate that the proposed approach is able to
synthesize robust bimanual pushing trajectories in only a few seconds of planning
time, consisting of long-horizon (up to 100 seconds) open-loop pushing maneuvers
that include making and breaking contacts (cf. Figure 6.1). The experimental results
show that the interplay of i) and ii) is crucial for synthesizing robust behavior. We
furthermore show that the proposed planning algorithm is fast enough to be used
in a model-predictive control loop, enabling a combination of reactivity and antici-
patory robustness. To the best of our knowledge, the proposed algorithm is the first
model-based planning approach that is able to synthesize robust plans for contact-rich
manipulation without pre-defined manipulation primitives.

6.1 Related Work

6.1.1 Contact-rich Manipulation

To plan and control physical interactions such as contacts, model-based algorithms
aim to exploit these models to synthesize manipulation behavior. Optimization-based
approaches have shown successful manipulation planning capabilities when the de-
sired behavior can be found via local optimization (Hogan and Rodriguez (2020);
Aydinoglu and Posa (2022); Aydinoglu et al. (2022); Cleac’h et al. (2021)) or when con-
tact modes can be represented as a small set of discrete decision variables (Marcucci

81

Chapter 6. Belief-space Planning through Contacts

Figure 6.2: Analogies between active robot
localization and robust manipulation. Both
can be formulated as a belief space plan-
ning problem, where the objective is to de-
crease the uncertainty of the belief over
time. While active localization approaches
are based on observation models, robust
manipulation exploits favorable contact dy-
namics to achieve the same goal.

et al. (2017); Migimatsu and Bohg (2020); Toussaint et al. (2020, 2022a); Chen et al.
(2021)). In the case of local optimization, however, most methods rely on gradients
which require a smoothed approximation of the contact dynamics. Moreover, they
rely on good initializations, as control actions that do not result in the robot making
contact with the object will yield a vanishing gradient of the associated manipulation
objective. In contrast, when reformulating the manipulation problem as finding the
optimal sequence of contact modes, the difficulty lies in a combinatorial explosion
when frequent switching of contact modes is necessary, i.e. making-and-breaking
contacts, or if multiple contact points are involved.

Recently, sampling-based planning and control algorithms have been explored for
contact-rich manipulation tasks as a gradient-free approach to cope with discontinu-
ous cost landscapes. This offers a framework for combining stochastic sampling and
optimization, supporting the search over contact-rich manipulation actions. In Pang
et al. (2023), the authors propose to use a quasi-dynamic contact model to efficiently
simulate physical interactions during manipulation. Plans are then synthesized with
an adaptation of the RRT algorithm. While the planning algorithm is able to generate
contact-rich manipulation plans including making and breaking contacts, the under-
lying contact model is assumed to be accurate, resulting in plans that are not robust
to inaccuracies in the contact model. In another stream of research on controlling
contact-rich manipulation, sampling-based optimization has been explored in model-
predictive control schemes to exploit parallel computing opportunities (Bhardwaj et al.
(2022); Howell et al. (2022); Jankowski et al. (2023)). In this chapter, we build upon
our previous work on via-point-based stochastic trajectory optimization (VP-STO) as
a tool for efficiently optimizing robot trajectories without requiring gradients of the
manipulation cost with respect to the manipulation action (Jankowski et al. (2023)).

6.1.2 Robust Manipulation

In robotic manipulation, uncertainty is a dominant aspect that arises from the complex
and hybrid nature of modeling physical interactions (Rodriguez (2021)). Robust ma-

82

6.1 Related Work

nipulation aims at exploiting particular contact configurations that naturally reduce
errors in manipulation tasks. In Erdmann and Mason (1988), the authors exploit the
geometry of a tray with physical boundaries to reorient a tool without sensory feedback.
Lynch and Mason (1995) exploit line contacts between a robot and polygonal objects
to generate robust pushing plans. In Dogar and Srinivasa (2011), the geometry of a
half-open gripper is exploited to actively funnel the probability distribution over object
locations between the two fingers and the palm with a push-grasp. Ha et al. (2020)
model the uncertainty in an underactuated system with additive noise on the robot
control actions and approximate the probability distribution over state trajectories
with a normal distribution around a particular contact mode. Logic geometric pro-
gramming is then used to find the most robust contact mode from a set of pre-defined
candidate modes. These strategies have in common that favorable contact geometries
are used to create natural contact dynamics that effectively decrease the uncertainty of
the manipulation system over time without the need for sensors. However, the above
approaches rely on a pre-programmed set of robust behaviors that are tailored to the
robot contact geometry.

In this chapter, we achieve robust manipulation as the result of optimizing over an
object belief. Belief-space planning in robotics is concerned with modeling the state of
the robot and its workspace via probability distributions, e.g. for active localization.
Sensor measurements of the robot are then used to reject or confirm possible states
based on an observation model to reduce uncertainty. Figure 6.2 illustrates the analogy
of active localization and robust manipulation. Both can be formulated as a belief-
space planning problem, where the common objective is to decrease the state-variance
over time. While the goal is to minimize the uncertainty of the robot’s own state in
localization problems, robust manipulation aims to minimize the uncertainty of the
object state. An even more important difference lies in the way the belief is updated
over time. Instead of using observation models to rule out possible states of the
robot, robust manipulation exploits natural invariances in the contact dynamics to let
possible object states converge to a single state.

6.1.3 Modeling Uncertainty in Contact Dynamics

Modeling the uncertainty in contact dynamics is a key aspect of synthesizing robust
robot behavior. In many reinforcement learning approaches (Haarnoja et al. (2019);
Schulman et al. (2015, 2017)), domain randomization is a natural way of informing
the skill learning process about all the possibilities that may be encountered when
moving from simulation to reality. Domain randomization may include probability
distributions over parameters of the dynamics model such as friction coefficients,
object mass, or object geometry (Andrychowicz et al. (2020); Muratore et al. (2022)). By
simulating a large number of combinations of policy samples and domain samples, the
policy ideally converges to a behavior that is robust against the uncertainty modeled

83

Chapter 6. Belief-space Planning through Contacts

through domain randomization. We believe that domain randomization as an interface
for modeling uncertainties in physical interactions is the key reason why reinforcement
learning techniques show more advanced manipulation skills in the real world such as
in-hand manipulation (Handa et al. (2023)) compared to model-based planning and
control techniques that typically assume an accurate model. Hence, we aim to bridge
the gap between modeling uncertainty in contact dynamics and ad-hoc planning
and control techniques that do not require data-inefficient offline training cycles by
optimizing over statistical properties of a belief without sampling perturbations.

6.2 Problem Formulation & Approach

We consider an underactuated manipulation system with nr
dof actuated degrees of

freedom for the robot, and no
dof unactuated degrees of freedom for the object to be

manipulated. We are interested in controlling the configuration of the object qo ∈ Rno
dof

by executing robot control commands u ∈ Rnr
dof . The initial object configuration and

the contact dynamics are subject to uncertainty, such that the object configuration
at time step k is a random variable that is described through the belief bk = p(qo

k).
We formulate the planning problem as a stochastic optimal control problem over a
horizon of K time steps:

min
u0:K−1

EbK

[
(qo

K − qo
des)

⊤ (qo
K − qo

des)
]
. (6.1)

We are optimizing for an open-loop control trajectory u0:K−1 such that the expected
control error at time step K is minimal. In order to evaluate the expected control error
in (6.1) given a control trajectory, the belief over object positions is to be propagated
through the stochastic contact dynamics. However, as contact dynamics are inherently
non-smooth, propagating the belief through contacts in closed form is intractable.
Another way to explicitly evaluate the expected cost is to sample a large number of
stochastic rollouts. Yet, this is problematic due to the fact that the evaluation of a single
robot control trajectory becomes not only inefficient, but also stochastic.

A key to our approach is the separation of the stochastic optimal control problem in
(6.1) into a mean control problem and a variance control problem (Okamoto et al.
(2018); Shirai et al. (2023)). The objective of the stochastic optimal control problem is
separated as follows:

min
u0:K−1

(EbK
[qo

K]− qo
des)

⊤ (EbK
[qo

K]− qo
des) + VbK

[qo
K] . (6.2)

We provide a more detailed derivation of the steps from (6.1) to (6.2) in the appendix.
The first term in (6.2) corresponds to the mean control problem, which refers to
planning for the expected object configuration EbK

[qo
K], i.e. the configuration that is

obtained if the mean initial configuration and the nominal contact dynamics are used.

84

6.3 Belief Dynamics through Contacts

Evaluating the mean control objective does not require the propagation of the belief
or the sampling of large numbers of stochastic rollouts of the state. In other words,
the mean control problem resembles a deterministic optimal control problem that
assumes an accurate dynamics model, while the stochasticity in the original problem
is captured by the variance control problem represented by the second term in (6.2).
Note that the variance control problem, i.e. minimizing VbK

[qo
K], is independent of the

desired object configuration qo
des. The variance of the object configuration is defined

as:
Vbk

[qo
k] = Ebk

[
(qo

k − Ebk
[qo

k])⊤ (qo
k − Ebk

[qo
k])
]
. (6.3)

Thus, the stochastic optimal control problem can be solved by controlling the nominal
object configuration while also steering its variance. The variance is a scalar measure
of the second statistical moment of the belief and can be interpreted as the uncertainty
that the system has about the object’s configuration. However, note that computing
the variance at time step K still requires the propagation of the belief or a Monte-Carlo
approximation of the stochastic dynamics. In Sec. 6.3, we present an approach that
approximates the variance of the object configuration over time without sampling
perturbations to the contact dynamics, resulting in efficient and deterministic rollouts
of the nominal dynamics and the approximated variance. In Sec. 6.4 and Sec. 6.5,
we exploit the approximated variance in a sampling-based trajectory optimization
scheme for synthesizing robust robot trajectories.

6.3 Belief Dynamics through Contacts

Given a robot control action and a belief over an object’s configuration, we are in-
terested in predicting the mean and the variance of the object’s configuration at the
consecutive time step. For this, we first introduce a quasi-static model for the object
dynamics, i.e. predicting the nominal object configuration given a robot configuration.
We then model the uncertainty of the object dynamics through additive perturbations
on the object configuration if the robot makes contact with the object. Last, we derive
a deterministic prediction of the variance given the current belief, a control action,
and the statistical properties of the perturbations.

6.3.1 Stochastic Quasi-Static Dynamics for Pushing

Quasi-static and quasi-dynamic models have been used to simplify the prediction
of slow physical interactions between robots and objects (Mason (2001); Koval et al.
(2016); Hogan and Rodriguez (2020); Cheng et al. (2021); Pang (2021); Pang et al. (2023)).
Both classes of models assume that effects that are related to velocities and accelera-
tions can be neglected as they do not affect the outcome of the prediction. This limits
the range of applications to slow interactions such as pushing tasks, insertion tasks, or

85

Chapter 6. Belief-space Planning through Contacts

in-hand manipulation. Yet, the benefits of quasi-static and quasi-dynamic models are
the lower dimensionality of the system state, i.e. half the number of states compared
to second-order dynamics models (e.g. Todorov et al. (2012)), and the lower temporal
resolution required to compute stable predictions of the system state. Both aspects
effectively allow for faster-simulated rollouts of robot plans and thus for more efficient
model-based trajectory optimization. Such models oftentimes denote the state as
q = (qr, qo). It decomposes into the position of the actuated degrees of freedom of the
robot qr ∈ Rnr

dof , and the position of the unactuated degrees of freedom of the object(s)
qo ∈ Rno

dof . The discretized dynamics are consequently given in the form of(
qr

+
qo

+

)
= f

((
qr

qo

)
, u

)
. (6.4)

qr
+, qo

+ are the predicted robot and object configurations at the consecutive time step,
respectively. In Pang et al. (2023), the input u ∈ Rnr

dof is defined as the commanded
robot configuration. The robot is assumed to be controlled by a low-level impedance
controller (Hogan (1984)), such that the robot can be modeled as an impedance for
the contact dynamics. In this chapter, we further simplify the quasi-dynamic contact
dynamics in Pang et al. (2023) by assuming infinite stiffness of the controlled robot.
As a consequence, contacts with objects are assumed to not affect the robot state
itself, but only the configuration of the object. This assumption is particularly realistic
when pushing lightweight objects with a stiff robot impedance controller. The high-
stiffness assumption induces that the robot is able to reach a desired robot position
even when being in contact with an object, i.e. qr

+ = u. The benefit of modeling
the contact interactions in such a way is that the joint robot-object dynamics reduce
to solely object dynamics. This further simplifies the simulation of contacts, as the
non-penetration constraint in the dynamics now only applies to the object. This turns
the quasi-dynamic contact dynamics into quasi-static contact dynamics, as we remove
the dependency on time. We will further exploit this decoupling of the dynamics in
the subsequent derivation of transition probabilities for the object. Yet, note that this
assumption breaks when contacts between the robot and the environment significantly
affect the robot’s state, e.g. when trying to move into a solid wall. Furthermore,
enclosing grasps, i.e. making contact with one object from two opposing sides, will
also break the high-stiffness assumption as the two contact points will affect each
other. Due to these limitations, we focus the experiments on planar pushing under
uncertainty.

86

6.3 Belief Dynamics through Contacts

Nominal Object Dynamics

The discretized quasi-static contact dynamics of the object are(
qr

+
qo

+

)
=
(

u

qo + δqo

)
; (6.5a)

δqo = arg min
δq̃o

δq̃o⊤M(qo)δq̃o, (6.5b)

s.t. d(u, qo + δq̃o) ≥ 0. (6.5c)

The control inputs u ∈ Rnr
dof to the system dynamics are defined by the commanded

joint positions of the robot. In (6.5b), M(qo) is the inertia matrix of the object with
respect to its current configuration qo. Thus, the objective in (6.5b) aims to minimize
the work required to overcome the friction between the object’s surface and the surface
of the environment, e.g. the table the object is placed on. d(qr, qo) measures the
shortest signed distance between the robot and the object, and thus (6.5c) incorporates
the non-penetration constraint, i.e. the robot does not penetrate a rigid object. As
the quasi-static robot dynamics in (6.5a) are decoupled from the object configuration,
the non-penetration constraint in (6.5c) does not depend on the previous robot state,
but only on the control input u. This simplification allows us to represent the system
dynamics with the next desired robot position as the control input and the object
position as the sole state variable. The quasi-static contact dynamics of the object in
(6.5a)–(6.5c) can thus be summarized into the nominal forward dynamics of the object
configuration:

qo
+ = f(qo, u). (6.6)

In the following, we exploit the simplified mathematical structure of the quasi-static
contact dynamics to model uncertainty and to analyze how object belief states propa-
gate through the contact dynamics.

Noisy Object Dynamics

We propose to model the uncertainty in the contact dynamics as additive noise that
acts as a perturbation to the nominal quasi-static contact dynamics in (6.6). Hence,
the noisy object dynamics are given by

qo
+ = f(qo, u) + ηw. (6.7)

The perturbation w is assumed to be sampled from a probability distribution pw such
that the resulting object configuration satisfies the non-penetration constraint in (6.5c).
The noise coefficient η encodes if the robot is in contact with the object and is defined

87

Chapter 6. Belief-space Planning through Contacts

Figure 6.3: Belief dynamics through con-
tact in a one-dimensional example. a) Il-
lustration of object samples from the uni-
formly distributed initial belief (orange).
The ground truth object is depicted in non-
transparent orange. b) After executing a
push from left to right, all samples that were
on the left of the push were pushed by the
robot. c) The probability mass that was on
the left-hand side of the push (light blue) is
now concentrated in a distribution at the
contact point according to the perturbation
distribution (blue). The probability mass
on the right-hand side of the push does not
change (blue). d) The variance of the pre-
dicted object position is therefore a func-
tion of the control action, where a robust
control action may decrease the variance
over time.

as

η =

0 if d(u, qo) > 0 (no contact),
1 else (contact).

(6.8)

Hence, the model only considers uncertainty in the prediction of the object configu-
ration when the robot is manipulating the object. The presented formulation of the
noisy discrete-time contact dynamics in (6.7) captures two distinct modes: one when
the robot is in contact with the object (η = 1) and another when the robot is not in
contact with the object (η = 0). Note that we do not model different contact modes.
The contact mode η = 1 captures arbitrary numbers of contact points with arbitrary
contact geometries. The object dynamics can thus be formulated with

qo
+ =

qo if η = 0 (no contact),
f(qo, u) + w else (contact).

(6.9)

The no-contact mode entails that the object configuration does not change. This mode
is not subject to uncertainty.

6.3.2 Object Belief Dynamics

In order to analyze how the belief about an object configuration and its associated
uncertainty propagates through contact dynamics over time, we use the notation of
probabilistic state transitions. Building upon the derived contact dynamics in (6.7),
the state of the stochastic system is the object configuration and the action is the next

88

6.3 Belief Dynamics through Contacts

desired robot configuration. Accordingly, we denote the state transition probability
with

qo
+ ∼ p(·|qo, u), (6.10)

describing the probability distribution over object configurations at the next time step
given the commanded robot configuration as well as the object configuration. Note
that the random perturbation w that directly acts on the object dynamics in (6.7) is
captured by the stochasticity of the transition probability in (6.10). We furthermore
denote the probability distribution over object configurations as belief b = p(qo).
Given the transition probability in (6.10), a control action u and the object belief
b, the resulting belief b+ can be predicted by marginalizing over the initial object
configuration:

b+ = p(qo
+|u) =

∫
Qo

p(qo
+|qo, u) b dqo. (6.11)

This equation represents the belief dynamics, which can be used not only for predicting
the most likely object configuration but also the variance of the belief after executing
action u. However, solving the integral in (6.11) is typically intractable for non-linear
dynamics and non-Gaussian beliefs. Yet, in the following, we start by showing an
example problem for which we can obtain a closed-form solution of (6.11), followed
by the introduction of a general approximation.

Example: 1D Box-Pushing. We illustrate the effects of contacts on the belief with a
one-dimensional pushing example as illustrated in Figure 6.3. The hand (i.e. the robot)
can be controlled directly while the box on the table (i.e. the object) can only be moved
by making contact. The quasi-static contact dynamics in this example are simplified to

qo
+ =

qo if qo > u (no contact),
u + w else (contact).

(6.12)

These one-dimensional piece-wise linear dynamics move the object to the right-hand
side of the contact. The object does not move if no contact has been made. In this
example, we consider the perturbation of the contact dynamics to be uniformly dis-
tributed, i.e. w ∼ U[0,α]. Sub-figures a) and b) illustrate a particular instance of the
object being at qo, which is then moved to qo

+ due to the robot reaching the commanded
position u. However, in this example, the initial box position is subject to uncertainty.
The initial belief b over box positions is given as a uniform distribution on an interval
between box position qo and q̄o, respectively. The interval is indicated by the vertical
dashed lines in all sub-figures. The initial belief is

b = U[qo,q̄o](qo). (6.13)

Given a control action u ∈ [qo, q̄o] as a commanded robot position, we can now predict

89

Chapter 6. Belief-space Planning through Contacts

the belief after contact by solving (6.11). While solving the integral in (6.11) is typically
intractable, this example has a closed-form solution that is given by

b+ =
u− qo

q̄o − qo
U[u,u+α](qo

+) + q̄o − u

q̄o − qo
U[u,q̄o](qo

+). (6.14)

We illustrate the belief dynamics in sub-figure c) by visualizing the initial belief in light
blue and the resulting belief in dark blue. It can be seen that the contact dynamics
result in a concentration of probability mass around the contact point. This is due
to the fact that all probability mass to the left of the contact has moved to the same
position interval, i.e. the contact point subject to perturbation. In the extreme case of
pushing all the way through the interval of the uniform distribution, i.e. u = q̄o, the
object belief is equivalent to the perturbation distribution with the mean shifted to
the contact point. The closed-form belief dynamics in (6.14) show that the probability
distribution can be controlled by the actions a robot takes. This is underlined by sub-
figure d) plotting the variance V of the object position after the push as a function of
how far the robot pushed. Note that while in this specific example any control action u

that makes contact with the object reduces the variance of the belief over its position,
this may not be the case in general. An unfavorable control action could generally also
increase the variance of the belief.

6.3.3 Variance Prediction

While the 1D example above showed a closed-form solution to the belief dynamics,
this is typically intractable. Consequently, predicting the variance with

V+ = Vb+ [qo] , (6.15)

in closed form is also intractable. A common approach is to use a Monte-Carlo ap-
proximation of the belief dynamics in (6.11) in order to compute the variance of the
approximated belief update (Kappen (2015); Shirai et al. (2023)). However, this is
problematic since this induces stochasticity in the prediction of the variance V+. Eval-
uating whether a control action reduces or increases the variance may thus be subject
to uncertainty itself, which introduces numerical issues in downstream optimization
techniques. The induced noise furthermore depends on the number of samples used
to approximate the belief. Thus, numerical problems and approximation errors may
only be avoided by choosing a high number of samples, rendering the underlying
planning technique inefficient. In the following, we derive a different way of predicting
the variance of object configurations without depending on the transition probability.
In other words, we eliminate the need to sample from the belief transition distribution
in (6.10) in order to predict the variance given a robot action.

Instead of predicting the updated variance after taking a control action by computing

90

6.3 Belief Dynamics through Contacts

the variance of the predicted belief as in (6.15), we compute the variance of the noisy
object dynamics in (6.7), i.e.

V+ = Vb,pw [f(qo, u) + ηw]
= Vb[f(qo, u)] + Vb,pw [ηw]+

2Eb,pw [(f(qo, u)− Eb[f(qo, u)])⊤(ηw − Eb,pw [ηw])] .

(6.16)

At this point, we introduce the assumption that the expectation of the perturbation w

is zero, i.e. Epw [w] = 0. As a result, perturbations are modeled as zero-mean noise in
the tangential directions with respect to the contact point and zero noise in the normal
direction of the contact. We furthermore note that the contact indicator η and the
perturbation are independent, such that the expectation of the product of the contact
indicator and the perturbation is zero, i.e. Eb,pw [ηw] = Eb[η]Epw [w] = 0. Consequently,
the third term in (6.16) simplifies to

Eb,pw [(f(qo, u)− Eb[f(qo, u)])⊤(ηw − Eb,pw [ηw])] =
Eb,pw [η(f(qo, u)− Eb[f(qo, u)])⊤w] =
Eb [η(f(qo, u)− Eb[f(qo, u)])]⊤ Epw [w] = 0.

(6.17)

As a result, the predicted variance in (6.16) is equivalent to the sum of the nominally
predicted variance and the variance of the induced noise. The predicted variance is
thus

V+ = Vb [f(qo, u)] + Vb,pw [ηw] . (6.18)

The left-hand term is computed through the nominal object dynamics f , thus not
including perturbations. The right-hand term is the variance contribution from the
noise acting on the object when making contact. With the expectation of pw being zero,
i.e. Eb,pw [ηw] = 0, the variance of the noise is given with

Vb,pw [ηw] = Eb,pw [(ηw)⊤(ηw)] =

Eb,pw

[
η2w⊤w

]
= Eb

[
η2
]

Epw [w⊤w] .
(6.19)

With η = η2 ∈ {0, 1}, the expectation of the squared contact indicator is equal to the
expected contact indicator, i.e. Eb

[
η2] = Eb [η]. The expected value of the contact

indicator is the probability of the robot making contact with the object given a belief
over object positions and a control action. Furthermore, note that due to the zero-
mean property of our noise distribution, the expectation of the squared perturbation
is equivalent to the variance of the perturbation, i.e. Epw [w⊤w] = Vw. Inserting these
equalities in (6.19), the variance of the applied perturbation can be expressed with

Vb,pw [ηw] = Eb [η] Vw. (6.20)

91

Chapter 6. Belief-space Planning through Contacts

Figure 6.4: Block diagram depicting one iteration of BS-VP-STO. The algorithm starts
with sampling a population of latent candidate trajectory variables ε. These are then
decoded into robot trajectories qr

0:K using a contact prior. For each candidate trajec-
tory, the object belief is rolled-out using the nominal object dynamics. The variance
gain together with the mean control cost is then used to compute the fitness of each
candidate trajectory. Finally, the distribution of candidate trajectory variables weighted
by fitness is used to update the Gaussian approximation of the probability distribution
using CMA-ES. After M iterations, the algorithm returns the best-performing candi-
date trajectory as a solution.

As a result of this section, we predict the variance of the object configuration with

V+ = Vb [f(qo, u)] + Eb [η] Vw. (6.21)

The result in (6.21) is central to our contribution, as this allows us to predict the
variance of the object configuration, i.e. the uncertainty, based on the variance of
the perturbation Vw that is assumed to be a constant value. Especially when those
perturbations are constrained to the tangent space of the contact, sampling consis-
tent perturbations involves expensive computations and makes the prediction of the
variance stochastic.

Monte-Carlo Approximation of the Nominal Dynamics

We approximate the variance contribution resulting from the nominal contact dynam-
ics using a non-parametric representation of the belief, i.e. particles. We denote the
approximated belief as a set of Np particles {iqo, iα}Np

i=1, where each particle consists of
a state sample iqo and a corresponding weight iα. The weight of a particle, 0 ≤ iα ≤ 1,
represents an approximate belief in the corresponding state sample iqo. A prediction
step consists of propagating each particle through the nominal contact dynamics, i.e.

iqo
+ = f(iqo, u), ∀i ∈ {1, 2, .., Np}. (6.22)

Since we do not take any measurements during planning, we assume that the particle
weights are constant and equally distributed, such that iα = 1/Np, ∀i. Based on the par-

92

6.4 Stochastic Optimization for Robust Manipulation

ticle representation of the belief, we estimate the variance of the object configuration
with

V̂b[qo] = 1
Np

Np∑
i=1

(
iqo − µo

)⊤ (
iqo − µo

)
. (6.23)

The empirical mean object configuration is computed with µo = 1/Np

∑Np

i=1
iqo. The

probability of making contact Eb [η] is approximated as

Êb [η] = 1
Np

Np∑
i=1

iη, (6.24)

where iη indicates if the i-th particle has an object configuration that is in contact with
the robot. As a result, we approximate the overall variance prediction with

V̂+ = V̂b [f(qo, u)] + Êb [η] Vw. (6.25)

When comparing the predicted variance V̂+ against the variance of the current time
step V̂b[qo], the same set of particles is used to compute the empirical variance as
in (6.23). Thus, evaluating the approximated variance dynamics does not involve
sampling and is thus deterministic. We exploit this approximation in Sec. 6.4 when
optimizing robot trajectories based on the predicted variance.

6.4 Stochastic Optimization for Robust Manipulation

Given our objective to push an object into a desired goal configuration subject to
stochastic contact dynamics (cf. (6.2)), this section presents a framework that opti-
mizes for robust robot trajectories directly in the belief space over possible object
configurations. This framework extends our previous work VP-STO (Jankowski et al.
(2023)) to belief-space via-point-based stochastic trajectory optimization (BS-VP-STO).
Our framework exploits the variance prediction developed in Sec. 6.3 for synthesizing
robust manipulation behavior. Due to the quasi-static pushing model in (6.5a) - (6.5c),
a robot trajectory is equivalent to a control trajectory, i.e. qr

1:K = u0:K−1. Thus, BS-
VP-STO is a shooting method aiming at minimizing an objective that depends solely
on the object configuration as in (6.1). Due to the non-smooth nature of the contact
dynamics and the resulting non-smooth cost function with respect to the optimization
variable, we approach the optimization problem with a gradient-free, i.e. zero-order,
evolutionary optimization technique.

Figure 6.4 illustrates the optimization loop that is based on zero-order optimization of
the variable ε, which uniquely encodes a robot trajectory. At the beginning of the m-th
iteration, we sample Ncand candidate trajectories from a latent Gaussian distribution

93

Chapter 6. Belief-space Planning through Contacts

that represents the current solution to the optimization problem:

εj ∼ N (ε̄m, Σm), ∀j ∈ {1, 2, . . . , Ncand}. (6.26)

The latent variable εj translates to a robot trajectory through an affine mapping g, i.e.
uj

0:K−1 = g(εj). This affine mapping imposes a contact prior on the sampling of robot
trajectories, which is presented in Sec. 6.4.2. Given a candidate robot trajectory uj

0:K−1
and an initial belief over object positions b0 = p(qo), we compute the nominal belief
dynamics. This results in a nominal belief trajectory b̃j

0:K for each candidate εj . Based
on the nominal belief trajectory we compute the step-wise predicted variance as devel-
oped in Sec. 6.3. The predicted variance is subsequently used in a cost and a constraint
to the optimization problem, which is further outlined in Sec. 6.4.1. Together with a
cost for controlling the mean of the object configuration, the total cost of each candi-
date trajectory is used to update the parameters of the latent Gaussian distribution, i.e.
ε̄m+1, Σm+1 based on Covariance Matrix Adaptation (CMA-ES) (Hansen (2016)). After
M iterations, we return the best-performing sample that returned the lowest cost.

6.4.1 Variance Gain Control

In Sec. 6.3 we derive an approximation of the one-step prediction of the variance of
the object configuration. However, this does not enable the prediction of the variance
after multiple time steps, which is due to the fact that the prediction of the variance
V̂k+1 in (6.25) requires the belief of the previous time step bk to be known. Therefore,
instead of directly controlling the variance at the end of the trajectory V̂K , we propose
to control the predicted variance at each time step. Given a robot trajectory uj

0:K−1,
we thus compute the nominal belief over object configurations at each time step, i.e.
b̃k, via the nominal object dynamics in (6.6). Given the particle set that approximates
the initial belief b0 = p(qo) as an input to BS-VP-STO, the nominal belief rollout is
computed by applying the nominal forward dynamics to all particles:

iqo
k+1 = f

(
iqo

k, uk

)
, ∀i ∈ {1, 2, .., Np}. (6.27)

The one-step prediction of the variance at each time step can then be computed as

V̂k+1 = V̂b̃k
[f(qo, uk)] + Êb̃k

[η] Vw

= V̂b̃k+1
[qo] + Êb̃k

[η] Vw.
(6.28)

In order to quantify the change of uncertainty due to a given control action uk, we are
interested in the amount of variance that is gained over one time step. Note that the
variance of a continuous random variable is closely related to its differential entropy.
While the variance as defined in (6.3) is equivalent to the trace of the covariance
matrix, i.e. the sum over all eigenvalues, the upper bound of the differential entropy
is monotonic in the determinant of the covariance matrix, i.e. the product of all

94

6.4 Stochastic Optimization for Robust Manipulation

Figure 6.5: Belief dynamics through contact in a two-dimensional example. The three
sub-figures on the right illustrate the predicted belief b+ via samples in orange. All three
cases started from the same initial belief b that is depicted in the left-most sub-figure.
The visualization of the prediction on the left shows an increase in the variance of the
object position as a consequence of pushing with a single contact point (γ > 1). The
second prediction shows a constant variance as a consequence of pushing with a flat
contact surface (γ = 1). The right-most sub-figure shows a decrease in the variance of
object position as a consequence of pushing with two contact points (γ < 1).

eigenvalues (Cover and Thomas (2005)). As a result, the variance of a continuous
random variable yields an upper bound for its entropy. Therefore, we introduce a new
metric γ, which we call variance gain, measuring the relative change of the variance
after applying an action uk, i.e.

γk =
V̂+

k+1

V̂b̃k
[qo] + Vw

=
V̂b̃k+1

[qo] + Êb̃k
[η] Vw

V̂b̃k
[qo] + Vw

. (6.29)

The variance gain γ is the ratio of the output variance, i.e. the predicted variance V̂k+1,
to the input variance, i.e. V̂k + Vw. Figure 6.5 illustrates three different robot actions
resulting in different variance gains. It shows that contact geometry plays a crucial
role when planning to make contact between the robot and an object. The variance
gain γ reflects that the contact geometry affects the robustness of a contact, e.g. when
pushing. The left sub-figure shows that using one finger to push a circular object with
an uncertain location results in an increase in variance (γ > 1). In contrast, the right
sub-figure shows that using two fingers with one finger pushing the object towards
the other finger results in a decrease in variance (γ < 1). Using a flat contact surface
to push an object with an uncertain location keeps the variance constant as shown in
the middle sub-figure (γ = 1). Note that the variance gain is lower or equal to one for
robot actions that have zero probability of making contact with the object. In this case,
the belief does not change, i.e. V̂b̃k+1

[qo] = V̂b̃k
[qo], since no perturbation is injected

into the belief, i.e. Êb̃k
[η] Vw = 0. Thus, a no-contact action results in

γno−contact =
V̂b̃k

[qo]
V̂b̃k

[qo] + Vw

≤ 1. (6.30)

95

Chapter 6. Belief-space Planning through Contacts

Figure 6.6: Comparison of uninformed and informed sampling of robot trajectories.
The left sub-figure shows trajectory samples drawn from a probability distribution
computed without a contact prior (Qq = 0). The right sub-figure shows trajectory
samples drawn from a probability distribution computed with a contact prior (Qq > 0).
The contact prior guides the sampling of robot trajectories towards regions where the
robot is likely to make contact with the object given the object belief.

We propose to enforce robustness in the optimization problem by constraining the
solution to variance gains smaller or equal to one at all steps, i.e.

γk ≤ 1 ∀ k. (6.31)

Due to the zero-order technique that we use for optimizing the robot trajectory, we
deploy the robustness constraint as a barrier cost, i.e. a discontinuous cost that is zero
if the constraint is satisfied and returns a high value if the constraint is violated. We
can further reduce the predicted variance by adding a cost term that is active if the
constraint is already satisfied. This is encapsulated in the following cost-term

crobust = λc

K−1∏
k=0

e− 1−γk
K−1 , (6.32)

with a discontinuous cost weight

λc =

1 if maxk γk ≤ 1,

103 else.
(6.33)

The total cost of a candidate robot trajectory is computed as the sum of the variance
gain control cost in (6.32) and a task-specific cost ctask that computes the deviation of
the mean of the object configuration to the desired goal configuration.

6.4.2 Trajectory Sampling with a Contact Prior

The efficiency of sampling-based optimization algorithms depends on the quality of
the generated samples. In this section, we present how the object belief can be used
to inform the sampling of robot trajectories for manipulation tasks. In general, it is

96

6.4 Stochastic Optimization for Robust Manipulation

desirable to sample trajectories with a likelihood that is proportional to the negative
cost that can be expected from executing the trajectory. In the following, we denote a
robot trajectory with qr

0:K = [qr
0, qr

1, . . . , qr
K], where K corresponds to the number of

discretized steps captured by the trajectory. Suppose that the cost is given as a function
of the robot trajectory, i.e. c = fc(qr

0:K), then we would like to sample robot trajectories
from a corresponding probability distribution with

p(qr
0:K) ∝ exp (−fc(qr

0:K)) . (6.34)

While we do not have access to such a generative probability distribution, we approxi-
mate it with a prior that improves the sample efficiency of the optimization algorithm
compared to sampling initial guesses from an uninformed probability distribution.
The idea is to sample robot trajectories in regions where the robot is likely to make
contact with the object given its belief. This is motivated by the observation that
making contact is a necessary precondition for manipulating an object.

Figure 6.6 illustrates the impact of the contact prior on trajectory samples. Without the
contact prior, a large portion of the candidate trajectories explores regions in which
the robot does not move into the object belief and thus does not contribute to the
optimization process.

Via-point-based Trajectory Parameterization

In order to efficiently synthesize robot trajectories in a low-dimensional space, we
adopt the via-point-based trajectory representation as in Jankowski et al. (2023). The
robot configuration is given with

qr(t) = Φvia(t)θ + ϕ0(t, qr
0, q̇r

0), (6.35)

where the robot trajectory is parameterized with

θ =

q1

via
...

qN
via

 ∈ RN ·nr
dof . (6.36)

The trajectory parameter θ contains N via-points the trajectory passes through. The
basis functions Φvia(t) enforce that the trajectory passes exactly through the via config-
urations while smoothly interpolating with minimal acceleration. The basis functions
furthermore enforce that the velocity at the end of the trajectory is zero. Note that the
last nr

dof elements of θ are the final robot configuration at the end of the trajectory, i.e.
qr(T) = qr

K = qN
via. The basis offset ϕ0(t, qr

0, q̇r
0) incorporates the initial robot position

qr
0 and velocity with q̇r

0. T denotes the duration of the trajectory. We use the time
scaling algorithm in Jankowski et al. (2023) for computing the duration of a trajectory

97

Chapter 6. Belief-space Planning through Contacts

based on a given parameter θ such that user-defined velocity and acceleration limits
are enforced. For implementation details on how to compute the basis functions and
offsets, please refer to Jankowski et al. (2022).

In the following, we are interested in computing a Gaussian distribution of the via-
points θ to efficiently sample from. Due to the affine mapping from via-points to robot
trajectories in (6.35), this corresponds to sampling from a Gaussian distribution of
continuous robot trajectories.

Gaussian Contact Prior

The contact prior is a probability distribution that guides the sampling of robot tra-
jectories towards regions where the robot is likely to make contact with the object. To
allow for variations in how to approach the contact with the object, we only consider
the final robot configuration of the trajectory to be subject to the contact prior. This is
incorporated by exploiting the parameterization of the robot trajectory in (6.35), where
the final robot configuration is explicitly given by the last nr

dof elements of θ.

Suppose that a conditional Gaussian distribution

pc(qr|qo) = N (fc(qo), Σr|o) (6.37)

approximates the probability density of a robot configuration making contact with the
object. Furthermore, suppose that the object configuration is Gaussian distributed
as well with qo ∼ N (µo, Σo). Practically, we find the Gaussian distribution of object
configurations by approximating the initial belief b0 with a Gaussian distribution for
computing the contact prior. This lets us compute a probability distribution over robot
configurations indicating how likely it is to establish contact between the robot and
the object:

pc(qr) = N (fc(µo), Σr|o + AΣoA⊤), (6.38)

with A = ∂fc/∂qo|µo . The corresponding prior on the trajectory parameter θ is then
given by

pc

θ=

q1

via
...

qN
via

 = N

0
...

q̄c

 ,

0 · · · 0
...

. . .
...

0 · · · Qq

−1 , (6.39)

where Qq =
(
Σr|o + AΣoA⊤

)−1
describes the precision matrix of the contact prior

with respect to the mean contact configuration q̄c = fc(µo). We denote the contact
prior with

pc(θ) = N (θ̄c, Q−1
θ). (6.40)

Note that the resulting covariance matrix Q−1
θ is degenerated due to zero-precision

98

6.4 Stochastic Optimization for Robust Manipulation

values for the via-points except for qN
via. To resolve the degeneration, we regularize

the covariance matrix by combining the contact prior with a smoothness prior as
described in the following.

Gaussian Contact Prior in Joint Space

Optimizing in the joint space of an articulated robot such as robot arms may be benefi-
cial when kinematic and dynamic limitations are to be considered during planning.
Sampling in joint space requires representing the contact prior in joint space as well.
Suppose that the robot’s end-effector, that is supposed to manipulate the object, has
a configuration given by xr which is computed from the robot’s joint positions qr via
forward kinematics xr = ffk(qr). We may adopt the contact prior in (6.38) to formulate
a prior distribution over configurations of the end-effector, i.e.

pc(xr) = N (fc(µo), Σr|o + AΣoA⊤). (6.41)

For computing a corresponding Gaussian distribution in joint space, the forward
kinematics are linearized around a mean joint position q̄r

c with

xr ≈ ffk(q̄r
c) + J(q̄r

c) (qr − q̄r
c) , (6.42)

where J(q) = ∂xr/∂qr|q̄r
c denotes the Jacobian with respect to the end-effector con-

figuration. The mean joint position q̄r
c can be computed via inverse kinematics with

respect to the mean end-effector configuration fc(µo). Consequently, the Gaussian
contact prior for the end-effector can be locally transformed into the joint space, result-
ing in a Gaussian distribution pc(qr) = N (q̄r

c , Q−1
q). The joint space contact precision

matrix is computed with

Qq = J(q̄r
c)⊤

(
Σr|o + AΣoA⊤

)−1
J(q̄r

c). (6.43)

Gaussian Smoothness Prior

The smoothness prior, introduced in our previous work (Jankowski et al. (2023)), incor-
porates temporal correlations between via-points by computing a Gaussian distribu-
tion that expresses a high likelihood for low-acceleration profiles. A typical objective
in trajectory optimization is to minimize the integral over squared accelerations of the
candidate trajectory, i.e.

Js = 1
2

∫ T

0
q̈r⊤(t)Rqq̈r(t)dt. (6.44)

The positive definite matrix Rq encodes the desired smoothing for the individual
degrees of freedom. Using the parameterization in (6.35), this objective can be ex-
pressed using the via-point parameter θ and the initial conditions for the trajectory

99

Chapter 6. Belief-space Planning through Contacts

Figure 6.7: Smooth trajectories
sampled from the product of the
smoothness prior and the con-
tact prior. The contact prior is
indicated by the orange ellipses
and circles with the mean of the
contact prior in the center. The
velocity profile of the trajectories
is encoded through color with
low velocities in blue and high
velocities in yellow. Note that all
trajectories start and end with ex-
actly zero velocity.

qr
0, q̇r

0, i.e. Js(θ, qr
0, q̇r

0). As a next step, we express the smoothness prior as a probability
distribution parameterized with the negative objective in (6.44) with

ps(θ, qr
0, q̇r

0) ∝ e−Js(θ,qr
0 ,q̇r

0). (6.45)

Interestingly, this results in a joint Gaussian distribution over the trajectory parameter
and the initial conditions. We then compute a Gaussian smoothness prior on the
trajectory parameter by conditioning on the initial conditions, i.e.

ps(θ|qr
0, q̇r

0) = N (θ̄s, R−1
θ), (6.46)

with the precision matrix being computed with

Rθ =
∫ T

0
Φ̈⊤

via(t)RqΦ̈via(t)dt. (6.47)

Please refer to Section 4.3.1 for the derivation of (6.47) and for details on how to
compute the smoothness prior mean θ̄s. Note that the smoothness precision matrix
Rθ can be computed offline as it does not depend on the trajectory parameter θ.

Product of Gaussian Priors

Given the two priors for making contact and smooth trajectories respectively, we
find the informed via-point distribution by fusing the two probabilistic priors via
computing the normalized product of the two priors, such that

p(θ) = N (θ̄, Σθ) ∝ pc(θ)ps(θ|qr
0, q̇r

0). (6.48)

100

6.4 Stochastic Optimization for Robust Manipulation

Figure 6.8: BS-VP-STO optimizing the trajectory of a rectangular robot to push a circular
object into a goal region subject to uncertain initial object location (represented by a
particle-based belief representation) and uncertain contact dynamics. The sub-figures
show the best-performing candidate solution with the corresponding velocity profile,
as well as the other trajectory samples in light gray, after 1, 10, 40, and 120 iterations
from left to right.

The product of two multivariate Gaussians is again a multivariate Gaussian, with the
resulting parameters given by

Σθ = (Qθ + Rθ)−1 , (6.49a)

θ̄ = Σθ(Qθθ̄c + Rθθ̄s). (6.49b)

Figure 6.7 illustrates trajectories sampled from the product of the contact prior, pa-
rameterized by Qq, and the smoothness prior, parameterized by Rq. Within each
sub-figure, all trajectories are drawn from a single Gaussian distribution. Note that all
trajectories start and end with zero velocity.

Optimizing and Sampling in Latent Space

Given the product of priors, we use the informed generative via-point distribution p(θ)
as a probabilistic initial guess for optimizing robot trajectories with CMA-ES. Instead of
directly sampling trajectory candidates θ from an uninformed distribution, e.g. white
noise, we sample and optimize for ε ∈ RNnr

dof . For a given ε, we compute θ through an
affine transformation as follows:

θ = θ̄ + Lθε. (6.50)

Here, Lθ is the Cholesky decomposition of the covariance matrix Σθ. The parameters
θ̄ and Σθ incorporate the prior as defined in (6.49). The idea of this additional trans-
formation is to decouple the optimization variable ε from the particular prior. In each
iteration m of BS-VP-STO, we obtain the new population of candidate solutions by

101

Chapter 6. Belief-space Planning through Contacts

sampling Ncand robot trajectories via

θ ∼ N
(
θ̄ + Lθε̄m, LθΣmL⊤

θ

)
. (6.51)

When initializing the CMA-ES distribution as white noise, i.e. ε̄0 = 0 and Σ0 = I,
we effectively sample the first population from the informed distribution in (6.49), as
inserting the initial parameters into (6.51) yields

θ ∼ N
(
θ̄, LθL⊤

θ

)
= N

(
θ̄, Σθ

)
. (6.52)

Eventually, given a sampled trajectory parameter θ, we find the control trajectory with
respect to the system in (6.6) by discretizing the robot trajectory in (6.35), i.e.

uk = qr
(

t = T
k + 1

K

)
. (6.53)

Note that due to the quasi-static model in (6.6), the dynamics can be rolled out with
an arbitrary temporal resolution.

Example: Single-horizon Robust 2D Object-Pushing. We showcase the BS-VP-STO
pipeline over multiple iterations for a 2D object pushing example, illustrated in Fig-
ure 6.8. The task for the robot, a rectangular geometry, is to push the object, a circular
geometry, into a target region. We consider two sources of uncertainty in this example:
a) The initial position of the object is uncertain, which is reflected by an initial belief;
and b) the contact dynamics are uncertain. This task requires exploring contact modes
that are robust to these uncertainties, as implicitly done by the presented planning
algorithm.

After the first iteration, the best solution corresponds to the robot making contact
with its long side. Note that this solution corresponds to the best candidate of the
initial population sampled from the product of Gaussian priors, without any CMA-ES
updates. Due to the probabilistic contact prior, almost all of the 30 initial candidates
bring the robot into contact with the object, enabling an informative sampling of
the cost landscape. After 10 iterations of BS-VP-STO, the algorithm found a solution
making robust contact with the object while moving it slightly toward the target area.
The solution after 40 iterations enables the robot to almost push the object into the
target area. After 120 iterations, the algorithm found a solution for pushing the object
robustly into the target area, while also optimizing the overall motion duration which is
incorporated into ctask. The tight distribution of candidate solutions after 120 iterations
indicates that CMA-ES has converged.

102

6.5 Receding-horizon BS-VP-STO

Algorithm 3: Receding-horizon BS-VP-STO

Input: Robot configuration qr
0 and velocity q̇r

0, object belief b0, receding
horizon length H .

Output: Robot trajectory u.
u← ∅
while task not solved do

qr∗
0:K , q̇r∗

0:K ← BS-VP-STO(qr
0, q̇r

0, b0)
u∗

0:H−1 ← qr∗
1:H

for k ← 0 to H − 1 do
// Stochastic rollout
iqo

k+1 ∼ p(·|iqo
k, u∗

k), ∀i ∈ {1, 2, .., Np}
end
qr

0, q̇r
0 ← qr∗

H , q̇r∗
H

b0 ← {iqo
H}

Np

i=1
u← concatenate

(
u, u∗

0:H−1

)
end

6.5 Receding-horizon BS-VP-STO

Planning a pushing maneuver over a single long horizon is challenging for two reasons:
i) The dimensionality of the solution space of the optimization problem grows as the
solution requires higher expressiveness. In the presented algorithm, this is reflected
by an increasing number of via-points N that parameterize the robot trajectory. ii) In
BS-VP-STO, the belief is rolled out using the nominal object dynamics, i.e. without
inducing noise. For robust candidate trajectories, the belief may collapse to a Dirac-
delta distribution after kcollapse steps, i.e. b̃k = δ(qo

k),∀k ≥ kcollapse, resulting in zero
variance. In this case, the variance gain at those time steps is either γk = 0 if the
robot does not touch the object, or γk = 1 if the robot touches the object. Thus, the
optimization is strongly biased towards not touching the object after kcollapse steps.

For these reasons, we propose receding-horizon BS-VP-STO, a planning scheme for
pushing maneuvers over longer horizons. The scheme alternates between computing
a robust push via BS-VP-STO and performing a stochastic rollout of the solution. This
allows to plan pushing-maneuvers over multiple shorter horizons while optimizing for
task progress, i.e. pushing the object towards the goal, and robustness over a single
horizon.

Algorithm 3 sketches the receding-horizon procedure for planning pushing maneu-
vers. Starting from the initial robot configuration qr

0 and velocity q̇r
0, a given initial

belief b0 and the number of time steps for a receding horizon H , BS-VP-STO is used
to generate a robust pushing trajectory qr∗

0:K . In order to update the belief for the
subsequent receding horizon, we perform a stochastic rollout of the robust pushing

103

Chapter 6. Belief-space Planning through Contacts

Figure 6.9: Receding-horizon BS-VP-STO optimizing the trajectory of a rectangular
robot to push a circular object into a goal region subject to an uncertain initial object
location and uncertain contact dynamics. The sub-figures show the robot trajectory
optimized over the corresponding receding horizon together with a stochastic rollout
of the object dynamics. In each receding horizon, the algorithm optimizes for a tradeoff
between pushing progress and robustness. The resulting pushing maneuver is more
robust than the solution found when optimizing over a single horizon as in Figure 6.8.

trajectory, i.e. sampling from the transition probability in (6.10). Note that the update
of the belief can be extended by taking observations into account. For this, line 9 in
Algorithm 3 may be replaced by a Bayesian state estimation update, e.g. a particle filter
(Arulampalam et al. (2002)), thus turning the offline planning algorithm into an online
re-planning approach. When planning offline, the optimized pushing trajectories of
the receding horizons are sequenced to form a single continuous trajectory over a long
horizon. This process may be repeated until a task-specific termination criterion is
satisfied, e.g. the mean object configuration is within bounds of the target.

Example: Receding-horizon Robust 2D Object-Pushing. In this example, we solve
the same problem as in Example: Single-horizon Robust 2D Object-Pushing, while
iteratively optimizing over multiple receding horizons instead of running BS-VP-STO
only once over the full horizon. For this, we only adapt the task-specific cost to reflect
the pushing progress toward the goal. We measure this progress by computing the
distance dk = ||E[qo

k]− qo
des||2 between the target area center qo

des and the mean object
position at that time step. We compare the distance at the end of the receding horizon
with the distance at the beginning of it in order to make the cost invariant to the
absolute distance to the target. Progress is thus defined as d0 − dK . Consequently, the
task-cost ctask is defined as follows

ctask(u0:K−1) = e−λ(d0−dK). (6.54)

Figure 6.9 illustrates each solution of the optimization over multiple shorter horizons.
It can be seen that a single-horizon push moves the object belief towards the target area
with high probability. The overall pushing maneuver, obtained by sequencing the robot

104

6.6 Experiments

trajectories of the individual horizons, has no constraints on the number of parameters,
i.e. the number of via-points, as the number of receding horizon operations is not
fixed but rather tied to a goal check. It is therefore expected to be more expressive than
a single-horizon solution and thus more robust.

6.6 Experiments

This section presents robot experiments validating the theory and algorithmic ap-
proach developed in this chapter. We use objects that the robot has never interacted
with before, with the geometry of the objects being the only information available.
In all experiments, we compare the performance of the proposed approach against
a baseline that only uses the nominal model of the contact dynamics without con-
sidering uncertainties. For this, the planner assumes that the initial object position
is known and it uses the nominal object dynamics from Sec. 6.3 as a deterministic
dynamics model. Consequently, we run the baseline without the cost and constraints
on the variance gain.

6.6.1 Implementation Details

We implement the contact dynamics as in (6.6) for the special case of circular and
rectangular shapes in two dimensions. In order to approximate the initial belief via
particles, we found that Np = 20 particles are sufficient to generate robust plans. For
computing the CMA-ES updates to the Gaussian distribution over candidate trajec-
tories, we use the Python package provided by the authors of Hansen (2016). The
planning algorithm was executed on a laptop with an Intel Core i9-14900HX CPU and
32GB of RAM. On average, generating a robust pushing plan for the full target path
takes around seven seconds of wall-clock time.

6.6.2 Open-Loop Single-Hand Pushing

The first experiment takes Example: Receding-horizon Robust 2D Object-Pushing
from simulation into the real world. As an end-effector, the robot uses the rectangular-
shaped hand of the Franka robot to push the target object, without considering the
fingers for contact. Figure 6.10 illustrates the experimental setup showing the initial
robot configuration, the initial object position, and the target object position. We com-
pare trajectories of 2D positions and yaw angles of the hand-generated by our approach
(receding-horizon BS-VP-STO) and a baseline approach. The baseline optimizes for
efficient trajectories assuming that the nominal contact dynamics accurately predict
the object trajectory. To evaluate the robustness of generated plans, we execute the
plan to let the robot push the object into the target position and use the same plan for
pushing the object back to the initial position. Subsequently, the same plan is executed

105

Chapter 6. Belief-space Planning through Contacts

Figure 6.10: Open-loop single-hand
pushing experiment: The task for the
robot is to use the rectangular geometry
of its hand (highlighted in green) to
push the object with a circular geometry
(highlighted in orange) into a target
position without sensory feedback. The
experiment consists of repeating the
same pushing plan open-loop until the
object diverges off the path such that the
robot does not make contact anymore.

repeatedly open-loop with the object located where the previous execution ended.
We expect that uncertainties in the contact dynamics will lead to deviations from the
nominal model, resulting in the accumulation of control errors. Hence, we measure
robustness by counting the number of successive runs until the robot loses the object.
For a video showing qualitative results, see Extension 1 in the supplementary video. In
the following, we report quantitative results.

Deterministic Baseline

As the baseline does not account for uncertainties in the contact dynamics, the result-
ing optimal trajectory consists of pushing in a straight line toward the target position
while keeping the long side of the hand perpendicular to the pushing direction. We
execute 10 experiments with the optimal baseline plan, resulting in an average of 6.8
(min. 5, max. 9) successive runs until the robot loses the object. This is the result of
deviations from the nominal model due to real-world perturbations such as imperfect
friction surfaces and mass distributions, leading to an accumulation of errors in the
object positions when pushing a circular object with a flat surface.

Receding-horizon BS-VP-STO

The proposed algorithm uses the same nominal model that was used in the baseline
while modeling additional uncertainty. The resulting optimal trajectory is executed
in 10 open-loop experiments without additional perturbations to compare the result
with the baseline. All experiments have been stopped after 40 successive runs as the
system did not show any sign of accumulating errors. This indicates that the optimized
trajectory actively controls the uncertainty in the object position by keeping track of
the open-loop propagated belief.

106

6.6 Experiments

Figure 6.11: Open-loop bimanual pushing experiment: The two manipulators are
considered as one bimanual robot with two end-effectors, each equipped with a ball-
shaped end-effector. The object (bottle, glass, or can) is placed in front of the robot and
the goal is to push the object along the target path (red circle). All objects were chosen
due to their circular shape for the sake of a simple implementation of the quasi-static
contact dynamics. The initial belief over the object position is Gaussian distributed
with a mean equal to the initial object position and a covariance that reflects the
uncertainty in object detection. The contact dynamics are modeled probabilistically to
reflect uncertainty. For the experiments with the can, we add additional perturbations
by placing wooden cubes (red cubes) on the target path and by changing the center of
mass to be off-center by placing a heavy tool in the can (yellow content of the can).

6.6.3 Open-Loop Bimanual Pushing

We choose to validate the proposed algorithm with a bimanual pushing task, consisting
of two Franka robot arms that are equipped with ball-shaped end-effectors. Note that
we treat the two robot arms as one bimanual robot. We plan 2D trajectories for the
ball-shaped end-effectors in a plane parallel to the table. The dynamics are modeled
in this 2D plane, where the two robots are abstracted as two independent circles. The
objects are abstracted as circles as well. Figure 6.11 shows the experimental setup.
Initially, the object (bottle, glass, or can) is placed in front of the bimanual robot and
the goal for the robot is to push the object along a circular target path. The belief over
object positions is initialized with a Gaussian distribution. We furthermore modeled
the noise in the contact dynamics with a Gaussian distribution and we tuned the
covariance to capture the stochasticity in the contact dynamics. To prevent collisions
between the two end-effectors, we include a collision constraint enforcing that the
two end-effectors do not touch. We also add a constraint that prevents the robot from
crossing its arms. Note that the time, location, and number of contacts are subject
to planning, i.e. we do not impose any heuristic that forces the robot to use both
end-effectors for pushing. Instead, the proposed cost and constraint on the variance
gain drive the optimization algorithm to find stabilizing contact configurations and
sequences, such as using both end-effectors for pushing.

Qualitative Planning Results

We illustrate plans generated with the deterministic baseline and with the proposed
receding-horizon BS-VP-STO algorithm in Figure 6.12. Each plan is presented with

107

Chapter 6. Belief-space Planning through Contacts

Figure 6.12: Qualitative comparison be-
tween the proposed receding-horizon BS-
VP-STO algorithm and the determinis-
tic baseline. We perform 1000 stochas-
tic rollouts of each generated plan using
the proposed stochastic object dynamics.
The left and right end-effectors are visu-
alized with black and blue circles, respec-
tively. The target path is depicted in light
green. a) For testing the baseline plan,
the object position is initialized with the
expected position (orange circle). For the
proposed approach, we initialize the ob-
ject position according to the modeled
uncertainty. b) Plans generated for an ob-
ject with a 5 cm radius, i.e. the bottle and
the can. c) Plans generated for an object
with a 3 cm radius, i.e. the glass.

1000 stochastic rollouts of the object dynamics used for optimization. For an evaluation
of the real-world performance of the plans, please refer to Sec. 6.6.3.

Deterministic Baseline. In all plans generated with the deterministic baseline, the
robot uses only one end-effector at a time for pushing the object. This is not surprising
as the pushing progress, i.e. the mean control problem, is equally optimized when
using one or two end-effectors. Thus, the baseline is not forced to discover the co-
ordination between the two end-effectors and converges to the simpler solution, i.e.
using one end-effector. When performing open-loop stochastic rollouts of the baseline
plans, the object deviates from the planned trajectory after some time and thus the
robot is not able to successfully push the object along the whole target path.

Receding-horizon BS-VP-STO. In contrast, we observe that the robot uses both end-
effectors to push the object along the target path when planning with the receding-
horizon BS-VP-STO algorithm. Note that the strategy of using two end-effectors for
pushing deliberately emerges from planning in belief space. The proposed algorithm
discovers the use of two end-effectors by penalizing sampled robot trajectories that
result in an increasing uncertainty about the object position, i.e. using one end-effector.
At the beginning of the pushing maneuver, the robot performs an action that reduces
uncertainty by placing its end-effectors such that they enclose the initial belief. This

108

6.6 Experiments

effectively brings the particles closer together, resulting in a decreasing variance. The
robot then starts to make contact with its two end-effectors side-by-side to push the
object along the target path with high probability. After pushing the object along the
first half of the circular target path, the no-collision constraint between the two end-
effectors forces the robot to break the contact and find a new contact configuration
with which it can continue pushing. Consequently, the robot has to move its left end-
effector around the object without touching it. Subsequently, the robot makes contact
again with the object and continues pushing until it reaches the initial position again.
When performing open-loop stochastic rollouts of the robust plans, the robot has a
high probability of being successful at pushing the object along the target path despite
the perturbations and the lack of feedback.

Quantitative Planning Results & Ablation Studies

In the following, we present ablation studies of the different components of receding-
horizon BS-VP-STO. We evaluate i) the dependence of the overall algorithmic per-
formance on the number of iterations taken in each BS-VP-STO instance within the
receding-horizon setting, ii) the relevance of a contact-prior compared to an unin-
formed proposal distribution, and iii) how the receding-horizon BS-VP-STO algorithm
scales with the number of degrees of freedom of the robot. We summarize all findings
in Figure 6.13 which evaluates the success rate of the receding-horizon BS-VP-STO
algorithm, i.e. if the planning algorithm finds a valid solution for the robot pushing an
object with 5 cm radius. A plan is considered successful if the mean of the object belief
is within 1 cm tolerance to the target location and if the plan is valid with respect to
the robustness constraints on the variance gain. The planning algorithm is aborted
after 500 iterations of receding-horizon BS-VP-STO and the plan is considered a failure.
Sub-figure b) on the right-hand side in Figure 6.12 illustrates a successful plan for the
problem considered for the ablations. We instantiate the planning problem with a vary-
ing number M of iterations for one BS-VP-STO instance within the receding-horizon
scheme. For each M , we run receding-horizon BS-VP-STO 50 times and measure the
success rate of the planning algorithm.

Impact of the Number of BS-VP-STO Iterations. Figure 6.13 illustrates the statistics of
success over the number of BS-VP-STO iterations. We observe that the success rate
increases with the number of iterations M and reaches around 100% success rate with
M = 4 BS-VP-STO iterations. Note that running BS-VP-STO for one iteration poses a
special case of the algorithm since no CMA-ES update is performed, resulting in only
sampling an initial candidate population and picking the best-performing candidate.
This procedure in fact corresponds to the predictive sampling algorithm introduced in
Howell et al. (2022).

The planning time increases linearly with the number of iterations. For reference,

109

Chapter 6. Belief-space Planning through Contacts

Figure 6.13: Success rates of receding-horizon BS-VP-STO over the number of BS-
VP-STO iterations M . We compare the performance of the planning algorithm with
the contact prior Qq > 0 and without Qq = 0; and we evaluate the scalability of the
planning algorithm to many degrees of freedom (14 DoF). A planning run is considered
successful if a valid solution is found within 500 single-horizon optimizations.

performing one BS-VP-STO iteration for four degrees of freedom takes approximately
0.01 seconds of wall-clock time. In this setup, we execute the pushing plan for an
execution horizon H that corresponds to 0.2 seconds. Thus, it would be possible to
run the planning algorithm in an online receding horizon fashion with up to M = 20
BS-VP-STO iterations per receding horizon.

Impact of the Contact Prior. To evaluate the impact of the contact prior, we set the
contact precision matrix in BS-VP-STO to Qq = 0 (cf. (6.39)). This corresponds to
uninformed trajectory samples as depicted in the left sub-figure of Figure 6.6. In
Figure 6.13 we observe that the success rate of the algorithm without the contact prior
is significantly lower than the success rate of the algorithm with the contact prior. This
indicates that the contact prior is improving the efficiency of the planning algorithm
to find robust manipulation actions in a few iterations. Computing the contact prior
requires a matrix inversion to compute Qq with dimensionality equivalent to the
number of degrees of freedom. Since this operation has to be performed only once for
a single horizon, the computational overhead of the contact prior is negligible.

Scalability to Many Degrees of Freedom. Last, we evaluate the scalability of the
proposed planning algorithm to many degrees of freedom by moving from planning
in the 2D plane to planning in the joint space of the bimanual robot, which has 14
degrees of freedom (seven degrees of freedom per robot arm). Coordinating all degrees
of freedom adds complexity to the planning problem, while at the same time increasing
the dimensionality of the search space. In Figure 6.13 we observe that the success
rate for a given number of iterations M drops when increasing the complexity of the
problem, requiring more iterations to discover the required coordination between the
14 joints. While the contact prior in joint space (cf. Sec. 6.4.2) imposes coordination
between the seven joints of the individual arms, BS-VP-STO is still required to find
joint trajectories such that the two end-effectors touch the object at the right place at

110

6.6 Experiments

Figure 6.14: Snapshots of the robot behavior synthesized with the receding-horizon
BS-VP-STO algorithm and executed on the real bimanual system. Each snapshot shows
an overlay of five experiments that were conducted with different initial positions of
the bottle. The robot successfully pushed the bottle along the target path in all five
experiments. At the beginning, i.e. in the first image, the robot encloses the initial belief
with its two end-effectors such that robust pushing is possible. After moving along the
first half of the circular target path, i.e. in the third image, the robot re-positions its
two end-effectors to continue pushing the bottle along the target path while avoiding
collisions between the two arms.

the right time. The planning time per iteration is not significantly increased compared
to planning for four degrees of freedom since only an additional forward kinematics
computation for the belief rollout is required. However, note that the contact dynamics
are still modeled using the ball-shaped abstraction of the end-effector. Modeling
the whole kinematic chain of the robot arms as contact geometries adds additional
computational complexity to the planner.

Real-world Pushing Results

Figure 6.14 shows snapshots of the robot behavior planned with the receding-horizon
BS-VP-STO algorithm. In addition, a full video of the experiment can be found in
Extension 2 in the supplementary video. We executed the planned robot trajectories
for each of the three objects (bottle, glass, can), where we conducted five experiments
for each object by placing the object at different initial positions. Out of 15 executed
plans, the robot successfully pushed the object along the target path in 14 experiments.
The robot failed to push the glass in one experiment, where the object was too far away
from the mean initial position such the robot did not enclose the object during the
initial uncertainty-reducing action.

We furthermore evaluated the deterministic baseline planner with the same three
objects, while placing the objects only at the expected location. In all three experiments,
the actual object position deviated from the planned object position after a few pushes,
resulting in the robot losing contact with the object and thus failing to push the object
along the target path. We show a video example of the motion generated by the baseline
in Extension 2 in the supplementary video.

111

Chapter 6. Belief-space Planning through Contacts

Figure 6.15: Closed-loop bimanual pushing experiment: The left image shows the
external perturbations applied by manually moving the object. A camera continuously
provides noisy observations of the object’s position to the closed-loop controller. The
right image shows how the proposed approach is able to generate robust plans in
realtime, enabling uncertainty-aware model-predictive control loops.

6.6.4 Closed-Loop Bimanual Pushing

Last, we show that receding-horizon BS-VP-STO can be used in a closed control loop,
gaining additional robustness against out-of-distribution disturbances. We use the
same bimanual robot setup as in Sec. 6.6.3. However, instead of pushing an object along
a target path, the task is to push the object to the center of the table while its position
is perturbed by a human. In addition, noisy observations of the object’s position are
provided by a camera for closing the loop. We deploy a particle filter for continuously
updating the belief based on both the stochastic rollout and noisy observations of the
object as described in Sec. 6.5. We qualitatively compare the resulting behavior of the
robot when being controlled with receding-horizon BS-VP-STO against the behavior
when using the deterministic nominal model in a model-predictive controller. Both
controllers run at a control rate of 5 Hz with M = 6 BS-VP-STO iterations per control
step. Figure 6.15 illustrates the external perturbations applied to the object and the
resulting robot behavior when controlled with our proposed robust approach. A video
of the resulting behavior of both control approaches can be found in Extension 3 in
the supplementary video.

We observe that the robot robustly pushes the object back to the center of the table
using both end-effectors when controlled with the proposed approach. The additional
state estimation enables the robot to also react to out-of-distribution perturbations,
re-generating robust plans given noisy measurement updates. For the deterministic
baseline, we observe that the continuous feedback enables the robot to maintain
contact with the object and to generate consistent pushes. However, we observe that
the robot only uses one end-effector for pushing as also observed for the open-loop
experiment in Sec. 6.6.3. In contrast to our approach, this leads to larger control errors
during pushing that need to be corrected, resulting in the deterministic baseline taking
more time to accurately bring the object back to the center of the table.

112

6.7 Discussion

6.7 Discussion

In this chapter, we investigated the problem of planning robust manipulation actions
subject to stochastic contact dynamics. The quasi-static model used to predict con-
tact dynamics is a simplification of the real-world contact dynamics tailored to the
particular problem of slow pushing. In particular, reducing the dynamics from joint
robot-object dynamics to solely object dynamics enables efficient reasoning over belief
dynamics. However, the provided model excludes other categories of manipulation
tasks involving effects such as grasping objects. We leave it to future work to investigate
how other manipulation dynamics can be reduced to object-only dynamics.

Furthermore, we have shown that informed prior distributions for sampling candidate
actions are beneficial, if not necessary, for sampling-based optimization for contact-
rich manipulation. We used the product of Gaussian priors to bias the sampling
towards smooth and contact-making trajectories. As the evolutionary optimization
algorithm CMA-ES is based on sampling from and iterating on Gaussian distributions,
we incorporated our Gaussian-distributed prior to initialize CMA-ES. Yet, we see great
potential in the use of non-Gaussian priors that are further optimized with a stochastic
optimization algorithm such as BS-VP-STO. Especially when the system has many
degrees of freedom such as for two robot arms or articulated robotic hands, sampling
from a proposal distribution that captures possibly non-Gaussian correlations between
the degrees of freedom, e.g. correlations between fingers, is expected to be a key to
scalable, realtime control through contacts.

Last, we show that a manipulation task such as pushing, which is typically approached
with high-bandwidth closed-loop control, can also be stabilized by planning appropri-
ate open-loop actions that deliberately optimize for robustness. However, if the robot
is not able to anticipate perturbations or the statistical properties of the perturbations,
feedback is required to be able to stabilize the manipulation. This opens the question
of the optimal combination of open-loop robust planning and continuous feedback.
Closing the loop may be done by re-planning robust actions if the observations deviate
from the planned belief, e.g. in a low-bandwidth feedback loop.

113

7 Conclusion

This thesis presents theoretical and algorithmic contributions towards controlling
objects through contact with a robot manipulator. They aim to address two main
challenges that arise from the task of controlling objects through contacts: the dis-
continuity of contact dynamics and the uncertainty about object properties. The
presented review of state-of-the-art approaches to controlling objects through con-
tacts (cf. Section 1.2) shows that efficient exploration of the contact space is crucial
for making-and-breaking contacts. In related work, this is achieved by discretizing
the contact space and combining discrete and continuous optimization, i.e. ad-hoc
planning. Another approach we see in related work is to train a policy in simulation
using reinforcement learning and then transfer it to the real world, i.e. learning-based
control. This thesis aims to bridge the gap between ad-hoc planning techniques that
do not require long training cycles and learning-based approaches that scale well with
the complexity of the problem. Based on the insight that stochastic optimization,
for instance using CMA-ES, provides a useful tool for overcoming discontinuous and
non-convex optimization landscapes induced by the contact dynamics, we develop a
stochastic trajectory optimization algorithm (cf. Chapter 4). The parameterization of
the underlying robot trajectories based on a few via-points enables setting probabilistic
priors to the optimization problems such as smoothness or setting a probabilistic prior
on the robot making contact with the object of interest. We show that contact-inducing
probabilistic priors are particularly useful to efficiently explore the space of contacts in
order to enable the robot manipulator to make and break contacts in realtime.

Besides the discontinuity inherent to contact dynamics, another key challenge on
the way towards robots that autonomously manipulate their environment is the un-
certainty in the dynamics. Manipulating new, unseen objects naturally leads to high
uncertainty in the dynamics of the object before interacting with it since physical
properties are unknown in general. This uncertainty can be accounted for by means
of belief-space planning and control. We show that even for complex dynamics such
as contacts, the belief over the object as part of the underactuated system can be
predicted efficiently and deterministically (cf. Chapter 6). With such a model of the

115

Chapter 7. Conclusion

belief dynamics, robots are able to generate manipulation actions that are robust to
this natural uncertainty.

The theoretical and algorithmic contributions are evaluated in a series of experiments
on real robots. We demonstrate that the robot manipulator performs dynamic hand-
overs, which requires avoiding early contact with the object even when the object is
moving. In another experiment, the robot pushes a box towards a moving target. Since
the target is moving, the robot is required to efficiently reason about first breaking
contact with the object, moving around the object and then making contact with the
object again. We furthermore demonstrate a robot manipulator playing air hockey,
which requires the robot to quickly reason over collisions between its end-effector
and the puck and to adapt its shooting trajectory in realtime. Last, we show a robot
with two independent end-effectors manipulate objects robustly in the presence of
uncertainty in the dynamics of the object. These experiments demonstrate robotic
manipulation skills that push the boundaries of current model-based planning and
control approaches, indicating that efficient sampling-based control is a promising
direction for reasoning through stochastic models of contact dynamics, as claimed in
the thesis statement (cf. Section 1.4).

7.1 Limitations

This work presents novel contributions towards the goal of robots being able to dex-
terously interact with their environment. However, there is still a large number of
challenges to be addressed until robots can autonomously operate in unstructured en-
vironments, such as tidying up people’s homes or cooking their dinner. In the following,
we discuss the major limitations of the presented work.

7.1.1 Limitations of Current Models of Contact Dynamics

All model-based planning and control approaches are limited by the underlying model.
A major limitation of current models of contact dynamics is the tradeoff between
accuracy (small time steps) and computational efficiency (large time steps) due to
the underlying numerical integration of differential equations. This tradeoff typically
prohibits long-horizon planning through contacts in realtime, even if the contact
interaction is simple, for instance when an air hockey puck is bouncing off a wall (cf.
Chapter 5).

Current models of contact dynamics derived from physics typically assume rigid bodies
with known object poses and geometries. However, the gap between robots perceiving
the world (mostly) through cameras and this simplified representation of the world is
large. In lab environments, this gap is often circumvented by specifically using rigid

116

7.1 Limitations

objects with known geometries and by deploying motion capture systems to track
those objects. While such conditions facilitate the focused development of control
algorithms based on available models, they easily break in real-world scenarios. If the
model does not capture physical effects such as deformation, the robot will not be
able to exploit such effects that might even be necessary for the task at hand. Potential
future work is discussed in Section 7.2.1.

7.1.2 Limitations of Gaussian Trajectory Priors

The presented work uses Gaussian trajectory priors to encode prior knowledge about
the task, such as encoding probabilities for making contact with an object. The Gaus-
sian structure enables sampling and optimizing in a latent space. However, to control
more complex contact geometries, a single Gaussian distribution has to have a large
variance to cover the space of possible contacts, which makes sampling-based opti-
mization algorithms less efficient. Tasks such as in-hand manipulation with robotic
hands may require non-Gaussian priors that cover the multimodality inherent to the
problem to efficiently explore promising contacts. In Section 7.2.2, we discuss future
work on training generative models to combine informative trajectory priors with
sampling-based optimization.

7.1.3 Limitations of Local Optimization

By using zero-order optimization algorithms for trajectory optimization, we increase
chances of finding a desired local minimum compared to gradient-based algorithms.
However, the additional exploration does not guarantee to find the global minimum of
the non-convex optimization problem. In this thesis, we studied tasks where the local
minima typically correspond to contact modes. For example, touching an object from
one side or not touching the object form two different local minima with respect to
object-centric objectives. The presented work uses exploration to discover the best
contact mode. However, this requires the manipulation task to be simple enough
such that the next best contact mode is reflected by the largest change in the objective
function. While this holds for pushing objects closer to a target pose, it likely does not
hold for manipulation tasks with sparse rewards or costs, i.e. where early decisions
have a large impact on the final outcome while the final outcome is not reflected in
the immediate reward. An example for such a task is for a robot to grasp a book that is
lying flat on a table such that the robot cannot grasp the book in that configuration.
The robot has to first push the book to the edge of the table to create a gap between
the book and the table, and then grasp the book. Such tasks require robots to plan
in a more global, abstract space than robot trajectories. This naturally extends to
interconnecting local optimization with global planning algorithms, which is studied
in the field of task and motion planning, e.g. by Garrett et al. (2021); Xue et al. (2024).

117

Chapter 7. Conclusion

7.2 Future Work

The presented work opens up a number of directions for future research. In the
following, we discuss the most promising directions.

7.2.1 Physics-based Learning of Stochastic Contact Dynamics

The presented work shows that reasoning over models of contact dynamics in realtime
is crucial for robots to robustly manipulate objects through contacts. However, as
discussed in Section 7.1.1, current models of contact dynamics derived from physics
are limited to simplifying assumptions, e.g. rigid-body contacts, and by the tradeoff
between accuracy and computational efficiency. If those limitations were to be lifted,
model-based control algorithms for contact-rich manipulation could be applied to a
wider range of objects while possibly running at higher frequencies. Learned world
models (Ha and Schmidhuber (2018); Wu et al. (2023); Sakagami et al. (2023)) may help
to overcome the practical limitations of discretizing and solving differential equations.
However, learning such models typically requires large amounts of data and the state
representation is often not interpretable, which makes the definition of the reward/cost
functions challenging. Especially when trained on images and/or videos, learned world
models that also capture the contact dynamics potentially predict physically infeasible
interactions. A promising direction for future work is to combine physics-based models
with learned dynamics models to guide model learning towards physically plausible
interactions. However, it remains an open question how the state-based representation
of physics-based models can be transferred to learned models with typically abstract
representations of the world.

Furthermore, we have shown that stochastic models of contact dynamics are crucial
to achieve robust manipulation when interacting with novel objects. Thus, future
work on learning models of contact dynamics should enable predicting not only the
most likely outcome of a contact interaction but also a distribution over possible
outcomes as shown for learning collision models in Chapter 5. Last, learned models
of contact dynamics should be able to predict the outcome of contact interactions
with an arbitrary resolution of time. Ideally, a single model can be used to predict the
dynamics with both a coarse resolution and higher uncertainty, as well as with a fine
resolution and lower uncertainty. Such scalable models of contact dynamics would
open up opportunities for an efficient more coarse exploration of the contact space
and for a more refined optimization of discovered contact modes and sequences.

7.2.2 Learning Generative Trajectory Priors

The presented work follows the idea of stochastic optimization, i.e. sampling candidate
solutions from a proposal distribution and refining the proposal distribution given

118

7.2 Future Work

the evaluated candidates. Yet, as discussed in Section 7.1.2, a Gaussian proposal
distribution may not be expressive enough for discovering and optimizing for more
complex contact interactions. Hence, an interesting direction for future work is to
learn a proposal distribution using a generative model, for instance a diffusion model
(Chi et al. (2024)). If data has been collected on a wide range of meaningful examples
of contact interactions, sampling from a learned proposal distribution may cover
the space of promising contacts in a more suitable way than a Gaussian distribution.
Yamada et al. (2024) recently approached this problem training a diffusion model on
play data capturing physical interactions of a robotic hand with a deformable object.
By continuously sampling multiple sequences of robot actions from the learned model
and selecting the best sequence based on the simulated rollout of the sequences, the
resulting performance improves in contrast to to taking only one sample. However, it
is an open question what an iterative optimization algorithm within the latent space of
a generative model could look like beyond selecting the best-performing sample. Such
a combination of model-based planning and learning-based proposal distributions
potentially achieves stronger generalization to new scenarios than either of the two
approaches alone.

7.2.3 Reasoning over Tactile Feedback

Many contributions presented in this thesis are concerned with generating robot ac-
tions for manipulating objects through contact. We typically assume full observability
of the environment through cameras. However, cluttered environments or occlusions
may make it difficult for the robot to accurately perceive the environment. Moreover,
cameras may not be able to capture local details of the environment, such as if an
object in a robotic hand is slipping. Tactile feedback can provide complementary in-
formation to cameras. For instance, a robot that has to pick an object from a cluttered
box should be able to rely on tactile feedback to detect features of the object. Similarly
to controlling contact-rich manipulation, tactile-based state estimation suffers from
the discontinuous nature of contacts: if the robot does not touch the environment, the
tactile measurement is independent of the state of the robot and the environment, e.g.
a force sensor returns zero for both of the following two scenarios: i) if the robot is very
far away from an object, and ii) if the robot is almost touching an object. Estimating
the object state upon contact is further constrained to a contact manifold, i.e. the set
of robot and object states that have a distance equal to zero without penetration. Thus,
algorithms for reasoning over tactile feedback have to take such discontinuities and
constraints into account. Many state estimation techniques work with the assumption
that similar states lead to similar observations (e.g. in terms of Euclidean distance),
which does not hold for tactile feedback.

An interesting direction for future work is to combine Bayesian state estimation with
advanced sampling techniques that are able to capture the set of states that possibly

119

Chapter 7. Conclusion

explain a tactile observation, similar to Nagami and Schwager (2024). In combination
with the belief-space planning and control approach presented in Chapter 6, robots
may be able to generate manipulation actions that seek to reduce the state uncertainty
through informative tactile feedback and by exploiting favorable contact dynamics.

120

A Appendix to Chapter 6

Separation of the Expected Cost

Suppose that the state x ∈ Rnx that is to be controlled is a random variable that is
distributed with x ∼ p. Furthermore suppose that the task is described by a quadratic
cost of the state and a desired state xdes, i.e.

Jdet(x) = (x− xdes)⊤ (x− xdes) . (A.1)

The corresponding stochastic optimal control objective is given by the expectation of
the quadratic cost of the state:

Jsto = Ep [Jdet(x)]
= Ep

[
(x− xdes)⊤ (x− xdes)

]
= Ep [x⊤x]− 2Ep [x]⊤ xdes + x⊤

desxdes.

(A.2)

In the following, we denote the mean of the state with

x̄ = Ep [x] . (A.3)

Furthermore, the variance of the state is defined as the expectation of the squared
deviations from the mean:

Vp [x] = Ep [(x− x̄)⊤(x− x̄)] ,

= Ep [x⊤x + x̄⊤x̄− 2x̄⊤x] ,

= Ep [x⊤x] + x̄⊤x̄− 2x̄⊤Ep [x] ,

= Ep [x⊤x]− x̄⊤x̄.

(A.4)

As a result, the stochastic optimal control objective can be rewritten in terms of the
deterministic quadratic cost of the mean state and the variance of the state with respect

121

Appendix A. Appendix to Chapter 6

to its probability distribution p:

Jsto = x̄⊤x̄− 2x̄⊤xdes + x⊤
desxdes + Vp [x]

= (x̄− xdes)⊤ (x̄− xdes) + Vp [x]
= Jdet(x̄) + Vp [x] .

(A.5)

122

Bibliography

Ajaykumar, G., Stiber, M., and Huang, C.-M. (2021). Designing user-centric program-
ming aids for kinesthetic teaching of collaborative robots. Robotics and Autonomous
Systems, page 103845.

Akgun, B., Cakmak, M., Jiang, K., and Thomaz, A. L. (2012a). Keyframe-based learning
from demonstration. International Journal of Social Robotics, 4(4):343–355.

Akgun, B., Cakmak, M., Yoo, J. W., and Thomaz, A. L. (2012b). Trajectories and
keyframes for kinesthetic teaching: A human-robot interaction perspective. In
Proceedings of the seventh annual ACM/IEEE international conference on Human-
Robot Interaction, pages 391–398.

AlAttar, A., Rouillard, L., and Kormushev, P. (2019). Autonomous air-hockey playing
cobot using optimal control and vision-based bayesian tracking. In International
Conference Towards Autonomous Robotic Systems (TAROS).

Albu-Schäffer, A., Ott, C., and Hirzinger, G. (2007). A unified passivity-based control
framework for position, torque and impedance control of flexible joint robots. The
International Journal of Robotics Research, 26(1):23–39.

Andrychowicz, O. M., Baker, B., Chociej, M., Józefowicz, R., McGrew, B., Pachocki, J.,
Petron, A., Plappert, M., Powell, G., Ray, A., Schneider, J., Sidor, S., Tobin, J., Welinder,
P., Weng, L., and Zaremba, W. (2020). Learning dexterous in-hand manipulation. The
International Journal of Robotics Research, 39(1):3–20.

Arulampalam, M. S., Maskell, S., Gordon, N., and Clapp, T. (2002). A tutorial on particle
filters for online nonlinear/non-gaussian bayesian tracking. IEEE Transactions on
signal processing, 50(2):174–188.

Atrom, K. J. (1971). Introduction to stochastic control theory. Mathematics in science
and engineering. Elsevier, Burlington, MA.

Aydinoglu, A. and Posa, M. (2022). Real-time multi-contact model predictive control
via admm. In International Conference on Robotics and Automation (ICRA), page
3414–3421.

123

Bibliography

Aydinoglu, A., Sieg, P., Preciado, V. M., and Posa, M. (2022). Stabilization of comple-
mentarity systems via contact-aware controllers. IEEE Transactions on Robotics,
38(3):1735–1754.

Aydinoglu, A., Wei, A., Huang, W.-C., and Posa, M. (2024). Consensus complementarity
control for multi-contact mpc.

Bangura, M. and Mahony, R. (2014). Real-time Model Predictive Control for Quadrotors.
IFAC Proceedings Volumes, 47(3):11773–11780.

Bentivegna, D. C., Atkeson, C. G., and Cheng, G. (2004a). Learning tasks from observa-
tion and practice. Robotics and Autonomous Systems, 47(2-3):163–169.

Bentivegna, D. C., Atkeson, C. G., Ude, A., and Cheng, G. (2004b). Learning to act from
observation and practice. International Journal of Humanoid Robotics, 1(04):585–
611.

Betts, J. T. (2010). Practical Methods for Optimal Control and Estimation Using Nonlin-
ear Programming, Second Edition. Society for Industrial and Applied Mathematics,
second edition.

Bhardwaj, M., Sundaralingam, B., Mousavian, A., Ratliff, N., Fox, D., Ramos, F., and
Boots, B. (2022). STORM: An Integrated Framework for Fast Joint-Space Model-
Predictive Control for Reactive Manipulation. In Conference on Robot Learning
(CoRL), pages 750–759.

Billard, A. G., Calinon, S., Dillmann, R., and Schaal, S. (2008). Robot programming by
demonstration. In Siciliano, B. and Khatib, O., editors, Handbook of Robotics, pages
1371–1394. Springer, Secaucus, NJ, USA.

Bishop, B. E. and Spong, M. W. (1999). Vision based control of an air hockey playing
robot. IEEE Control Systems Magazine, 19(3).

Büchler, D., Guist, S., Calandra, R., Berenz, V., Schölkopf, B., and Peters, J. (2022).
Learning to play table tennis from scratch using muscular robots. IEEE Transactions
on Robotics.

Byravan, A., Boots, B., Srinivasa, S. S., and Fox, D. (2014). Space-time functional
gradient optimization for motion planning. In Proc. IEEE International Conference
on Robotics and Automation (ICRA), pages 6499–6506.

Calinon, S. (2016). A tutorial on task-parameterized movement learning and retrieval.
Intelligent Service Robotics, 9:1–29.

Calinon, S. (2019a). Learning from demonstration (programming by demonstration).
In Ang, M. H., Khatib, O., and Siciliano, B., editors, Encyclopedia of Robotics. Springer.

124

Bibliography

Calinon, S. (2019b). Mixture models for the analysis, edition, and synthesis of continu-
ous time series. In Bouguila, N. and Fan, W., editors, Mixture Models and Applications,
pages 39–57. Springer.

Calinon, S., Bruno, D., and Caldwell, D. G. (2014). A task-parameterized probabilistic
model with minimal intervention control. In Proc. IEEE Intl Conf. on Robotics and
Automation (ICRA), pages 3339–3344, Hong Kong, China.

Calli, B., Walsman, A., Singh, A., Srinivasa, S., Abbeel, P., and Dollar, A. M. (2015).
Benchmarking in manipulation research: Using the yale-cmu-berkeley object and
model set. IEEE Robotics Automation Magazine, 22(3):36–52.

Chen, C., Culbertson, P., Lepert, M., Schwager, M., and Bohg, J. (2021). Trajectotree:
Trajectory optimization meets tree search for planning multi-contact dexterous
manipulation. In 2021 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pages 8262–8268.

Cheng, X., Huang, E., Hou, Y., and Mason, M. T. (2021). Contact mode guided sampling-
based planning for quasistatic dexterous manipulation in 2d. In 2021 IEEE Interna-
tional Conference on Robotics and Automation (ICRA), pages 6520–6526.

Chernova, S. and Thomaz, A. L. (2014). Robot learning from human teachers. Synthesis
Lectures on Artificial Intelligence and Machine Learning, 8(3):1–121.

Chi, C., Xu, Z., Feng, S., Cousineau, E., Du, Y., Burchfiel, B., Tedrake, R., and Song,
S. (2024). Diffusion policy: Visuomotor policy learning via action diffusion. The
International Journal of Robotics Research.

Chuck, C., Qi, C., Munje, M. J., Li, S., Rudolph, M., Shi, C., Agarwal, S., Sikchi, H., Peri, A.,
Dayal, S., et al. (2024). Robot air hockey: A manipulation testbed for robot learning
with reinforcement learning. arXiv preprint arXiv:2405.03113.

Cleac’h, S. L., Howell, T., Yang, S., Lee, C.-Y., Zhang, J., Bishop, A., Schwager, M., and
Manchester, Z. (2021). Fast contact-implicit model-predictive control.

Coumans, E. (2015). Bullet physics simulation. In ACM SIGGRAPH 2015 Courses,
SIGGRAPH ’15, New York, NY, USA. Association for Computing Machinery.

Cover, T. M. and Thomas, J. A. (2005). Differential Entropy, chapter 8, pages 243–259.
John Wiley & Sons, Ltd.

Dogar, M. and Srinivasa, S. (2011). A framework for push-grasping in clutter. In Hugh
Durrant-Whyte, N. R. and Abbeel, P., editors, Proceedings of Robotics: Science and
Systems (RSS ’11), pages 65–73. MIT Press.

Erdmann, M. and Mason, M. (1988). An exploration of sensorless manipulation. IEEE
Journal on Robotics and Automation, 4(4):369–379.

125

Bibliography

Fishman, A., Paxton, C., Yang, W., Fox, D., Boots, B., and Ratliff, N. (2020). Collaborative
interaction models for optimized human-robot teamwork. In Proc. IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS), pages 11221–11228.

Florence, P., Lynch, C., Zeng, A., Ramirez, O. A., Wahid, A., Downs, L., Wong, A., Lee, J.,
Mordatch, I., and Tompson, J. (2022). Implicit behavioral cloning. In Proceedings
of the 5th Conference on Robot Learning, volume 164 of Proceedings of Machine
Learning Research, pages 158–168.

Garrett, C. R., Chitnis, R., Holladay, R., Kim, B., Silver, T., Kaelbling, L. P., and Lozano-
Pérez, T. (2021). Integrated task and motion planning. Annual Review of Control,
Robotics, and Autonomous Systems, 4(Volume 4, 2021):265–293.

Goldshtein, M. and Tsiotras, P. (2017). Finite-horizon covariance control of linear
time-varying systems. In 2017 IEEE 56th Annual Conference on Decision and Control
(CDC), pages 3606–3611.

Gomez-Gonzalez, S., Neumann, G., Schölkopf, B., and Peters, J. (2020). Adaptation and
robust learning of probabilistic movement primitives. IEEE Transactions on Robotics
(T-Ro), 36(2):366–379.

Graesdal, B. P., Chia, S. Y. C., Marcucci, T., Morozov, S., Amice, A., Parrilo, P. A., and
Tedrake, R. (2024). Towards tight convex relaxations for contact-rich manipulation.

Ha, D. and Schmidhuber, J. (2018). Recurrent world models facilitate policy evolution.
In Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N., and Garnett,
R., editors, Advances in Neural Information Processing Systems, volume 31. Curran
Associates, Inc.

Ha, J.-S., Driess, D., and Toussaint, M. (2020). A probabilistic framework for constrained
manipulations and task and motion planning under uncertainty. In 2020 IEEE
International Conference on Robotics and Automation (ICRA), pages 6745–6751.

Haarnoja, T., Moran, B., Lever, G., Huang, S. H., Tirumala, D., Humplik, J., Wulfmeier,
M., Tunyasuvunakool, S., Siegel, N. Y., Hafner, R., et al. (2024). Learning agile
soccer skills for a bipedal robot with deep reinforcement learning. Science Robotics,
9(89):eadi8022.

Haarnoja, T., Zhou, A., Hartikainen, K., Tucker, G., Ha, S., Tan, J., Kumar, V., Zhu,
H., Gupta, A., Abbeel, P., and Levine, S. (2019). Soft actor-critic algorithms and
applications.

Handa, A., Allshire, A., Makoviychuk, V., Petrenko, A., Singh, R., Liu, J., Makoviichuk, D.,
Van Wyk, K., Zhurkevich, A., Sundaralingam, B., and Narang, Y. (2023). Dextreme:
Transfer of agile in-hand manipulation from simulation to reality. In 2023 IEEE
International Conference on Robotics and Automation (ICRA), pages 5977–5984.

126

Bibliography

Hansen, N. (2016). The CMA evolution strategy: A tutorial. arXiv preprint
arXiv:1604.00772.

Hogan, F. R. and Rodriguez, A. (2020). Reactive planar non-prehensile manipulation
with hybrid model predictive control. The International Journal of Robotics Research,
39(7):755–773.

Hogan, N. (1984). Impedance control: An approach to manipulation. In 1984 American
Control Conference, pages 304–313.

Howell, T., Gileadi, N., Tunyasuvunakool, S., Zakka, K., Erez, T., and Tassa, Y. (2022).
Predictive sampling: Real-time behaviour synthesis with mujoco. arXiv preprint
arXiv:2212.00541.

Huang, J. and Cakmak, M. (2017). Code3: A system for end-to-end programming
of mobile manipulator robots for novices and experts. In 2017 12th ACM/IEEE
International Conference on Human-Robot Interaction (HRI, pages 453–462. IEEE.

Igeta, K. and Namiki, A. (2015). A decision-making algorithm for an air-hockey robot
that decides actions depending on its opponent player’s motions. In 2015 IEEE
International Conference on Robotics and Biomimetics (ROBIO), pages 1840–1845.
IEEE.

Igeta, K. and Namiki, A. (2017). Algorithm for optimizing attack motions for air-hockey
robot by two-step look ahead prediction. In IEEE/SICE International Symposium on
System Integration, pages 465–470.

Ijspeert, A. J., Nakanishi, J., and Schaal, S. (2002). Learning attractor landscapes for
learning motor primitives. In Advances in Neural Information Processing Systems
(NIPS), pages 1547–1554.

Jankowski, J., Brudermüller, L., Hawes, N., and Calinon, S. (2023). VP-STO: Via-point-
based stochastic trajectory optimization for reactive robot behavior. International
Conference on Robotics and Automation (ICRA).

Jankowski, J., Brudermüller, L., Hawes, N., and Calinon, S. (2024a). Robust pushing:
Exploiting quasi-static belief dynamics and contact-informed optimization.

Jankowski, J., Girgin, H., and Calinon, S. (2021). Probabilistic adaptive control for
robust behavior imitation. IEEE Robotics and Automation Letters, 6(2):1997–2004.

Jankowski, J., Marić, A., Liu, P., Tateo, D., Peters, J., and Calinon, S. (2024b). Energy-
based contact planning under uncertainty for robot air hockey.

Jankowski, J., Racca, M., and Calinon, S. (2022). From Key Positions to Optimal Basis
Functions for Probabilistic Adaptive Control. IEEE Robotics and Automation Letters,
7(2):3242–3249.

127

Bibliography

Kalakrishnan, M., Chitta, S., Theodorou, E., Pastor, P., and Schaal, S. (2011). STOMP:
Stochastic trajectory optimization for motion planning. In Proc. IEEE International
Conference on Robotics and Automation (ICRA), pages 4569–4574.

Kappen, H. J. (2015). Adaptive importance sampling for control and inference. Journal
of Statistical Physics, 162:1244–1266.

Kawato, M., Gandolfo, F., Gomi, H., and Wada, Y. (1994). Teaching by showing in
kendama based on optimization principle. In International Conference on Artificial
Neural Networks, pages 601–606. Springer.

Kicki, P., Liu, P., Tateo, D., Bou-Ammar, H., Walas, K., Skrzypczyński, P., and Peters, J.
(2023). Fast kinodynamic planning on the constraint manifold with deep neural
networks. IEEE Transactions on Robotics.

Kingma, D. and Ba, J. (2014). Adam: A method for stochastic optimization. Interna-
tional Conference on Learning Representations.

Kober, J. and Peters, J. (2008). Policy search for motor primitives in robotics. Advances
in neural information processing systems, 21.

Kobilarov, M. (2012). Cross-entropy motion planning. The International Journal of
Robotics Research, 31(7):855–871.

Koval, M. C., Pollard, N. S., and Srinivasa, S. S. (2016). Pre- and post-contact policy de-
composition for planar contact manipulation under uncertainty. The International
Journal of Robotics Research, 35(1-3):244–264.

Koç, O., Maeda, G., and Peters, J. (2018). Online optimal trajectory generation for robot
table tennis. Robotics and Autonomous Systems, 105:121–137.

Kraft, D. (1988). A software package for sequential quadratic programming. Deutsche
Forschungs- und Versuchsanstalt für Luft- und Raumfahrt Köln: Forschungsbericht.
Wiss. Berichtswesen d. DFVLR.

Liu, P., Bou-Ammar, H., Peters, J., and Tateo, D. (2024). Safe reinforcement learning on
the constraint manifold: Theory and applications. arXiv preprint arXiv:2404.09080.

Liu, P., Tateo, D., Ammar, H. B., and Peters, J. (2022). Robot reinforcement learning on
the constraint manifold. In Conference on Robot Learning, pages 1357–1366. PMLR.

Liu, P., Tateo, D., Bou-Ammar, H., and Peters, J. (2021). Efficient and reactive planning
for high speed robot air hockey. In 2021 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 586–593. IEEE.

Lozano-Perez, T. (1983). Robot programming. Proceedings of the IEEE, 71(7):821–841.

128

Bibliography

Lynch, K. and Park, F. (2017). Modern Robotics: Mechanics, Planning, and Control.
Cambridge Univeristy Press.

Lynch, K. M. and Mason, M. T. (1995). Stable pushing: Mechanics, controllability, and
planning. The International Journal of Robotics Research, 15:533 – 556.

Manchester, Z., Doshi, N., Wood, R. J., and Kuindersma, S. (2019). Contact-implicit
trajectory optimization using variational integrators. The International Journal of
Robotics Research, 38(12-13):1463–1476.

Marcucci, T., Deits, R., Gabiccini, M., Bicchi, A., and Tedrake, R. (2017). Approximate
hybrid model predictive control for multi-contact push recovery in complex envi-
ronments. In 2017 IEEE-RAS 17th International Conference on Humanoid Robotics
(Humanoids), pages 31–38.

Mason, M. T. (2001). Mechanics of Robotic Manipulation. MIT Press.

Migimatsu, T. and Bohg, J. (2020). Object-centric task and motion planning in dynamic
environments. IEEE Robotics and Automation Letters, 5(2):844–851.

Mülling, K., Kober, J., and Peters, J. (2011). A biomimetic approach to robot table tennis.
Adaptive Behavior, 19(5):359–376.

Muratore, F., Ramos, F., Turk, G., Yu, W., Gienger, M., and Peters, J. (2022). Robot
learning from randomized simulations: A review. Frontiers in Robotics and AI, 9.

Nagami, K. and Schwager, M. (2024). State estimation and belief space planning under
epistemic uncertainty for learning-based perception systems. IEEE Robotics and
Automation Letters, 9(6):5118–5125.

Namiki, A., Matsushita, S., Ozeki, T., and Nonami, K. (2013). Hierarchical processing
architecture for an air-hockey robot system. In 2013 IEEE International Conference
on Robotics and Automation, pages 1187–1192. IEEE.

Nikandrova, E., Laaksonen, J., and Kyrki, V. (2014). Towards informative sensor-based
grasp planning. Robotics and Autonomous Systems, 62(3):340–354. Advances in Au-
tonomous Robotics — Selected extended papers of the joint 2012 TAROS Conference
and the FIRA RoboWorld Congress, Bristol, UK.

Okamoto, K., Goldshtein, M., and Tsiotras, P. (2018). Optimal covariance control for
stochastic systems under chance constraints. IEEE Control Systems Letters, 2(2):266–
271.

Pang, T. (2021). A convex quasistatic time-stepping scheme for rigid multibody systems
with contact and friction. 2021 IEEE International Conference on Robotics and
Automation (ICRA), pages 6614–6620.

129

Bibliography

Pang, T., Suh, H. J. T., Yang, L., and Tedrake, R. (2023). Global planning for contact-
rich manipulation via local smoothing of quasi-dynamic contact models. IEEE
Transactions on Robotics, 39(6):4691–4711.

Paraschos, A., Daniel, C., Peters, J., and Neumann, G. (2018). Using probabilistic
movement primitives in robotics. Autonomous Robots, 42.

Pignat, E., Silvério, J., and Calinon, S. (2020). Learning from demonstration us-
ing products of experts: Applications to manipulation and task prioritization.
arXiv:2010.03505.

Platt, R., Kaelbling, L., Lozano-Perez, T., and Tedrake, R. (2017). Efficient planning
in non-gaussian belief spaces and its application to robot grasping. In Robotics
Research, pages 253–269. Springer.

Platt, R., Tedrake, R., Kaelbling, L. P., and Lozano-Perez, T. (2010). Belief space planning
assuming maximum likelihood observations. In Robotics: Science and Systems.

Ploeger, K., Lutter, M., and Peters, J. (2021). High acceleration reinforcement learning
for real-world juggling with binary rewards. In Conference on Robot Learning, pages
642–653. PMLR.

Ploeger, K. and Peters, J. (2022). Controlling the cascade: Kinematic planning for n-ball
toss juggling. In 2022 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pages 1139–1144. IEEE.

Posa, M., Cantu, C., and Tedrake, R. (2014). A direct method for trajectory optimization
of rigid bodies through contact. The International Journal of Robotics Research,
33(1):69–81.

Ratliff, N. D., Issac, J., Kappler, D., Birchfield, S., and Fox, D. (2018). Riemannian motion
policies. arXiv:1801.02854.

Rodriguez, A. (2021). The unstable queen: Uncertainty, mechanics, and tactile feed-
back. Science Robotics, 6(54):eabi4667.

Rosmann, C., Makarow, A., Hoffmann, F., and Bertram, T. (2017). Time-Optimal
nonlinear model predictive control with minimal control interventions. In Proc.
IEEE Conference on Control Technology and Applications (CCTA), pages 19–24.

Rubinstein, R. Y. (1999). The Cross-Entropy Method for Combinatorial and Continuous
Optimization. Methodology and Computing in Applied Probability, 1(2):127–190.

Sakagami, R., Lay, F. S., Dömel, A., Schuster, M. J., Albu-Schäffer, A., and Stulp, F. (2023).
Robotic world models—conceptualization, review, and engineering best practices.
Frontiers in Robotics and AI, 10.

130

Bibliography

Schulman, J., Duan, Y., Ho, J., Lee, A., Awwal, I., Bradlow, H., Pan, J., Patil, S., Goldberg,
K., and Abbeel, P. (2014). Motion planning with sequential convex optimization and
convex collision checking. The International Journal of Robotics Research, 33(9):1251–
1270.

Schulman, J., Levine, S., Abbeel, P., Jordan, M., and Moritz, P. (2015). Trust region policy
optimization. In Bach, F. and Blei, D., editors, Proceedings of the 32nd International
Conference on Machine Learning, volume 37 of Proceedings of Machine Learning
Research, pages 1889–1897, Lille, France. PMLR.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O. (2017). Proximal
policy optimization algorithms.

Shetty, S., Xue, T., and Calinon, S. (2024). Generalized policy iteration using tensor ap-
proximation for hybrid control. In The Twelfth International Conference on Learning
Representations.

Shimada, H., Kutsuna, Y., Kudoh, S., and Suehiro, T. (2017). A two-layer tactical system
for an air-hockey-playing robot. In IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS).

Shirai, Y., Jha, D. K., and Raghunathan, A. U. (2023). Covariance steering for uncer-
tain contact-rich systems. In 2023 IEEE International Conference on Robotics and
Automation (ICRA), pages 7923–7929.

Steinmetz, F., Nitsch, V., and Stulp, F. (2019). Intuitive task-level programming by
demonstration through semantic skill recognition. IEEE Robotics and Automation
Letters, 4(4):3742–3749.

Tadokoro, K., Fukuda, S., and Namiki, A. (2022). Development of air hockey robot
with high-speed vision and high-speed wrist. Journal of Robotics and Mechatronics,
34(5):956–964.

Taitler, A. and Shimkin, N. (2017). Learning control for air hockey striking using deep
reinforcement learning. In International Conference on Control, Artificial Intelligence,
Robotics Optimization.

Tedrake, R. and the Drake Development Team (2019). Drake: Model-based design and
verification for robotics.

Todorov, E., Erez, T., and Tassa, Y. (2012). Mujoco: A physics engine for model-based
control. In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems,
pages 5026–5033. IEEE.

Toussaint, M., Ha, J.-S., and Driess, D. (2020). Describing physics for physical reasoning:
Force-based sequential manipulation planning. IEEE Robotics and Automation
Letters, 5(4):6209–6216.

131

Bibliography

Toussaint, M., Harris, J., Ha, J.-S., Driess, D., and Hönig, W. (2022a). Sequence-of-
constraints mpc: Reactive timing-optimal control of sequential manipulation. 2022
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages
13753–13760.

Toussaint, M., Harris, J., Ha, J.-S., Driess, D., and Hönig, W. (2022b). Sequence-of-
Constraints MPC: Reactive Timing-Optimal Control of Sequential Manipulation.
arXiv preprint arXiv:2203.05390.

Van den Broeck, L., Diehl, M., and Swevers, J. (2011). Model predictive control for time-
optimal point-to-point motion control. IFAC Proceedings Volumes, 44(1):2458–2463.

van den Oord, A., Li, Y., and Vinyals, O. (2018). Representation learning with contrastive
predictive coding. ArXiv, abs/1807.03748.

von Drigalski, F., Joshi, D., Murooka, T., Tanaka, K., Hamaya, M., and Ijiri, Y. (2021). An
analytical diabolo model for robotic learning and control. In 2021 IEEE International
Conference on Robotics and Automation (ICRA), pages 4055–4061. IEEE.

Weiss, A., Igelsboeck, J., Calinon, S., Billard, A. G., and Tscheligi, M. (2009). Teaching
a humanoid: A user study on learning by demonstration with HOAP-3. In Proc.
IEEE Intl Symp. on Robot and Human Interactive Communication (Ro-Man), pages
147–152, Toyama, Japan.

Wieber, P.-B., Tedrake, R., and Kuindersma, S. (2016). Modeling and control of legged
robots. In Springer handbook of robotics, pages 1203–1234. Springer.

Williams, G., Aldrich, A., and Theodorou, E. A. (2017). Model predictive path integral
control: From theory to parallel computation. Journal of Guidance, Control, and
Dynamics, 40(2):344–357.

Williams, G., Drews, P., Goldfain, B., Rehg, J. M., and Theodorou, E. A. (2016). Aggressive
driving with model predictive path integral control. In Proc. IEEE International
Conference on Robotics and Automation (ICRA), pages 1433–1440.

Wrede, S., Emmerich, C., Grünberg, R., Nordmann, A., Swadzba, A., and Steil, J. (2013).
A user study on kinesthetic teaching of redundant robots in task and configuration
space. J. Hum.-Robot Interact., 2(1):56–81.

Wu, P., Escontrela, A., Hafner, D., Abbeel, P., and Goldberg, K. (2023). Daydreamer:
World models for physical robot learning. In Liu, K., Kulic, D., and Ichnowski,
J., editors, Proceedings of The 6th Conference on Robot Learning, volume 205 of
Proceedings of Machine Learning Research, pages 2226–2240. PMLR.

Xue, T., Razmjoo, A., and Calinon, S. (2024). D-lgp: Dynamic logic-geometric program
for reactive task and motion planning. In 2024 IEEE International Conference on
Robotics and Automation (ICRA), pages 14888–14894.

132

Bibliography

Yamada, J., Zhong, S., Collins, J., and Posner, I. (2024). D-cubed: Latent diffusion
trajectory optimisation for dexterous deformable manipulation. arXiv preprint
arXiv:2403.12861.

Yan, L., Stouraitis, T., Moura, J., Xu, W., Gienger, M., and Vijayakumar, S. (2024). Impact-
aware bimanual catching of large-momentum objects. IEEE Transactions on Robotics,
40:2543–2563.

Zaidi, Z., Martin, D., Belles, N., Zakharov, V., Krishna, A., Lee, K. M., Wagstaff, P., Naik,
S., Sklar, M., Choi, S., et al. (2023). Athletic mobile manipulator system for robotic
wheelchair tennis. IEEE Robotics and Automation Letters, 8(4):2245–2252.

Zhang, Z., Tomlinson, J., and Martin, C. (1997). Splines and linear control theory. Acta
Math. Appl, 49:1–34.

Zheng, D., Ridderhof, J., Tsiotras, P., and Agha-mohammadi, A.-a. (2022). Belief space
planning: a covariance steering approach. In 2022 International Conference on
Robotics and Automation (ICRA), pages 11051–11057.

Zhou, Y., Gao, J., and Asfour, T. (2019). Learning via-point movement primitives with
inter- and extrapolation capabilities. In Proc. IEEE/RSJ Intl Conf. on Intelligent Robots
and Systems (IROS), pages 4301–4308.

Zucker, M., Ratliff, N., Dragan, A. D., Pivtoraiko, M., Klingensmith, M., Dellin, C. M., Bag-
nell, J. A., and Srinivasa, S. S. (2013). CHOMP: Covariant Hamiltonian optimization
for motion planning. The International Journal of Robotics Research, 32(9-10):1164–
1193.

133

Montreux, Switzerland
July 18, 2024
 jankowskijulius@gmail.com

Julius Jankowski
�

Education

École Polytechnique Fédérale de Lausanne (EPFL) & Idiap Research Institute 2020 – 2024
PhD in Robotics, advised by Dr Sylvain Calinon & Prof. Jean-Philippe Thiran.
Thesis: "A Stochastic Approach to Contact-rich Manipulation"

Technical University of Munich (TUM) 2017 – 2019
MSc in Robotics, Cognition, Intelligence, thesis supervised by Prof. Daniel Rixen, Grade 1.0 (highest).
Thesis: "Optimal Trajectory Planning for Redundant Manipulators"

Leibniz University of Hannover 2013 – 2017
BSc in Mechatronics, thesis advised by Prof. Sami Haddadin, Grade 1.0 (highest).
Thesis: "Implementation of an Assistive Grasp Control for the Upper Limb Prosthesis µlimb based on 3D-Object Detection
and Visual Servoing"

Work Experience

Amazon Robotics 2023 – 2024
Applied Scientist Intern (Tools: Python) Berlin, Germany

Planning through contacts for robotic picking of warehouse items from cluttered bins.

Franka Emika - Research & Development 2018 – 2020
Research Engineer (Tools: C, C++, ROS, Git) Munich, Germany

Developed a robust, time-invariant path tracking controller for a robot manipulator (Master’s Thesis). Deployed and tested
an autonomous navigation stack for a differential-drive mobile robot. Developed and integrated an impedance controller for
a torque-controlled differential-drive robot.

DLR (German Aerospace Center) - Institute of Robotics and Mechatronics 2018
Research Engineer (Tools: Matlab/Simulink) Oberpfaffenhofen, Germany

Implemented and tested a momentum-based observer for sensorless force estimation with a robot manipulator.

Academic Activities

Research
Visit

Prof. Perla Maiolino, Soft Robotics Lab,
University of Oxford

State Estimation through Touch with a Tactile Skin

Workshop Lightning Talk and Poster Presentation Compliant Robot Manipulation (ICRA 2022)

Teaching Teaching Assistance Robotics, UniDistance Suisse

Teaching Master Project Supervision (EPFL) 6 Completed

Awards

1st Place at the Robot Air Hockey Challenge (NeurIPS 2023 competition) 2023
1st Place at the RoboCup Junior World Cup (Discipline: Rescue) 2008

1

mailto:jankowskijulius@gmail.com
https://jujankowski.github.io/
https://github.com/JuJankowski
https://www.linkedin.com/in/julius-jankowski-75931a186

Publications

Articles under Review

1. Jankowski, J., Brudermüller, L., Hawes, N. and Calinon, S. (2024) Robust Pushing: Exploiting Quasi-static Belief
Dynamics and Contact-informed Optimization. submitted to the International Journal of Robotics Research (IJRR).

2. Brudermüller, L., Berger, G., Jankowski, J., Bhattacharyya, R., Calinon, S., Jungers, R. and Hawes, N. (2024)
CC-VPSTO: Chance-Constrained Via-Point-based Stochastic Trajectory Optimisation for Safe and Efficient Online
Robot Motion Planning. submitted to IEEE Transactions on Robotics (T-RO).

3. Jankowski, J., Marić, A., Liu, P., Tateo, D., Peters, J. and Calinon, S. (2024) Energy-based Contact Planning under
Uncertainty for Robot Air Hockey. submitted to IEEE Robotics and Automation Letters (RA-L).

Peer-reviewed Journal Articles

1. Jankowski, J., Racca, M. and Calinon, S. (2022) From Key Positions to Optimal Basis Functions for Probabilistic
Adaptive Control. RA-L.

2. Jankowski, J., Girgin, H. and Calinon, S. (2021) Probabilistic Adaptive Control for Robust Behavior Imitation. RA-L.

3. Lembono, T.S., Pignat, E., Jankowski, J. and Calinon, S. (2021) Learning Constrained Distributions of Robot
Configurations with Generative Adversarial Networks. RA-L.

Peer-reviewed Conference Proceedings

1. Jankowski, J.*, Brudermüller, L.*, Hawes, N. and Calinon, S. (2023) VP-STO: Via-point-based Stochastic Trajectory
Optimization for Reactive Robot Behavior. ICRA. ∗Authors contributed equally.

2. Ewerton, M., Villamizar, M., Jankowski, J., Calinon, S. and Odobez, J.-M. (2023) A Multitask and Kernel approach
for Learning to Push Objects with a Target-Parameterized Deep Q-Network. IROS.

3. Girgin, H., Jankowski, J. and Calinon, S. (2022) Reactive Anticipatory Robot Skills with Memory. ISRR.

4. Wittmann, J.∗, Jankowski, J.∗, Wahrmann, J. and Rixen, D.J. (2020) Hierarchical Motion Planning Framework for
Manipulators in Human-Centered Dynamic Environments. RO-MAN. ∗Authors contributed equally.

5. Garofalo, G., Mansfeld, N., Jankowski, J. and Ott, C. (2019) Sliding Mode Momentum Observers for Estimation of
External Torques and Joint Acceleration. ICRA.

2

https://publications.idiap.ch/attachments/papers/2022/Jankowski_RA-L_2022.pdf
https://publications.idiap.ch/attachments/papers/2021/Jankowski_RA-L_2021.pdf
https://publications.idiap.ch/attachments/papers/2021/Lembono_RA-L_2021.pdf
https://sites.google.com/oxfordrobotics.institute/vp-sto
https://publications.idiap.ch/attachments/papers/2022/Girgin_ISRR_2022.pdf
https://ieeexplore.ieee.org/document/9223549
https://ieeexplore.ieee.org/document/8793529

	my_thesis.pdf
	Acknowledgements
	Abstract (English/Deutsch)
	Contents
	Introduction
	Main Challenges
	Discontinuity of Contact Dynamics
	Uncertainty in Contact Dynamics

	State-of-the-Art in Contact-Rich Manipulation
	Contact-Implicit Trajectory Optimization
	Mixed Discrete/Continuous Optimization
	Reinforcement Learning
	Sampling-based Planning and Control

	Core Contributions & Thesis Outline
	Optimal Basis Functions for Efficient Trajectory Synthesis
	VP-STO for Making-and-Breaking Contacts in Realtime
	Belief Prediction through Contacts for Robust Pushing

	Thesis Statement

	Background
	Low-level Robot Control
	Direct Force Control
	Stiffness Control

	Modeling Contact Dynamics
	Second-Order Models
	Quasi-Static & Quasi-Dynamic Models
	Collision Models

	Trajectory Optimization
	Direct Transcription
	Direct Shooting

	Trajectory Representation
	Discretization in Time
	Superposition of Basis Functions

	Zero-order Optimization
	Cross-Entropy Method (CEM)
	Covariance Matrix Adaptation - Evolution Strategy (CMA-ES)

	Belief-Space Control
	Covariance Steering Approach
	Trajectory Optimization for Non-Gaussian Belief Spaces

	From Optimal Control to Time-Parameterized Basis Functions
	Optimal Basis Functions
	Minimal-Effort Trajectories with Linear Constraints
	Optimal Trajectory as a Linear Mapping of Constraints

	Optimal Time Parameterization
	Direct Minimization of the Trajectory Duration
	Iterative Optimization of the Timing of Key Positions

	Skill Learning from Sparse Key Positions
	Learning a Distribution of Optimal Trajectories
	Control Phase
	Experimental Evaluation in a User Study

	Via-point-based Stochastic Trajectory Optimization
	Related Work
	Preliminaries: Trajectory Representation
	Via-Point-based Stochastic Trajectory Optimization
	Informed Sampling with a Gaussian Prior
	Synthesis of Kinodynamically Admissible Trajectories
	Cost Evaluation

	Online VP-STO (MPC)
	No-Via-Point Trajectory for Stopping Behavior
	Initialization: Exploration vs. Warm-Starting
	Impedance Control

	Experiments
	Simulation
	Real-World Experiments
	Ablation Studies

	Stochastic Impact Control in Real-Time
	Related Work
	Learning Stochastic Contact Models
	Mixture of linear-Gaussian Contact Dynamics
	Learning Model Parameters from Data
	Piecewise-linear Kalman Filtering
	Probability of Hitting the Goal

	Fast Contact Planning under Uncertainty
	Stochastic Optimal Control for Shooting
	Shooting Angle as Reduced Action Space
	Training an Energy-based Shooting Policy
	Online Inference with Warm-Starting

	Experiments
	Implementation Details
	Experimental Setup
	Experimental Results

	Belief-space Planning through Contacts
	Related Work
	Contact-rich Manipulation
	Robust Manipulation
	Modeling Uncertainty in Contact Dynamics

	Problem Formulation & Approach
	Belief Dynamics through Contacts
	Stochastic Quasi-Static Dynamics for Pushing
	Object Belief Dynamics
	Variance Prediction

	Stochastic Optimization for Robust Manipulation
	Variance Gain Control
	Trajectory Sampling with a Contact Prior

	Receding-horizon BS-VP-STO
	Experiments
	Implementation Details
	Open-Loop Single-Hand Pushing
	Open-Loop Bimanual Pushing
	Closed-Loop Bimanual Pushing

	Discussion

	Conclusion
	Limitations
	Limitations of Current Models of Contact Dynamics
	Limitations of Gaussian Trajectory Priors
	Limitations of Local Optimization

	Future Work
	Physics-based Learning of Stochastic Contact Dynamics
	Learning Generative Trajectory Priors
	Reasoning over Tactile Feedback

	Appendix to Chapter 6
	Bibliography

	CV.pdf
	CV
	Education
	Work Experience
	Academic Activities
	Awards
	Publications

