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Abstract

Recent advancements in deep learning have revolutionized 3D computer vision, enabling

the extraction of intricate 3D information from 2D images and video sequences. This thesis

explores the application of deep learning in three crucial challenges of 3D computer vision:

Depth Estimation, Novel View Synthesis, and Simultaneous Localization and Mapping (SLAM).

In the first part of the study, a self-supervised deep-learning method for depth estimation using

a structured-light camera is proposed. Our method utilizes optical flow for improved edge

preservation and reduced over-smoothing. In addition, we propose fusing depth maps from

multiple video frames to enhance overall accuracy, particularly in occluded areas. Further, we

demonstrate that these fused depth maps can be used for self-supervision to further improve

the performance of a single-frame depth estimation network. Our models outperform state-

of-the-art methods on both synthetic and real datasets.

In the second part of the study, a generalizable photorealistic novel view synthesis method

based on neural radiance fields (NeRF) is introduced. Our approach employs a geometry

reasoner and a renderer to generate high-quality images from novel viewpoints. The geometry

reasoner constructs cascaded cost volumes for each nearby source view, while the renderer

utilizes a Transformer-based attention mechanism to integrate information from these cost

volumes and render detailed images using volume rendering techniques. This architecture en-

ables sophisticated occlusion reasoning and allows our method to render competitive results

with per-scene optimized neural rendering methods while significantly reducing computa-

tional costs. Our experiments demonstrate superiority over state-of-the-art generalizable

neural rendering models on various synthetic and real datasets.

In the last part of the study, an efficient implicit neural representation method for dense visual

SLAM is presented. The method reconstructs the scene representation while simultaneously

estimating the camera position in a sequential manner from RGB-D frames with unknown

poses. We incorporate recent advances in NeRF into the SLAM system, achieving both high

accuracy and efficiency. The scene representation consists of multi-scale axis-aligned per-

pendicular feature planes and shallow decoders that decode the interpolated features into

Truncated Signed Distance Field (TSDF) and RGB values. Extensive experiments on standard

datasets demonstrate that our method outperforms state-of-the-art dense visual SLAM meth-

ods by more than 50% in 3D reconstruction and camera localization while running up to 10

times faster and eliminating the need for pre-training.
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Résumé

Les récentes avancées dans le domaine de l’apprentissage profond ont révolutionné la vision

3D par ordinateur, permettant l’extraction d’informations 3D complexes à partir d’images 2D

et de séquences vidéo. Cette thèse explore l’application de l’apprentissage profond à trois défis

cruciaux de la vision 3D par ordinateur : L’estimation de la profondeur (Depth Estimation),

la synthèse de nouvelles vues (Novel View Synthesis) et la localisation et la cartographie

simultanées (SLAM).

Dans la première partie de l’étude, une méthode d’apprentissage profond auto-supervisée

pour l’estimation de la profondeur à l’aide d’une caméra à lumière structurée est proposée.

Notre méthode utilise le flux optique pour une meilleure préservation des bords et un lissage

excessif réduit. En outre, nous proposons de fusionner les cartes de profondeur de plusieurs

images vidéo afin d’améliorer la précision globale, en particulier dans les zones occultées.

En outre, nous démontrons que ces cartes de profondeur fusionnées peuvent être utilisées

pour l’auto-supervision afin d’améliorer encore les performances d’un réseau d’estimation de

profondeur à image unique. Nos modèles sont plus performants que les méthodes les plus

récentes sur des ensembles de données synthétiques et réelles.

Dans la deuxième partie de l’étude, une méthode généralisable de synthèse photoréaliste

de nouvelles vues basée sur les champs de radiance neuronaux (NeRF) est introduite. Notre

approche utilise un raisonneur géométrique et un moteur de rendu pour générer des images

de haute qualité à partir de nouveaux points de vue. Le raisonneur géométrique construit des

volumes de coûts en cascade pour chaque vue source proche, tandis que le moteur de rendu

utilise un mécanisme d’attention basé sur un transformateur pour intégrer les informations

de ces volumes de coûts et rendre des images détaillées en utilisant des techniques de rendu

de volume. Cette architecture permet un raisonnement sophistiqué en matière d’occlusion

et permet à notre méthode d’obtenir des résultats compétitifs par rapport aux méthodes de

rendu neuronal optimisées par scène, tout en réduisant considérablement les coûts de calcul.

Nos expériences démontrent la supériorité de notre méthode par rapport aux modèles de

rendu neuronal généralisables les plus récents sur divers ensembles de données synthétiques

et réelles.

Dans la dernière partie de l’étude, une méthode efficace de représentation neuronale implicite

pour le SLAM visuel dense est présentée. La méthode reconstruit la représentation de la

scène tout en estimant simultanément la position de la caméra de manière séquentielle à
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Résumé

partir d’images RVB-D dont les poses sont inconnues. Nous intégrons les récentes avancées

en matière de NeRF dans le système SLAM, ce qui permet d’obtenir une précision et une

efficacité élevées. La représentation de la scène se compose de plans de caractéristiques

perpendiculaires alignés sur plusieurs échelles et de décodeurs peu profonds qui décodent les

caractéristiques interpolées en champ de distance signé tronqué (TSDF) et en valeurs RVB.

Des expériences approfondies sur des ensembles de données standard démontrent que notre

méthode surpasse les méthodes SLAM visuelles denses de plus de 50 % dans la reconstruction

3D et la localisation de la caméra, tout en fonctionnant jusqu’à 10 fois plus vite et en éliminant

le besoin de pré-entraînement.

Mots-clés : apprentissage profond, vision par ordinateur 3D, estimation de la profondeur,

synthèse de vues nouvelles, champs de radiance neuronaux (NeRF), reconstruction de scènes,

localisation et cartographie simultanées (SLAM)
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1 Introduction and Thesis Overview

Disclaimer: This chapter is adapted from the following articles – with permission of all

co-authors and the conference:

Johari, M. M., Carta, C., and Fleuret, F. (2021). DepthInSpace: Exploitation and Fusion

of Multiple Video Frames for Structured-Light Depth Estimation. In Proceedings of the

IEEE/CVF International Conference on Computer Vision (ICCV), pages 6039-6048.

Johari, M. M., Lepoittevin, Y., and Fleuret, F. (2022). GeoNeRF: Generalizing NeRF with

Geometry Priors. In Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition (CVPR), pages 18365–18375.

Johari, M. M., Carta, C., and Fleuret, F. (2023). ESLAM: Efficient Dense SLAM Sys-

tem Based on Hybrid Representation of Signed Distance Fields. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages

17408-17419. Selected as a Highlight Paper (Top 2.5%).

1.1 Introduction

In recent times, the emergence of deep learning has brought about a significant transformation

in the field of computer vision, marking a shift in how machines interpret visual information.

The fusion of artificial intelligence and neural network structures, particularly the multi-

layered configurations of deep neural networks, has fundamentally changed the landscape of

visual processing. At the core of deep learning is its ability to independently learn hierarchical

representations from raw data, making it a powerful tool for addressing intricate visual tasks

that were previously considered insurmountable. The impact of this approach extends beyond

mere image recognition, influencing various sectors such as robotics, healthcare, security, and

entertainment.
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In the context of deep learning for computer vision, a pivotal moment occurred in 2012 when

Krizhevsky et al. (2012) introduced their work, now known as AlexNet, a groundbreaking

convolutional neural network (CNN) architecture. This innovative architecture marked a

new era by significantly surpassing traditional methods in the ImageNet Large Scale Visual

Recognition Challenge (Russakovsky et al., 2015). This accomplishment not only showcased

the effectiveness of deep learning in image classification but also ignited a substantial increase

in research and development within the field. Successive architectures, including VGGNet (Si-

monyan and Zisserman, 2015), GoogLeNet (Szegedy et al., 2015), ResNet (He et al., 2016),

and ViT (Dosovitskiy et al., 2021), played a crucial role in advancing accuracy and scalability,

solidifying deep learning as the cornerstone of modern computer vision.

As we explore the vast realm of deep learning, it is crucial to acknowledge its impact on

diverse applications where the ability to interpret visual information has become essential.

Autonomous systems, driven by deep learning algorithms, now navigate intricate environ-

ments with unprecedented precision and adaptability (Chib and Singh, 2023). In medical

imaging, deep learning aids in identifying anomalies, improving diagnostic accuracy, and

potentially revolutionizing patient care (Suganyadevi et al., 2022). Biometric systems, sup-

ported by advanced neural networks, redefine security protocols (Jadhav et al., 2022), while

augmented reality experiences benefit from the seamless integration of deep learning for

object recognition and scene understanding (Ghasemi et al., 2022).

The interaction between deep learning and computer vision goes beyond task optimization;

instead, it signifies a symbiotic relationship that continually evolves to address emerging

challenges.

Deep learning has significantly impacted not only traditional computer vision tasks but has

also brought about transformative changes in the field of 3D computer vision and scene un-

derstanding. The incorporation of deep learning methods into the three-dimensional domain

signifies a logical progression in artificial intelligence evolution and introduces numerous

possibilities to enhance machine perceptual capabilities.

Moving into the third dimension introduces a new layer of complexity, extending beyond the

traditional boundaries of two-dimensional image processing. The unique nature of three-

dimensional data requires advanced techniques capable of decoding spatial relationships

and reconstructing scenes with a nuanced understanding of the complexities inherent in

a multidimensional world. This shift necessitates models to address challenges related to

depth perception, volumetric understanding, and the intricate interplay of objects within a

spatial context. Deep learning, known for its capacity to autonomously learn hierarchical

representations from raw data, plays a crucial role in addressing these challenges. It provides

a robust framework for machines to develop a nuanced understanding of spatial structures

and intricate relationships within the volumetric domain.

In the realm of 3D computer vision, challenges go beyond conventional image recognition

as algorithms must now navigate and interpret the intricacies of spatial dimensions. The
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emphasis shifts from merely identifying present objects to determining their precise locations

in three-dimensional space. This shift requires departing from traditional methodologies

and encourages the development of novel approaches that leverage the power of deep neural

networks to extract insights from volumetric data and multiple perspectives (Maturana and

Scherer, 2015; Qi et al., 2017a; Li et al., 2018b).

In recent years, 3D computer vision has emerged as a dynamic and rapidly evolving field,

revolutionizing the way machines perceive and interact with the three-dimensional world.

This interdisciplinary domain intersects computer science, mathematics, and optics, aiming

to replicate human-like depth perception in machines. From autonomous navigation to

augmented reality applications, 3D computer vision tasks have found diverse applications

across various industries. In the following, a glimpse into some examples of the prominent 3D

computer vision tasks is provided.

Object Recognition and Detection. Object Recognition and Detection is a pivotal area in

computer vision, which involves the identification and localization of objects within a three-

dimensional space. This field has witnessed significant advancements, with methods lever-

aging point cloud data, depth information, and sophisticated algorithms. PointNet (Qi et al.,

2017a) marked a milestone by directly processing point clouds for recognition tasks. Building

on this, PointNet++ (Qi et al., 2017b) and Frustum PointNets (Qi et al., 2018) proposed incre-

mental improvements. Recent advances in 3D object recognition and detection have been

marked by the integration of deep learning and large-scale datasets. Notable contributions

include Diffusion-SS3D (Ho et al., 2023), which addresses the limitation of the availability of

large-scale 3D annotations by exploiting pseudo-labels, and MonoNeRD (Xu et al., 2023a),

introducing a Neural Radiance Field-based object detection pipeline. These works highlight

the ongoing progress in leveraging neural networks to enhance accuracy and efficiency in 3D

object analysis.

Depth Estimation. Depth estimation, predicting the distance of each pixel from the camera,

is crucial for scene understanding or reconstruction. Monodepth2 (Godard et al., 2019) is one

of the pioneering works in the domain that proposes a robust self-supervised approach for

depth estimation from a mixture of monocular and stereo images. Numerous researchers

have been following this fundamental line of research in the 3D domain recently, including

but not limited to the studies in Zhao et al. (2023), Shao et al. (2023), Yang et al. (2023c),

Zhou and Dong (2023), and Piccinelli et al. (2023). In addition to depth sensing from RGB

images, another intriguing line of research involves depth estimation from the raw data of

active sensors, such as Time-of-Flight (Li et al., 2022b), LiDAR (Bartoccioni et al., 2023), and

structured-light (Riegler et al., 2019).

Object or Scene Reconstruction. Creating 3D models from 2D images or RGB-D images is

the aim of reconstruction approaches. Pixel2Mesh (Wang et al., 2018a) and Pix2Vox (Xie et al.,

2019) introduce methods leveraging neural networks for generating 3D mesh models from a
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single image. More recent work like the ones by Yang et al. (2023b) and Zhang et al. (2022)

attempt to improve the generalizability of the reconstruction to unseen object categories. 3D

reconstruction is not limited to objects in the literature. Methods like neuralRecon (Sun et al.,

2021), TransformerFusion (Bozic et al., 2021), Manhattan-SDF (Guo et al., 2022), SceneRF (Cao

and de Charette, 2023), and Uni-3D (Zhang et al., 2023b) show promising result in large-scale

scene reconstruction from multi-view inputs.

3D Pose Estimation. Determining the spatial configuration of objects or humans in a scene is

the task of 3D pose estimation. DeepPose (Toshev and Szegedy, 2014) pioneers a deep learning

approach for estimating human pose in 3D from 2D images. More recent advanced methods

for pose estimation can be found in the works by Zhang et al. (2023c) and Zhou et al. (2023)

which are robust to occlusions thanks to 3D understanding of the context.

Novel View Synthesis. Novel view synthesis is crucial for generating new perspectives of a

scene and has attracted unprecedented attention over the past few years. NeRF (Mildenhall

et al., 2020) is a groundbreaking paper introducing Neural Radiance Fields, a method for

synthesizing novel views with impressive realism. Shortly after NeRF, numerous follow-up

papers improved its quality (Barron et al., 2021; Hu et al., 2023), inference speed (Fridovich-Keil

et al., 2022; Garbin et al., 2021), training efficiency (Sun et al., 2022a; Müller et al., 2022), and

applicability (Meshry et al., 2019; Park et al., 2021a; Chan et al., 2022). The primary drawback

of NeRF lies in its inefficiency. To address this limitation, a novel 3D representation called

Gaussian Splatting (Kerbl et al., 2023) has emerged. Gaussian Splatting serves as a bridge

between NeRF’s high-quality view-dependent rendering and the hardware-friendly, efficient

classical rasterization approach. Soon after its introduction, it quickly evolved and found uses

in various improvements and applications, like dynamic scenes (Luiten et al., 2023; Yang et al.,

2023d), generative models (Chen et al., 2023; Tang et al., 2023a), anti-aliasing (Yu et al., 2023),

and relighting (Gao et al., 2023).

Simultaneous Localization and Mapping (SLAM). SLAM is a fundamental technology in

robotics and computer vision, playing a crucial role in enabling machines to understand

and navigate their surroundings. It involves the simultaneous process of creating a map

of an unknown environment while determining the precise location of the observer within

that environment. SLAM has applications ranging from autonomous vehicles and drones

to augmented reality, contributing significantly to the development of intelligent systems

capable of robustly interacting with and adapting to the world around them. ORB-SLAM2 (Mur-

Artal and Tardós, 2017a), an open-source visual SLAM based on traditional computer vision

techniques, is still a leading approach for localization accuracy. Over the past years, deep

learning has contributed to many parts of the SLAM algorithms (Mokssit et al., 2023). With

the advent of NeRF, the idea of exploiting implicit representation for SLAM was explored in

iMAP (Sucar et al., 2021) and NICE-SLAM (Zhu et al., 2022). Such implicit representation can

lead to the high-quality 3D reconstruction of the environment. Although these approaches

are significantly slower than the traditional methods, they demonstrate promising quality in
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3D reconstruction and opened a new line of research in the SLAM area.

This thesis encompasses contributions in the fields of depth estimation, novel view synthesis,

and visual SLAM. Section 1.2 outlines our contributions in these domains in detail.

1.2 Thesis Outline and Contributions

The following three chapters in this thesis are based on three conference proceedings arti-

cles (Johari et al., 2021, 2022, 2023). In each chapter, we investigate a 3D computer vision task

independently, and the chapters can be read in any order. An extensive supplementary mate-

rial is also presented at the end of each chapter to make them self-contained. Nevertheless,

the flow of the study unfolds as outlined below.

In our initial investigation, we focused on a specific challenge related to 3D understanding

exclusively within the camera frustum. This undertaking aligns with the established domain

of monocular depth estimation within the research framework of 3D computer vision. In

Chapter 2, which is based on the work by Johari et al. (2021), we introduce DepthInSpace, a

self-supervised deep-learning approach designed for depth estimation through structured-

light cameras, addressing the growing demand for embedded depth sensors in contemporary

smartphones. With the advent of structured-light cameras, depth sensing has become feasible

with basic algorithms implementable on devices with computational constraints in real time.

While traditional methods like block matching and semi-global matching have been employed

by devices like Kinect V1 (Martinez and Stiefelhagen, 2013) and Intel RealSense (Keselman

et al., 2017), learning-based approaches in this domain are limited.

The proposed DepthInSpace method leverages optical flow estimates derived from ambi-

ent information across multiple video frames to guide the training of a single-frame depth

estimation network. This innovative approach aids in preserving edges and mitigating over-

smoothing challenges, making depth estimation more effective. Additionally, we propose a

technique to fuse data from multiple video frames, enhancing the accuracy of depth maps

and minimizing artifacts, particularly in occluded areas. In another study, we demonstrate

the efficacy of using the estimated fused depth maps as a self-supervision signal to refine a

single-frame depth estimation network, resulting in an overall improvement in performance.

The models are thoroughly evaluated and compared with state-of-the-art counterparts using

synthetic and newly introduced real datasets. With the lack of large-scale, precise ground-truth

data, our end-to-end training of a deep neural network in a self-supervised manner becomes

crucial. The implementation code, training procedure, and datasets are publicly available at

https://www.idiap.ch/paper/depthinspace, facilitating further exploration and development

in the field of self-supervised depth estimation.

In our subsequent investigation, we extended our focus beyond the camera frustum, delving

into the realm of 3D sensing using multi-view data obtained either from a single object or
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densely sampled views from a limited camera trajectory of a real-world scene. This research

aligns with the well-recognized area of novel view synthesis. Chapter 3, which is based on

the work by Johari et al. (2022), introduces GeoNeRF, a novel and generalizable approach to

photorealistic novel view synthesis leveraging neural radiance fields. Comprising two main

stages, our method incorporates a geometry reasoner and a renderer. The geometry reasoner

initiates the process by constructing cascaded cost volumes for nearby source views, facilitat-

ing sophisticated occlusion reasoning through a Transformer-based attention mechanism.

Utilizing these cost volumes, the renderer employs classical volume rendering techniques to

infer geometry and appearance, producing detailed images. Notably, this architecture excels

in gathering information from consistent source views.

Our approach addresses a critical limitation of Neural Radiance Fields (NeRF) (Mildenhall

et al., 2020), which requires scene-specific training, leading to time-consuming per-scene

optimization with densely captured images. Recent approaches aiming to generalize NeRF

to new scenes often fall short of understanding scene geometry and occlusions, resulting

in undesirable artifacts. Building upon the foundation of MVSNeRF (Chen et al., 2021), we

introduce key enhancements. The geometry reasoner utilizes cascaded cost volumes trained

in a semi-supervised manner to obtain fine and high-resolution priors for conditioning the

renderer. The renderer combines an attention-based model, handling information from

diverse source views, with an auto-encoder network that aggregates information along a ray.

Additionally, our method efficiently detects and excludes occluded views for each point in

space, further enhancing rendering quality.

Moreover, GeoNeRF allows straightforward fine-tuning for a single scene, yielding competitive

results compared to per-scene optimized neural rendering methods with significantly reduced

computational costs. Experimental evaluations demonstrate GeoNeRF’s superior performance

over state-of-the-art generalizable neural rendering models across synthetic and real datasets.

Lastly, as an extension, we propose an alternate model adaptable to RGBD images, leveraging

depth information commonly available from depth sensors.

In summary, GeoNeRF advances the field of novel view synthesis by addressing the limi-

tations of existing methods, offering a robust and efficient solution for generalizable neu-

ral rendering. The implementation source code and visualization videos are accessible at

https://www.idiap.ch/paper/geonerf.

In our last contribution, we investigated a challenge involving the unrestricted movement of a

camera within a real-world setting. This investigation is situated within the established and

conventional domain of Simultaneous Localization and Mapping (SLAM) within the field of

3D computer vision research. Chapter 4, which is based on the work by Johari et al. (2023),

introduces ESLAM, a novel and efficient method that adapts implicit neural representation

to SLAM systems. ESLAM processes RGB-D frames sequentially, gradually reconstructing

the scene while simultaneously estimating the current camera position. Traditional SLAM

systems primarily focus on localization accuracy, while recent learning-based dense visual
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SLAM methods provide global 3D maps with reasonable but limited reconstruction accuracy.

Inspired by NeRF’s capacity to reason about large-scale scene geometry, ESLAM builds upon

NeRF-based dense SLAM methods like iMAP (Sucar et al., 2021) and NICE-SLAM (Zhu et al.,

2022). Unlike iMAP’s single MLP for geometry representation or NICE-SLAM’s voxel grid

storage for occupancies, ESLAM employs multi-scale axis-aligned feature planes to learn

implicit Truncated Signed Distance Field (TSDF). This choice of 3D representation in ESLAM

converges faster, delivers higher-quality reconstruction, and reduces the memory footprint

growth rate.

Benchmarking on three challenging datasets validates ESLAM’s superior performance, show-

casing over 50% improvements in 3D reconstruction and camera localization accuracy com-

pared to state-of-the-art methods. ESLAM achieves this while running up to ×10 faster and

without the need for pre-training. The method’s inherent smoothness, attributed to the

representation with feature planes, produces high-quality smooth surfaces without explicit

smoothness loss functions. The findings position ESLAM as an efficient and accurate dense

visual SLAM method with broad applicability. The implementation source code and visualiza-

tion videos are accessible at: https://www.idiap.ch/paper/eslam

Finally, in Chapter 5, we summarize our findings, propose new directions for future research,

and review recent advances in concurrent and successor studies.
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2 DepthInSpace: Depth Estimation with
Structured-Light Sensors

Disclaimer: This chapter is adapted from the following article – with permission of all

co-authors and the conference:

Johari, M. M., Carta, C., and Fleuret, F. (2021). DepthInSpace: Exploitation and Fusion

of Multiple Video Frames for Structured-Light Depth Estimation. In Proceedings of the

IEEE/CVF International Conference on Computer Vision (ICCV), pages 6039-6048.

2.1 Abstract

We present DepthInSpace, a self-supervised deep-learning method for depth estimation using

a structured-light camera. The design of this method is motivated by the commercial use case

of embedded depth sensors in nowadays smartphones. We first propose to use the estimated

optical flow from ambient information of multiple video frames as a complementary guide

for training a single-frame depth estimation network, helping to preserve edges and reduce

over-smoothing issues. Utilizing optical flow, we also propose to fuse the data of multiple video

frames to get a more accurate depth map. In particular, fused depth maps are more robust

in occluded areas and incur less in flying pixel artifacts. We finally demonstrate that these

more precise fused depth maps can be used as self-supervision for fine-tuning a single-frame

depth estimation network to improve its performance. Our models’ effectiveness is evaluated

and compared with state-of-the-art models on both synthetic and our newly introduced real

datasets. The implementation source code, training recipe, and both synthetic and captured

real datasets are available in the following link: https://www.idiap.ch/paper/depthinspace.

2.2 Introduction

With the advent of structured-light cameras, depth-sensing became conceivable with ba-

sic algorithms implementable on devices with computational constraints in real time. For
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instance, Kinect V1 uses a correlation-based block matching technique (Scharstein and

Szeliski, 1920), and Intel RealSense (Keselman et al., 2017) employs a semi-global match-

ing scheme (Hirschmuller, 2007). However, learning-based approaches in this field are

relatively limited. Ryan Fanello et al. (2017) propose a computationally efficient feature-

matching method. Projecting image patches to compact binary representation is proposed

in UltraStereo (Fanello et al., 2017) to achieve a low-complex matching scheme. Hyper-

Depth (Ryan Fanello et al., 2016) casts the problem of depth estimation as a classification-

regression task, which it solves using an ensemble of cascaded random forests. However,

HyperDepth assumes the availability of ground-truth labels either from high-accuracy sensors

or exhaustive stereo-matching search algorithms.

Due to the lack of large-scale, precise ground-truth data, end-to-end training of a deep neural

network in a self-supervised manner has been at the center of attention recently. ActiveStere-

oNet (Zhang et al., 2018b) uses Siamese networks for predicting disparity and proposes a

novel photometric loss function based on a Local Contrast Normalization (LCN) scheme for

training. A separate color sensor is used in the research by Kleitsiotis et al. (2019) to enhance

the performance of the approach by Zhang et al. (2018b). Riegler et al. (2019) exploit the

photometric loss function of Zhang et al. (2018b) and propose an edge-detection network

along with an edge-aware smoothness loss function to overcome the issue of edge fattening.

They also introduce another loss function that leverages the information of other video frames

to supervise the disparity estimation network’s training. To do so, they use the estimated

disparity and camera pose parameters to transform pixels into a 3D point cloud and apply the

consistency of the predicted depth of matched pixels across multiple frames.

We take the work by Riegler et al. (2019) as the baseline, and our contributions in this chapter

are as follows:

• We propose a novel training scheme that uses optical flow predictions from ambient

images to find matched pixels independently of the estimated disparities, which sta-

bilizes the training and enhances accuracy. Our sensor can capture ambient images

conveniently, and we exploit this feature in this regard.

• We extend this model to fuse information from multiple video frames to obtain more

precise disparity maps with sharper edges and fewer artifacts.

• We finally propose to exploit the resulting fused disparity maps to fine-tune a single-

frame disparity estimation network.

2.3 Related Work

Active Depth Estimation: The setup usually consists of a camera and a projector which

projects a random but known pattern of dots into the scene. Depending on the depth of

objects in the environment, the camera receives a deformed shape of the projected pattern,
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and this phenomenon could be used in depth estimation algorithms. Such algorithms include

basic searching for correspondences in Kinect V1 (Martinez and Stiefelhagen, 2013), compu-

tationally efficient learning-based techniques (Fanello et al., 2017; Ryan Fanello et al., 2016;

Chen and Koltun, 2014), and a deep neural network trained end-to-end to estimate disparity

map directly (Zhang et al., 2018b; Kleitsiotis et al., 2019; Riegler et al., 2019).

Leveraging Multiple Frames: Utilizing multiple frames for depth estimation includes but is

not limited to structured-light sensors (Riegler et al., 2019). In the studies by Godard et al.

(2017), Xie et al. (2016), and Kuznietsov et al. (2017), the second image of a stereo camera is

regarded as another video frame. Explicit utilization of multiple video frames of a conventional

camera for self-supervision is proposed in numerous researches (Zhan et al., 2018; Zhou et al.,

2017; Bian et al., 2019; Godard et al., 2019; Guizilini et al., 2020; Pillai et al., 2019; Casser

et al., 2019). Fusing the information of multiple frames during inference is employed in

RGB depth estimation models like DeepV2D (Teed and Deng, 2019), DeepMVS (Huang et al.,

2018), DeepSFM (Wei et al., 2020), and DPSNet (Im et al., 2018) in the form of aggregating

volume cost representations. In these papers, the aggregation is done by simple pooling

operations (DeepV2D and DeepMVS) or by performing convolution on the 2D grid (DeepSFM

and DPSNet). Such approaches would fail in the context of structured-light images, where

the projector also moves with the camera. As a result of the moving projector, the scene is

textured with the projected dots differently, and the camera captures an entirely new scene

in each frame. Simply warping frames together and aggregating them on the 2D grid will

limit the performance since the dots’ information is meaningless in the warped frames and

interferes with the fusion process. We tackle this issue in Section 2.4.2, where we perform

fusion and convolution in the continuous 3D space to leverage the consistency of geometry

there maximally. Unfortunately, all the aforementioned models are designed to work with

RGB images, and we cannot evaluate them for structured-light images through experiments.

However, we examine how the aggregation of frames on the 2D grid would fail for these images

in this study.

Optical Flow and Depth Estimation: Numerous pieces of research in passive depth estimation

suggest taking advantage of consistency between optical flow prediction and camera ego-

motion between consecutive video frames. Wang et al. (2019), Yin and Shi (2018), Zou et al.

(2018), and Ranjan et al. (2019) claim that simultaneous training of an optical flow network

and a depth estimation network can benefit both tasks and result in a better performance than

training those individually. Notably, Luo et al. (2020) proposes a novel framework capable

of fine-tuning a general monocular depth estimation network during test time by leveraging

a pre-trained optical flow estimation network. Although it is not common in the context of

active stereo depth sensing, there is adequate ambient information in captured images to

exploit and predict optical flow between frames and improve the quality of depth estimation

accordingly.
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Convolution in Point Cloud: In the context of point cloud processing, some novel techniques

are proposed that perform convolution on points in the continuous 3D space resembling

convolutional neural networks of regular grid structures. Thomas et al. (2019), Li et al. (2018b),

Xu et al. (2018), Wu et al. (2019), Boulch (2020), and Wang et al. (2018b) propose models that

are capable of applying convolution on unstructured and unordered data and work well on

point cloud benchmark tasks and datasets. For 2D grid-style data, when depth information

is available, it is plausible to transform points into 3D space and leverage such continuous

convolutions. Such an approach is presented by Chen et al. (2019), where the method jointly

benefits from conventional 2D convolution and parametric continuous convolution intro-

duced by Wang et al. (2018b).

2.4 Method

We build DepthInSpace (DIS) model upon the Connecting the Dots (CTD) model by Riegler

et al. (2019). CTD suggests using two separate networks, one for estimating the disparity, and

the other for detecting the edges in the images. The edge detector is weakly supervised with

the ambient images, which are the same as dot images except that the projector is off during

photo capture. Obtaining ambient data is considerably cheaper than ground-truth depth data;

however, the edge detection network is proposed to reduce the number of ambient images

required for training.

We claim ambient images contain more valuable information than only the objects’ edges. The

sensor that we use is equipped with a programmable switch that can capture both dot images

and ambient images at no additional cost. Accordingly, we discard the edge detection network

and replace the CTD’s smoothing loss function with a loss that directly extracts edges from

ambient images. Also, we predict the optical flow from ambient images to find the matched

pixels and introduce a new loss which encourages geometric consistency between them. Our

proposed loss replaces the geometric loss in CTD and is preferable in two regards. First, CTD

uses the momentary predicted depth and ego-motion of the camera to find the matched pixels.

As a result, the optimization landscape changes rapidly during training and could result in

instability of training. Secondly, the error in momentary predicted depths participates in the

procedure of finding matched pixels and leads to degraded performance. In addition, the

matching scheme with optical flow provides more flexibility to detect mistakenly matched

pixels and exclude them from contributing to the loss function. We use LiteFlowNet (Hui et al.,

2018) pre-trained on MPI Sintel (Butler et al., 2012) for optical flow, which is a lightweight

and fast model, but it has comparable performance to computational and memory resource

expensive models like FlowNet2 (Ilg et al., 2017).

2.4.1 Single-Frame Disparity Estimation

Our DepthInSpace Single-Frame (DIS-SF) model takes the CTD model (Riegler et al., 2019)

as a baseline and modifies two of its loss functions: we incorporate a novel multi-view loss
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Figure 2.1: The training scheme of our DIS-SF model for a sample pair of frames i and j , and
a reference pattern P . The dot images Ii and I j are fed to the DispNet (Mayer et al., 2016)
separately to predict disparities Di and D j . On another path, LiteFlowNet (Hui et al., 2018)
generates optical flow of these two frames Fi→ j exploiting ambient images Ai and A j jointly.
The photometric loss Lph and the smoothness loss Ls are applied to images separately,
whereas the multi-view loss Lmv , which imposes consistency of predicted depths between
two frames, is applied pairwise (see Section 2.5). This scheme is employed for every pair of
images from the same scene. The block Warp denotes bilinear 2D warping via optical flow
and the block Proj. to 3D means projecting points into 3D space using the disparities and
the camera’s intrinsic parameters and adjusting the view angle of points using the camera’s
extrinsic parameters. After training and for disparity inference, DispNet (Mayer et al., 2016)
takes a single dot image I and estimates a disparity map D as output.

function leveraging optical flow predictions and an improved edge-aware smoothness loss.

The training scheme of our DIS-SF model is presented in Figure 2.1. The photometric loss Lph

enforces consistency between the input image and the warped reference pattern via the

estimated disparity map. For smoothness loss Ls , we propose using an edge-aware one

similarly to Godard et al. (2017), Godard et al. (2019), and Pillai et al. (2019), except that we

extract the edge information directly from the ambient images.

Furthermore, we introduce a novel multi-view loss Lmv , which enforces the consistency of

the estimated depths between two different views with the help of bilinear warping via optical

flow predictions. Note that the photometric loss and smoothness loss apply to each image

individually, whereas the multi-view loss applies to all possible permutations of image pairs

from the same scene. For more details about the loss functions, refer to Section 2.5.
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We use DispNet (Mayer et al., 2016) for inferring disparity. We also apply Local Contrast

Normalization (LCN) preprocessing, suggested by Zhang et al. (2018b) and Riegler et al. (2019),

to both dot images I and the reference pattern P . Although we use ambient images A in

our training scheme, we do not directly employ them as DispNet’s input. This makes data

preparation more convenient during inference, and DispNet (Mayer et al., 2016) predicts

disparity maps D only based on dot images I . Instead, the pairs of ambient images are

exploited as the input of LiteFlowNet (Hui et al., 2018) to predict the optical flow map F . More

discussion on how we use pre-trained LiteFlowNet with ambient images, while it is designed

to work with RGB images, as well as an ablation study are provided in the supplementary

material in Sections 2.8.3 and 2.8.5.

2.4.2 Multi-Frame Disparity Estimation

Our Multi-Frame (DIS-MF) model combines the information of other frames from the same

scene into one frame and generates more accurate disparities. We assume an initial imperfect

disparity map is available for each frame beforehand, and we attempt to increase the quality

of the disparities by fusing the frames. In this regard, we take the outputs of our DIS-SF model

as the imperfect disparities. Compared to traditional RGB depth estimation, aggregating data

of multiple frames is more efficacious in a structured-light setup because the performance of

depth sensing depends on how the dots touch the objects in the environment. Thus, the data

contained in the frames are less correlated.

Letφ ∈RC×H×W denote a feature map of size H ×W with C channels, and X ∈R3×H×W denote

the corresponding 3D points obtained using the imperfect disparities and camera projection

matrix K ∈R3×3. Let us assume we have a pair of images with feature maps of (φi ,φ j ) and 3D

points of (Xi , X j ). Frame i is assumed as the target frame, and we want to fuse the information

ofφ j into φi . Our model’s first step is warping both feature map φ and 3D points X on the

2D grid via optical flow predictions Fi→ j and F j→i . Optical flow warping places the data of

the frames on the 2D grid such that corresponding data of the frames appear in each other’s

neighborhood on the 2D grid.

Letφ j→i = w j→i (φ j ) and X j→i = w j→i (X j ) denote warped features and warped points, where

w j→i (·) stands for bilinear 2D warping via the optical flow Fi→ j . We also define a binary mask

map M j→i ∈ {0,1}1×H×W which indicates if the warped data is valid and should be allowed to

participate in our fusion framework. We construct M j→i by evaluating the forward-backward

consistency of optical flow predictions, similarly to Zou et al. (2018) and Meister et al. (2018):

M j→i = |Fi→ j +w j→i (F j→i )|2 < 0.01× (|Fi→ j |2 +|w j→i (F j→i )|2)+0.5 (2.1)

Despite having all warped data and their validation mask map on the same 2D grid, we

do not perform fusion naively on the grid space. As we already mentioned in Section 2.3,

warped features in the structured-light setup contain interfering data of warped dots that

make the fusion task complicated. Instead, we propose a fusion block that performs fusion
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Figure 2.2: Internal architecture of our proposed fusion block, whose details of utilization
in our DIS-MF model are illustrated in Section 2.4.2 and Figure 2.3. We depict how features
of an auxiliary frame φ j→i are being fused into the target frame’s features φi . Binary mask
map M j→i , 3D points of the target frame Xi and warped frame X j→i , and the warped result of
the first 3D convolution of the auxiliary frame φ′

j→i are also inputs of this block. φ′′
i stands

for the output of this block, andφ′
i represents the output of the first 3D convolution required

for fusing into other frames’ fusion blocks. Conv(k ×k, s) and 3D_Conv(k ×k, s) denote 2D
and continuous 3D convolution respectively, with kernel size of k and stride s, and the block
Rescaling denotes the operations described in Equation (2.4).

and convolution in the continuous 3D space. Our fusion block also has a sense of faulty

imperfect disparities and can prevent those points from contributing to the aggregation. The

details of our fusion block and its utilization in our DIS-MF network architecture are as follows.

Fusion Block: Chen et al. (2019) suggest when depth information of a 2D image is available, it

is conceivable to exploit continuous convolution in the 3D space and benefit from both 2D and

3D data processing simultaneously. Such a proposal is consistent with the idea of merging the

data of multiple frames as the projected points in the 3D space could be processed regardless

of their camera pose. Inspired by them, we propose a fusion block capable of fusing several

feature maps originating from different frames into the target frame’s feature map. For the sake

of simplicity, let us assume we only have two frames and intend to merge the feature mapφ j

into the target feature mapφi . The functionality of the fusion block is illustrated in Figure 2.2.

We use the continuous 3D convolution (Wang et al., 2018b) as the core element of our fusion

block. Most architectures that exploit 3D convolution on the point cloud require running

exhaustive search algorithms to find points in the neighborhood (Chen et al., 2019; Li et al.,

2018b; Xu et al., 2018; Wu et al., 2019; Boulch, 2020; Wang et al., 2018b), which is infeasible to

perform on dense data such as ours. For instance, Chen et al. (2019) pre-compute the indices
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of nearest neighbors for all points. To mitigate the issue, we propose a novel technique that is

practical in real-time processing. Since our data is not fully unstructured, we suspect points

that are close in 3D space will be close on the 2D grid map if they are warped to the same

camera perspective, but not vice versa.

Accordingly, we form the concatenated feature map [φ j→i ,φi ] and point map [X j→i , Xi ]

and slide a 3×3 window over each 2D grid map simultaneously and perform convolution

only on points inside the sliding window similarly to a conventional CNN. The difference

is, that instead of performing a weighted sum with learnable parameters, we search for the

nearest points and perform continuous convolution. For simplifying the equations, letφi→i =
φi , Xi→i = Xi , and Mi→i = 1⃗. Also, let φ(h, w) and X (h, w) represent the features and the

coordinate of the position (h, w) on the grid map where 0 ≤ h < H and 0 ≤ w < W . We first

search for the nearest points to the center point of the sliding window on the target frame i :

l∗(h, w),m∗(h, w),n∗(h, w) = k-argmin
l∈{i , j }

−1≤m≤+1−1≤n≤+1

∣∣Xl→i (h +m, w +n)−Xi (h, w)
∣∣

Ml→i +ϵ
(2.2)

where k-argmin g (·) returns the k indices that minimize the function g (·), and ϵ is a small

constant. Ml→i is used in the denominator to exclude invalid points, and we set k = 9 to

ensure all returned indices correspond to valid pixels due to the window size 3×3. To extend

the model to fuse more than two frames, l in Equation (2.2) should span all available frames

rather than only {i , j }. The convolution’s result is:

φ′
i (h, w) =Ψ× ∑

l∗,m∗,n∗

(
φl∗→i (h +m∗, w +n∗) ⊙ MLP

(
Xl∗→i (h +m∗, w +n∗)−Xi (h, w)

))
(2.3)

where MLP is a multi-layer perceptron mapping 3D vectors to C -dimensional weights, ⊙
denotes element-wise product, andΨ is a C ×C learnable weight matrix. This implementation

can be regarded as a continuous version of separable convolution. The MLP and weighted

sum perform depth-wise convolution, while the linear transformation resembles 1×1 convo-

lution (Chen et al., 2019).

As shown in Figure 2.2, we adopt two 3D convolutions in each fusion block. Accordingly, we

warp the other frames’ outputs of the first 3D convolution to the target frameφ′
j→i and fuse

them into the second 3D convolution as well. We also employ traditional 2D CNNs in the

fusion block because there are some shortcomings to 3D convolution, such as edge fattening

near the boundaries of objects and background. To merge the feature maps in 2D CNNs, we

handle invalid points differently by proposing a scheme similar to dropout (Srivastava et al.,

2014). To do so, we first zero out features of invalid points, and then rescale the remaining

valid features inversely proportionally to the number of valid frames for each point on the 2D
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Figure 2.3: Our DIS-MF network architecture when only two frames i and j are combined.
Warping the first 3D convolution outputφ′ and the final output of each fusion blockφ′′ using
the relative optical flows are denoted by w i→ j (·) and w j→i (·). Note that D stands for imperfect
disparity participating as one of the inputs, and D ′ represents the final predicted disparity of
the model. This figure depicts the inference network of our DIS-MF model. For training the
DIS-MF model, this network replaces those individual DispNet (Mayer et al., 2016) networks
in the DIS-SF model in Figure 2.1, and the same scheme and loss functions (see Section 2.5)
are adopted.

grid. Specifically:

∀l ∈ {i , j } : φ̄l→i =
φl→i ×Ml→i∑

p∈{i , j }
Mp→i

(2.4)

The 3D convolutions along with 2D CNNs jointly construct the fusion block, which is capable

of processing high-resolution feature maps and effectively benefits from the information of

other frames from the same scene. SELU nonlinearity (Klambauer et al., 2017) and Group

Norm (Wu and He, 2018) are used after each convolution. We prefer Group Norm to Batch

Norm (Ioffe and Szegedy, 2015) in our model because Group Norm statistics are independent

of the number of samples in a batch and make training large networks feasible with smaller

batch sizes.

Network Architecture: Figure 2.3 illustrates the network architecture of our DIS-MF model.

The architecture includes three sections as follows. The preprocessing section takes the

images (I , A) and the imperfect disparity D as input and generates high-level feature maps

for each frame individually. Next, the feature maps are fed into a cascaded series of fusion

blocks, along with their corresponding 3D points X and binary masks M required for merging

and 3D convolutions to obtain fused feature maps. Warping with the optical flow is employed

whenever any data on a 2D grid map needs to be warped to another frame’s 2D grid.
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Lastly, the fused feature maps go through a refinement structure to preserve high-resolution

details such as edges and reduce distortions resulting from combining frames. Our refinement

section is inspired by the one by Zhang et al. (2018b) but takes the upsampled fused features

and the ambient image as inputs. In both the preprocessing and refinement sections, we

exploited residual blocks introduced by He et al. (2016) to promote gradient backpropagation

and expedite the training process.

An ablation study of design choices for the DIS-MF network architecture is provided in the

supplementary material in Section 2.8.5.

2.4.3 Fine-Tuning the Single-Frame Model

For purposes where resources are limited during inference, we propose an alternative ap-

proach to exploit the scheme of fusing image frames. We suggest that after training the DIS-MF

model, the produced disparities can be used as an auxiliary loss function to supervise and

fine-tune the single-frame network. The resulting model, DepthInSpace Fine-Tuned Single-

Frame (DIS-FTSF), can yield more accurate disparity maps with no additional memory or

computation cost during inference compared with DIS-SF.

2.5 Loss Functions

Here we introduce the loss functions employed in our models. Let Γ = {Ii , Ai }N−1
i=0 denote

the image samples from the same scene. The overall loss function consists of a photometric

loss Lph , a smoothness loss Ls , a multi-view loss Lmv , and a pseudo-ground truth loss Lpg t :

L = 1

N

∑
i∈Γ

(L i
ph +λ1L

i
s +λ2L

i
pg t )+ 1

N (N −1)

∑
i , j∈Γ

λ3L
i j
mv (2.5)

where {λk }3
k=1 are weighting constants, which do not necessarily take the same value in all of

our models.

Let D denote the disparity map, Ĩ denote the local contrast normalized input image, and P

denote the local contrast normalized reference dot pattern. Similarly to CTD, we employ the

smooth Census transform (Hafner et al., 2013), represented by ∥ · ∥C , in our photometric loss:

L i
ph = ∑

h,w
∥ Ĩi (h, w)−P

(
h, w −Di (h, w)

) ∥C (2.6)

Since we assume the availability of ambient images, we introduce an edge-aware smoothness

loss similar to the ones by Godard et al. (2017) and Godard et al. (2019). The smoothness loss

imposes consistency between disparity map discontinuities and edges in the ambient image:

L i
s = |∇hDi |e−β|∇h Ai |+|∇w Di |e−β|∇w Ai | (2.7)
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where ∇h and ∇w stand for 2D spatial gradients and β is a constant. Moreover, we impose

the consistency between the predicted depths in each pair of images from the same scene.

Let Xi and X j denote the 3D point clouds of the two frames obtained using the momentary

predicted disparities and camera intrinsic matrix. Our multi-view loss is:

L
i j
mv =

∣∣∣∣〈Xi −w j→i (T j→i × [X j , 1⃗]
)〉

z

∣∣∣∣×M ′
j→i (2.8)

where T j→i ∈R3×4 is the transformation matrix consisting of ego motion parameters, 1⃗ is an

all one matrix, and 〈·〉z operator returns the depth z of its input 3D vector. M ′
j→i is a binary

mask map validating warped points similarly to M j→i in Section 2.4.2, but it strictly excludes

low confidence points from supervising the training. For more details regarding M ′
j→i , refer to

the supplementary material in Section 2.8.2.

Lastly, only in our DIS-FTSF model, we use the more accurate fused disparity D ′ as pseudo-

ground truth to improve the quality of the imperfect disparity D . We impose the L1 consistency

between D and D ′ as an auxiliary loss:

L i
pg t = |Di −D ′

i | (2.9)

2.6 Experiments

Datasets: To evaluate our models and compare them with existing methods, we examine the

accuracy of depth estimation on three synthetic datasets and one real dataset. We used the tool

provided by CTD (Riegler et al., 2019) to render the synthetic data. Rendering is done in the

same experimental setup as CTD with the same objects of the ShapeNet Core dataset (Chang

et al., 2015), but the images are captured by a sensor whose parameters are set similarly to

our own hardware. One dataset is rendered using the Kinect dot pattern for projection, and

the second dataset is generated utilizing our own theoretical dot pattern for the projector.

For the last synthetic dataset, we projected and captured the dot pattern in a real laboratory

environment and used the observed pattern for rendering the dataset. In this regard, we use a

virtual projector with the same parameters as the capturing camera.

We incorporated multiple datasets because different dot patterns could lead to different depth-

sensing performances. The denser the dots are, the better the performance is. However,

choosing a dot pattern could be restricted by hardware limitations or available illumination

power. That is why we examine the models’ performances over different projected dot patterns.

For each synthetic dataset, we create 8192 sequences for training, 512 sequences for validation,

and 512 sequences for testing. Each sequence contains 4 pairs of dot images and ambient

images from the same scene.

We also evaluate the models on a smaller real dataset to show the generalization of our method

in an actual setup. The data include 148 sequences of 4 pairs of dot images and ambient
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Dataset Method o(0.5) o(1) o(2) o(5)

Synthetic
(Kinect Pattern)

SGM 10.36 9.13 8.76 2.45
HyperDeptha 4.38 3.22 2.69 2.39
CTD 2.74 1.45 0.77 0.24
DIS-SF 2.11 1.13 0.59 0.16
DIS-FTSF 1.92 1.00 0.51 0.14
DIS-MF 1.59 0.72 0.33 0.10

Synthetic
(Our Pattern)

SGM 12.93 11.64 11.22 4.06
HyperDeptha 7.35 6.48 6.11 5.86
CTD 3.38 1.71 0.85 0.28
DIS-SF 2.31 1.24 0.62 0.19
DIS-FTSF 1.96 0.95 0.45 0.12
DIS-MF 1.58 0.71 0.32 0.10

Synthetic
(Observed Pattern)

SGM 12.45 10.37 9.55 4.83
HyperDeptha 6.13 4.92 4.34 4.00
CTD 3.76 2.25 1.03 0.37
DIS-SF 3.66 2.16 1.00 0.23
DIS-FTSF 2.87 1.48 0.66 0.17
DIS-MF 2.46 1.24 0.54 0.14

Real

SGMb 25.54 19.23 17.75 16.96
HyperDeptha 34.62 25.09 22.49 21.77
CTD 22.74 9.26 3.79 1.00
DIS-SF 17.95 7.93 3.59 1.14
DIS-FTSF 17.06 7.48 3.47 1.11
DIS-MF 16.07 7.14 3.41 1.09

a HyperDepth is a supervised model trained with ground truth.
b We evaluated all models on the full image. SGM performs poorly on real
data due to large disparities in the dataset and its incapability of predict-
ing valid depths on a large portion of the image (whereas learning models
extrapolate in those areas). As an example, if we evaluated models on a
cropped area of the depth maps, o(0.5) and o(1) would drop to 15.56 and
8.81 for SGM, and 13.06 and 5.08 for DIS-FTSF.

Table 2.1: Quantitative comparison of the SGM algorithm (Hirschmuller, 2007), Hyper-
Depth (Ryan Fanello et al., 2016), and CTD (Riegler et al., 2019) versus our DIS-SF, DIS-FTSF,
and DIS-MF models. Numbers are percentages of outliers o(t), that is the fraction of pixels
for which the estimated disparity is more than t away from ground truth. We indicate in bold
the best performance among single-frame methods (i.e., all but our DIS-MF model, which, as
expected, performs the best).

images captured from 4 different scenes. The sensor we use is equipped with a programmable

switch, enabling the projector to be on and off, so it can capture dot images and ambient

images alternately at the rate of 15 fps each. Given the capturing rate, each pair of a dot image

and an ambient image captures the same scene approximately. We put aside 18 sequences
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Figure 2.4: Qualitative results of the methods and their corresponding error maps.
(a) Ground truth disparity map. (b) Input dot image with the projected pattern. (c) Hy-
perDepth (Ryan Fanello et al., 2016). (d) CTD (Riegler et al., 2019). (e) Our DIS-SF model.
(f) Our DIS-FTSF model. (g) Our DIS-MF Model. Each row represents a sample corresponding
to each dataset in Table 2.1. Points for which the ground truth data is unavailable are excluded
from the evaluation, and the color bar represents the disparity error map in pixels. For more
sample images and extended qualitative evaluations, refer to the supplementary material in
Section 2.8.6.

for validating and testing and utilized 130 sequences in training. To obtain accurate ground

truth we used a 3D scanner, the data of which is only used for evaluation. Due to the scanner

limitations, we take a set of partial scans that best cover the scene. These are fused together to

create a 3D model using the point-to-plane variant of the ICP algorithm (Chen and Medioni,

1992). A 3D mesh is then produced using the Ball-Pivoting algorithm (Bernardini et al., 1999).

For estimating the camera motion parameters, the same ICP variant is used to align the ground

truth 3D model and the 3D model obtained from the structured-light sensor via the block

matching technique.

More details of the datasets and also implementation of our models are provided in the

supplementary material in Section 2.8.4.

Metrics: We use the percentage of outliers o(t), which was used by Riegler et al. (2019) for

quantitative evaluation, which is the percentage of pixels where the difference between the

estimated and the ground truth disparities is greater than t .

Comparison with existing methods: We compare our models with Semi-Global Match-

ing (SGM) algorithm (Hirschmuller, 2007), HyperDepth (Ryan Fanello et al., 2016), and

CTD (Riegler et al., 2019). We observed through experiments that the window size of 13
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for the SGM algorithm best suits our dataset. For HyperDepth, we used the same reimple-

mentation code provided by Riegler et al. (2019) with the hyperparameters that yield the best

results in the original paper (Ryan Fanello et al., 2016). Since HyperDepth is a supervised

method, we used the ground truth depth maps for training this model.

When training either CTD or our models on the real dataset, we use the pre-trained weights

obtained from the synthetic data in order to speed up the training process. Moreover, due to

the limitations of the 3D scanner we used to capture ground truth, we had to put objects very

close to the camera, resulting in very large values of disparities. Therefore, the statistics of

disparities between the real dataset and the synthetic dataset are different, causing networks

to get stuck in local minima when they are fine-tuned on the real data. We handled this issue

by incorporating an additional loss function and using the SGM algorithm’s valid outputs as

pseudo-ground truth during the first few epochs of training. This loss function warms up the

training process and resembles a coarse estimation of the ground truth at the beginning of the

training. This stratagem prevents the networks from getting stuck in local minima and is used

for both CTD and our models.

A qualitative comparison of the estimated disparities of the models on different datasets

is depicted in Figure 2.4. It is notable that all of our models produce sharper edges than

the baseline model, CTD. Remarkably, our DIS-MF model best preserves the edges and is

also capable of retaining high-resolution details. On the other hand, HyperDepth shows

poor performance at discontinuities despite its accuracy in smooth regions. The figure also

contrasts the quality of our DIS-SF and DIS-FTSF models and exhibits the usefulness of

exploiting the DIS-MF model outputs to improve the accuracy of the DIS-SF model. Extended

qualitative evaluations are provided in the supplementary material in Section 2.8.6.

Table 2.1 provides the quantitative evaluation of the discussed models and shows the outcomes

are consistent with the qualitative results. Table 2.1 also reflects the effect of the dot pattern on

the performance of algorithms, where most models have the best accuracy in the experiment

with the denser Kinect dot pattern. However, our models show robustness in all experiments.

Particularly, DIS-MF yields overall the best results in all the experiments. Also, among the

methods that predict disparities based on a single image, our DIS-FTSF model outperforms

others overall.

For further experiments and ablation studies of the loss functions, validation masks, compo-

nents of the DIS-MF network, the effect of imperfect disparities, utilized optical flow network,

and extended qualitative analysis, refer to the supplementary material in Section 2.8.

2.7 Conclusion

We proposed DepthInSpace (DIS), which includes three self-supervised deep learning mod-

els to estimate depth from structured-light sensor data. Leveraging optical flow, we utilize

information from multiple video frames from the same scene to improve depth estimation
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accuracy in three different self-supervised fashions. We qualitatively and quantitatively eval-

uated our models over four datasets: a publicly available synthetic dataset, two synthetic

datasets customized with our setup parameters and dot pattern, and a real dataset that we

made publicly available. The experiments validate the superiority of our models over the

existing state-of-the-art methods.

The natural extension for future work will be on the one hand to apply our method to active

stereo setup, combining the strengths of both sources of information, and on the other hand

to deal with a simplified setup, for instance with a sparser less energy-hungry pattern of

illumination.

2.8 Supplementary Material

2.8.1 Notation Review

The notation in this section is consistent with the whole Chapter 2. We name our loss functions

as photometric loss Lph , smoothness loss Ls , multi-view loss Lmv , and pseudo-ground truth

loss Lpg t . For the DIS-MF model, we assume there are only two frames and we intend to

merge Frame j ’s feature mapφ j into Frame i ’s feature mapφi . Xi represents 3D point cloud

of Frame i obtained using imperfect disparities and camera intrinsic parameters. We also

define warped featuresφ j→i = w j→i (φ j ), and warped points X j→i = w j→i (X j ), where w j→i (·)
stands for bilinear 2D warping via the optical flow Fi→ j .

2.8.2 Validation Binary Masks for the Multi-View Loss Function

As explained in Section 2.5, our multi-view loss function is defined as:

L
i j
mv =

∣∣∣∣〈Xi −w j→i (T j→i × [X j , 1⃗]
)〉

z

∣∣∣∣×M ′
j→i (2.10)

where T j→i ∈R3×4 is the transformation matrix consisting of ego motion parameters, 1⃗ is an

all one matrix, and 〈·〉z operator returns the depth z of its input 3D vector. In Equation (2.10),

M ′
j→i is a binary mask map validating warped points and preventing the network from being

trained with noisy gradient information. In our DIS-SF model, two criteria must be met in

order for a warped point to be indicated as valid. The first one is optical flow forward-backward

consistency, suggested by Zou et al. (2018) and Meister et al. (2018):

M ′
F B = |Fi→ j +w j→i (F j→i )|2 < 0.01× (|Fi→ j |2 +|w j→i (F j→i )|2)+0.5 (2.11)

which is exactly the binary mask map that is used in the fusion block of our DIS-MF model

in Section 2.4.2. The second criterion excludes outlier points whose depths with respect to

the camera position of the target frame have a considerable distance from the depths of their
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corresponding points in the target frame itself, i.e.:

M ′
O =

∣∣∣∣〈Xi −w j→i (T j→i × [X j , 1⃗]
)〉

z

∣∣∣∣< τ (2.12)

where τ is a threshold set to 10 cm. Accordingly, the binary mask map in our DIS-SF model is

defined as the intersection of these two criteria: M ′
j→i = M ′

F B ⊙M ′
O .

Instead, for the DIS-MF model, we define more strict and accurate criteria thanks to having

access to imperfect disparities information. After checking optical flow forward-backward

consistency in Equation (2.11), we check if the optical flow is consistent with the rigid flow

derived from camera motion parameters and imperfect disparities. Therefore, this constraint

excludes pixels that either are warped with an erroneous optical flow or contain a significant

error in their initially predicted depths:

M ′
RF =

∣∣∣〈K ×Xi 〉uv −
〈

w j→i (K ×T j→i × [X j , 1⃗])
〉

uv

∣∣∣< 1 (2.13)

where K is the camera intrinsic matrix, 1⃗ is an all-one matrix, and 〈·〉uv operator denotes map-

ping the 3D points on the image plane by dividing the operands by their depth components

z. We map the points on the image plane because we are interested in taking into account

the validity of the depth of the frame z j independent of the depth of target frame zi . Thus, if

a particular warped point has an accurate initially predicted depth to some degree, but the

target point’s depth is inaccurate, the warped point is still considered valuable for participating

in the loss function, and in fact, it encourages the network to correct the depth of the target

point. The threshold in Equation (2.13) is set to 1, and it means that the warped point passes

this criterion if it falls into its corresponding matched point’s neighborhood of size one pixel

on the target image plane.

Lastly, to prevent the network from being greedy in aggregating and fusing and also to en-

courage it to preserve sharp edges in the disparity map, we introduce another criterion that

relates to the visual consistency of the warped and original normalized ambient images. This

constraint specially excludes faulty warped points near the edges in the image and encourages

the network to preserve the edges and geometry of the objects in the scene:

M ′
V C = |Ai −w j→i (A j )| < 0.01 (2.14)

This criterion is defined on the normalized ambient images, so the 0.01 threshold in Equa-

tion (2.14) means points are accepted if their gray intensity levels differ less than one percent

of the whole intensity level’s range. Having these criteria together, we define the validation

binary mask in our DIS-MF model as: M ′
j→i = M ′

F B ⊙M ′
RF ⊙M ′

V C . An ablation study on the

validation masks of DIS-MF is provided in Experiment 4 of Table 2.6 in Section 2.8.5.
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2.8.3 Optical Flow Versus Back-Projection Projection Technique

As we briefly discussed in Section 2.4.1, while it is possible to find matched pixels using the

back-projection projection technique, as it is used in CTD (Riegler et al., 2019), we opted for

utilizing direct optical flow predictions for finding matched pixels among frames.

Optical flow provides us with two advantages. Firstly, the back-projection projection technique

uses the momentary estimated depth and camera motion parameters to find matched pixels.

As a result, the errors in the predicted depths propagate through the algorithm and degrade

its performance. Also, it causes rapid fluctuations in the optimization landscape of the loss

function. In contrast, we use a pre-trained optical flow network that finds matched pixels

independently of the performance of depth estimation itself and provides a more reliable and

stable loss function to optimize. Secondly, leveraging optical flow enables us to define strict

binary masks (described in Section 2.8.2) to exclude incorrectly warped pixels and only retain

valuable data for supervising the training.

However, the drawback is that optical flow networks are designed to work with RGB images,

while we provide them with ambient images that include only luminance information. To

be more specific, we had to convert the ambient images to RGB format before feeding them

to LiteFlowNet (Hui et al., 2018). This conversion would degrade optical flow prediction

performance, but it does not degrade the performance of our depth estimation models pro-

portionately. The reason is that we have made our models robust to the performance of

optical flow thanks to our multiple masking criteria (Section 2.8.2). We only retain correctly

warped pixels, so a lower optical flow performance results in fewer pixels for supervision, not

more faulty pixels. An ablation study on the effect of the optical flow accuracy on our models’

performances is provided in Section 2.8.5.

2.8.4 Implementation Details

Synthetic Datasets: We use the renderer tool provided by Riegler et al. (2019) to generate the

synthetic datasets. Following their approach, we populate the scene with a subset of chair

meshes from the ShapeNet Core dataset (Chang et al., 2015) randomly scaled and rotated,

placed at a distance between 0.5–3 m from the camera. A randomly slanted background plane

at a distance between 2–5 m is also employed in the scene. Following the recipe by Riegler

et al. (2019), the camera is randomly translated within 20×20×20 cm for capturing frames of

each video sequence. However, we use our own camera’s parameters to capture data from the

scene. The baseline between our camera and projector is 2.46 cm, and the image resolution

is 512×432 pixels. As we already mentioned in Section 2.6, three different dot patterns are

exploited in our experiments resulting in three synthetic datasets.

Real Dataset: We use an Artec Eva 3D scanner to scan 4 different 3D scenes containing various

objects. The scanner has a few limitations, such as having a limited depth range of 0.3–1.2

m and capturing only 100 depth frames per scan. For this reason, we take multiple partial
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Model λ1 λ2 λ3

DIS-SF 0.4 0.0 0.2
DIS-FTSF 0.4 0.1 0.2
DIS-MF 0.8 0.0 0.2

Table 2.2: The values of the coefficients used in our models’ aggregate loss functions in Equa-
tion (2.15). For an ablation study of searching for these hyperparameters, refer to Section 2.8.5

scans of each scene and register them together using the point-to-plane variant of the ICP

algorithm (Rusinkiewicz and Levoy, 2001), as mentioned in Section 2.6. Once we obtain a 3D

point cloud that covers the scene in a suitable way, the Ball-Pivoting algorithm (Bernardini

et al., 1999) is applied to derive a 3D mesh of the scene. This mesh is used as ground truth.

Subsequently, we scan each scene with our own structured-light sensor to capture 148 pairs of

dot images and ambient images. The sensor we use is equipped with a programmable switch,

enabling the projector to be on and off, so it can capture dot images and ambient images

alternately at the rate of 15 fps each. Given the capturing rate, each pair of a dot image and an

ambient image captures the same scene approximately. We make use of these frames as 37

video sequences containing 4 frames each. As a result, 148 video sequences are obtained in

total from all 4 scenes. Applying a block-matching technique on the dot images, we extract

148 depth images for each scene. The same ICP algorithm (Rusinkiewicz and Levoy, 2001) is

then used to align the depth images acquired using the sensor and the ground truth 3D mesh

in order to obtain transformation matrices among the frames. We made the real dataset, along

with the instructions to replicate the synthetic datasets, publicly available.

Loss Functions: Our proposed models’ loss functions are explained in detail in Section 2.5.

Here we clarify the coefficients used in the aggregate loss function. We introduced the aggre-

gate loss function in the paper as:

L = 1

N

∑
i∈Γ

(L i
ph +λ1L

i
s +λ2L

i
pg t )+ 1

N (N −1)

∑
i , j∈Γ

λ3L
i j
mv (2.15)

where Γ denotes the image samples representing the same scene, Lph is the photometric loss,

Ls is the smoothness loss, Lmv is the multi-view loss, and Lpg t is the pseudo-ground truth

loss. The coefficients in Equation (2.15) take different values for each model. These values are

presented in Table 2.2. As is shown in the table, the coefficient of the smoothness loss λ1 is set

differently in our DIS-SF and DIS-MF models. Since our binary masks are less strict in DIS-SF,

it allows more pixels in flat regions or backgrounds into Lmv . This promotes the smoothness

of depth maps, and accordingly, λ1 is set to a smaller value in DIS-SF. In Section 2.8.5, we

provide a detailed ablation study of searching for these hyperparameters.

Training Details: We have trained our models with a single NVIDIA Tesla V100 GPU. We exploit

Adam (Kingma and Ba, 2014) optimizer with a learning rate of 10−4 for training. We set the
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Dataset CTD (Riegler et al., 2019) DIS-SF DIS-FTSF DIS-MF
Synthetic 40 36 18 85
Real 7 6 3 12

Table 2.3: Approximate time (hours) of training/fine-tuning of the models on synthetic and real
datasets with a single NVIDIA Tesla V100 GPU. Note that these reported times are measured
assuming all required data are available. Therefore, the dependency of our models on each
other’s outputs should also be considered. For example, to obtain a trained DIS-FTSF model
on a synthetic dataset from scratch, we train the DIS-SF model for 36 hours, the DIS-MF model
for 85 hours, and lastly, the DIS-FTSF model for 18 hours approximately.

batch size to 8 for training the DIS-SF and DIS-FTSF models and set it to 4 for the DIS-MF

model due to GPU memory limitation.

Prior to training, we pre-save the outputs of LiteFlowNet (Hui et al., 2018) and provide them as

the optical flow predictions to our model. Since there are 4 frames in each video sequence

of our datasets, we need to pre-save 12 optical flow maps for each sequence. The reason is

that we need both forward and backward optical flow data for each unique pair of frames in a

video sequence.

We also pre-save the results of our DIS-SF model before training our DIS-MF model, and

similarly, we pre-save the outputs of DIS-MF before training the DIS-FTSF model. These

pre-saving steps make data preparation more convenient and result in an efficient training

process. The time of training of our models, as well as the CTD (Riegler et al., 2019) model, on

synthetic datasets and fine-tuning on the real dataset, is presented in Table 2.3.

2.8.5 Ablation Study

This section provides ablation studies regarding our introduced loss functions, setting hyper-

parameters, and design choices of our DIS-MF network architecture. All the experiments are

evaluated on the synthetic dataset with our projection dot pattern.

Efficacy of the Loss Functions

Here, we attempt to distinguish the effectiveness of each of our individual loss functions.

Table 2.4 summarizes the quantitative evaluation of our DIS-SF network when it is trained with

different combinations of loss functions. Since we use exactly the same network architecture

of CTD (Riegler et al., 2019) in DIS-SF, it is also fair to compare the results with the case

that the network is trained with loss functions employed in CTD. Furthermore, to show the

generalization of the concept of fine-tuning with pseudo-labels, we fine-tuned the CTD model

with our Lpg t as an additional loss function and observed improvement in the outputs as it is

indicated in Table 2.4. Lastly, we also examined the performance if we naively supervised the
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Loss o(0.5) o(1) o(2) o(5)
Supervised by SGM Outputs 21.1 15.9 12.0 7.91
CTD Loss Functions 3.38 1.71 0.85 0.28
CTD Loss Functions+Lpg t 2.62 1.25 0.58 0.14
Lph 40.5 22.1 9.36 1.15
Lph +Ls 3.52 1.38 0.67 0.23
Lph +Lmv 3.22 1.69 0.86 0.24
Lph +Ls +Lmv 2.31 1.24 0.62 0.19
Lph +Ls +Lmv +Lpg t 1.96 0.95 0.45 0.12

Table 2.4: Ablation study of individual loss terms: the photometric loss Lph , the smoothness
loss Ls , the multi-view loss Lmv , and the pseudo-ground truth loss Lpg t . Since we share the
same network architecture for single-frame depth estimation with CTD (Riegler et al., 2019),
we could fairly contrast the superiority of our loss functions to that of CTD. The last row, which
represents our DIS-FTSF model, yields overall the best results in terms of the percentage of
outliers. Also, the effectiveness and generalizability of fine-tuning with pseudo-ground truth
labels Lpg t are shown when used for either fine-tuning our DIS-SF model or the CTD model.

network with valid outputs resulting from the SGM algorithm (Hirschmuller, 2007).

Figure 2.5 also depicts some examples of our DIS-SF network outputs when it is trained with

different combinations of loss functions. The samples demonstrate how our loss functions

complement each other and form a robust depth estimation model altogether.

Searching for Hyperparameters

Table 2.5 represents the experiments we conducted for searching for the hyperparameters of

our aggregate loss function for the DIS-SF and DIS-MF models. As we previously discussed,

the hyperparameters should take different values due to the different mask criteria we defined

in Section 2.8.2. In the DIS-SF model, the mask criteria are less strict, and as a result, the

smoothness of disparity maps is inherently promoted in the multi-view loss Lmv , whereas

smoothness loss Ls in DIS-MF is emphasized directly. The experiments in Table 2.5 support

this hypothesis.

DIS-MF Network Architecture

The quantitative analysis of four experiments is presented in Table 2.6: 1. Effect of the number

of fused frames. 2. Effect of the number of fusion blocks and their channel size on the overall

network architecture. 3. Efficacy of various processing elements in our DIS-MF network. 4.

Contribution of validation binary masks, introduced in Section 2.8.2, on our model’s perfor-

mance. Moreover, qualitative analysis of these four experiments are provided in Figures 2.6,

2.7, 2.8, and 2.9.
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Figure 2.5: Qualitative ablation study of our individual loss functions. For each experiment,
our DIS-SF network is trained with a different combination of our loss functions. (a) Input
dot image with the projected pattern. (b) Ground truth disparity map. (c) Trained with
CTD (Riegler et al., 2019) loss functions. (d) Trained with Lph . (e) Trained with Lph +Ls .
(f) Trained with Lph +Lmv . (g) Trained with Lph +Ls +Lmv . (h) Our final single-frame
model trained with Lph +Ls +Lmv +Lpg t .

In particular, it is notable that despite the hugeness of our network and its robustness against

variation of the number of fusion blocks or their channel size, according to Table 2.6, the

performance still degrades when we remove continuous 3D convolution and perform fusion

only on the 2D grid map. As previously discussed, in the context of depth estimation from

conventional RGB camera, works like DeepV2D (Teed and Deng, 2019), DeepMVS (Huang et al.,

2018), DeepSFM (Wei et al., 2020), and DPSNet (Im et al., 2018) attempt to fuse information of

multiple frames on the 2D grid. We cannot directly compare our work with them because they

are designed to operate on RGB images. Still, we attempt to demonstrate how leveraging fusion

both on the 2D grid and in the 3D space improves the performance in the structured-light

setup depth estimation.

Lastly, Figure 2.10 exemplifies the behavior of each binary mask criterion in Section 2.8.2 and

shows how these masks exclude low confidence pixels and prevent them from supervising the

training.

Utilizing the Fusion Architecture in Different Setups

This section analyzes the effect of three factors on our DIS-MF model’s performance: the

imperfect input disparities, the fusion architecture, and our proposed multi-view-based loss

function. In this regard, we applied our DIS-MF network to CTD outputs and trained the

fusion model once with the CTD loss function and once with ours. Comparison of the results

with the original CTD and DIS models in Table 2.7 discriminates the individual efficacy of our
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Model λ1(Ls ) λ3(Lmv ) o(0.5) o(1) o(2) o(5)

DIS-SF

0.2 0.1 2.84 1.45 0.68 0.20
0.2 0.2 2.48 1.31 0.64 0.19
0.2 0.3 2.41 1.35 0.70 0.19
0.2 0.4 2.35 1.26 0.66 0.19
0.4 0.1 2.34 1.26 0.63 0.19
0.4 0.2 2.31 1.24 0.62 0.19
0.4 0.3 2.37 1.28 0.64 0.19
0.4 0.4 2.49 1.29 0.67 0.20
0.6 0.1 2.37 1.27 0.65 0.19
0.6 0.2 2.32 1.24 0.63 0.19
0.6 0.3 2.42 1.28 0.65 0.19
0.6 0.4 2.44 1.31 0.68 0.19
0.8 0.1 2.35 1.25 0.65 0.19
0.8 0.2 2.40 1.28 0.66 0.19
0.8 0.3 2.43 1.30 0.67 0.20
0.8 0.4 2.50 1.38 0.69 0.20

DIS-MF

0.2 0.1 2.19 0.93 0.43 0.12
0.2 0.2 1.98 0.93 0.44 0.12
0.2 0.3 1.99 0.96 0.47 0.13
0.4 0.1 1.92 0.86 0.39 0.11
0.4 0.2 1.87 0.84 0.39 0.11
0.4 0.3 1.81 0.88 0.42 0.11
0.6 0.1 2.06 0.86 0.36 0.10
0.6 0.2 1.97 0.84 0.37 0.10
0.6 0.3 1.70 0.80 0.38 0.11
0.8 0.1 1.96 0.82 0.35 0.10
0.8 0.2 1.58 0.71 0.32 0.10
0.8 0.3 1.66 0.77 0.36 0.10
1.0 0.1 1.88 0.75 0.34 0.10
1.0 0.2 1.72 0.75 0.34 0.10
1.0 0.3 1.62 0.76 0.35 0.10

Table 2.5: Ablation study of searching for hyperparameters of our aggregate loss function. It
is noticeable that even poor choices of hyperparameters for the DIS-MF model still result in
better performance than all experiments with the DIS-SF model. For further details on why
separate experiments were needed for the DIS-SF and DIS-MF models, refer to Section 2.8.5
and 2.8.4.

proposed loss and fusion architecture and shows these two contributions are complementary

to each other. Also, the table suggests that these two are not necessarily required to be applied

to DIS-SF imperfect disparities, as they can significantly improve the quality of CTD outputs.
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Figure 2.6: Qualitative analysis of Experiment 1 in Table 2.6, where we examine the effect of
the number of fused frame N on DIS-MF performance. (a) Input dot image. (b) Ground truth
disparity map. (c) DIS-MF’s output with N = 2. (d) DIS-MF’s output with N = 3. (e) DIS-MF’s
output with N = 4. As expected according to Table 2.6, DIS-MF performs better at completing
disparity maps as the number of fused frames increases.

Robustness to Optical Flow Predictions

As discussed in Section 2.8.3, our training process is robust to optical flow prediction errors

thanks to our validation masks introduced in Section 2.8.2. This robustness allows us to utilize

the lightweight optical flow network LiteFlowNet (Hui et al., 2018) in our models. To evaluate

this robustness, we also trained our networks on the synthetic data with the state-of-the-art

optical flow model on MPI Sintel (Butler et al., 2012), GMA (Jiang et al., 2021), which has 69.4%

higher accuracy but is slower than LiteFlowNet. The results in Table 2.8 show that despite

the huge gap between the GMA and LiteFlowNet accuracies, the gain that GMA brings to our

models is marginal. It is also notable that since our validation masks in DIS-MF are stricter

than in DIS-SF on account of having access to imperfect disparities (see Section 2.8.2), DIS-MF

is more robust to the optical flow performance.

2.8.6 Additional Qualitative Results

In this section, we first present an extended qualitative analysis of existing models along with

our proposed models in Figures 2.11, 2.12, 2.13, and 2.14. Each figure presents sample images

from one of the datasets introduced in Section 2.6. The color bars in the figures represent

disparity error maps in pixels.
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Figure 2.7: Qualitative analysis of Experiment 2 in Table 2.6, where we examine the effect of
the number of fusion blocks and their channel size on DIS-MF performance (The architecture
is presented in Figure 2.3). (a) Input dot image. (b) Ground truth disparity map. (c) DIS-MF’s
output with 2 cascaded fusion blocks, each of which with 48 channels. (d) DIS-MF’s output
with 4 cascaded fusion blocks, each of which with 32 channels. (e) DIS-MF’s output with 6
cascaded fusion blocks, each of which with 24 channels. (f) DIS-MF’s output with 8 cascaded
fusion blocks, each of which with 16 channels. As expected according to Table 2.6, DIS-MF
performs robustly with different choices of parameters, and having 4 fusion blocks with 32
channels produces higher quality disparity maps.

Furthermore, we adopt a different approach to visualize depth maps of objects from the

synthetic dataset in Figure 2.15 and from the real dataset in Figure 2.16. To visualize the depth

maps, we rely on color-coded depth values and 3D rendering of the scene. The depths are

rendered in OpenGL (Shreiner et al., 2013), where every point of the mesh has a color that

corresponds to its depth value in the Turbo colormap (Mikhailov, 2019). In addition, we place

a spotlight in the same position as the camera to light the scene. This allows us to better

appreciate the quality of the computed depths as small changes in the values of the normals

in the mesh impact the lighting. Finally, we consider that edges over 10 cm in the mesh are

invalid and exclude them from the rendered images.
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Chapter 2. DepthInSpace: Depth Estimation with Structured-Light Sensors

Figure 2.8: Qualitative analysis of Experiment 3 in Table 2.6, where we examine the efficacy
of each processing component on DIS-MF performance (Components are introduced in
Section 2.4.2). (a) Input dot image. (b) Ground truth disparity map. (c) DIS-MF’s output
when fusion is done only in the continuous 3D space. (d) DIS-MF’s output when fusion is
done only on the 2D grid map. (e) DIS-MF’s output when the refinement structure (post-
processing part in Figure 2.3) is removed from the network architecture. (f) DIS-MF’s output
with all processing components. This figure, in particular, contrasts the capability of DIS-
MF in completing disparity maps when fusion is performed in the continuous 3D space
versus when it is done on the 2D grid map. Additionally, by comparing columns (c) and
(f), one observes that fusing only in the 3D space results in fewer missing points compared
to having both 2D and 3D fusion in the architecture. However, the edge-fattening artifact,
which is inherent to continuous 3D convolution, is more pronounced in the disparity maps
generated by aggregating data only in the 3D space. Overall, employing both 2D and 3D fusion
components produces balanced disparity maps concerning completing missing points and
preserving edges and discontinuities in the disparity maps.

Model o(0.5) o(1) o(2) o(5)
CTD 3.38 1.71 0.85 0.28
DIS-SF 2.31 1.24 0.62 0.19
CTD Output + DIS-MF Network + CTD Loss 2.33 1.14 0.60 0.20
CTD Output + DIS-MF Network + DIS Loss 1.97 0.83 0.37 0.12
DIS-MF 1.58 0.71 0.32 0.10

Table 2.7: Analysis of our multi-frame fusion efficacy when it takes CTD outputs as imperfect
input disparities.
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2.8 Supplementary Material

Figure 2.9: Qualitative analysis of Experiment 4 in Table 2.6, where we examine the impact
of validation binary masks, introduced in Section 2.8.2, on DIS-MF performance (a) Input
dot image. (b) Ground truth disparity map. (c) DIS-MF’s output when only M ′

F B is used to
select pixels for Lmv . (d) DIS-MF’s output when M ′

F B and M ′
V C are used to select pixels for

Lmv . (e) DIS-MF’s output when M ′
F B and M ′

RF are used to select pixels for Lmv . (f ) DIS-MF’s
output when all M ′

F B , M ′
RF , and M ′

V C are used to select pixels for Lmv . It is noticeable how
M ′

RF contributes to completing the disparity map while M ′
V C properly preserves the edges

and discontinuities.

Model o(0.5) o(1) o(2) o(5)
DIS-SF + LiteFlowNet 2.31 1.24 0.62 0.19
DIS-SF + GMA 2.14 1.12 0.56 0.14
DIS-MF + LiteFlowNet 1.58 0.71 0.32 0.10
DIS-MF + GMA 1.62 0.71 0.31 0.09

Table 2.8: Analysis of the effect of using different optical flow networks, LiteFlowNet (Hui et al.,
2018) and GMA (Jiang et al., 2021), on DIS models’ performances.
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Chapter 2. DepthInSpace: Depth Estimation with Structured-Light Sensors

Figure 2.10: Visualizing the behavior of binary masks criteria in Section 2.8.2 when Frame j is
being used for supervision and is warped on the Frame i ’s grid map. This figure demonstrates
how each criterion selects high-confidence pixels for training and prevents low-confidence
pixels from participating in the supervision and destabilizing training. (a) Frame i ’s ground
truth disparity map. (b) Frame i ’s imperfect disparity map (Di ). (c) Frame j ’s imperfect
disparity map warped on the Frame i ’s grid map (D j→i ). (d) Frame j ’s imperfect disparity map
(D j ). (e) Optical flow forward-backward consistency mask M ′

F B . (f) Optical flow and rigid
flow consistency mask M ′

RF . (g) Visual consistency of ambient images mask M ′
V C . (h) The

intersection of all binary masks M ′
j→i = M ′

F B ⊙M ′
RF ⊙M ′

V C .
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2.8 Supplementary Material

Figure 2.11: Additional full-size qualitative results of the implemented methods and their
corresponding error maps. All samples are taken from the synthetic dataset rendered with
the Kinect dot pattern. (a) Ground truth disparity map and input dot image. (b) The SGM
algorithm (Hirschmuller, 2007). (c) HyperDepth (Ryan Fanello et al., 2016). (d) CTD (Riegler
et al., 2019). (e) Our DepthInSpace Single-Frame (DIS-SF) model. (f) Our DepthInSpace
Fine-Tuned Single-Frame (DIS-FTSF) model. (g) Our DepthInSpace Multi-Frame (DIS-MF)
Model. The color bar represents the disparity error map in pixels.
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Chapter 2. DepthInSpace: Depth Estimation with Structured-Light Sensors

Figure 2.12: Additional full-size qualitative results of the implemented methods and their
corresponding error maps. All samples are taken from the synthetic dataset rendered with
our own theoretical dot pattern. (a) Ground truth disparity map and input dot image with the
projected pattern. (b) The SGM algorithm (Hirschmuller, 2007). (c) HyperDepth (Ryan Fanello
et al., 2016). (d) CTD (Riegler et al., 2019). (e) Our DepthInSpace Single-Frame (DIS-SF) model.
(f) Our DepthInSpace Fine-Tuned Single-Frame (DIS-FTSF) model. (g) Our DepthInSpace
Multi-Frame (DIS-MF) Model. The color bar represents the disparity error map in pixels.
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Figure 2.13: Additional full-size qualitative results of the implemented methods and their
corresponding error maps. All samples are taken from the synthetic dataset rendered with our
own dot pattern observed in an actual laboratory setup. (a) Ground truth disparity map and
input dot image. (b) The SGM algorithm (Hirschmuller, 2007). (c) HyperDepth (Ryan Fanello
et al., 2016). (d) CTD (Riegler et al., 2019). (e) Our DepthInSpace Single-Frame (DIS-SF) model.
(f) Our DepthInSpace Fine-Tuned Single-Frame (DIS-FTSF) model. (g) Our DepthInSpace
Multi-Frame (DIS-MF) Model. The color bar represents the disparity error map in pixels.
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Figure 2.14: Additional full-size qualitative results of the implemented methods and their
corresponding error maps. All samples are taken from the real dataset. (a) Ground truth
disparity map and input dot image. (b) The SGM algorithm (Hirschmuller, 2007). (c) Hy-
perDepth (Ryan Fanello et al., 2016). (d) CTD (Riegler et al., 2019). (e) Our DepthInSpace
Single-Frame (DIS-SF) model. (f) Our DepthInSpace Fine-Tuned Single-Frame (DIS-FTSF)
model. (g) Our DepthInSpace Multi-Frame (DIS-MF) Model. Points for which the ground
truth data is unavailable are excluded from evaluation. The color bar represents the disparity
error map in pixels.
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Figure 2.15: Qualitative analysis of the depth maps rendered in OpenGL (Shreiner et al.,
2013) and presented in the Turbo color map (Mikhailov, 2019). Samples are taken from
the synthetic dataset. This analysis shows how our models outperform the state-of-the-art
model, CTD (Riegler et al., 2019), in preserving details of the 3D objects and producing sharp
edges. (a) Ground truth depth map. (b) CTD (Riegler et al., 2019). (c) Our DIS-FTSF model.
(d) Our DIS-MF model. For further information about 3D rendering of depth maps, refer to
Section 2.8.6. The color bar represents depth values in meters.
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Figure 2.16: Qualitative analysis of the depth maps rendered in OpenGL (Shreiner et al.,
2013) and presented in the Turbo color map (Mikhailov, 2019). Samples are taken from the
real dataset. This analysis shows how our models outperform the state-of-the-art model,
CTD (Riegler et al., 2019), in preserving details of the 3D objects and producing sharp edges.
It is noticeable that in some regions (e.g., the top edge of the box in the second row in col-
umn (a)), ground truth depths are noisy, and it is due to the limitations of the 3D scanner
we used to capture ground truth depths. Since all evaluated methods are self-supervised,
their performances are not affected by the ground truth noise. (a) Ground truth depth map.
(b) CTD (Riegler et al., 2019). (c) Our DIS-FTSF model. (d) Our DIS-MF model. For further
information about 3D rendering of depth maps, refer to Section 2.8.6. The color bar represents
depth values in meters.
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3 GeoNeRF: Generalizing NeRF with
Geometry Priors

Disclaimer: This chapter is adapted from the following article – with permission of all

co-authors and the conference:

Johari, M. M., Lepoittevin, Y., and Fleuret, F. (2022). GeoNeRF: Generalizing NeRF with

Geometry Priors. In Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition (CVPR), pages 18365–18375.

3.1 Abstract

We present GeoNeRF, a generalizable photorealistic novel view synthesis method based on

neural radiance fields. Our approach consists of two main stages: a geometry reasoner and

a renderer. To render a novel view, the geometry reasoner first constructs cascaded cost

volumes for each nearby source view. Then, using a Transformer-based attention mechanism

and the cascaded cost volumes, the renderer infers geometry and appearance and renders

detailed images via classical volume rendering techniques. This architecture, in particular,

allows sophisticated occlusion reasoning, gathering information from consistent source views.

Moreover, our method can easily be fine-tuned on a single scene and renders competitive

results with per-scene optimized neural rendering methods with a fraction of computational

cost. Experiments show that GeoNeRF outperforms state-of-the-art generalizable neural

rendering models on various synthetic and real datasets. Lastly, with a slight modification to

the geometry reasoner, we also propose an alternative model that adapts to RGBD images.

This model directly exploits the depth information often available thanks to depth sensors.

The implementation source code and visualization videos showcasing the obtained results

can be accessed through the following link: https://www.idiap.ch/paper/geonerf.
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Chapter 3. GeoNeRF: Generalizing NeRF with Geometry Priors

Figure 3.1: Our generalizable GeoNeRF model infers complex geometries of objects in a novel
scene without per-scene optimization and synthesizes novel images of higher quality than the
existing works: IBRNet (Wang et al., 2021b) and MVSNeRF (Chen et al., 2021).

3.2 Introduction

Novel view synthesis is a long-standing task in computer vision and computer graphics. Neural

Radiance Fields (NeRF) (Mildenhall et al., 2020) made a significant impact on this research

area by implicitly representing the 3D structure of the scene and rendering high-quality novel

images. Our work addresses the main drawback of NeRF, which is the requirement to train

from scratch for every scene separately. The per-scene optimization of NeRF is lengthy and

requires densely captured images from each scene.

Approaches like pixelNeRF (Yu et al., 2021), GRF (Trevithick and Yang, 2021), MINE (Li et al.,

2021a), SRF (Chibane et al., 2021), IBRNet (Wang et al., 2021b), MVSNeRF (Chen et al., 2021),

and NeRFormer (Reizenstein et al., 2021) address this issue and generalize NeRF rendering

technique to unseen scenes. The common motivation behind such methods is to condition

the NeRF renderer with features extracted from source images from a set of nearby views.

Despite the generalizability of these models to new scenes, their understanding of the scene

geometry and occlusions is limited, resulting in undesired artifacts in the rendered outputs.

MVSNeRF (Chen et al., 2021) constructs a low-resolution 3D cost volume inspired by MVS-

Net (Yao et al., 2018), which is widely used in the Multi-View Stereo research, to condition and

generalize the NeRF renderer. However, it has difficulty rendering detailed images and does

not deal with occlusions in a scene. In this study, we take MVSNeRF as a baseline and propose

the following improvements.

• We introduce a geometry reasoner in the form of cascaded cost volumes (Section 3.4.1)

and train it in a semi-supervised fashion (Section 3.4.4) to obtain fine and high-

resolution priors for conditioning the renderer.

• We combine an attention-based model that deals with information coming from dif-

ferent source views at any point in space, by essence permutation invariant, with an

auto-encoder network which aggregates information along a ray, leveraging its strong

Euclidean and ordering structure (Section 3.4.3).
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• Thanks to the symmetry and generalizability of our geometry reasoner and renderer, we

detect and exclude occluded views for each point in space and use the remaining views

for processing that point (Section 3.4.3).

In addition, with a slight modification to the architecture, we propose an alternate model that

takes RGBD images (RGB+Depth) as input and exploits the depth information to improve its

perception of the geometry (Section 3.4.5).

Concurrent with our work, the following studies also introduce a generalizable NeRF: RGBD-

Net (Nguyen et al., 2021) builds a cost volume for the target view instead of source views,

NeuralMVS(Rosu and Behnke, 2022) proposes a coarse to fine approach to increase speed,

and NeuRay Liu et al. (2022) proposes a method to deal with occlusions.

3.3 Related Work

Multi-View Stereo. The purpose of Multi-View Stereo (MVS) is to estimate the dense rep-

resentation of a scene given multiple overlapping images. This field has been extensively

studied: first, with now called traditional methods (Kolmogorov and Zabih, 2002; De Bonet

and Viola, 1999; Furukawa and Ponce, 2009; Schönberger et al., 2016) and more recently with

methods relying on deep learning such as MVSNet (Yao et al., 2018), which outperformed the

traditional ones. MVSNet estimates the depth from multiple views by extracting features from

all images, aggregating them into a variance-based cost volume after warping each view onto

the reference one, and finally, post-processing the cost volumes with a 3D-CNN. The memory

needed to post-process the cost volume being the main bottleneck of MVSNet (Yao et al.,

2018), R-MVSNet (Yao et al., 2019) proposed regularizing the cost volume along the depth

direction with gated recurrent units while slightly sacrificing accuracy. To further reduce the

memory impact, Gu et al. (2020), Cheng et al. (2020), and Yang et al. (2020) proposed cascaded

architectures, where the cost volume is built at gradually finer scales, with the depth output

computed in a coarse to fine manner without any compromise on the accuracy. Replacing the

variance-based metric with group-wise correlation similarity is another approach to further

decrease the memory usage of MVS networks (Xu and Tao, 2020). We found MVS architectures

suitable for inferring the geometry and occlusions in a scene and conditioning a novel image

renderer.

Novel View Synthesis. Early work on synthesizing novel views from a set of reference images

was done by blending reference pixels according to specific weights (Debevec et al., 1996;

Levoy and Hanrahan, 1996). The weights were computed according to ray-space proxim-

ity (Levoy and Hanrahan, 1996) or approximated geometry (Buehler et al., 2001; Debevec et al.,

1996). To improve the computed geometry, some used the optical flow (Casas et al., 2015;

Du et al., 2018) or soft blending (Penner and Zhang, 2017). Others synthesized a radiance

field directly on a mesh (Debevec et al., 1998; Huang et al., 2020) or a point cloud (Aliev et al.,
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2020; Meshry et al., 2019). An advantage of these methods is that they can synthesize new

views with a small number of references, but their performance is limited by the quality of

3D reconstruction (Jancosek and Pajdla, 2011; Schonberger and Frahm, 2016), and problems

often arise in low-textured or reflective regions where stereo reconstruction tends to fail.

Leveraging CNNs to predict volumetric representations stored in voxel grids (Kalantari et al.,

2016; Penner and Zhang, 2017; Henzler et al., 2020) or Multi-Plane Images (Flynn et al., 2016;

Zhou et al., 2018; Srinivasan et al., 2019; Flynn et al., 2019) produces photo-realistic renderings.

Those methods rely on discrete volumetric representations of the scenes limiting their outputs’

resolution. They also need to be trained on large datasets to store large numbers of samples

resulting in extensive memory overhead.

Neural Scene Representations. Recently, using neural networks to represent the geometry and

appearance of scenes has allowed querying color and opacity in continuous space and viewing

directions. NeRF (Mildenhall et al., 2020) achieves impressive results for novel view synthesis

by optimizing a 5D neural radiance field for a scene. Building upon NeRF many improvements

were made (Park et al., 2021a; Li et al., 2021b; Martin-Brualla et al., 2021; Peng et al., 2021;

Schwarz et al., 2020; Srinivasan et al., 2021; Rockwell et al., 2021; DeVries et al., 2021; Barron

et al., 2021), but the network needs to be optimized for hours or days for each new scene. Later

works, such as GRF (Trevithick and Yang, 2021), pixelNeRF (Yu et al., 2021) and MINE (Li et al.,

2021a), try to synthesize novel views with very sparse inputs, but their generalization ability

to challenging scenes with complex specularities is highly restricted. MVSNeRF (Chen et al.,

2021) proposes to use a low-resolution plane-swept cost volume to generalize rendering to

new scenes with as few as three images without retraining. Once the cost volume is computed,

MVSNeRF uses a 3D-CNN to aggregate image features. This 3D-CNN resembles the generic

view interpolation function presented in IBRNet (Wang et al., 2021b) that allows rendering

novel views on unseen scenes with few images. Inspired by MVSNeRF, our work first constructs

cascaded cost volumes per source view and then aggregates the cost volumes of the views in

an attention-based approach. The former allows for capturing high-resolution details, and the

latter addresses occlusions.

3.4 Method

We use volume rendering techniques to synthesize novel views given a set of input source

views. Our proposed architecture is presented in Figure 3.2, and the following sections provide

details of our method.

3.4.1 Geometry Reasoner

Given a set of V nearby views {Iv }V
v=1 with size H ×W , our geometry reasoner constructs

cascaded cost volumes for each input view individually, following the same approach in

CasMVSNet (Gu et al., 2020). First, each image goes through a Feature Pyramid Network
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3.4 Method

Figure 3.2: The overview of GeoNeRF. 2D feature pyramids are first generated via Feature
Pyramid Network (FPN) (Lin et al., 2017) for each source view v . We then construct cascaded
cost volumes at three levels for each view by homography warping of its nearby views (see
Section 3.4.1). Guided by the distribution of the cascaded cost volumes in the 3D space,
N = Nc +N f points {xn}N

n=1 are sampled along a ray for a novel pose (see Section 3.4.2). By

interpolating both 2D and 3D features ( f (0)
n,v , {Φ(l )

n,v }2
l=0) from FPN and cascaded cost vol-

umes for each sample point xn , one view independent token tn,0 and V view-dependent
tokens {tn,v }V

v=1 are generated. These V +1 tokens go through four stacked Multi-Head Atten-
tion (MHA) layers and yield more refined tokens {t ′n,v }V

v=0. The MHA layers are shared among
all sample points on a ray. Thereafter, the view-independent tokens {t ′n,0}N

n=1 are regularized

and aggregated along the ray samples through the AE network, and volume densities {σn}N
n=1

of the sampled points are estimated. Other tokens {t ′n,v }V
v=1, supplemented with the positional

encodings {γ(θn,v )}V
v=1, predict the color weights {wn,v }V

v=1 with respect to source views, and
the color ĉn of each point is estimated in a weighted sum fashion (see Section 3.4.3). Finally,
the color of the ray ĉ is rendered using classical volume rendering.

(FPN) (Lin et al., 2017) to generate semantic 2D features at three different scale levels.

f (l )
v = FPN(Iv ) ∈R H

2l ×W
2l ×2l C ∀l ∈ {0,1,2} (3.1)
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Chapter 3. GeoNeRF: Generalizing NeRF with Geometry Priors

where FPN is the Feature Pyramid Network, C is the channel dimension at level 0, and l

indicates the scale level. Once 2D features are generated, we follow the same approach in Cas-

MVSNet to construct plane sweeps and cascaded cost volumes at three levels via differentiable

homography warping. CasMVSNet originally estimates depth maps D̂ (l ) of the input images

at three levels. The coarsest level (l = 2) consists of D (2) plane sweeps covering the whole

depth range in the camera’s frustum. Then, subsequent levels narrow the hypothesis range

(decrease D (l )) but increase the spatial resolution of each voxel by creating D (l ) finer plane

sweeps on both sides of the estimated depths from the previous level. As a result, the finer

the cost volume is, the thinner the depth range it covers. We make two modifications to the

CasMVSNet architecture and use it as the geometry reasoner. Firstly, we provide an additional

output head to the network to produce multi-level semantic 3D featuresΦ(l ) along with the es-

timated depth maps D̂ (l ). Secondly, we replace the variance-based metric in CasMVSNet with

group-wise correlation similarity from Xu and Tao (2020) to construct lightweight volumes.

Group-wise correlation decreases memory usage and inference time.

To be more specific, for each source view Iv , we first form a set of its nearby views Γv . Then, by

constructing D (l ) depth plane sweeps and homography warping techniques, we create multi-

level cost volumes P (l )
v from 2D feature pyramids f (l ) of images in Γv using the group-wise

correlation similarity metric from Xu and Tao (2020). We finally further process and regularize

the cost volumes using 3D hourglass networks R(l )
3D and generate depth maps D̂ (l )

v ∈R H
2l ×W

2l ×1

and 3D feature mapsΦ(l )
v ∈RD (l )× H

2l ×W
2l ×C :

D̂ (l )
v ,Φ(l )

v = R(l )
3D

(
P (l )

v

)
∀l ∈ {0,1,2} (3.2)

3.4.2 Sampling Points on a Novel Ray

Once the features from the geometry reasoner are generated, we render novel views with

the ray-casting approach. For each camera ray at a novel camera pose, we first sample Nc

points along the ray uniformly to cover the whole depth range. Furthermore, we estimate a

stepwise probability density function p0(x) along the ray representing the probability that a

point x is covered by a full-resolution partial cost volume P (0). Voxels inside the thinnest, full-

resolution cost volumes {P (0)
v }V

v=1 contain the most valuable information about the surfaces

and geometry. Therefore, we sample N f more points from p0(x) distribution. Unlike previous

works(Mildenhall et al., 2020; Yu et al., 2021; Wang et al., 2021b; Reizenstein et al., 2021;

Arandjelović and Zisserman, 2021) that require training two networks simultaneously (one

coarse and one fine network) and rendering volume densities from the coarse network to

resample more points for the fine one, we sample a mixture of N = Nc +N f valuable points

before rendering the ray without any computation overhead or network duplication thanks to

the design of our geometry reasoner.
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3.4.3 Renderer

For all sample points {xn}N
n=1, we interpolate the full-resolution 2D features f (0)

n,v and the three-

level 3D features {Φ(l )
n,v }2

l=0 from all source views. We also define an occlusion mask Mn,v for

each point xn with respect to each view v . Formally, if a point xn stands behind the estimated

full-resolution depth map D̂ (0)
v (being occluded) or the projection of xn to the camera plane of

view v lies outside of the image plane (being outside of the camera frustum), we set Mn,v = 0

and discard view v from the rendering process of point xn . Next, we create a view-independent

token tn,0 and V view-dependent tokens {tn,v }V
v=1 by utilizing the interpolated features for

each point xn :

tn,v = LT
([

f (0)
n,v ; {Φ(l )

n,v }2
l=0

])
∀v ∈ {1, ...,V }

tn,0 = LT
([

mean{ f (0)
n,v }V

v=1; var { f (0)
n,v }V

v=1

]) (3.3)

where LT(·) and [· ; ·] denote respectively linear transformation and concatenation. tn,0 could

be considered as a global understanding of the scene at point xn , while tn,v represents the

understanding of the scene from source view v . The global and view-dependent tokens are

aggregated through four stacked Multi-Head Attention (MHA) layers, which are introduced in

Transformers (Dosovitskiy et al., 2021; Vaswani et al., 2017):

{t ′n,v }V
v=0 = 4×MHA

(
tn,0, {tn,v , Mn,v }V

v=1

)
(3.4)

Our MHA layers also take the occlusion masks Mn,v as inputs and force the occluded views’

attention scores to zero to prevent them from contributing to the aggregation.

The global view-independent output tokens {t ′n,0}N
n=1 now have access to all necessary data to

learn the geometry of the scene and estimate volume densities. We further regularize these

tokens through an auto-encoder-style (AE) network in the ray dimension (n). The AE network

learns the global geometry along the ray via convolutional layers and predicts more coherent

volume densities σn :

{σn}N
n=1 = MLPσ

(
AE

(
{t ′n,0}N

n=1

))
(3.5)

where MLPσ is a simple two-layer perceptron. We argue that convolutionally processing

the tokens with the AE network along the ray dimension (n) is a proper inductive bias and

significantly reduces the computation resources compared to methods like IBRNet (Wang

et al., 2021b) and NeRFormer (Reizenstein et al., 2021), which employ an attention-based

architecture because the geometry of a scene is naturally continuous, and accordingly, closer

points are more likely related.

View-dependent tokens {t ′n,v }V
v=1, together with two additional inputs, are used for color

prediction. We project each point xn to source views’ image planes and interpolate the color

samples cn,v . We also calculate the angle between the novel camera ray and the line that

passes through the camera center of the source view v and xn . This angle θn,v represents the

similarity between the camera pose of the source view v and the novel view. Each point’s color
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is estimated via a weighted sum of the non-occluded views’ colors:

wn,v = Softmax
({

MLPc
(
[t ′n,v ;γ(θn,v )]

)
, Mn,v

}V
v=1

)
ĉn =

V∑
v=1

wn,v cn,v ∀n ∈ {1,2, ..., N } (3.6)

where γ(·) is the sinusoidal positional encoding proposed in NeRF (Mildenhall et al., 2020),

and MLPc is a simple two-layer perceptron. The Softmax function also takes the occlusion

masks Mn,v as input to exclude occluded views.

Once volume densities and colors are predicted, our model renders, as in NeRF (Mildenhall

et al., 2020), the color of the camera ray at a novel pose using the volume rendering approach:

ĉ =
N∑

n=1
exp

(
−

n−1∑
k=1

σk

)(
1−exp(−σn)

)
ĉn (3.7)

In addition to the rendered color, our model also outputs the estimated depth d̂ for each ray:

d̂ =
N∑

n=1
exp

(
−

n−1∑
k=1

σk

)(
1−exp(−σn)

)
zn (3.8)

where zn is the depth of point xn with respect to the novel pose. This auxiliary output is helpful

for training and supervising our generalizable model (see Section 3.4.4).

3.4.4 Loss Functions

The primary loss function when we train our generalizable model on various scenes and the

only loss when we fine-tune it on a specific scene is the mean squared error between the

rendered colors and ground truth pixel colors:

Lc = 1

|R|
∑
r∈R

∥∥ĉ(r )− cg t (r )
∥∥2 (3.9)

where R is the set of rays in each training batch and cg t is the ground truth color.

DS-NeRF (Deng et al., 2022) shows that depth supervision can help NeRF train faster with

fewer input views. Moreover, numerous works (Kaya et al., 2022; Oechsle et al., 2021; Wang

et al., 2021a; Yariv et al., 2021) show that despite the high-quality color rendering, NeRF has

difficulty reconstructing 3D geometry and surface normals. Accordingly, for training samples

coming from datasets with ground truth depths, we also output the predicted depth d̂ for each

ray and supervise it if the ground truth depth of that pixel is available:

Ld = 1

|Rd |
∑

r∈Rd

∥∥∥d̂ (r )−dg t (r )
∥∥∥

s1
(3.10)

54



3.4 Method

where Rd is the set of rays from samples with ground truth depths and dg t is the pixel ground

truth depth and || · ||s1 is the smooth L1 loss.

Lastly, we supervise cascaded depth estimation networks in our geometry reasoner. For

datasets with ground truth depth, the loss is defined as:

L (l )
D = 2−l

|V |
V∑

v=1
〈
∥∥∥D̂ (l )

v −D (l )
v

∥∥∥
s1
〉 (3.11)

where D (l )
v is the ground truth depth map of view v resized to scale level l , and < · > denotes

averaging over all pixels. For training samples without ground truth depths, we self-supervise

the depth maps. We take the rendered ray depths as pseudo-ground truth and warp their

corresponding colors and estimated depths from all source views using camera transformation

matrices. If the ground truth pixel color of a ray is consistent with the warped color of a source

view, and it is located in a textured neighborhood, we allow d̂ to supervise the geometry

reasoner for that view. Formally:

L (l )
D = 2−l

|V ||R|
V∑

v=1

∑
r∈R

Mv (r )
∥∥∥D̂ (l )

v (rv )− d̂ (rv )
∥∥∥

s1

where rv = T→v

(
r, d̂ (r )

)
(3.12)

and Mv (r ) =
1 if

∣∣Iv (rv )− cg t (r )
∣∣< ϵc and V5 (Iv (rv )) > ϵt

0 otherwise

Given a ray r at a novel pose with rendered depth d̂ (r ), T→v

(
r, d̂ (r )

)
transforms the ray to its

correspondent ray from source view v using camera matrices. d̂ (rv ) denotes the rendered

depth of the correspondent ray with respect to source view v , and Mv (r ) validates the tex-

turedness and color consistency. We keep pixels whose variance V5(·) in their 5×5 pixels

neighborhood is higher than ϵt , and whose color differs less than ϵc from the color of the ray r .

The aggregated loss function for our generalizable model is:

L =Lc +0.1Ld +λ
2∑

l=0
L (l )

D (3.13)

where λ is 1.0 if the supervision is with ground truth depths and is 0.1 if it is with pseudo-

ground truth rendered depths. For fine-tuning on a single scene, regardless of the availability

of depth data, we only use Lc as the loss function.

3.4.5 Compatibility with RGBD data

Concerning the ubiquitousness of the embedded depth sensors in devices nowadays, we

also propose an RGBD compatible model, GeoNeRF+D, by making a small modification to the

geometry reasoner. We assume an incomplete, low-resolution, noisy depth map Dv ∈R H
4 ×W

4 ×1
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is available for each source view v . When we construct the coarsest cost volume P (2)
v with D (2)

depth planes, we also construct a binary volume Bv ∈RD (2)× H
4 ×W

4 ×1 and concatenate it with

P (2)
v before feeding them to the R(2)

3D network:

Bv (d ,h, w) =
1 if Q (Dv (h, w)) ≡ d

0 otherwise
(3.14)

where Q(·) maps and quantizes real depth values to the depth plane indices. Bv plays the role

of coarse guidance of the geometry in GeoNeRF+D. As a result of this design, the model is

robust to the quality and sparsity of the depth inputs.

3.5 Experiments

Training datasets. We train our model on the real DTU dataset (Jensen et al., 2014) and real

forward-facing datasets from LLFF (Mildenhall et al., 2019) and IBRNet (Wang et al., 2021b).

We exclude views with incorrect exposure from the DTU dataset (Jensen et al., 2014) following

the practice in pixelNeRF (Yu et al., 2021) and use the same 88 scenes for training as in pixel-

NeRF (Yu et al., 2021) and MVSNeRF (Chen et al., 2021). Ground truth depths of DTU (Jensen

et al., 2014), provided by Yao et al. (2018), are the only data that is directly used for depth

supervision. For samples from forward-facing datasets (35 scenes from LLFF (Mildenhall

et al., 2019) and 67 scenes from IBRNet (Wang et al., 2021b)), depth supervision is in the

self-supervised form.

Evaluation datasets. We evaluate our model on the 16 test scenes of DTU MVS (Jensen

et al., 2014), the 8 test scenes of real forward-facing dataset from LLFF (Mildenhall et al.,

2019), and the 8 scenes in NeRF realistic synthetic dataset (Mildenhall et al., 2020). We

follow the same evaluation protocol in NeRF (Mildenhall et al., 2020) for the NeRF synthetic

dataset (Mildenhall et al., 2020) and LLFF dataset (Mildenhall et al., 2019) and the same

protocol in MVSNeRF (Chen et al., 2021) for the DTU dataset (Jensen et al., 2014). Specifically,

for LLFF (Mildenhall et al., 2019), we hold out 1
8 of the views of the unseen scenes, and for

DTU (Jensen et al., 2014), we hold out 4 views of the unseen scenes for testing and leave the

rest for fine-tuning.

Implementation details. We train the generalizable GeoNeRF for 250k iterations. For each

iteration, one scene is randomly sampled, and 512 rays are randomly selected as the train-

ing batch. For training on a specific scene, we only fine-tune the model for 10k iterations

(GeoNeRF10k), in contrast to NeRF (Mildenhall et al., 2020) that requires 200k–500k optimiza-

tion steps per scene. Since our renderer’s architecture is agnostic to the number of source

views, we flexibly employ a different number of source views V for training and evaluation to

reduce memory usage. We use V = 6 source views for training the generalizable model and
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DTU MVS Dataset (Jensen et al., 2014) †

Method Settings PSNR↑ SSIM↑ LPIPS↓
pixelNeRF (Yu et al., 2021) 19.31 0.789 0.382
IBRNet (Wang et al., 2021b) No per-scene 26.04 0.917 0.190
MVSNeRF (Chen et al., 2021) Optimization 26.63 0.931 0.168
GeoNeRF 31.34 0.959 0.060
IBRNet (Wang et al., 2021b) 31.35 0.956 0.131
MVSNeRF (Chen et al., 2021)

Per-scene
28.50 0.933 0.179

NeRF (Mildenhall et al., 2020)
Optimization

27.01 0.902 0.263
GeoNeRF10k 31.66 0.961 0.059
GeoNeRF1k 31.52 0.960 0.059

† The evaluations of the baselines on the DTU MVS dataset (Jensen et al., 2014)
are borrowed from the paper MVSNeRF (Chen et al., 2021). Also, metrics are
calculated for all methods on this dataset on foreground pixels, whose ground
truth depths stand inside the scene bound.

Table 3.1: Quantitative comparison of our proposed GeoNeRF with existing generalizable
NeRF models in terms of PSNR (higher is better), SSIM (Wang et al., 2004) (higher is better),
and LPIPS (Zhang et al., 2018a) (lower is better) metrics on the DTU MVS Dataset (Jensen et al.,
2014). Highlights are best and second best. GeoNeRF is superior to the existing approaches
in the experiments in which the methods are evaluated without any per-scene optimization
(the top row). Notably, GeoNeRF outperforms others with a significant margin on this dataset
which has relatively sparser source views. The bottom row of the table presents the evaluation
of the methods when they are fine-tuned on each scene separately, as well as a comparison
with vanilla NeRF (Mildenhall et al., 2020), which is per-scene optimized. After fine-tuning for
only 10k iterations, our GeoNeRF10k produces competitive results with NeRF. Remarkably, even
after fine-tuning for 1k iterations (approximately one hour on a single V100 GPU), GeoNeRF1k

reaches 99.81% of the GeoNeRF10k’s performance on average, which is another evidence for
efficient convergence of our model on novel scenes.

V = 9 for evaluation. For fine-tuning, we select V based on the images’ resolution and available

GPU memory. Specifically, we set V = 9 for the DTU dataset Jensen et al. (2014) and V = 7 for

the other two datasets. We fix the number of sample points on a ray to Nc = 96 and N f = 32

for all scenes. We utilize Adam (Kingma and Ba, 2014) as the optimizer with a learning rate of

5×10−4 for training the generalizable model and a learning rate of 2×10−4 for fine-tuning. A

cosine learning rate scheduler (Loshchilov and Hutter, 2017) without restart is also applied to

the optimizer. For the details of our networks’ architectures, refer to Section 3.7.1.

3.5.1 Experimental Results

We evaluate our model and provide a comparison with the original vanilla NeRF (Mildenhall

et al., 2020) and the existing generalizable NeRF models: pixelNeRF (Yu et al., 2021), IBR-

Net (Wang et al., 2021b), and MVSNeRF (Chen et al., 2021). The authors of NeRFormer (Reizen-
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NeRF Realistic Synthetic Dataset (Mildenhall et al., 2020)
Method Settings PSNR↑ SSIM↑ LPIPS↓
pixelNeRF (Yu et al., 2021) 7.39 0.658 0.411
IBRNet (Wang et al., 2021b) No per-scene 25.49 0.916 0.100
MVSNeRF (Chen et al., 2021) Optimization 23.62 0.897 0.176
GeoNeRF 28.33 0.938 0.087
IBRNet (Wang et al., 2021b) 28.14 0.942 0.072
MVSNeRF (Chen et al., 2021) †

Per-scene
27.07 0.931 0.168

NeRF (Mildenhall et al., 2020)
Optimization

31.01 0.947 0.081
GeoNeRF10k 30.42 0.956 0.055
GeoNeRF1k 29.83 0.952 0.061

† For fine-tuning, MVSNeRF (Chen et al., 2021) discards its CNNs and directly
optimizes 3D features. Direct optimization without regularization severely suf-
fers from overfitting which is not reflected in their reported accuracy because
their evaluation is done on a custom test set instead of the standard one. E.g.,
their PSNR on NeRF dataset (Mildenhall et al., 2020) would drop from 27.07 to
20.02 if it was evaluated on the standard test set.

Table 3.2: Quantitative comparison of our proposed GeoNeRF with existing generalizable
NeRF models in terms of PSNR (higher is better), SSIM (Wang et al., 2004) (higher is bet-
ter), and LPIPS (Zhang et al., 2018a) (lower is better) metrics on the NeRF realistic synthetic
Dataset (Mildenhall et al., 2020). Highlights are best and second best. GeoNeRF is superior to
the existing approaches in the experiments in which the methods are evaluated without any
per-scene optimization (the top row). Notably, GeoNeRF outperforms others with a significant
margin on this dataset which has relatively sparser source views. It is also worth noting that our
method generalizes outstandingly well on the NeRF synthetic dataset (Mildenhall et al., 2020)
although our training dataset only contains real scenes that greatly differ from the synthetic
scenes. The bottom row of the table presents the evaluation of the methods when they are
fine-tuned on each scene separately, as well as a comparison with vanilla NeRF (Mildenhall
et al., 2020), which is per-scene optimized for 500k iterations. After fine-tuning for only 10k
iterations, our GeoNeRF10k produces competitive results with NeRF. Remarkably, even after
fine-tuning for 1k iterations (approximately one hour on a single V100 GPU), GeoNeRF1k

reaches 95.91% of the GeoNeRF10k’s performance on average, which is another evidence for
efficient convergence of our model on novel scenes.

stein et al., 2021) did not publish their code, did not benchmark their method on NeRF

benchmarking datasets, nor test state-of-the-art generalizable NeRF models on their own

dataset. They perform on par with NeRF in their experiments with scene-specific optimization

and train and test their generalizable model on specific object categories separately. A quanti-

tative comparison is provided in Tables 3.1, 3.2, and 3.3 in terms of PSNR, SSIM (Wang et al.,

2004), and LPIPS (Zhang et al., 2018a). The results show the superiority of our GeoNeRF model

with respect to the previous generalizable models. Moreover, when fine-tuned on the scenes

for only 10k iterations, GeoNeRF10k produces competitive results with NeRF, which requires

lengthy per-scene optimization. We further show that even after 1k iterations (approximately
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Real Forward Facing (Mildenhall et al., 2019)
Method Settings PSNR↑ SSIM↑ LPIPS↓
pixelNeRF (Yu et al., 2021) 11.24 0.486 0.671
IBRNet (Wang et al., 2021b) No per-scene 25.13 0.817 0.205
MVSNeRF (Chen et al., 2021) Optimization 21.93 0.795 0.252
GeoNeRF 25.44 0.839 0.180
IBRNet (Wang et al., 2021b) 26.73 0.851 0.175
MVSNeRF (Chen et al., 2021)

Per-scene
25.45 0.877 0.192

NeRF (Mildenhall et al., 2020)
Optimization

26.50 0.811 0.250
GeoNeRF10k 26.58 0.856 0.162
GeoNeRF1k 26.31 0.852 0.164

Table 3.3: Quantitative comparison of our proposed GeoNeRF with existing generalizable
NeRF models in terms of PSNR (higher is better), SSIM (Wang et al., 2004) (higher is better),
and LPIPS (Zhang et al., 2018a) (lower is better) metrics on the Real Forward Facing (Milden-
hall et al., 2019). Highlights are best and second best. GeoNeRF is superior to the existing
approaches in all experiments in which the methods are evaluated without any per-scene
optimization (the top row). The bottom row of the table presents the evaluation of the meth-
ods when they are fine-tuned on each scene separately, as well as a comparison with vanilla
NeRF (Mildenhall et al., 2020), which is per-scene optimized for 200k iterations. After fine-
tuning for only 10k iterations, our GeoNeRF10k produces competitive results with NeRF. Re-
markably, even after fine-tuning for 1k iterations (approximately one hour on a single V100
GPU), GeoNeRF1k reaches 99.10% of the GeoNeRF10k’s performance on average, which is
another evidence for efficient convergence of our model on novel scenes.

one hour on a single V100 GPU), GeoNeRF1k’s results are comparable with NeRF’s.

The qualitative comparisons of our model with existing methods on different datasets are

provided in Figures 3.3 and 3.4. The images produced by our GeoNeRF model better preserve

the details of the scene and contain fewer artifacts. For further qualitative analysis, an extensive

ablation study, and limitations of our model, refer to the supplementary material in Section 3.7.

3.5.2 Sensitivity to Source Views

We conducted two experiments to investigate the robustness of our model to the number and

quality of input source views. We first evaluated the impact of the number of source views on

our model in Table 3.4. The results demonstrate the robustness of our method to the sparsity

of source views and suggest that GeoNeRF produces high-quality images even with a lower

number of source images. Furthermore, we show that our method can operate with both close

and distant source views. Table 3.5 shows the performance when we discard K nearest views

to the novel pose and use the remaining source views for rendering. While distant source views

are naturally less informative and degrade the quality, our model does not incur a significant

decrease in performance.
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Figure 3.3: Qualitative comparison of the methods on the NeRF synthetic dataset (Martin-
Brualla et al., 2021) (Ship and Drums) and the real forward-facing dataset (Mildenhall et al.,
2019) (Horns and Fern). Our proposed GeoNeRF more accurately preserves the details of the
scenes while it generates fewer artifacts than IBRNet (Wang et al., 2021b) and MVSNeRF (Chen
et al., 2021) (e.g., the leaves in Fern or the cymbal in Drums). After fine-tuning our model only
for 10k iterations on each individual scene (GeoNeRF10k), the results are competitive with
per-scene optimized vanilla NeRF (Mildenhall et al., 2020). Compared with NeRF, GeoNeRF
models produce smoother surfaces in Drums and higher quality textures for the water in Ship
and for the floor in Horns.
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Figure 3.4: Qualitative comparison of our generalizable GeoNeRF model with MVSNeRF (Chen
et al., 2021), the state-of-the-art model on the DTU dataset (Jensen et al., 2014). Images are
from DTU test scenes. Our method renders sharper images with fewer artifacts.

3.5.3 Results with RGBD Images

To evaluate our RGBD compatible model, GeoNeRF+D, we use the DTU dataset (Jensen et al.,

2014) to mimic the real scenario where incomplete, low-resolution depth images accompany

RGB images. We feed our model the DTU images with a resolution of 600×800, while we resize

their incomplete depths to 150×200. The comparison of the performance of GeoNeRF, with

and without depth inputs is presented in Table 3.6. The results confirm that our GeoNeRF+D

model adapts to RGBD images and renders higher-quality outputs.

3.6 Conclusion

We proposed GeoNeRF, a generalizable learning-based novel view synthesis method that

renders state-of-the-art quality images for complex scenes without per-scene optimization.

Our method leverages the recent architectures in the multi-view stereo field to understand the
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Number of source views PSNR↑ SSIM↑ LPIPS↓
3 24.33 0.794 0.212
4 25.05 0.823 0.183
5 25.25 0.832 0.178
6 25.37 0.837 0.176
7 25.37 0.838 0.177
8 25.39 0.838 0.179
9 25.44 0.839 0.180
IBRNet (uses 10 views) 25.13 0.817 0.205

Table 3.4: Quantitative analysis of the robustness of our GeoNeRF to the number of input
source views on the LLFF (Mildenhall et al., 2019) test scenes, besides a comparison with
IBRNet (Wang et al., 2021b), which uses 10 source views.

K : 0 2 4 6 8
PSNR↑ 25.44 24.18 23.35 22.74 22.06
SSIM↑ 0.839 0.813 0.791 0.770 0.747
LPIPS↓ 0.180 0.212 0.235 0.253 0.276

Table 3.5: Quantitative analysis of the sensitivity of our GeoNeRF to discarded first K nearest
neighbors on the LLFF (Mildenhall et al., 2019) test scenes.

Model PSNR↑ SSIM↑ LPIPS↓
GeoNeRF 31.34 0.959 0.060
GeoNeRF+D 31.58 0.961 0.057

Table 3.6: A comparison of the performance of our RGBD compatible GeoNeRF+D and original
GeoNeRF on DTU (Jensen et al., 2014) test scenes. For the details of this experiment, see
Section 3.5.3.

scene’s geometry and occlusions by constructing cascaded cost volumes for source views. The

data coming from the source views are then aggregated through an attention-based network,

and images for novel poses are synthesized while are conditioned on these data. An advanced

algorithm to select a proper set of nearby views or an adaptive approximation of the optimal

number of required cost volumes for a scene could be promising extensions to our method.
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Input Layer Output
Input ConvBnReLU(3, 8, 3, 1) conv0_0
conv0_0 ConvBnReLU(8, 8, 3, 1) conv0
conv0 ConvBnReLU(8, 16, 5, 2) conv1_0
conv1_0 ConvBnReLU(16, 16, 3, 1) conv1_1
conv1_1 ConvBnReLU(16, 16, 3, 1) conv1
conv1 ConvBnReLU(16, 32, 5, 2) conv2_0
conv2_0 ConvBnReLU(32, 32, 3, 1) conv2_1
conv2_1 ConvBnReLU(32, 32, 3, 1) conv2
conv2 Conv(32, 32, 1, 1) feat2
conv1 Conv(16, 32, 1, 1) f1_0
conv0 Conv(8, 32, 1, 1) f0_0
(feat2, f1_0) Upsample_and_Add(x, y) f1_1
(f1_1, f0_0) Upsample_and_Add(x, y) f0_1
f1_1 Conv(32, 16, 3, 1) feat1
f0_1 Conv(32, 8, 3, 1) feat0

Table 3.7: Network architecture of Feature Pyramid Network (FPN), where feat2, feat1, and
feat0 are output feature pyramids. Conv(ci n , cout , k, s) stands for a 2D convolution with input
channels ci n , output channels cout , kernel size of k, and stride of s. ConvBnReLU represents a
Conv layer followed by Batch Normalization and ReLU nonlinearity. Upsample_and_Add(x, y)
adds y to the bilinearly upsampled of x.

3.7 Supplementary Material

3.7.1 Additional Technical Details

As stated in Section 3.4.1, we borrow the architecture of our geometry reasoner from Cas-

MVSNet (Gu et al., 2020). We construct D (2) = 48 depth planes for the coarsest cost volume,

D (1) = 32 for the intermediate one, and D (0) = 8 for the finest full-resolution cost volume. We

use channel size C = 8 in group-wise correlation similarity calculations. When training the

generalizable model, we create a set of 3–5 nearby source views for constructing each cost

volume, whereas for fine-tuning and evaluating, we always use a set of 5 nearby views. Also,

we scale input images with a factor uniformly sampled from {1.0, 0.75, 0.5} when we train our

generalizable model.

The network architectures of Feature Pyramid Network (FPN), 3D regularizer (R(l )
3D ), and the

auto-encoder (AE) are provided in Tables 3.7, 3.8, and 3.9 respectively.
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Input Layer Output
Input ConvBnReLU(8, 8, 3, 1) conv0
conv0 ConvBnReLU(8, 16, 3, 2) conv1
conv1 ConvBnReLU(16, 16, 3, 1) conv2
conv2 ConvBnReLU(16, 32, 3, 2) conv3
conv3 ConvBnReLU(32, 32, 3, 1) conv4
conv4 ConvBnReLU(32, 64, 3, 2) conv5
conv5 ConvBnReLU(64, 64, 3, 1) conv6
conv6 TrpsConvBnReLU(64, 32, 3, 2) x_0
(conv4, x_0) Add(x, y) x_1
x_1 TrpsConvBnReLU(32, 16, 3, 2) x_2
(conv2, x_2) Add(x, y) x_3
x_3 TrpsConvBnReLU(16, 8, 3, 2) x_4
(conv0, x_4) Add(x, y) x_5
x_5 ConvBnReLU(8, 8, 3, 1) prob_0
prob_0 Conv(8, 1, 3, 1) prob
x_5 ConvBnReLU(8, 8, 3, 1) feat

Table 3.8: Network architecture of the 3D regularizer (R(l )
3D ), where feat is the output 3D feature

map Φ(l ) and prob is the output probability which is used to regress the depth map D̂ (l ).
Conv(ci n , cout , k, s) stands for a 3D convolution with input channels ci n , output channels cout ,
kernel size of k, and stride of s. ConvBnReLU represents a Conv layer followed by Batch
Normalization and ReLU nonlinearity, and TrpsConv stands for transposed 3D convolution.
Add(x, y) simply adds y to x.

Input Layer Output
Input ConvLnELU(32, 64, 3, 1) conv1_0
conv1_0 MaxPool conv1
conv1 ConvLnELU(64, 128, 3, 1) conv2_0
conv2_0 MaxPool conv2
conv2 ConvLnELU(128, 128, 3, 1) conv3_0
conv3_0 MaxPool conv3
conv3 TrpsConvLnELU(128, 128, 4, 2) x_0
[ conv2 ; x_0 ] TrpsConvLnELU(256, 64, 4, 2) x_1
[ conv1 ; x_1 ] TrpsConvLnELU(128, 32, 4, 2) x_2
[ Input ; x_2 ] ConvLnELU(64, 32, 3, 1) Output

Table 3.9: Network architecture of the auto-encoder network (AE). Conv(ci n , cout , k, s) stands
for a 1D convolution with input channels ci n , output channels cout , kernel size of k, and
stride of s. ConvLnELU represents a Conv layer followed by Layer Normalization and ELU
nonlinearity, and TrpsConv stands for transposed 1D convolution. MaxPool is a 1D max
pooling layer with a stride of 2, and [· ; ·] denotes concatenation.
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3.7.2 Additional Qualitative Analysis

Full-size examples of rendered images for novel views by our GeoNeRF model are pre-

sented in Figures 3.5 and 3.6. Figure 3.5 includes samples from the real forward-facing LLFF

dataset (Mildenhall et al., 2019), and Figure 3.6 contains samples from the NeRF realistic

synthetic dataset(Mildenhall et al., 2020). In addition to the rendered images, we also show the

rendered depth maps for each novel view. Images indicated by GeoNeRF are rendered by our

generalizable model, while images indicated by GeoNeRF10k are rendered after fine-tuning

our model on each scene for 10k iterations.

3.7.3 Per-Scene Breakdown

Tables 3.10, 3.11, 3.12, and 3.13 break down the quantitative results presented in Section 3.5

into per-scene metrics. The results are consistent with the aggregate results in Tables 3.2 and

3.3. More specifically, Tables 3.10 and 3.11 include the scenes from the real forward-facing

LLFF dataset (Mildenhall et al., 2019), and Tables 3.12 and 3.13 contain the scenes from NeRF

realistic synthetic dataset (Mildenhall et al., 2020). As it was already shown in Section 3.5, our

generalizable GeoNeRF model outperforms all existing generalizable methods on average, and

after fine-tuning, it is on par with per-scene optimized vanilla NeRF (Mildenhall et al., 2020).
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Figure 3.5: Full-size examples of novel images and their depth map rendered by our generaliz-
able (GeoNeRF) and fine-tuned (GeoNeRF10k) models. The images are from test scenes of the
real forward-facing LLFF dataset (Mildenhall et al., 2019).
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Figure 3.6: Full-size examples of novel images and their depth map rendered by our generaliz-
able (GeoNeRF) and fine-tuned (GeoNeRF10k) models. The images are from test scenes of the
NeRF realistic synthetic dataset (Mildenhall et al., 2020).
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PSNR↑
Fern Flower Fortress Horns Leaves Orchids Room T-Rex

pixelNeRF 12.40 10.00 14.07 11.07 9.85 9.62 11.75 10.55
IBRNet 23.84 26.67 30.00 26.48 20.19 19.34 29.94 24.57
MVSNeRF 21.15 24.74 26.03 23.57 17.51 17.85 26.95 23.20
GeoNeRF 24.61 28.12 30.49 26.96 20.58 20.24 28.74 23.75

SSIM↑
Fern Flower Fortress Horns Leaves Orchids Room T-Rex

pixelNeRF 0.531 0.433 0.674 0.516 0.268 0.317 0.691 0.458
IBRNet 0.772 0.856 0.883 0.869 0.719 0.633 0.946 0.861
MVSNeRF 0.638 0.888 0.872 0.868 0.667 0.657 0.951 0.868
GeoNeRF 0.811 0.885 0.898 0.901 0.741 0.666 0.935 0.877

LPIPS↓
Fern Flower Fortress Horns Leaves Orchids Room T-Rex

pixelNeRF 0.650 0.708 0.608 0.705 0.695 0.721 0.611 0.667
IBRNet 0.246 0.164 0.153 0.177 0.230 0.287 0.153 0.230
MVSNeRF 0.238 0.196 0.208 0.237 0.313 0.274 0.172 0.184
GeoNeRF 0.202 0.133 0.123 0.140 0.222 0.256 0.150 0.212

Table 3.10: Per-scene Quantitative comparison of our proposed GeoNeRF with existing gen-
eralizable NeRF models, pixelNeRF (Yu et al., 2021), IBRNet (Wang et al., 2021b), and MVS-
NeRF (Chen et al., 2021), on real forward-facing LLFF dataset (Mildenhall et al., 2019) in terms
of PSNR (higher is better), SSIM (Wang et al., 2004) (higher is better), and LPIPS (Zhang et al.,
2018a) (lower is better) metrics.
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PSNR↑
Fern Flower Fortress Horns Leaves Orchids Room T-Rex

NeRF 25.17 27.40 31.16 27.45 20.92 20.36 32.70 26.80
GeoNeRF10k 25.24 28.57 30.75 28.12 21.40 20.39 31.51 26.63
GeoNeRF1k 25.08 28.74 30.83 27.66 21.16 20.41 30.52 26.07

SSIM↑
Fern Flower Fortress Horns Leaves Orchids Room T-Rex

NeRF 0.792 0.827 0.881 0.828 0.690 0.641 0.948 0.880
GeoNeRF10k 0.829 0.890 0.900 0.912 0.781 0.674 0.956 0.910
GeoNeRF1k 0.824 0.892 0.905 0.908 0.769 0.673 0.946 0.901

LPIPS↓
Fern Flower Fortress Horns Leaves Orchids Room T-Rex

NeRF 0.280 0.219 0.171 0.268 0.316 0.321 0.178 0.249
GeoNeRF10k 0.185 0.120 0.125 0.126 0.183 0.247 0.126 0.181
GeoNeRF1k 0.189 0.114 0.117 0.130 0.198 0.248 0.135 0.188

Table 3.11: Per-scene Quantitative comparison of our fine-tuned GeoNeRF with per-scene op-
timized vanilla NeRF (Mildenhall et al., 2020) on real forward-facing LLFF dataset (Mildenhall
et al., 2019) in terms of PSNR (higher is better), SSIM (Wang et al., 2004) (higher is better), and
LPIPS (Zhang et al., 2018a) (lower is better) metrics. Our model is fine-tuned on each scene for
10k iterations (GeoNeRF10k) and 1k iterations (GeoNeRF1k), and NeRF is optimized for 200k
iterations.
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PSNR↑
Chair Drums Ficus Hotdog Lego Materials Mic Ship

pixelNeRF 7.18 8.15 6.61 6.80 7.74 7.61 7.71 7.30
IBRNet 28.54 21.22 24.23 31.72 24.59 22.20 27.97 23.64
MVSNeRF 23.35 20.71 21.98 28.44 23.18 20.05 22.62 23.35
GeoNeRF 31.84 24.00 25.28 34.33 28.80 26.16 31.15 25.08

SSIM↑
Chair Drums Ficus Hotdog Lego Materials Mic Ship

pixelNeRF 0.624 0.670 0.669 0.669 0.671 0.644 0.729 0.584
IBRNet 0.948 0.896 0.915 0.952 0.918 0.905 0.962 0.834
MVSNeRF 0.876 0.886 0.898 0.962 0.902 0.893 0.923 0.886
GeoNeRF 0.973 0.921 0.931 0.975 0.956 0.926 0.978 0.844

LPIPS↓
Chair Drums Ficus Hotdog Lego Materials Mic Ship

pixelNeRF 0.386 0.421 0.335 0.433 0.427 0.432 0.329 0.526
IBRNet 0.066 0.091 0.097 0.067 0.095 0.115 0.051 0.219
MVSNeRF 0.282 0.187 0.211 0.173 0.204 0.216 0.177 0.244
GeoNeRF 0.040 0.098 0.092 0.056 0.059 0.116 0.037 0.200

Table 3.12: Per-scene Quantitative comparison of our proposed GeoNeRF with existing gen-
eralizable NeRF models, pixelNeRF (Yu et al., 2021), IBRNet (Wang et al., 2021b), and MVS-
NeRF (Chen et al., 2021), on NeRF realistic synthetic dataset (Mildenhall et al., 2020) in terms
of PSNR (higher is better), SSIM (Wang et al., 2004) (higher is better), and LPIPS (Zhang et al.,
2018a) (lower is better) metrics.
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PSNR↑
Chair Drums Ficus Hotdog Lego Materials Mic Ship

NeRF 33.00 25.01 30.13 36.18 32.54 29.62 32.91 28.65
GeoNeRF10k 33.54 25.13 27.79 36.26 30.32 28.19 33.41 28.76
GeoNeRF1k 32.76 24.74 27.06 35.71 29.79 27.69 32.83 28.11

SSIM↑
Chair Drums Ficus Hotdog Lego Materials Mic Ship

NeRF 0.967 0.925 0.964 0.974 0.961 0.949 0.980 0.856
GeoNeRF10k 0.980 0.935 0.955 0.983 0.965 0.953 0.987 0.890
GeoNeRF1k 0.977 0.930 0.948 0.982 0.961 0.948 0.985 0.883

LPIPS↓
Chair Drums Ficus Hotdog Lego Materials Mic Ship

NeRF 0.046 0.091 0.044 0.121 0.050 0.063 0.028 0.206
GeoNeRF10k 0.024 0.073 0.061 0.032 0.041 0.058 0.016 0.137
GeoNeRF1k 0.030 0.081 0.069 0.034 0.046 0.069 0.020 0.145

Table 3.13: Per-scene Quantitative comparison of our fine-tuned GeoNeRF with per-scene
optimized vanilla NeRF (Mildenhall et al., 2020) on NeRF realistic synthetic dataset (Mildenhall
et al., 2020) in terms of PSNR (higher is better), SSIM (Wang et al., 2004) (higher is better), and
LPIPS (Zhang et al., 2018a) (lower is better) metrics. Our model is fine-tuned on each scene for
10k iterations (GeoNeRF10k) and 1k iterations (GeoNeRF1k), and NeRF is optimized for 500k
iterations.

3.7.4 Ablation Study

An ablation study of our generalizable model on the NeRF synthetic dataset (Mildenhall et al.,

2020) and the real forward-facing dataset (Mildenhall et al., 2019) is presented in Tables 3.14

and 3.15, contrasting the effectiveness of individual components of our proposed model. We

evaluated GeoNeRF in the cases where (a) no self-supervision loss is used, (b) no positional

encoding is employed, (c) points on a ray are merely sampled uniformly, (d) occluded views

are not excluded, (e) attention mechanism is removed from the renderer, (f) view-independent

tokens are not regularized with the AE network before predicting volume densities, and (g)

only a single cost volume is constructed per-view instead of cascaded multi-level cost volumes.

Figure 3.7 contains examples from the NeRF synthetic dataset (Mildenhall et al., 2020) for

qualitative analysis corresponding to the experiments in Table 3.14. The examples focus on

challenging views of the scenes in order to contrast the behavior of the models properly.
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NeRF Realistic Synthetic Dataset (Mildenhall et al., 2020)
Experiment PSNR↑ SSIM↑ LPIPS↓ Examples
a. Without self-supervision 28.10 0.935 0.098 Figure 3.7.a
b. Without positional encoding 27.19 0.927 0.116 Figure 3.7.b
c. Uniform sampling along a ray 28.04 0.934 0.089 Figure 3.7.c
d. Without occlusion masks 27.92 0.932 0.097 Figure 3.7.d
e. Without attention mechanism 27.69 0.929 0.135 Figure 3.7.e
f. Without the AE network 23.53 0.884 0.182 Figure 3.7.f
g. Single cost volume 26.60 0.915 0.132 Figure 3.7.g
h. Full GeoNeRF 28.33 0.938 0.087 Figure 3.7.h

Table 3.14: Ablation study of the key components of GeoNeRF. The evaluation is performed
on the NeRF synthetic (Mildenhall et al., 2020) test scenes. See Section 3.7.4 for the details of
these experiments, and see Figure 3.7 for qualitative analysis.

Real Forward Facing LLFF Dataset (Mildenhall et al., 2019)
Experiment PSNR↑ SSIM↑ LPIPS↓
a. Without self-supervision 25.37 0.836 0.184
b. Without positional encoding 25.02 0.836 0.189
c. Uniform sampling along a ray 25.31 0.835 0.184
d. Without occlusion masks 25.22 0.834 0.185
e. Without attention mechanism 24.95 0.828 0.194
f. Without the AE network 24.92 0.821 0.199
g. Single cost volume 24.60 0.814 0.211
h. Full GeoNeRF 25.44 0.839 0.180

Table 3.15: Ablation study of the key components of GeoNeRF. The same evaluation of the
experiments in Table 3.14 is performed on the real forward-facing LLFF (Mildenhall et al.,
2019) test scenes. See Section 3.7.4 for the details of these experiments.

3.7.5 Limitations

Our model with the experimental settings in Section 3.5 can be trained and evaluated on a

single GPU with 16 GB of memory. Failure cases in our model could occur when the stereo

reconstruction fails in the geometry reasoner, and the renderer is misled by incorrect geometry

priors. Since the architecture of the geometry reasoner is inspired by multi-view stereo models,

it is prone to failure in textureless areas similarly. Such failure examples are shown in Figure 3.8.
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Figure 3.7: Qualitative ablation study of the key components of GeoNeRF. The examples
are selected from challenging views of the NeRF synthetic dataset (Mildenhall et al., 2020).
Columns correspond to the experiments in Table 3.14.

Figure 3.8: Failure examples in our method where stereo reconstruction fails in the geometry
reasoner for textureless areas.
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4 ESLAM: an Efficient Dense Visual
SLAM

Disclaimer: This chapter is adapted from the following article – with permission of all

co-authors and the conference:

Johari, M. M., Carta, C., and Fleuret, F. (2023). ESLAM: Efficient Dense SLAM Sys-

tem Based on Hybrid Representation of Signed Distance Fields. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages

17408-17419. Selected as a Highlight Paper (Top 2.5%).

4.1 Abstract

We present ESLAM, an efficient implicit neural representation method for Simultaneous Lo-

calization and Mapping (SLAM). ESLAM reads RGB-D frames with unknown camera poses

in a sequential manner and incrementally reconstructs the scene representation while es-

timating the current camera position in the scene. We incorporate the latest advances in

Neural Radiance Fields (NeRF) into a SLAM system, resulting in an efficient and accurate

dense visual SLAM method. Our scene representation consists of multi-scale axis-aligned

perpendicular feature planes and shallow decoders that, for each point in the continuous

space, decode the interpolated features into Truncated Signed Distance Field (TSDF) and RGB

values. Our extensive experiments on three standard datasets, Replica, ScanNet, and TUM

RGB-D show that ESLAM improves the accuracy of 3D reconstruction and camera localization

of state-of-the-art dense visual SLAM methods by more than 50%, while it runs up to ×10

faster and does not require any pre-training. The implementation source code and visual-

ization videos showcasing the obtained results can be accessed through the following link:

https://www.idiap.ch/paper/eslam
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Figure 4.1: Our pre-train-free ESLAM model reconstructs scene details more accurately than
existing works: iMAP∗ (Sucar et al., 2021) and NICE-SLAM (Zhu et al., 2022), while it runs up
to ×10 faster (see Section 4.5.2 for runtime analysis). The ground truth image is rendered with
ReplicaViewer (Straub et al., 2019).

4.2 Introduction

Dense visual Simultaneous Localization and Mapping (SLAM) is a fundamental challenge

in 3D computer vision with several applications such as autonomous driving, robotics, and

virtual/augmented reality. It is defined as constructing a 3D map of an unknown environment

while simultaneously approximating the camera pose.

While traditional SLAM systems (Mur-Artal and Tardós, 2017a; Engel et al., 2014; Newcombe

et al., 2011b; Schops et al., 2019; Whelan et al., 2015, 2012) mostly focus on localization ac-

curacy, recent learning-based dense visual SLAM methods (Bloesch et al., 2018; Yang et al.,

2022b; Czarnowski et al., 2020; Sucar et al., 2020; Zhi et al., 2019; Teed and Deng, 2021; Mc-

Cormac et al., 2017; Sünderhauf et al., 2017; Tang and Tan, 2018; Koestler et al., 2022) provide

meaningful global 3D maps and show reasonable but limited reconstruction accuracy.

Following the advent of Neural Radiance Fields (NeRF) (Mildenhall et al., 2020) and the

demonstration of their capacity to reason about the geometry of a large-scale scene (Deng

et al., 2022; Kosiorek et al., 2021; Chen et al., 2021; Wei et al., 2021; Jain et al., 2021; Wu et al.,

2022) and reconstruct 3D surfaces (Yariv et al., 2021; Azinović et al., 2022; Wang et al., 2021a;

Sun et al., 2022b; Or-El et al., 2022; Li et al., 2022a; Ortiz et al., 2022; Zhang et al., 2021; Wang

et al., 2022b), novel NeRF-based dense SLAM methods have been developed. In particular,

iMAP (Sucar et al., 2021) and NICE-SLAM (Zhu et al., 2022) utilize neural implicit networks to

achieve a consistent geometry representation.

IMAP (Sucar et al., 2021) represents the geometry with a single huge MLP, similar to vanilla

NeRF (Mildenhall et al., 2020), and optimizes the camera poses during the rendering process.

NICE-SLAM (Zhu et al., 2022) improves iMAP by storing the representation locally on voxel

grids to prevent the forgetting problem. Despite promising reconstruction quality, these meth-

ods are computationally demanding for real-time applications, and their ability to capture

geometry details is limited. In addition, NICE-SLAM (Zhu et al., 2022) uses frozen pre-trained

MLPs, which limits its generalizability to novel scenes. We take NICE-SLAM (Zhu et al., 2022)

as a baseline and provide the following contributions:
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• We leverage implicit Truncated Signed Distance Field (TSDF) (Azinović et al., 2022) to

represent geometry, which converges noticeably faster than the common rendering-

based representations like volume density (Sucar et al., 2021) or occupancy (Zhu et al.,

2022) and results in higher quality reconstruction.

• Instead of storing features on voxel grids, we propose employing multi-scale axis-aligned

feature planes (Chan et al., 2022) which leads to reducing the memory footprint growth

rate w.r.t. scene side length from cubic to quadratic.

• We benchmark our method on three challenging datasets, Replica (Straub et al., 2019),

ScanNet (Dai et al., 2017), and TUM RGB-D (Sturm et al., 2012), to demonstrate the

performance of our method in comparison to existing ones and provide an extensive

ablation study to validate our design choices.

Thanks to the inherent smoothness of representing the scene with feature planes, our method

produces higher-quality smooth surfaces without employing explicit smoothness loss func-

tions like the one used by Wang et al. (2022a).

Concurrent with our work, the following studies also propose Radiance Fields-based SLAM

systems: iDF-SLAM (Ming et al., 2022) also uses TSDF, but it is substantially slower and less

accurate than NICE-SLAM (Zhu et al., 2022). Orbeez-SLAM (Chung et al., 2023) operates in

real-time at the cost of poor 3D reconstruction. Compromising accuracy and quality, MeS-

LAM (Kruzhkov et al., 2022) introduces a memory-efficient SLAM. MonoNeuralFusion (Zou

et al., 2022) proposes an incremental 3D reconstruction model, assuming that ground truth

camera poses are available. Lastly, NeRF-SLAM (Rosinol et al., 2023) presents a monocu-

lar SLAM system with hierarchical volumetric Neural Radiance Fields optimized using an

uncertainty-based depth loss.

4.3 Related Work

Dense Visual SLAM. The ubiquity of cameras has made visual SLAM a field of major interest

in the last decades. Traditional visual SLAM employs pixel-wise optimization of geometric

and/or photometric constraints from image information. Depending on the information

source, visual SLAM divides into three main categories: visual-only (Newcombe et al., 2011b;

Engel et al., 2014; Forster et al., 2014; Mur-Artal and Tardós, 2017a; Tateno et al., 2017; Engel

et al., 2017), visual-inertial (Mourikis and Roumeliotis, 2007; Leutenegger et al., 2015; Bloesch

et al., 2015; Mur-Artal and Tardós, 2017b; Qin et al., 2018; Von Stumberg et al., 2018) and

RGB-D (Newcombe et al., 2011a; Kerl et al., 2013; Endres et al., 2013; Campos et al., 2021)

SLAM. Visual-only SLAM uses single or multi-camera setups but presents higher technical

challenges compared to others. Visual-inertial information can improve accuracy, but com-

plexifies the system and requires an extra calibration step. The advent of the Kinect brought

popularity to RGB-D setups with improved performance but had drawbacks such as larger

memory and power requirements, and limitations to indoor settings. Recently, learning-based
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approaches (Bloesch et al., 2018; Li et al., 2018a, 2020; Czarnowski et al., 2020; Teed and

Deng, 2021) have made great advances in the field, improving both accuracy and robustness

compared to traditional methods.

Neural Implicit 3D Reconstruction. Neural Radiance Fields (NeRF) have impacted 3D Com-

puter Vision applications, such as novel view synthesis (Mildenhall et al., 2020; Martin-Brualla

et al., 2021; Verbin et al., 2022; Mildenhall et al., 2022), surface reconstruction (Park et al.,

2019; Yariv et al., 2021; Oechsle et al., 2021; Wang et al., 2021a; Zhang et al., 2021; Wang et al.,

2022b; Yariv et al., 2020), dynamic scene representation (Gao et al., 2021; Park et al., 2021a;

Pumarola et al., 2021; Park et al., 2021b), and camera pose estimation (Yen-Chen et al., 2021;

Wang et al., 2021c; Lin et al., 2021; Jeong et al., 2021; Xia et al., 2022). The exploitation of neural

implicit representations for 3D reconstruction at real-world scale is studied in many recent

studies (Azinović et al., 2022; Wang et al., 2022a; Bozic et al., 2021; Choe et al., 2021; Murez

et al., 2020; Sun et al., 2021; Weder et al., 2021; Yan et al., 2021; Li et al., 2022a). The most related

works to ours are iMAP (Sucar et al., 2021) and NICE-SLAM (Zhu et al., 2022). IMAP presents

a NeRF-style dense SLAM system. NICE-SLAM extends iMAP by modeling the scene with

voxel grid features and decoding them into occupancies using pre-trained MLPs. However,

the generalizability of NICE-SLAM to novel scenes is limited because of the frozen pre-trained

MLPs. Another issue is the cubic memory growth rate of their model, which results in using

low-resolution voxel grids and losing fine geometry details. In contrast, we employ compact

plane-based features (Chan et al., 2022) which are directly decoded to TSDF, improving both

efficiency and accuracy of localization and reconstruction.

4.4 Method

The overview of our method is shown in Figure 4.2. Given a set of sequential RGB-D

frames {Ii ,Di }M
i=1, our model predicts camera poses {Ri |ti }M

i=1 and an implicit TSDF φg rep-

resentation that can be used in the marching cubes algorithm (Lorensen and Cline, 1987)

to extract 3D meshes. We expect TSDF to denote the distance to the closest surface with a

positive sign in the free space and a negative sign inside the surfaces. We employ normalized

TSDF, such that it is zero on the surfaces and has a magnitude of one at the truncation

distance T , which is a hyper-parameter. Section 4.4.1 describes how we represent a scene

with axis-aligned feature planes. Section 4.4.2 walks through the rendering process, which

converts raw representations into pixel depths and colors. Section 4.4.3 introduces our loss

functions. Finally, Section 4.4.4 provides the details of localization and reconstruction in our

SLAM system.

4.4.1 Axis-Aligned Feature Planes

Although voxel grid-based NeRF architectures (Fridovich-Keil et al., 2022; Sun et al., 2022a;

Wang et al., 2022a) exhibit rapid convergence, they struggle with cubical memory growing.
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Figure 4.2: The overview of ESLAM. Given the symmetry of our processes for geometry and
appearance, we exhibit both processes on the same pipeline for simplicity. The symbol ∗
represents both geometry g and appearance a, e.g., f∗(pn) can be either fg (pn) or fa(pn). At an
estimated camera pose {R, t }, we cast a ray for each pixel and sample N points {pn}N

n=1 along it
(Section 4.4.2). Each point pn is projected onto the coarse and fine feature planes and bilinearly
interpolates the four nearest neighbor features on each plane (Section 4.4.1). The interpolated
features at each level are added together, and the results from both levels are concatenated
together to form the inputs { fg (pn), fa (pn)} of the decoders {hg ,ha} (Section 4.4.1). The
geometry decoder hg estimates TSDFφg (pn) based on fg (pn), and the appearance decoder ha

estimates the raw colorφa (pn) based on fa (pn) for each point pn (Section 4.4.1). Once TSDFs
and raw colors of all points on a ray are generated, our SDF-based rendering process estimates
the depth d̂ and the color ĉ for each pixel (Section 4.4.2).

Different solutions have been proposed to mitigate the memory growth issue (Müller et al.,

2022; Chen et al., 2022; Chan et al., 2022). Inspired by Chan et al. (2022), we employ a tri-

plane architecture (see Figure 4.2), in which we store and optimize features on perpendicular

axis-aligned planes. Mimicking the trend in voxel-based methods (Müller et al., 2022; Sun

et al., 2022a; Chen et al., 2022), we propose using feature planes at two scales, i.e., coarse

and fine. Coarse-level representation allows efficient reconstruction of free space with fewer

sample points and optimization iterations. Moreover, we suggest employing separate feature

planes for representing geometry and appearance, which mitigates the forgetting problem

for geometry reconstruction since appearance fluctuates more frequently in a scene than

geometry.

Specifically, we use three coarse feature planes {F c
g -x y , F c

g -xz , F c
g -y z } and three fine ones {F f

g -x y ,

F f
g -xz , F f

g -y z } for representing the geometry. Similarly, three coarse {F c
a-x y , F c

a-xz , F c
a-y z } and
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three fine {F f
a-x y , F f

a-xz , F f
a-y z } planes are used for representing appearance of a scene. This

architecture prevents model size from growing cubically with the scene side-length as is the

case for voxel-based models.

To reason about the geometry of a point p in the continuous space, we first project it onto all

the geometry planes. The geometry feature fg (p) for point p is then formed by 1) bilinearly

interpolating the four nearest neighbors on each feature plane, 2) summing the interpo-

lated coarse features and the fine ones respectively into the coarse output f c
g (p) and fine

output f f
g (p), and 3) concatenating the outputs together. Formally:

f c
g (p) = F c

g -x y (p)+F c
g -xz (p)+F c

g -y z (p)

f f
g (p) = F f

g -x y (p)+F f
g -xz (p)+F f

g -y z (p)

fg (p) = [ f c
g (p); f f

g (p)] (4.1)

The appearance feature fa (p) is obtained similarly:

f c
a (p) = F c

a-x y (p)+F c
a-xz (p)+F c

a-y z (p)

f f
a (p) = F f

a-x y (p)+F f
a-xz (p)+F f

a-y z (p)

fa (p) = [ f c
a (p); f f

a (p)] (4.2)

These features are decoded into TSDFφg (p) and raw colorφa (p) values via shallow two-layer

MLPs {hg , ha}:

φg (p) = hg
(

fg (p)
)

and φa (p) = ha
(

fa (p)
)

(4.3)

These raw TSDF and color outputs can be utilized for depth/color rendering as well as mesh

extraction.

4.4.2 SDF-Based Volume Rendering

When processing input frame i , emulating the ray casting in NeRF (Mildenhall et al., 2020),

we select random pixels and calculate their corresponding rays using the current estimate

of the camera pose {Ri |ti }. For rendering the depths and colors of the rays, we first sample

Nstr at samples on each ray by stratified sampling and then sample additional Ni mp points

near surfaces. For pixels with ground truth depths, the Ni mp additional points are sampled

uniformly inside the truncation distance T w.r.t. the depth measurement, whereas for other

pixels, Ni mp points are sampled with the importance sampling technique (Mildenhall et al.,

2020; Martin-Brualla et al., 2021; Wang et al., 2022a; Sucar et al., 2021) based on the weights

computed for the stratified samples.
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For all N = Nstr at +Ni mp points on a ray {pn}N
n=1, we query TSDFφg (pn) and raw colorφa (pn)

from our networks and use the SDF-Based rendering approach in StyleSDF (Or-El et al., 2022)

to convert SDF values to volume densities:

σ(pn) =β ·Sigmoid
(−β ·φg (pn)

)
(4.4)

where β is a learnable parameter that controls the sharpness of the surface boundary. Negative

values of SDF push Sigmoid toward one, resulting in volume density inside the surface. The

volume density then is used for rendering the color and depth of each ray:

wn = exp

(
−

n−1∑
k=1

σ(pk )

)(
1−exp

(−σ(
pn

)))
ĉ =

N∑
n=1

wnφa (pn) and d̂ =
N∑

n=1
wn zn (4.5)

where zn is the depth of point pn w.r.t.the camera pose.

4.4.3 Loss Functions

One advantage of TSDF over other representations, such as occupancy, is that it allows us to use

per-point losses, along with rendering ones. These losses account for the rapid convergence

of our model. Following the practice of Azinović et al. (2022), assuming a batch of rays R with

ground truth depths are selected, we define the free space loss as:

L f s =
1

|R|
∑
r∈R

1

|P f s
r |

∑
p∈P f s

r

(φg (p)−1)2 (4.6)

where P f s
r is a set of points on the ray r that lie between the camera center and the truncation

region of the surface measured by the depth sensor. This loss function encourages TSDFφg

to have a value of one in the free space.

For sample points close to the surface and within the truncation region, we use the signed

distance objective, which leverages the depth sensor measurement to approximate the signed

distance field:

LT (P T
r ) = 1

|R|
∑
r∈R

1

|P T
r |

∑
p∈P T

r

(
z(p)+φg (p) ·T −D(r )

)2 (4.7)

where z(p) is the planar depth of point p w.r.t. camera, T is the truncation distance, D(r ) is the

ray depth measured by the sensor, and P T
r is a set of points on the ray r that lie in the truncation

region, i.e., |z(p)−D(r )| < T . We apply the same loss to all points in the truncation region, but

we differentiate the importance of points that are closer to the surface in the middle of the

truncation region P T -m
r from those that are at the tail of the truncation region P T -t

r . Formally,
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we define P T -m
r as a set of points that |z(p)−D(r )| < 0.4T , and define P T -t

r = P T
r −P T -m

r , then:

LT -m =LT (P T -m
r ) and LT -t =LT (P T -t

r ) (4.8)

This enables us to decrease the importance of LT -t in mapping, which leads to having a

smaller effective truncation distance, reducing artifacts in occluded areas, and reconstructing

with higher accuracy while leveraging the entire truncation distance in camera tracking.

In addition to these two per-point loss functions, we also employ reconstruction losses. For

pixels with ground truth depths, we impose consistency between the rendered depth and the

depth measured by the sensor:

Ld = 1

|R|
∑
r∈R

(
d̂ (r )−D(r )

)2
(4.9)

Similarly, we impose consistency between the pixel colors and rendered colors:

Lc = 1

|R|
∑
r∈R

(ĉ(r )− I (r ))2 (4.10)

where I (r ) is the pixel color of ray r .

The global loss function of our method is defined as:

L =λ f sL f s +λT -mLT -m +λT -t LT -t +λd Ld +λcLc (4.11)

where {λ f s ,λT -m ,λT -t ,λd ,λc } are the weighting coefficients. Note that Lc is defined on all rays

in a training batch, while other losses are only imposed on rays with ground truth measured

depths. The global objective is the same for both mapping and tracking in our method, but

the weighting coefficients are different.

4.4.4 Mapping and Tracking

Mapping. Our scene representation, i.e., the feature planes and MLP decoders, are ran-

domly initialized at the beginning. With the first input frame {I0,D0}, we fix the camera

pose and optimize the feature planes and MLP decoders to best represent the first frame.

For subsequent inputs, we update the scene representation iteratively every k frames, and

add the latest frame to the global keyframe list, following the practice in iMAP (Sucar et al.,

2021) and NICE-SLAM (Zhu et al., 2022). For mapping, we first choose |R| pixels randomly

from W frames, which include the current frame, the previous two keyframes, and W −3

frames randomly selected from the keyframe list. Then, we jointly optimize the feature

planes, MLP decoders, and camera poses of the W selected frames using the loss functions

introduced in Section 4.4.3. Unlike NICE-SLAM (Zhu et al., 2022), our method does not require

a staged-optimization policy, and we simply optimize all scene parameters and camera poses
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Method
Reconstruction (cm)

Depth L1↓ Acc.↓ Comp.↓ Comp. Ratio (%)↑
iMAP∗ 8.23 ± 0.88 7.16 ± 0.26 5.83 ± 0.27 67.17 ± 2.70
NICE-SLAM 3.29 ± 0.33 1.66 ± 0.07 1.63 ± 0.05 96.74 ± 0.36
ESLAM (ours) 1.18 ± 0.05 0.97 ± 0.02 1.05 ± 0.01 98.60 ± 0.07

Localization (cm)

ATE Mean↓ ATE RMSE↓
iMAP∗ 2.59 ± 0.58 3.42 ± 0.87
NICE-SLAM 1.56 ± 0.29 2.05 ± 0.45
ESLAM (ours) 0.52 ± 0.03 0.63 ± 0.05

Table 4.1: Quantitative comparison of our proposed ESLAM with existing NeRF-based dense
visual SLAM models, iMAP∗ (Sucar et al., 2021) and NICE-SLAM (Zhu et al., 2022), on the
Replica dataset (Straub et al., 2019) for both reconstruction and localization accuracy. The
results are the average and standard deviation of five runs on eight scenes of the Replica
dataset. Our method outperforms previous works by a high margin and has lower variances,
indicating it is also more stable from run to run. The evaluation metrics for reconstruction are
L1 loss (cm) between rendered and ground truth depth maps of 1000 random camera poses,
as well as reconstruction accuracy (cm), reconstruction completion (cm), and completion
ratio (%). The evaluation metrics for localization are mean and RMSE of ATE (cm) (Sturm et al.,
2012). For the details of the evaluations for each scene, refer to the supplementary material in
Section 4.7.4. It should also be noted that our method runs up to ×10 faster on this dataset
(see Section 4.5.2 for runtime analysis).

simultaneously.

Tracking. The localization process of our method is initiated for each input frame. The

current estimate of the camera parameters, represented by translation vectors and quaternion

rotations (Shoemake, 1985) {R|t }, are optimized solely based on our global loss function (see

Section 4.4.3) with the gradient-based Adam optimizer (Kingma and Ba, 2014). No second-

order optimizers or manifold operations are employed for camera tracking in our method. We

exclude rays with no ground truth depths and outlier pixels from each optimization step. A

pixel is considered an outlier if the difference between its measured depth and rendered depth

is ten times greater than the batch’s median rendered depth error.

4.5 Experiments

In this section, we validate that our method outperforms existing implicit representation-

based methods in both localization and reconstruction accuracy on three standard bench-

marks while running up to ×10 faster.
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Figure 4.3: Qualitative comparison of our proposed ESLAM method’s geometry reconstruction
with existing NeRF-based dense visual SLAM models, iMAP∗ (Sucar et al., 2021) and NICE-
SLAM (Zhu et al., 2022), on the Replica dataset (Straub et al., 2019). Our method produces
more accurate detailed geometry as well as higher-quality textures. The ground truth images
are rendered with the ReplicaViewer software (Straub et al., 2019). It should also be noted that
our method runs up to ×10 faster on this dataset (see Section 4.5.2 for runtime analysis). For
further qualitative analysis on this dataset, refer to the supplementary material in Section 4.7.3.

Baselines. We compare our method to two existing state-of-the-art NeRF-based dense visual

SLAM methods: iMAP (Sucar et al., 2021) and NICE-SLAM (Zhu et al., 2022). Because iMAP is

not open source, we use the iMAP∗ model in our experiment, which is the reimplementation

of iMAP by Zhu et al. (2022).

Datasets. We evaluate our method on three standard 3D benchmarks: Replica (Straub et al.,

2019), ScanNet (Dai et al., 2017), and TUM RGB-D (Sturm et al., 2012) datasets. We select the

same scenes for evaluation as in NICE-SLAM (Zhu et al., 2022).

Metrics. We borrow our evaluation metrics from NICE-SLAM (Zhu et al., 2022). For evaluating

scene geometry, we use both 2D and 3D metrics. For the 2D metric, we render depth maps

from 1000 random camera poses in each scene and calculate the L1 difference between depths

from ground truth meshes and the reconstructed ones. For the 3D metrics, we consider

reconstruction accuracy [cm], reconstruction completion [cm], and completion ratio [< 5 cm

%]. For evaluating these metrics, we build a TSDF volume for a scene with a resolution of 1 cm

and use the marching cubes algorithm (Lorensen and Cline, 1987) to obtain scene meshes.

Before evaluating the 3D metrics for our method and for the baselines, we perform mesh

culling as recommended by Azinović et al. (2022) and Wang et al. (2022a). For this purpose,

we remove faces from a mesh that are not inside any camera frustum or are occluded in all
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Scene ATE iMAP∗ NICE-SLAM ESLAM (ours)

Sc. 0000
Mean 34.2 ± 12.8 9.9 ± 0.4 6.5 ± 0.1
RMSE 42.7 ± 16.6 12.0 ± 0.5 7.3 ± 0.2

Sc. 0059
Mean 13.0 ± 2.4 11.9 ± 1.8 6.4 ± 0.4
RMSE 17.8 ± 7.4 14.0 ± 1.8 8.5 ± 0.5

Sc. 0106
Mean 12.9 ± 1.7 7.0 ± 0.2 6.7 ± 0.1
RMSE 15.0 ± 1.7 7.9 ± 0.2 7.5 ± 0.1

Sc. 0169
Mean 33.6 ± 15.3 9.2 ± 1.0 5.9 ± 0.1
RMSE 39.1 ± 18.2 10.9 ± 1.1 6.5 ± 0.1

Sc. 0181
Mean 20.8 ± 3.8 12.2 ± 0.3 8.3 ± 0.2
RMSE 24.7 ± 5.8 13.4 ± 0.3 9.0 ± 0.2

Sc. 0207
Mean 18.6 ± 6.0 5.5 ± 0.3 5.4 ± 0.1
RMSE 20.1 ± 6.8 6.2 ± 0.4 5.7 ± 0.1

Average
Mean 22.2 ± 7.0 9.3 ± 0.7 6.5 ± 0.2
RMSE 26.6 ± 9.4 10.7 ± 0.7 7.4 ± 0.2

Table 4.2: Quantitative comparison of our proposed ESLAM method’s localization accuracy
with existing NeRF-based dense visual SLAM models, iMAP∗ (Sucar et al., 2021) and NICE-
SLAM (Zhu et al., 2022), on the ScanNet dataset (Dai et al., 2017). The results are the average
and standard deviation of five runs on each scene of ScanNet (Dai et al., 2017). Our method
outperforms previous works and has lower variances, indicating it is also more stable from
run to run. The evaluation metrics for localization are mean and RMSE of ATE (cm) (Sturm
et al., 2012). It should also be noted that our method runs up to ×6 faster on this dataset (see
Section 4.5.2 for runtime analysis).

RGB-D frames. For evaluating camera localization, we use ATE (Sturm et al., 2012).

Implementation Details. The truncation distance T is set to 6 cm in our method. We employ

coarse feature planes with a resolution of 24 cm for both geometry and appearance. For

fine feature planes, we use a resolution of 6 cm for geometry and 3 cm for appearance. All

feature planes have 32 channels, resulting in a 64-channel concatenated feature input for the

decoders. The decoders are two-layer MLPs with 32 channels in the hidden layer. For the

Replica (Straub et al., 2019) dataset, we sample Nstr at = 32 points for stratified sampling and

Ni mp = 8 points for importance sampling on each ray. And for the ScanNet (Dai et al., 2017)

and TUM RGB-D (Sturm et al., 2012) datasets, we set Nstr at = 48 and Ni mp = 8.

We use different set of loss coefficients for mapping and tracking. During mapping we setλ f s =
5, λT -m = 200, λT -t = 10, λd = 0.1, andλc = 5. And during tracking, we setλ f s = 10, λT -m = 200,

λT -t = 50, λd = 1, and λc = 5. These coefficients are obtained by performing grid search in our

experiments. For further details of our implementation, refer to the supplementary material

in Section 4.7.1.
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Figure 4.4: Qualitative comparison of our proposed ESLAM method’s localization accuracy
with existing NeRF-based dense visual SLAM models, iMAP∗ (Sucar et al., 2021) and NICE-
SLAM (Zhu et al., 2022), on the ScanNet dataset (Dai et al., 2017). The ground truth camera
trajectory is shown in green, and the estimated trajectory is shown in red. Our method predicts
more accurate camera trajectories and does not suffer from drifting issues. It should also
be noted that our method runs up to ×6 faster on this dataset (see Section 4.5.2 for runtime
analysis).

4.5.1 Experimental Results

Evaluation on Replica (Straub et al., 2019). We provide the quantitative analysis of our

experimental results on eight scenes of the Replica dataset (Straub et al., 2019) in Table 4.1.

The numbers represent the average and standard deviation of the metrics for five independent

runs. As shown in Table 4.1, our method outperforms the baselines for both reconstruction

and localization accuracy. Our method also has lower variances, indicating that it is more

stable and more robust than existing methods.

Qualitative analysis on the Replica dataset (Straub et al., 2019) is provided in Figure 4.3. The

results show that our method reconstructs the details of the scenes more accurately and

produces fewer artifacts. Although it is not the focus of this study, our method also produces

higher-quality colors for the reconstructed meshes.

Evaluation on ScanNet (Dai et al., 2017). We also benchmark ours and existing methods on

multiple large scenes from ScanNet (Dai et al., 2017) to evaluate and compare their scalability.
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Figure 4.5: Qualitative comparison of our proposed ESLAM method’s geometry reconstruction
with existing NeRF-based dense visual SLAM models, iMAP∗ (Sucar et al., 2021) and NICE-
SLAM (Zhu et al., 2022), on the ScanNet dataset (Dai et al., 2017). Our method produces
more accurate detailed geometry as well as higher-quality textures. The appearance of white
backgrounds in ground truth meshes is due to the fact that the ground truth meshes of the
ScanNet dataset are incomplete. It should also be noted that our method runs up to ×6 faster
on this dataset (see Section 4.5.2 for runtime analysis).

For evaluating camera localization, we conduct five independent experiments on each scene

and report the average and standard deviation of the mean and RMSE of ATE (Sturm et al.,

2012) in Table 4.2. As demonstrated in the table, our method’s localization is more accurate

than existing methods. Our method is also considerably more stable from run to run as it has

much lower standard deviations. We provide qualitative analysis of camera localization, along

with geometry reconstruction, in Figure 4.4. The results show that our method does not suffer

from any large drifting and is more robust than existing methods.

Since the ground truth meshes of the ScanNet dataset (Dai et al., 2017) are incomplete, we

only provide qualitative analysis for geometry reconstruction, similar to previous works. The

qualitative comparison in Figure 4.5 validates that our model reconstructs more precise

geometry and detailed textures compared to existing approaches.

Evaluation on TUM RGB-D (Sturm et al., 2012). To further contrast the robustness of our

method with the existing ones, we conduct an evaluation study on the real-world TUM RGB-D

dataset (Sturm et al., 2012). Since there are no ground truth meshes for the scenes in this

dataset, we only present the localization results in Table 4.3 and the qualitative analysis of

rendered meshes in Figure 4.6.
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Figure 4.6: Qualitative comparison of our proposed ESLAM method’s geometry reconstruction
with existing NeRF-based dense visual SLAM models, iMAP∗ (Sucar et al., 2021) and NICE-
SLAM (Zhu et al., 2022), on the TUM RGB-D dataset (Sturm et al., 2012). Our method produces
more accurate detailed geometry as well as higher-quality textures. Since there are no ground
truth meshes for this dataset, we depict a sample input image.

fr1/desk fr2/xyz fr3/office
iMAP∗ (Sucar et al., 2021) 4.90 2.05 5.80
NICE-SLAM (Zhu et al., 2022) 2.85 2.39 3.02
ESLAM (ours) 2.47 1.11 2.42

Table 4.3: Quantitative comparison of our proposed ESLAM method’s localization accuracy
with existing NeRF-based dense visual SLAM models on the TUM RGB-D dataset (Sturm et al.,
2012). The evaluation metric is ATE RMSE↓ (cm) (Sturm et al., 2012).

4.5.2 Runtime Analysis

We evaluate the speed and size of our method in comparison with existing approaches in

Table 4.4. We report the average frame processing time (FPT), the number of parameters of the

model, and memory growth rate w.r.t. scene side length for the scenes room0 of Replica (Straub

et al., 2019) and scene0000 of ScanNet (Dai et al., 2017) datasets. All methods are bench-

marked with an NVIDIA GeForce RTX 3090 GPU. The results indicate that our method is

significantly faster than previous works on both datasets. Furthermore, in contrast to NICE-

SLAM (Zhu et al., 2022), our model size is smaller and does not grow cubically with the scene

side length.

4.6 Conclusion

We presented ESLAM, a dense visual SLAM approach that leverages the latest advances in the

Neural Radiance Fields study to improve both the speed and accuracy of neural implicit-based
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Method
Speed Memory
FPT (s) # Parameters Growth Rate

R
ep

li
ca iMAP∗ (Sucar et al., 2021) 5.20 0.22 M ?

NICE-SLAM (Zhu et al., 2022) 2.10 12.18 M O(L3)
ESLAM (ours) 0.18 6.79 M O(L2)

Sc
an

N
et iMAP∗ (Sucar et al., 2021) 5.20 0.22 M ?

NICE-SLAM (Zhu et al., 2022) 3.35 22.04 M O(L3)
ESLAM (ours) 0.55 17.63 M O(L2)

Table 4.4: Runtime analysis of our method in comparison with existing ones in terms of
average frame processing time (FPT), number of parameters, and model size growth rate
w.r.t. scene side length L. All methods are benchmarked with an NVIDIA GeForce RTX 3090
GPU on room0 of Replica (Straub et al., 2019) and scene0000 of ScanNet (Dai et al., 2017).
Our method is significantly faster and does not grow cubically in size w.r.t. scene side length L.
Note that iMAP (Sucar et al., 2021) represents a whole scene in a single MLP, hence its small
number of parameters. Accordingly, the scalability and growth rate of iMAP w.r.t. the scene
side length L are also unclear.

SLAM systems. We proposed replacing the voxel grid representation with axis-aligned feature

planes to prevent the model size from growing cubically with respect to the scene side length.

We also demonstrated that modeling the scene geometry with a Truncated Signed Distance

Field (TSDF) leads to efficient and high-quality surface reconstruction. We verified through

extensive experiments that our approach outperforms existing methods significantly in both

reconstruction and localization accuracy while running up to one order of magnitude faster.

It should also be noted that ESLAM accepts and deals with the forgetting problem in exchange

for memory preservation. Due to the structure of our feature plane representation, updating

features to adapt to new geometry may affect previously reconstructed geometries. To address

this issue, we keep track of previous keyframes and allocate a large portion of computation

resources to retain and remember previously reconstructed regions. Although ESLAM is sub-

stantially faster than competing approaches, handling the forgetting problem more efficiently

could further reduce frame processing time.
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4.7 Supplementary Material

4.7.1 Further Implementation Details

This section provides additional implementation details of our method. For the sake of

completeness, we also reiterate the points mentioned in Section 4.5.

The truncation distance T is set to 6 cm in our method. We employ coarse feature planes

with a resolution of 24 cm for both geometry and appearance. For fine feature planes, we

use a resolution of 6 cm for geometry and 3 cm for appearance. All feature planes have 32

channels, resulting in a 64-channel concatenated feature input for the decoders. The decoders

are two-layer MLPs with 32 channels in the hidden layer. ReLU activation function is used for

the hidden layer, and Tanh and Sigmoid are respectively used for the output layers of TSDF

and raw colors.

We use different set of loss coefficients for mapping and tracking. During mapping we set

λ f s = 5, λT -m = 200, λT -t = 10, λd = 0.1, and λc = 5. And during tracking, we set λ f s = 10,

λT -m = 200, λT -t = 50, λd = 1, and λc = 5. These coefficients are obtained by performing grid

search in our experiments.

For the scenes from Replica (Straub et al., 2019), we sample Nstr at = 32 points for stratified

sampling and Ni mp = 8 points for importance sampling on each ray. We perform 15 opti-

mization iterations for mapping and randomly select 4000 rays for each iteration. For camera

tracking, 2000 rays are chosen at random and 8 optimization iterations are performed. Since

ScanNet’s (Dai et al., 2017) scenes are at a larger scale and more challenging, we set Nstr at = 48

and Ni mp = 8. Also, we perform 30 optimization iterations for both mapping and tracking

in ScanNet’s (Dai et al., 2017) scenes. For the scenes in TUM RGB-D dataset (Sturm et al.,

2012), we similarly set Nstr at = 48 and Ni mp = 8. For this dataset, we perform 60 optimization

iterations for mapping and 200 optimization iterations for tracking, and we randomly sample

5000 rays for each iteration.

We initiate the mapping process every 4 input frames and use a window of W = 20 keyframes

for jointly optimizing the feature planes, MLP decoders, and camera poses of the selected

keyframes. We use Adam (Kingma and Ba, 2014) for optimizing all learnable parameters of our

method and set the learning rates according to a simple grid search in our experiments. We use

a learning rate of 0.001 for the MLP decoders and a learning rate of 0.005 for the feature planes.

We always use a learning rate of 0.001 for the camera poses, i.e., rotation and translation

{R, t }, of the selected keyframes during the joint optimization of the mapping step. During

the tracking step in the Replica’s (Straub et al., 2019) scenes, we use a learning rate of 0.001

for camera rotation and translation. For camera tracking in the scenes of ScanNet (Dai et al.,

2017), we use a learning rate of 0.0005 for camera translation and a learning rate of 0.0025 for

camera rotation. Lastly, For camera tracking in the scenes of TUM RGB-D (Sturm et al., 2012),

we use a learning rate of 0.01 for camera translation and a learning rate of 0.002 for camera

rotation. We model the camera rotation parameters with quaternions (Shoemake, 1985).
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Method ATE↓ Acc.↓ Comp.↓
1
1 D

NICE-SLAM 1.69 1.71 1.69
ESLAM (ours) 0.71 1.07 1.12

1
8 D

NICE-SLAM 2.01 2.18 1.98
ESLAM (ours) 0.72 1.16 1.23

Table 4.5: Robustness to depth resolution comparison of our method with NICE-SLAM (Zhu
et al., 2022) in terms of ATE RMSE (cm), reconstruction accuracy (cm), and reconstruction
completion (cm) on room0 of the Replica (Straub et al., 2019) dataset. Our method’s accuracy
is less affected when input depth is downsampled by a factor of 1

8 .

Once all input frames are processed, and for evaluation purposes, we build a TSDF volume for

each scene and use the marching cubes algorithm (Lorensen and Cline, 1987) to obtain 3D

meshes. We do not employ any post-processing for our representation or extracted meshes,

except that, for quantitative evaluation, we cull faces from a mesh that are not inside any

camera frustum or are occluded in all RGB-D frames. To ensure fairness, we do the same mesh

culling before evaluating the previous approaches.

4.7.2 Ablation Study

In this section, we conduct various experiments to show the robustness of our method in

different experimental settings and to validate our architecture design choices.

Robustness to Depth Quality. In this experiment, we evaluate how robust the methods are to

the quality of input depths. Accordingly, we downsample input depths of room0 of the replica

dataset (Straub et al., 2019) to 1
8 of the original resolution. The results in Table 4.5 reveal that

our method’s reconstruction and localization are less sensitive to the resolution of input depth

maps.

Keyframe Policy. Whenever we perform a mapping step for an input frame, we always include

that frame in our global keyframe list (see Section 4.4.4). NICE-SLAM (Zhu et al., 2022), on the

other hand, only updates its keyframe list once per 10 mapping steps. To make sure that our

evaluations are fair, we also run NICE-SLAM with our own keyframe updating policy on room0
of the Replica (Straub et al., 2019) dataset. The results in Table 4.6 show that NICE-SLAM only

slightly benefits from this updating policy.

Our Design Choices. We conduct multiple experiments in Table 4.7 to defend our design

choices in ESLAM. These experiments are conducted on the scenes in the Replica (Straub et al.,

2019) and ScanNet (Dai et al., 2017) datasets, and the details of the experimental settings are as

follows. (a) We use shared feature planes for geometry and appearance (see Section 4.4.1 and

Figure 4.2). (b) We only employ coarse feature planes (see Section 4.4.1 and Figure 4.2). (c) We

only employ fine feature planes (see Section 4.4.1 and Figure 4.2). (d) We add the interpolated
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Method ATE↓ Acc.↓ Comp.↓
NICE-SLAM (Zhu et al., 2022) 1.69 1.71 1.69
NICE-SLAM w/ Our Key. Policy 1.65 1.68 1.66

Table 4.6: Analysis of the impact of our keyframe updating policy on NICE-SLAM (Zhu et al.,
2022). The experiment is conducted on room0 of Replica (Straub et al., 2019), and the metrics
are ATE RMSE (cm), reconstruction accuracy (cm), and reconstruction completion (cm).
NICE-SLAM only slightly benefits from our updating policy.

coarse f c∗ (pn) and fine f f
∗ (pn) features instead of concatenating them (see Section 4.4.1 and

Figure 4.2). (e) We discard importance sampling and use stratified sampling for all N points

on a ray (see Section 4.4.2). (f) We only exploit depth inputs and discard color rendering and

RGB inputs (see Section 4.4.2). (g) We do not consider separate loss functions for the points

that are at the tail of the truncation region P T -t
r and for the points that are in the middle P T -m

r

(see Section 4.4.3). (h) We do not jointly optimize camera poses during the mapping step

(see Section 4.4.4). (i) We evaluate our full model. Note that due to the incompleteness of

ScanNet’s (Dai et al., 2017) ground truth meshes, we only evaluate localization accuracy on

this dataset.

4.7.3 Additional Qualitative Analysis

This section provides additional qualitative analysis to contrast the capability of our method

to preserve scene details in comparison to previous NeRF-based dense visual SLAM methods,

iMAP∗ (Sucar et al., 2021) and NICE-SLAM (Zhu et al., 2022). We provide this analysis on the

Replica dataset (Straub et al., 2019) in Figure 4.7 with both textured and untextured meshes.

The results demonstrate that our method produces more accurate meshes with fewer artifacts.

4.7.4 Per-Scene Breakdown of the Results

In this section, we break down the quantitative analysis of Table 4.1 into a per-scene analysis.

Tables 4.8 and 4.9 show the per-scene quantitative evaluation of our method in comparison

with iMAP∗ (Sucar et al., 2021) and NICE-SLAM (Zhu et al., 2022) on the Replica dataset (Straub

et al., 2019). As it is shown in Tables 4.8 and 4.9, our method outperforms previous approaches

in all scenes of Replica (Straub et al., 2019). Also, lower variances in our experiments are an

indication that our method is more stable from run to run.

4.7.5 Effect of Frame Processing Time

In this section, we investigate the trade-off between frame processing time and our method’s

reconstruction and localization accuracy. In this study, we increase the number of optimiza-

tion iterations during the mapping and tracking. By default, our ESLAM method performs
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Experiment
ScanNet Replica

ATE↓ ATE↓ Acc.↓ Comp.↓
a. Using shared feature planes. 7.49 0.65 0.99 1.08
b. Using only the coarse feature planes. 7.53 0.97 1.12 1.29
c. Using only the fine planes. 8.27 0.72 1.00 1.09
d. Replacing the concatenation with summation. 7.55 0.64 0.98 1.07
e. No importance sampling. 7.44 0.67 1.08 1.14
f. No color rendering. 8.31 0.68 1.03 1.08
g. One loss for the whole truncation region. 8.28 0.71 1.01 1.10
h. No camera pose optimization in mapping. 11.27 4.85 2.23 2.21
i. Full ESLAM method. 7.38 0.63 0.97 1.05

Table 4.7: Ablation study of our design choices on the ScanNet (Dai et al., 2017) and
Replica (Straub et al., 2019) datasets. The metrics are ATE RMSE (cm), reconstruction accuracy
(cm), and reconstruction completion (cm). For the details of this study, see Section 4.7.2.

I term = 15 optimization iterations during mapping and I tert = 8 optimization iterations

during tracking for the scenes of the Replica dataset (Straub et al., 2019). We define ES-

LAM x2 as our method when we double the number of optimization iterations, i.e., I term = 30

and I tert = 16. And similarly, we define ESLAM x10 as our method with I term = 150 and

I tert = 80.

Table 4.10 provides a quantitative analysis of ESLAM x2 and ESLAM x10, as well as a compari-

son with our default ESLAM method and existing approaches. The results show that at the cost

of increased frame processing time, our method yields more accurate scene reconstruction

and camera trajectory. It should be noted that even ESLAM x10 runs faster than the existing

state-of-the-art method, NICE-SLAM (Zhu et al., 2022).

Figure 4.8 provides a qualitative analysis of ESLAM x10 compared to our default ESLAM

method. In this analysis, we render the scenes with untextured meshes to contrast the qual-

ity of geometry reconstruction. While the quality difference is subtle, Figure 4.8 indicates

that increasing the number of optimization iterations results in more accurate geometry

reconstruction and smoother surfaces.
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Methods
Reconstruction (cm)

Depth L1↓ Acc.↓ Comp.↓ Comp. Ratio (%)↑

ro
o

m
0 iMAP∗ 6.56 ± 0.39 5.89 ± 0.19 6.07 ± 0.22 66.55 ± 1.58

NICE-SLAM 2.77 ± 0.13 1.71 ± 0.03 1.69 ± 0.03 97.61 ± 0.09
ESLAM (Ours) 0.97 ± 0.04 1.07 ± 0.01 1.12 ± 0.01 99.06 ± 0.05

ro
o

m
1 iMAP∗ 5.97 ± 1.14 5.71 ± 0.31 5.57 ± 0.40 66.04 ± 3.45

NICE-SLAM 2.52 ± 0.11 1.36 ± 0.03 1.34 ± 0.04 98.60 ± 0.14
ESLAM (Ours) 1.07 ± 0.07 0.85 ± 0.01 0.88 ± 0.01 99.64 ± 0.06

ro
o

m
2 iMAP∗ 7.82 ± 0.94 6.34 ± 0.32 5.47 ± 0.27 69.87 ± 4.15

NICE-SLAM 3.54 ± 0.35 1.75 ± 0.06 1.71 ± 0.03 96.52 ± 0.26
ESLAM (Ours) 1.28 ± 0.07 0.93 ± 0.01 1.05 ± 0.01 98.84 ± 0.06

o
ffi

ce
0 iMAP∗ 7.57 ± 0.70 7.44 ± 0.26 5.13 ± 0.37 70.97 ± 3.52

NICE-SLAM 2.17 ± 0.14 1.43 ± 0.06 1.56 ± 0.05 96.30 ± 0.33
ESLAM (Ours) 0.86 ± 0.02 0.85 ± 0.01 0.96 ± 0.01 98.34 ± 0.05

o
ffi

ce
1 iMAP∗ 8.91 ± 0.65 10.34 ± 0.15 5.58 ± 0.24 72.08 ± 3.21

NICE-SLAM 2.41 ± 0.11 1.16 ± 0.07 1.15 ± 0.03 98.04 ± 0.19
ESLAM (Ours) 1.26 ± 0.02 0.83 ± 0.06 0.81 ± 0.01 98.85 ± 0.08

o
ffi

ce
2 iMAP∗ 11.04 ± 0.69 9.15 ± 0.39 6.27 ± 0.37 62.24 ± 2.62

NICE-SLAM 4.96 ± 0.58 1.83 ± 0.07 1.72 ± 0.03 96.96 ± 0.25
ESLAM (Ours) 1.71 ± 0.07 1.02 ± 0.01 1.09 ± 0.01 98.60 ± 0.12

o
ffi

ce
3 iMAP∗ 10.12 ± 1.31 7.14 ± 0.27 6.02 ± 0.20 66.07 ± 1.65

NICE-SLAM 4.91 ± 0.70 2.24 ± 0.17 2.17 ± 0.05 93.08 ± 0.40
ESLAM (Ours) 1.43 ± 0.05 1.21 ± 0.01 1.42 ± 0.01 96.80 ± 0.03

o
ffi

ce
4 iMAP∗ 7.85 ± 1.32 5.32 ± 0.18 6.51 ± 0.20 63.63 ± 1.39

NICE-SLAM 3.81 ± 0.74 2.09 ± 0.16 2.03 ± 0.17 95.00 ± 1.31
ESLAM (Ours) 1.06 ± 0.08 1.15 ± 0.02 1.27 ± 0.01 97.65 ± 0.14

A
ve

ra
ge iMAP∗ 8.23 ± 0.88 7.16 ± 0.26 5.83 ± 0.27 67.17 ± 2.70

NICE-SLAM 3.29 ± 0.33 1.66 ± 0.07 1.63 ± 0.05 96.74 ± 0.36
ESLAM (Ours) 1.18 ± 0.05 0.97 ± 0.02 1.05 ± 0.01 98.60 ± 0.07

Table 4.8: Per-scene quantitative comparison of our proposed ESLAM with existing NeRF-
based dense visual SLAM models, iMAP∗ (Sucar et al., 2021) and NICE-SLAM (Zhu et al., 2022),
on the Replica dataset (Straub et al., 2019) in terms of reconstruction metrics. The results are
the average and standard deviation of five independent runs on each scene of the Replica
dataset. Our method outperforms previous works by a high margin and has lower variances,
indicating it is also more stable from run to run. The evaluation metrics for reconstruction are
L1 loss (cm) between rendered and ground truth depth maps of 1000 random camera poses,
reconstruction accuracy (cm), reconstruction completion (cm), and completion ratio (%). It
should also be noted that our method runs up to ×10 faster on this dataset (see Section 4.5.2
for runtime analysis).
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Methods
Localization (cm)

ATE Mean↓ ATE RMSE↓

ro
o

m
0 iMAP∗ 3.12 ± 0.84 5.23 ± 1.41

NICE-SLAM 1.43 ± 0.09 1.69 ± 0.17
ESLAM (Ours) 0.61 ± 0.06 0.71 ± 0.13

ro
o

m
1 iMAP∗ 2.54 ± 0.37 3.09 ± 0.48

NICE-SLAM 1.70 ± 0.29 2.13 ± 0.24
ESLAM (Ours) 0.56 ± 0.02 0.70 ± 0.02

ro
o

m
2 iMAP∗ 2.31 ± 0.20 2.58 ± 0.19

NICE-SLAM 1.41 ± 0.24 1.87 ± 0.39
ESLAM (Ours) 0.43 ± 0.01 0.52 ± 0.01

o
ffi

ce
0 iMAP∗ 1.69 ± 1.06 2.40 ± 1.05

NICE-SLAM 1.12 ± 0.22 1.26 ± 0.24
ESLAM (Ours) 0.42 ± 0.03 0.57 ± 0.04

o
ffi

ce
1 iMAP∗ 1.03 ± 0.17 1.17 ± 0.25

NICE-SLAM 0.74 ± 0.19 0.84 ± 0.17
ESLAM (Ours) 0.46 ± 0.05 0.55 ± 0.04

o
ffi

ce
2 iMAP∗ 3.99 ± 0.98 5.67 ± 1.82

NICE-SLAM 1.42 ± 0.10 1.71 ± 0.14
ESLAM (Ours) 0.47 ± 0.03 0.58 ± 0.09

o
ffi

ce
3 iMAP∗ 4.05 ± 0.93 5.08 ± 1.37

NICE-SLAM 2.31 ± 0.51 3.98 ± 1.79
ESLAM (Ours) 0.61 ± 0.03 0.72 ± 0.02

o
ffi

ce
4 iMAP∗ 1.93 ± 0.21 2.23 ± 0.35

NICE-SLAM 2.22 ± 0.68 2.82 ± 0.71
ESLAM (Ours) 0.52 ± 0.02 0.63 ± 0.03

A
ve

ra
ge iMAP∗ 2.59 ± 0.58 3.42 ± 0.87

NICE-SLAM 1.56 ± 0.29 2.05 ± 0.45
ESLAM (Ours) 0.52 ± 0.03 0.63 ± 0.05

Table 4.9: Per-scene quantitative comparison of our proposed ESLAM with existing NeRF-
based dense visual SLAM models, iMAP∗ (Sucar et al., 2021) and NICE-SLAM (Zhu et al., 2022),
on the Replica dataset (Straub et al., 2019) in terms of localization accuracy. The results are the
average and standard deviation of five independent runs on each scene of the Replica dataset.
Our method outperforms previous works by a high margin and has lower variances, indicating
it is also more stable from run to run. The evaluation metrics for localization are mean and
RMSE of ATE (cm) (Sturm et al., 2012). It should also be noted that our method runs up to ×10
faster on this dataset (see Section 4.5.2 for runtime analysis).
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Figure 4.7: Qualitative comparison of our method’s scene reconstruction with that of
iMAP∗ (Sucar et al., 2021) and NICE-SLAM (Zhu et al., 2022) on the Replica dataset (Straub
et al., 2019). Our method produces more accurate detailed geometry as well as higher-quality
textures. The scenes are rendered with both textured and untextured meshes and the ground
truth textured images are rendered with the ReplicaViewer software (Straub et al., 2019). It
should also be noted that our method runs up to ×10 faster on this dataset (see Section 4.5.2
for runtime analysis).
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Method Optimization Iterations Acc.↓ Comp.↓ ATE↓ FPT↓
iMAP∗ - 7.16 5.83 3.42 5.20
NICE-SLAM - 1.66 1.63 2.05 2.10
ESLAM (ours) I term = 15, I tert = 8 0.97 1.05 0.63 0.18
ESLAM x2 (ours) I term = 30, I tert = 16 0.95 1.03 0.42 0.35
ESLAM x10 (ours) I term = 150, I tert = 80 0.92 1.01 0.31 1.72

Table 4.10: Quantitative analysis of the effect of the number of optimization iterations during
mapping and tracking on our method’s reconstruction and localization accuracy. I term stands
for the number of optimization iterations during mapping, and I tert denotes the number of
optimization iterations during tracking. The evaluation metrics are reconstruction accuracy
(cm), reconstruction completion (cm), and ATE RMSE (cm) (Sturm et al., 2012). Average Frame
Processing Time (FTP) in seconds is also shown to highlight the trade-off between the accuracy
and throughput of our method. For reference, we reiterate the performance of the existing
approaches, iMAP∗ (Sucar et al., 2021) and NICE-SLAM (Zhu et al., 2022). It should be noted
that even ESLAM x10 runs faster than the existing state-of-the-art method, NICE-SLAM (Zhu
et al., 2022). Refer to Section 4.7.5 for the details of this experiment, and see Figure 4.8 for the
qualitative analysis.
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Figure 4.8: Qualitative analysis of the effect of the number of optimization iterations during
mapping and tracking on our method’s reconstruction quality. ESLAM x10 is our method
when we multiply the number of optimization iterations by 10. Refer to Section 4.7.5 for the
details of this experiment, and see Table 4.10 for the quantitative analysis.
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5 Conclusion and Future Work

5.1 Conclusion

In this thesis, we have made significant contributions to the fields of 3D computer vision and

scene understanding through the introduction of three novel approaches. Firstly, we propose

a novel approach to improve the accuracy of monocular depth estimation from depth sensor

raw data. Subsequently, we introduce a new generalizable method that enhances the quality

of synthesized images from novel camera poses. Finally, we introduce an efficient dense visual

SLAM system that outperforms state-of-the-art methods in both accuracy and efficiency.

We have presented DepthInSpace in Chapter 2 which represents a significant leap forward

in the accurate estimation of depth from structured-light sensor data. By integrating optical

flow and harnessing information from multiple video frames within a self-supervised frame-

work, DepthInSpace enhances depth estimation accuracy and outperforms existing methods,

as evidenced by qualitative and quantitative evaluations across diverse datasets, including

synthetic and real-world scenes.

Moving on to our second contribution in Chapter 3, GeoNeRF stands out as a pioneering gen-

eralizable method for novel view synthesis. This approach not only achieves state-of-the-art

image quality for complex scenes but also eliminates the need for per-scene optimization.

Leveraging recent advancements in multi-view architectures and radiance fields, GeoNeRF

constructs cascaded cost volumes for source views, which are then aggregated through an

attention-based network for synthesizing images from novel poses. Furthermore, we propose

promising avenues for future research, suggesting that the incorporation of advanced algo-

rithms to dynamically select nearby views or an adaptive approximation of the optimal number

of required cost volumes could further enhance the versatility and efficiency of GeoNeRF.

Lastly, our third contribution in Chapter 4, ESLAM, introduces a top-tier dense visual SLAM

by leveraging Neural Radiance Fields to improve both speed and accuracy. Through the

innovative replacement of voxel grid representation with axis-aligned feature planes and

the adoption of a Truncated Signed Distance Field for scene geometry modeling, ESLAM
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showcases remarkable advancements in reconstruction and localization accuracy. Notably,

our experiments validate that ESLAM improves existing methods’ accuracy significantly while

running up to one order of magnitude faster.

Collectively, these three contributions not only advance the state of the art in their respective

domains but also set the stage for further research and applications, demonstrating the trans-

formative potential of our innovative approaches in the broader landscape of 3D computer

vision research.

5.2 Future Work and Recent Advances in Successor Studies

Considering the advancements highlighted in this thesis, numerous exciting opportunities

for future research emerge within the domains of depth estimation, novel view synthesis, and

dense visual SLAM. It is worth noting that due to the rapid expansion of research in these

areas, there are already several concurrent or inspired works documented in the literature as

of the time of this writing. This section offers a concise overview of potential extensions, both

existing and prospective.

To enhance DepthInSpace, there is potential for additional investigation into expanding the

self-supervised framework to include active stereo. This involves utilizing a stereo camera

to capture the illuminated pattern, which contributes supplementary information for the

algorithm to reason about geometry and occlusion. Notably, this approach could allow for the

adoption of a sparser projection pattern, offering advantages in terms of power consumption

and efficiency.

An additional avenue of research involves addressing the constraints imposed by the current

dataset. Despite our exploration of various synthetic datasets and the evaluation of our

method on real-world scenes, the absence of an extensive real dataset remains a limiting

factor for the effectiveness of our proposed approach. A potential strategy to alleviate this

limitation is to adapt the model to leverage recent advancements in conventional monocular

depth estimation. Utilizing large datasets, such as those used by Ranftl et al. (2020), in this

domain could provide robust prior information for the network, helping to mitigate the

aforementioned issue to some extent.

An alternative enhancement to boost the generalizability of DepthInSpace to out-of-distribution

depths involves substituting the single-frame depth regressor network with a cost-volume-

based depth estimator network, such as MVSNet (Yao et al., 2018). This modification makes

the network indifferent to the absolute values of depths or disparities. Consequently, the

network becomes capable of functioning on novel datasets where depth values exhibit a

significant shift compared to those in the training sets. Such architecture is employed in the

concurrent work by Li et al. (2023b), and a similar idea is explored in another coexisting work,

GigaDepth (Schreiberhuber et al., 2022). GigaDepth employs a hierarchy of adaptive MLPs to

robustly predict depth instead of opting for direct regression through a CNN.
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Lastly, exploring the application of structured-light for depth estimation in dynamic scenes

represents a natural extension for future research. This introduces novel challenges in com-

prehending and modeling temporal changes within the scene. Recent concurrent studies

conducted by Qiao et al. (2022) and Qiao et al. (2023) have specifically attempted to tackle

these challenges.

In our GeoNeRF contribution, a promising avenue for future research involves enhancing effi-

ciency and minimizing computational resource requirements. Despite achieving exceptional

quality in the rendered output, GeoNeRF does not rank among the most efficient rendering

algorithms. Notably, the attention blocks in the renderer section of GeoNeRF stand out as the

most computationally intensive aspect of the algorithm.

To alleviate the computational burden in these blocks, one potential modification involves

adaptively filtering out less pertinent input source views. This strategy aims to decrease the

number of tokens processed per pixel. Additionally, implementing more efficient transformer

attention architectures, such as Perceiver IO (Jaegle et al., 2021) or SegFormer (Xie et al., 2021),

could further diminish the computation costs associated with the renderer.

Another research direction to speed up GeoNeRF could be reducing the number of cast

rays. More specifically, rendering a low-resolution image using anti-aliasing radiance field

approaches (Barron et al., 2021; Hu et al., 2023), and scaling up the image using a lightweight

super-resolution network can significantly reduce the computation costs. Exploiting such

a technique along with feature rendering instead of RGB rendering has shown promising

progress in the NeRF literature (Huang et al., 2023b; Wang et al., 2022c; Han et al., 2024).

Concurrent or after our research in GeoNeRF, the following studies also explored the field of

generalizable 3D understanding. WaveNeRF (Xu et al., 2023b) integrates wavelet frequency

decomposition into MVS and NeRF to achieve generalizable yet high-quality synthesis without

any per-scene optimization. NeuRay (Liu et al., 2022) exploits MVS to detect occluded source

views and proposes an implicit occlusion-aware feature aggregation. Du et al. (2023) and

Suhail et al. (2022) eliminate alpha compositing in ray casting by using an attention-based

aggregation of the image-based features and directly regressing the output color to save com-

putation. LIRF (Huang et al., 2023c) supports generalizable NeRF rendering at arbitrary scales

by proposing an anti-aliasing architecture. Liu et al. (2024) and (Liu et al., 2023) introduce a

method that generates a 3D textured mesh from a single image exploiting diffusion models.

And ContraNeRF (Yang et al., 2023a) explores synthetic-to-real generalization of radiance

fields.

Lastly, while our ESLAM approach has made significant strides in enhancing the accuracy

and efficiency of implicit visual SLAM, it still falls short of the real-time performance and

precise localization capabilities of traditional SLAM methods. Specifically, techniques like

loop closure detection, global bundle adjustment, and second-order optimization of camera

poses, which have proven their effectiveness in traditional SLAM, need to be incorporated

and tailored to the unique framework of implicit neural-based visual SLAM systems like
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ours. In successor literature, MIPS-Fusion (Tang et al., 2023b) and NGEL-SLAM (Mao et al.,

2023) propose to learn implicit sub-maps for the environment and introduce submap-level

loop closure detection and correction. Haghighi et al. (2023) completely decouple tracking

and mapping representation and use the traditional ORB-SLAM 3 (Campos et al., 2021) as a

tracking backbone.

Another compelling extension to our research in ESLAM would be to investigate techniques

for reducing the computational burden associated with addressing the forgetting problem.

Our current representation, heavily reliant on feature planes, is particularly susceptible to this

challenge. A promising strategy to tackle this issue lies in leveraging recent advancements in

the field of continual learning. Techniques such as Elastic Weight Consolidation (EWC) (Kirk-

patrick et al., 2017), which preserve the knowledge of old tasks while learning new ones, could

be seamlessly integrated into our ESLAM optimization scheme, effectively alleviating the need

to re-sample pixels from previous key-frames.

Concurrent or after our work in ESLAM, the following works also explored the field of implicit

representation in visual SLAM. Vox-Fusion (Yang et al., 2022a) and Point-SLAM (Sandström

et al., 2023) address the memory constraints of previous methods by employing a sparse octree

structure or a sparse point cloud, respectively, for the 3D map. DNS SLAM (Li et al., 2023a)

and SNI-SLAM (Zhu et al., 2023a) incorporate semantic information in the SLAM pipeline.

NID-SLAM (Xu et al., 2024) and DDN-SLAM (Li et al., 2024) extend the visual SLAM to dynamic

scenes. Liu and Zhu (2023) introduces map fusion of multiple SLAM agents. NICER-SLAM (Zhu

et al., 2023b) and HI-SLAM (Zhang et al., 2023a) investigate dense mapping in a monocular

RGB SLAM setting while EN-SLAM (Qu et al., 2023) integrates event sensor data with the RGBD

SLAM system. More recently, with the emergence of Gaussian Splatting (Kerbl et al., 2023),

there has been a growing interest in integrating this novel efficient 3D representation into the

dense visual SLAM pipeline (Matsuki et al., 2023; Yan et al., 2023; Yugay et al., 2023; Keetha

et al., 2023; Huang et al., 2023a).

Overall, our contributions have opened several new avenues for research in 3D computer

vision. By leveraging our novel techniques and insights, researchers can develop more efficient

and performant algorithms for tasks such as depth estimation, novel view synthesis, 3D

reconstruction, scene understanding, and SLAM. These advancements have the potential to

broaden the reach and impact of 3D computer vision across various domains, from robotics

and augmented reality to autonomous driving and medical imaging.
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