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Abstract
Automatic speech recognition (ASR) and spoken language understanding (SLU) is the core
component of current voice-powered AI assistants such as Siri and Alexa. It involves speech tran-
scription with ASR and its comprehension with natural language understanding (NLU) systems.
Traditionally, SLU runs on a cascaded setting, where an in-domain ASR system automatically
generates the transcripts with valuable semantic information, e.g., named entities and intents.
These components have been generally based on statistical approaches with hand-crafted features.
However, current trends have shifted towards large-scale end-to-end (E2E) deep neural networks
(DNN), which have shown superior performance on a wide range of SLU tasks. For example,
ASR has seen a rapid transition from traditional hybrid-based modeling to encoder-decoder and
Transducer-based modeling. Even though there is an undeniable improvement in performance,
other challenges have come into play, such as the urgency and need of large-scale supervised
datasets; the need of additional modalities, such as contextual knowledge; massive GPU clusters
for training large models; or high-performance and robust large models for complex applications.
All of this leads to major challenges. This thesis explores solutions to these challenges that arise
from complex settings. Specifically, we propose approaches: (1) to overcome the data scarcity
on hybrid-based and E2E ASR models, i.e., low-resource applications; (2) for integration of
contextual knowledge at decoding and training time, which leads to improved model quality; (3)
to fast develop streaming ASR models from scratch for challenging domains without supervised
data; (4) to reduce the computational budget required at training and inference time by proposing
efficient alternatives w.r.t the state-of-the-art E2E architectures. Similarly, we explore solutions
on the SLU domain, including analysis on the optimal representations to perform cascaded SLU,
and other SLU tasks aside from intent and slot filing that can be performed in an E2E fashion.
Finally, this thesis closes by covering STAC-ST and TokenVerse, two novel architectures that
can handle ASR and SLU tasks seamlessly in a single model via special tokens.

Keywords: Automatic Speech Recognition, Spoken Language Understanding, Conversational
Speech, Air Traffic Control Communications, End-to-End ASR, Low-Resource ASR.
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Résumé
La reconnaissance automatique de la parole (ASR) et la compréhension du langage parlé (SLU)
sont au cœur des assistants d’intelligence artificielle à commande vocale actuels, tels que Siri
et Alexa. Elle implique la transcription de la parole avec la ASR et sa compréhension avec
des systèmes de NLU. Traditionnellement, le SLU fonctionne en cascade, où un système ASR
dans le domaine génère automatiquement les transcriptions avec des informations sémantiques
précieuses, par exemple les entités nommées et les intentions. Ces composants ont généralement
été basés sur des approches statistiques avec des caractéristiques créées à la main. Cependant,
les tendances actuelles se sont orientées vers les DNN à grande échelle de E2E, qui ont montré
des performances supérieures sur un large éventail de tâches SLU. Par exemple, l’ASR a connu
une transition rapide de la modélisation traditionnelle basée sur les hybrides à la modélisation
basée sur les encoder-decoder et les Transducers. Même si l’amélioration des performances est
indéniable, d’autres défis sont entrés en jeu, comme l’urgence de données supervisées à grande
échelle, le besoin de modalités supplémentaires, telles que la connaissance contextuelle, les
clusters GPU massifs pour l’entraînement de grands modèles, ou les grands modèles performants
et robustes pour les applications complexes. Tout ceci conduit à des défis majeurs. Cette thèse
explore les solutions à ces défis qui découlent de contextes complexes. Plus précisément, nous
proposons des approches : (1) pour surmonter la rareté de données sur les modèles ASR hybrides
et E2E, les applications à faibles ressources ; (2) pour l’intégration de la connaissance contextuelle
au moment du décodage et de l’entraînement, ce qui permet d’améliorer la qualité du modèle ;
(3) pour développer rapidement des modèles ASR en continu à partir de zéro pour les domaines
difficiles sans données supervisées ; (4) pour réduire le budget de GPU requis au moment de
l’entraînement et de l’inférence en proposant des alternatives efficaces par rapport aux architec-
tures E2E les plus récentes. De même, nous explorons des solutions dans le domaine du SLU, y
compris l’analyse des représentations optimales pour effectuer le SLU en cascade, et d’autres
tâches SLU en dehors de l’intention et du classement des créneaux qui peuvent être effectuées
d’une manière E2E. Enfin, cette thèse se termine par l’étude de STAC-ST et TokenVerse,
deux nouvelles architectures qui peuvent traiter les tâches ASR et SLU de manière transparente
dans un modèle unique via des jetons spéciaux.

Mots-clés : ASR, SLU, Langage conversationnel, communications de contrôle du trafic aérien
(ATC), End-to-End ASR, ASR à ressources limitées.



Contents
Acknowledgements iii

Abstract v

Résumé

Acronyms v

List of Figures ix

List of Tables xiv

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Contributions to Projects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4.1 ATCO2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4.2 HAAWAII . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4.3 EUROCONTROL . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4.4 Uniphore . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Background 9
2.1 Automatic Speech Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Hybrid-based Modeling . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.2 End-to-End Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Spoken Language Understanding . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.1 Cascaded Spoken Language Understanding . . . . . . . . . . . . . . . 15
2.2.2 End-to-end Spoken Language Understanding . . . . . . . . . . . . . . 15
2.2.3 Intent Classification & Slot Filling . . . . . . . . . . . . . . . . . . . . 15

2.3 Target Domains and Databases . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.1 Read & Prompted Speech . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.2 Conversational Speech . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.3 Air Traffic Control Communications . . . . . . . . . . . . . . . . . . . 20

i



Contents

2.4 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.4.1 Metrics for Speech-based Models . . . . . . . . . . . . . . . . . . . . 25
2.4.2 Metrics for Text-based Models . . . . . . . . . . . . . . . . . . . . . . 26

3 Data and Task Bounded Low-Resource Speech Recognition 29
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1 Supervised ASR Learning for Challenging Applications . . . . . . . . . . . . . 30
3.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.1.2 Databases and Experimental Setup . . . . . . . . . . . . . . . . . . . . 31
3.1.3 Results & Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 Fine-Tuning of Large Pretrained Models for ASR . . . . . . . . . . . . . . . . 35
3.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2.2 Databases and Experimental Setup . . . . . . . . . . . . . . . . . . . . 36
3.2.3 Incremental Training and Gender Bias . . . . . . . . . . . . . . . . . . 38
3.2.4 Results & Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3 Using Contextual Knowledge for Hybrid-Based ASR . . . . . . . . . . . . . . 44
3.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.3.2 Contextual Biasing for Hybrid-based ASR . . . . . . . . . . . . . . . . 45
3.3.3 Step 1–Injecting Contextual Knowledge During ASR Decoding . . . . 46
3.3.4 Step 2–Injecting Contextual Knowledge Post-ASR Decoding . . . . . . 47
3.3.5 Results & Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.4 Using Contextual Knowledge for End-to-End ASR . . . . . . . . . . . . . . . 50
3.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.4.2 Contextual Biasing with Aho-Corasick Algorithm . . . . . . . . . . . . 52
3.4.3 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.4.4 Model Training & Evaluation . . . . . . . . . . . . . . . . . . . . . . 55
3.4.5 Results & Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.5 Using Contextual Knowledge at ASR Training Time . . . . . . . . . . . . . . 59
3.5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.5.2 Contextual Semi-Supervised ASR Training . . . . . . . . . . . . . . . 60
3.5.3 Databases and Experimental Setup . . . . . . . . . . . . . . . . . . . . 61
3.5.4 Results & Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.6 Building ASR Systems for ATC . . . . . . . . . . . . . . . . . . . . . . . . . 66

4 Speed and Compute Bounded Low-Resource Speech Recognition 67
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.1 Fast Transducer ASR Prototyping with Pretrained Models . . . . . . . . . . . . 68
4.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.1.2 From Encoder-Decoder to Transducer ASR . . . . . . . . . . . . . . . 70
4.1.3 ASR Pseudo Labeling . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.1.4 Knowledge Distillation with Large Models . . . . . . . . . . . . . . . 70
4.1.5 Databases and Experimental Setup . . . . . . . . . . . . . . . . . . . . 71
4.1.6 Results & Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

ii



Contents

4.2 Use of Large Pretrained Models for Transducer-based ASR . . . . . . . . . . . 77
4.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.2.2 XLSR-Transducer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.2.3 Ef�cient Streaming ASR with Attention Sinks . . . . . . . . . . . . . 80
4.2.4 Databases and Experimental Setup . . . . . . . . . . . . . . . . . . . . 80
4.2.5 Results & Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.3 Improved Streaming Transducer With Attention Sinks . . . . . . . . . . . . . . 85
4.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.3.3 Databases and Experimental Setup . . . . . . . . . . . . . . . . . . . . 87
4.3.4 Results & Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.4 Compute-Bounded Low-Resource Speech Recognition with HyperConformer . 91
4.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.4.2 HyperMixer Architecture . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.4.3 Multi-head HyperMixer for Ef�cient ASR . . . . . . . . . . . . . . . . 95
4.4.4 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.4.5 Results & Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5 Towards Better Spoken Language Understanding 101
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.1 Spoken Language Understanding of Air Traf�c Control Communications . . . 102
5.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.1.2 Slot Filling & Named Entity Recognition . . . . . . . . . . . . . . . . 103
5.1.3 Callsign Recognition and Understanding . . . . . . . . . . . . . . . . 106
5.1.4 Speaker Role Detection . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.2 Text-Based Joint Speaker Role & Speaker Change Detection . . . . . . . . . . 110
5.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
5.2.2 Databases and Experimental Setup . . . . . . . . . . . . . . . . . . . . 112
5.2.3 BERTraf�c System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
5.2.4 Evaluation protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
5.2.5 Results & Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.3 Benchmarking Multiple Spoken Language Understanding Representations . . . 119
5.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
5.3.2 Multiple NLU/SLU Representations . . . . . . . . . . . . . . . . . . . 121
5.3.3 Databases and Experimental Setup . . . . . . . . . . . . . . . . . . . . 122
5.3.4 Results & Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6 Joint Speech Recognition and Spoken Language Understanding 127
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.1 Token-Based Multitasking for Encoder-Decoder Models . . . . . . . . . . . . 128
6.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
6.1.2 Speaker-Turn Aware Conversational Speech Translation System . . . . 130
6.1.3 Databases and Experimental Setup . . . . . . . . . . . . . . . . . . . . 132

iii



Contents

6.1.4 Results & Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
6.1.5 BenchmarkingSTAC-ST . . . . . . . . . . . . . . . . . . . . . . . . 137

6.2 Token-Based Multitasking for Transducer Models . . . . . . . . . . . . . . . . 140
6.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
6.2.2 TokenVerse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
6.2.3 TokenVerse Training & Inference . . . . . . . . . . . . . . . . . . . 142
6.2.4 Ablations within TokenVerse . . . . . . . . . . . . . . . . . . . . . . . 143
6.2.5 Task-Speci�c Baselines, Metrics & Evaluation Protocol . . . . . . . . 143
6.2.6 Databases and Experimental Setup . . . . . . . . . . . . . . . . . . . . 145
6.2.7 Results & Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

7 Conclusions and Future Directions 149
7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
7.2 Limitations and Future Directions . . . . . . . . . . . . . . . . . . . . . . . . 150

Bibliography 153

A Appendix to Section 6.1, Chapter 6 185
A.1 Fisher-CALLHOME Data Distribution . . . . . . . . . . . . . . . . . . . . . . 185
A.2 Evaluating Different CTC Weights . . . . . . . . . . . . . . . . . . . . . . . . 186
A.3 Complete Main Evaluation Results on Fisher-CALLHOME . . . . . . . . . . . 186
A.4 More Examples and Analysis on Speaker-Turn and Cross-Talk Detection . . . . 188
A.5 Complete Ablation Results for[TURN] & [XT] Task Tokens . . . . . . . . . 190
A.6 More Details of VAD-Based Segmentation . . . . . . . . . . . . . . . . . . . . 190
A.7 Complete Results of ScaledSTAC-ST vs. Whisper . . . . . . . . . . . . . . . 192
A.8 Complete Results ofSTAC-ST for Single-Turn ST . . . . . . . . . . . . . . . 192
A.9 Microsoft Speech Language Translation (MSLT) Corpus Detailed Results . . . 194

A.9.1 Dataset characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 194
A.10 STAC-ST on CoVoST2 & CommonVoice . . . . . . . . . . . . . . . . . . . . 197

A.10.1 Scaling UpSTAC-ST . . . . . . . . . . . . . . . . . . . . . . . . . . 197

Curriculum Vitae 199

iv



Acronyms

AC Aho-Corasick
AI Arti�cial Intelligence
AM Acoustic Model
AED Attention-Based Encoder Decoder
ATC Air Traf�c Control
ATM Air Traf�c Management
ASR Automatic Speech Recognition
ANSPs Air Navigation Service Providers
ATCo Air Traf�c Controller
ATCC Air Traf�c Control Communication
ADS-B Automatic Dependent Surveillance–Broadcast
BPE Byte-Pair Encoding
CER Character Error Rate
CTC Connectionist Temporal Classi�cation
CNN Convolutional Neural Network
Conformer Convolution-Augmented Transformer
dB Decibel
DER Diarization Error Rate
DNN Deep Neural Networks
E2E End-To-End
ELD English Language Detection
ENDP Endpointing
ELDA European Language Resources Association
FST Finite State Transducer
FSM Foundational Speech Model
ICAO International Civil Aviation Organization
GMM Gaussian Mixture Model
GELU Gaussian Error Linear Units
HMM Hidden Markov model
JER Jaccard Error Rate
KD Knowledge Distillation

v



Contents

LF-MMI Lattice-Free Maximum Mutual Information
LM Language Model
ML Machine Learning
MT Machine Translation
MLP Multilayer Perceptron
MFFCs Mel-frequency Cepstral Coef�cients
MHSA Multi-Head Self-Attention
NE Named Entity
NER Named Entity Recognition
NLL Negative Log-Likelihood
NLP Natural Language Processing
NLU Natural Language Understanding
OOD Out-of-Domain
OOV Out-of-Vocabulary
OSN OpenSky Network
PL Pseudo-Label
PER Phoneme Error Rate
PTT Push-To-Talk
RTX Real-Time Factor
RNN Recurrent Neural Network
RNN-T RNN-Transducer
SC Sequence Classi�cation
SD Speaker Diarization
SF Shallow Fusion
ST Speech-to-Text Translation
SCD Speaker Change Detection
SLU Spoken Language Understanding
SSL Self-Supervised Learning
SST Self-Supervised Training
SNR Signal-To-Noise
SOT Serialized Output Training
SRD Speaker Role Detection
TT Transformer-Transducer
TDNN Time Delay Neural Network
TDNNF Factorized TDNN
VAD Voice Activity Detection
VHF Very-High Frequency
WCN Word Confusion Network
WER Word Error Rate
WFST Weighted Finite State Transducer

vi



List of Figures
2.1 Hybrid-based ASR system architecture. . . . . . . . . . . . . . . . . . . . . . 10
2.2 Top three prominent end-to-end ASR architectures. (a) CTC; (b) Transducer, and

(c) attention-based encoder–decoder. . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Cascaded and end-to-end spoken language understanding systems. . . . . . . . 14
2.4 Characteristics of read and prompted speech. . . . . . . . . . . . . . . . . . . 17
2.5 Characteristics of spontaneous and call-center based conversational speech. . . 18
2.6 Detailed cascaded pipeline for transcription, tagging, and extraction of key

information in an ATCo-pilot conversation. PTT: push-to-talk. . . . . . . . . . 20
2.7 Characteristics of air traf�c control communications speech. . . . . . . . . . . 22
2.8 ATCO2 corpus ecosystem. Blue circles denote transcriptions only available for

ATCO2 test set corpus. Green circles denote transcriptions and metadata available
for bothATCO2 test setcorpus andATCO2 pseudo-labeledcorpus (see Table 2.2
bottom). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1 Overview of Chapter 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2 WERs for models �ne-tuned with variable amount of utterances (x-axis) on both,

private (left plot) and public (right plot) databases. . . . . . . . . . . . . . . . . 39
3.3 BERT-based NER pipeline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.4 Proposed biasing approaches at beam search time with Aho-Corasick string

matching algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.5 Aho-Corasick trie: blue lines are fail arcs and green lines are output arcs. . . . 53
3.6 NE accuracy for different approaches on 4 languages of CommonVoice. Including

a list improves NE accuracy while marginally decreasing performance when
adding n-gram LM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.7 Process of retrieving a list of callsigns (contextual data) from OpenSky Network.
This is the list of all possible verbalization of each callsign. . . . . . . . . . . . 61

3.8 Contextual semi-supervised training pipeline. . . . . . . . . . . . . . . . . . . 63
3.9 CA-WER performance on liveatc_mix (noisy) and Prague (clean) test sets for

different discount parameters used at the moment of creating the biasing WFST. 64

4.1 Overview of Chapter 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.2 Proposed approach for ef�cient psuedo-labeling with Foundational Speech Models.69
4.3 WERs for of�ine Zipformer models on six languages of CommonVoice. . . . . 73

vii



List of Figures

4.4 Ablation of impact of mixing in supervised data during training with very weak
pseudo-labels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.5 Box plots per CommonVoice language for multiple streaming decoding settings. 75
4.6 XLSR-Transducer architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.7 Masking strategies for streaming XLSR-Transducer . . . . . . . . . . . . . . . 79
4.8 Non-streaming. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.9 Chunk-size of 16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.10 Multi-chunk streaming. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.11 WERs on AMI eval set for XLSR-Transducer trained on three con�gurations and

decoded on multiple streaming scenarios. . . . . . . . . . . . . . . . . . . . . 82
4.12 The attention sink effect when decoding with limited left context. . . . . . . . . 86
4.13 WERs per language for low latency chunk-wise decoding, chunk=320 ms. . . . 88
4.14 Multiple decoding results per language, including attention sink frames. Decod-

ing is reported only with left context chunks of 1. . . . . . . . . . . . . . . . . 89
4.15 Layout of Conformer versus HyperConformer. . . . . . . . . . . . . . . . . . . 92
4.16 Forward pass of small (left) and medium sized (right) models. . . . . . . . . . 97
4.17 Forward pass of 1 and 8 heads for HyperConformer.. . . . . . . . . . . . . . . 97
4.18 Time and GPU consumption (GB) of HyperConformer architecture. . . . . . . 97

5.1 Overview of Chapter 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.2 (a) Named entity recognition (or Slot �lling) and (b) speaker role detection based

on sequence classi�cation (SC) for ATC utterances. . . . . . . . . . . . . . . . 104
5.3 Proposed callsign recognition and understanding system. . . . . . . . . . . . . 107
5.4 Proposed pipeline for the BERTraf�c model. . . . . . . . . . . . . . . . . . . . 113
5.5 JER for nine models �ne-tuned with increased amount of samples per database. 116
5.6 Overview of the considered NLU/SLU methodologies for the proposed experi-

ments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.1 Overview of Chapter 6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
6.2 A two-speaker multi-turn conversational segment. . . . . . . . . . . . . . . . . 129
6.3 Proposed model architecture ofSTAC-ST for multi-turn & multi-speaker ST. . 131
6.4 Fisher-CALLHOME test set distribution of segment length with three different

segmentation approaches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
6.5 Speaker activity on a Fisher corpus sample. . . . . . . . . . . . . . . . . . . . 136
6.6 ST performance on Fisher-CALLHOME test data using different segmentation

techniques for long-form audio. . . . . . . . . . . . . . . . . . . . . . . . . . 137
6.7 a) Proposed uni�ed token augmentation protocol for SCD, ENDP, and NER. b)

TokenVerse uni�es multiple speech and NLP tasks (e.g.,T1+T2+T3) in a single
model within the neural Transducer framework. . . . . . . . . . . . . . . . . . 141

6.8 Absolute changes in text-based evaluation w.r.t all-tasksTokenVerse in @F1. 148

A.1 Ablation of the CTC weight in the overall loss computation and its impact in
BLEU and WERs for Fisher and CALLHOME development & evaluation sets. 185

viii



List of Figures

A.2 Ground-truth speaker activities and CTC spikes of[TURN] and [XT] task
tokens on three randomly selected Fisher samples. . . . . . . . . . . . . . . . . 189

A.3 Data distribution for Fisher test set with different segmentation approaches. . . 191
A.4 We compare different segmentation techniques with two training data con�gura-

tions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
A.5 WERs and BLEU scores on four different language directions of CoVoST2 corpus.198

ix





List of Tables
2.1 CommonVoice train and test splits . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2 Air traf�c control communications related public and private ATC databases. . 23

3.1 ATC in-domain training and test sets. OOD denotes out-of-domain set. . . . . . 32
3.2 ASR benchmark with different ASR architectures, vocabularies, and amount of

in-domain and OOD training data. . . . . . . . . . . . . . . . . . . . . . . . . 34
3.3 Characteristics of public and private databases, from Table 2.2. The 32h train

set includes NATS and ISAVIA, while the 132h set includes these and multiple
datasets from Table 2.2.ybaseline WERs with hybrid-based ASR trained on ATC
data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4 WERs on four ATC test sets with with greedy decoding or beam search decoding
with a 4-gram ARPA LM integrated by shallow fusion . . . . . . . . . . . . . 40

3.5 WERs on different ATC test sets of w2v2 models. . . . . . . . . . . . . . . . . 42
3.6 WERs on ATCOSIM for models �ne-tuned withw2v2-L-60kand greedy decoded.43
3.7 Callsigns: compressed and extended (airlines designators are in bold) . . . . . 45
3.8 Test sets with callsigns per utterance (csgn per utt.) — median of callsign per

utterance in the surveillance data. . . . . . . . . . . . . . . . . . . . . . . . . 46
3.9 Results of callsign extraction with ASR boosting (ASR-B) and post-boosting

(NLP-B): the accuracy of callsign recognition (%) is calculated for the callsigns
in ICAO format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.10 Test sets with context information (statistics).yutterances with at least one NE. 54
3.11 SF for the out-of-domain evaluation with Zipformer Giga-XL. . . . . . . . . . 56
3.12 WERs of biasing techniques for Transducer models trained on 4 languages of

CommonVoice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.13 Ablation of decoding speed (RTFX; higher, better) and character error rate (CER)

on OOV words with SF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.14 WERs of multiple ASR systems for different test sets. The default discount

parameter (DP) in ASR systems with lattice (lat.) re-scoring is 2.0. . . . . . . . 65

4.1 Maximum number of characters allowed in each pseudo-labeled word with
Whisper. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.2 WERs for Zipformer models trained with PLs only or PLs+supervised data for
six CommonVoice languages. . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

xi



List of Tables

4.3 WERs on the AMI eval set with standard streaming decoding. . . . . . . . . . 81
4.4 WERs of streaming XLSR-Transducer on �ve CommonVoice languages. . . . . 83
4.5 WERs on AMI eval set for varied decoding settings with attention sink. . . . . 84
4.6 Full WERs on 15 CommonVoice languages and comparison w.r.t multiple Whis-

per models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.7 Complete streaming decoding with attention sink ablation for TEDLIUM dataset.90
4.8 Impact of scaling up the training data in XLSR-Transducer. We train XLSR-

Transducer models with larger train subsets and report WERs with beam search
decoding and model averaging of 5.yonly available for whisper-large-v3. . . . 90

4.9 WERs on the of�cial LibriSpeech dev and test sets for models trained on the
960h LibriSpeech set with HyperConformer. . . . . . . . . . . . . . . . . . . . 96

4.10 Performance of Conformer and HyperConformer when trained on 100h Lib-
riSpeech (10� less data). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.1 Different performance metrics for callsign, command and values classes of the
NER system. Metrics reported for each of the 5-fold cross-validation scheme
onATCO2-test-set corpuswith abert-base-uncased model. @P, @R, and
@F1 refer to precision, recall and F1-score, respectively. Numbers inbold refer
to the top performance per column among folds.ymean score over the 5 folds. . 106

5.2 Different performance metrics for the speaker role detection experiments. Metrics
reported onATCO2-test-set corpuswith abert-base-uncased model. @P,
@R, and @F1 refer to precision, recall and F1-score, respectively. Numbers in
bold refer to the top performance per column. . . . . . . . . . . . . . . . . . . 108

5.3 Conversation between two speakers with correct SAD and SCD and SCD error. 111
5.4 Train and test statistics per database. . . . . . . . . . . . . . . . . . . . . . . . 112
5.5 Token-level JER from predictions using different train (column 1) and test sets. 115
5.6 Comparison of acoustic VBx and text-based SD onATCo, PILOT, andMIXED

subsets of SOL-Cnt and UWB-ATCC test sets. . . . . . . . . . . . . . . . . . . 117
5.7 SLURP statistics.SLURPO : original, whileSLURPF is a cleaner version of

SLURP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
5.8 WER% on SLURP Test sets with the XLSR-53 English model before and after

adaptation with SLURPF train subset. . . . . . . . . . . . . . . . . . . . . . . 124
5.9 Accuracy and F1-scores on intent classi�cation for different representations. . . 125

6.1 Fisher-CALLHOME corpus statistics. . . . . . . . . . . . . . . . . . . . . . . 132
6.2 ASR and ST performance ofSTAC-ST with different training data con�gurations.134
6.3 ASR and ST performance ofSTAC-ST with the incremental addition of task

tokens. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
6.4 Speaker change detection performance ofSTAC-ST measured by F1, MDR and

FAR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
6.5 ASR and ST performance with increasing model size ofSTAC-ST and Whisper. 138
6.6 ASR and ST performance with the of�cial single-speaker manual segmentation. 139

xii



List of Tables

6.7 Datasets statistics with token metadata per subset for the public and private
datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

6.8 WERs (%) for ASR on De�nedAI withTokenVerse . ytask tokens are removed
from both referene and hypothesis. . . . . . . . . . . . . . . . . . . . . . . . . 145

6.9 [SCD] and[ENDP] time-based evaluation. FA: false alarm; MS: missed speech;
DER: detection error rate.yF1-score computed from the Coverage-Purity per-
spective.zsingle-task model per task, i.e., SCD and ENDP. . . . . . . . . . . . 146

6.11 Text-based performances ofTokenVerse on the[NE] (exact- and soft-match)
and[ENDP] . P: precision; R: recall.yupper-bound: BERT model evaluated on
text references.zmodel trained on[ENDP] or [NE] task. . . . . . . . . . . . 147

6.10 F1-score and WERs for CallHome Eval set on different tasks withTokenVerse .
ytime-based F1 score.zbaselines are computed with PyAnnote for SCD or with
�ne-tuned BERT on ENDP and NER (exact-match). . . . . . . . . . . . . . . 147

A.1 Main characteristics of each train, development and test subset of Fisher and
CALLHOME corpora, after pre-processing. . . . . . . . . . . . . . . . . . . . 186

A.2 BLEU scores on each multi-turn dataset for all the of�cial Fisher-CALLHOME
development and test subset. AVG lists the average between dev and test sets. . 187

A.3 WERs on each multi-turn dataset for all the of�cial Fisher-CALLHOME de-
velopment and test subset. AVG lists the average between dev and test sets.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

A.4 BLEU scores on each single-turn dataset for all the of�cial Fisher-CALLHOME
development and test subset. AVG lists the average between dev and test sets. . 187

A.5 WERs on each single-turn dataset for all the of�cial Fisher-CALLHOME de-
velopment and test subset. AVG lists the average between dev and test sets.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

A.6 Performance ofSTAC-ST on speaker change detection on the multi-turn dataset
for all of�cial Fisher-CALLHOME test sets. Tolerance is ablated from 0.1 up to
1 second. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

A.7 Ablation of the impact of encoding speaker turn and cross-talk information with
[TURN] and[XT] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

A.8 Comparison between Whisper versus scaledSTAC-ST using more training data. 192

A.9 Comparison between previous work vs. scaledSTAC-ST. . . . . . . . . . . . 193

A.10 Main characteristics of MSLT dataset [1] used in our experiments. We list the
details for each language pair and for each task, i.e., ASR and ST. . . . . . . . 194

A.11 BLEU scores and WERs for different models trained with CoVoST2 and Com-
monVoice and evaluated on the DE! DE & EN direction of MSLT corpus. . . 195

A.12 BLEU scores and WERs for different models trained with CoVoST2 and Com-
monVoice and evaluated on the EN! EN & DE direction of MSLT corpus. . . 195

A.13 BLEU scores and WERs for different models trained with CoVoST2 and Com-
monVoice and evaluated on the FR! FR & EN direction of MSLT corpus. . . 196

xiii



List of Tables

A.14 CoVoST2 and CommonVoice dataset splits used in our work. We list the number
of samples (#) and cumulative hours (Hr.) per each subset. . . . . . . . . . . . 197

A.15 WERs and BLEU scores on different language directions of CoVoST2 [2] corpus.
Numbers denote performance on the test set. . . . . . . . . . . . . . . . . . . 198

xiv



1 Introduction

In the evolving landscape of speech technology, foundational speech models (FSMs) have become
the key component to unify various speech tasks such as automatic speech recognition (ASR)
and spoken language understanding (SLU). Multilingual settings have also shown promising per-
formance, particularly in well-de�ned benchmarks and databases. However, despite this progress,
FSMs encounter challenges in certain scenarios. For instance, their robustness in low-latency,
low-resourced and complicated applications, such as the ones with limited supervised data and
compute, remains a concern.

Questions arise about the feasibility of developing ASR systems without supervised data and the
effective extraction of relevant information from spoken conversations using SLU techniques.
Additionally, the impracticality of FSMs on streaming settings motivates for further exploration.
This thesis addresses these questions from multiple perspectives. In the following section, we
summarize motivations and challenges of current ASR and SLU systems.

1.1 Motivation

Not enough supervised data The necessity to achieve high accuracy and low WERs with
limited supervised data indicates the need for innovative approaches in multiple speech tasks.
Fine-tuning from large pretrained FSMs emerge as viable solutions to mitigate the scarcity
of supervised data. Additionally, augmenting ASR systems with additional modalities during
training and decoding holds the potential for enhanced performance. In this thesis, we explore
the integration of contextual knowledge (e.g., surveillance or radar data in the domain of air
traf�c control dialogues) as an extra modality interfaced with ASR systems during training and
decoding to improve overall WERs.

Usage of contextual information In pursuit of reducing WERs on low-resource settings,
leveraging contextual information becomes essential. Traditional methods for improving WERs
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often entail costly architecture modi�cations or large supervised training datasets. However, in
this thesis, we propose to leverage contextual data to enhance certain n-grams at ASR inference
time, thus aiding the recognition of rare words without incurring on substantial architectural
changes or increased training data.

Fast Streaming ASR prototyping Real-life industrial applications demand rapid development
of ASR systems, often with limited in-domain supervised data and with the need to run on low-
latency streaming fashion. This poses signi�cant challenges, including (1) in-domain data scarcity,
(2) the inherent complexity of streaming ASR w.r.t of�ine decoding, and (3) strict time constraints
for model development. To address these challenges, we propose several approaches: (1)
reducing the time and supervised data required for ASR development via knowledge distillation,
(2) proposing a linearized alternative of the attention mechanism in Transformers to improve
training ef�ciency and decoding speed, (3) employing high quality pseudo-labeled data from
FSMs to overcome data scarcity, and (4) introducing the attention sink mechanisms within
the ASR �eld to improve performance in challenging low-latency streaming scenarios without
compromising decoding speed.

Spoken language understanding In many industrial applications, ASR serves as a preliminary–
intermediary–step before performing higher-level NLU or SLU tasks. We address multiple
NLU/SLU tasks, including intent detection, slot �lling, and speaker role detection, both in
cascaded and end-to-end formats, with and without reliance on intermediate ASR hypotheses.

Enabling multitasking with special tokens End-to-end joint ASR and SLU models offer
compelling advantages, such as reduced parameter counts and uni�ed optimization process across
multiple downstream tasks. However, challenges arise concerning paired data availability for
various tasks. Our contributions include demonstrating the feasibility of training attention-based
encoder-decoder and transducer models for multiple task by leveraging special tokens, enabling
decoding of ASR, speech-to-text translation, and acoustic named-entity recognition within a
uni�ed framework.
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1.2 Thesis Outline

1.2 Thesis Outline

The outline of this thesis is summarized below by chapter.

Chapter 2 In this chapter, we provide a gentle introduction to automatic speech recognition
and its two most prominent paradigms: hybrid-based ASR and end-to-end ASR. Next, we review
spoken language understanding and the two methods currently used, the cascaded and the end-
to-end pipeline. Later, we examine the three domains and applications targeted in this thesis,
including (1) read and prompted speech; (2) conversational speech; and (3) air traf�c control
communications. Finally, we provide a comprehensive overview of the evaluation metrics utilized
throughout this thesis, to evaluate ASR and SLU systems across various tasks and domains.

Chapter 3 In this chapter, the focus lies on challenging ASR applications constrained by
the availability of supervised data, particularly in air traf�c control (ATC) communications.
Benchmarking ASR for ATC with open-source databases is introduced, revealing the existing gap
between large-scale ASR systems and niche applications like ATC. We also propose strategies
for leveraging pretrained FSMs to overcome data scarcity, along with innovative approaches to
incorporate contextual information (e.g., surveillance or user data) during decoding. Furthermore,
we propose an approach to leverage contextual information for improved semi-supervised training
on ATC speech under low resource settings.

Chapter 4 Afterward, we tackle training-and-compute-bounded challenges in ASR, particularly
for conversational speech. Novel methods for rapidly developing transducer-based streaming
ASR solutions are presented, leveraging FSMs through sequence-level knowledge distillation.
Effective techniques for data selection and �ltering are introduced to mitigate errors propagated
from pseudo-labels, enhancing training ef�ciency and reducing computation time while achieving
lower WERs. Additionally, an adaptation of semi-supervised learning-based models to the
transducer architecture, termed XLSR-Transducer, is proposed. We close the chapter with the
introduction of HyperConformer, a novel architecture that achieves comparable or superior ASR
recognition performance compared to Conformer while exhibiting greater ef�ciency in terms of
inference speed, memory usage, parameter count, and availability of training data.

Chapter 5 Here, we explore advancements in SLU for challenging applications such as ATC
communications. We explore various downstream tasks such as slot �lling, callsign highlighting,
and joint speaker role and change detection. Then we perform a comprehensive benchmarking
of text, acoustic, and lattice-based representations for intent and slot-�lling on a challenging
database for in-home personal robot assistants (SLURP).
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Chapter 6 Finally, the thesis concludes by examining joint ASR and SLU architectures where
we optimize a single model for multiple tasks via task tokens that condition the models at training
and decoding time. Speci�cally, we propose solutions for two prominent E2E architectures:
(1) attention-based encoder-decoder and (2) transducer-based architectures. This chapter cover
the following tasks: multilingual ASR and speech-to-text translation, cross-talk detection, and
acoustic-based speaker turn detection. All of these tasks are of large relevance, especially for
industrial applications, that might require low-latency solutions.

1.3 Publications

This thesis is a compilation of 3 journal publications and 14 conference publications where I am
�rst author or contributed signi�cantly:

Journal papers (published or submitted):

1. J. Zuluaga-Gomez, A. Prasad, I. Nigmatulina, P. Motlicek, and M. Kleinert, “A Virtual
Simulation-Pilot Agent for Training of Air Traf�c Controllers,”Aerospace, vol. 10, no. 5,
p. 490, 2023

2. J. Zuluaga-Gomez, I. Nigmatulina, A. Prasad, P. Motlicek, D. Khalil, S. Madikeri, A. Tart,
I. Szoke, V. Lenders, M. Rigault,et al., “Lessons Learned in Transcribing 5000 h of Air
Traf�c Control Communications for Robust Automatic Speech Understanding,”Aerospace,
vol. 10, no. 10, p. 898, 2023

3. J. Zuluaga-Gomez, K. Veselý, I. Szöke, A. Blatt, P. Motlicek, M. Kocour, M. Rigault,
K. Choukri, A. Prasad, S. S. Sarfjoo,et al., “ATCO2 Corpus: A Large-Scale Dataset for
Research on Automatic Speech Recognition and Natural Language Understanding of Air
Traf�c Control Communications,”Submitted to Data-centric Machine Learning Research
(DMLR) Journal, arXiv preprint arXiv:2211.04054, 2024

Conference papers (published, submitted, or to be submitted):

1. J. Zuluaga-Gomez, S. Kumar,et al., “Improved Streaming Transformer Transducer With
Attention Sinks,” inTo be Submitted to ARR (long paper), 2024

2. I. Nigmatulina, J. Zuluaga-Gomez,et al., “Fast Streaming Transducer ASR Prototyping via
Knowledge Distillation with Whisper,” inSubmitted to EMNLP 2024 (long paper).[Equal
contribution], 2024

3. J. Zuluaga-Gomez, Z. Huang, X. Niu, R. Paturi, S. Srinivasan, P. Mathur, B. Thompson,
and M. Federico, “End-to-End Single-Channel Speaker-Turn Aware Conversational Speech
Translation,” inProceedings of the 2023 Conference on Empirical Methods in Natural
Language Processing, 2023, pp. 7255–7274

4. I. Nigmatulina, J. Zuluaga-Gomez,et al., “Improved contextual adaptation with an external
n-gram language model for Transducer-based ASR,” inSubmitted to INTERSPEECH 2024,
2024
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1.3 Publications

5. S. Kumar, S. Madikeri, J. Zuluaga-Gomez, I. Nigmatulina, E. Villatoro-Tello, S. Burdisso,
P. Motlicek, K. Pandia, and A. Ganapathiraju, “TokenVerse: Unifying Speech and NLP
Tasks via Transducer-based ASR,” inarXiv:2407.04444, 2024

6. S. Kumar, S. Madikeri, J. Zuluaga-Gomez, E. Villatoro-Tello, I. Nigmatulina, P. Motlicek,
M. K. E, and A. Ganapathiraju, “XLSR-Transducer: Streaming ASR for Self-Supervised
Pretrained Models,” inarXiv:2407.04439, 2024

7. F. Mai, J. Zuluaga-Gomez, T. Parcollet, and P. Motlicek, “HyperConformer: Multi-head
HyperMixer for Ef�cient Speech Recognition,” inProc. Interspeech, 2023, pp. 2213–2217

8. J. Zuluaga-Gomez, A. Prasad, I. Nigmatulina, S. S. Sarfjoo, P. Motlicek, M. Kleinert,
H. Helmke, O. Ohneiser, and Q. Zhan, “How Does Pre-trained Wav2Vec 2.0 Perform on
Domain-Shifted ASR? An Extensive Benchmark on Air Traf�c Control Communications,”
in IEEE Spoken Language Technology Workshop (SLT). IEEE, 2023, pp. 205–212

9. J. Zuluaga-Gomez, S. S. Sarfjoo, A. Prasad, I. Nigmatulina, P. Motlicek, K. Ondrej,
O. Ohneiser, and H. Helmke, “BERTRAFFIC: Bert-based joint speaker role and speaker
change detection for air traf�c control communications,” inIEEE Spoken Language Tech-
nology Workshop (SLT). IEEE, 2023, pp. 633–640

10. I. Nigmatulina, J. Zuluaga-Gomez, A. Prasad, S. S. Sarfjoo, and P. Motlicek, “A two-step
approach to leverage contextual data: speech recognition in air-traf�c communications,”
in IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).
IEEE, 2022, pp. 6282–6286

11. A. Prasad, J. Zuluaga-Gomez, P. Motlicek, S. Sarfjoo, I. Nigmatulina, and K. Veselý,
“Speech and Natural Language Processing Technologies for Pseudo-Pilot Simulator,” in
12th SESAR Innovation Days.Sesar Joint Undertaking., 2022

12. J. Zuluaga-Gomez, I. Nigmatulina, A. Prasad, P. Motlicek, K. Veselý, M. Kocour, and
I. Szöke, “Contextual Semi-Supervised Learning: An Approach to Leverage Air-Surveillance
and Untranscribed ATC Data in ASR Systems,” inProc. Interspeech, 2021, pp. 3296–3300

13. J. Zuluaga-Gomez, K. Veselý, A. Blatt, P. Motlicek, D. Klakow, A. Tart, I. Szöke, A. Prasad,
S. Sarfjoo, P. Kol�cárek,et al., “Automatic call sign detection: Matching air surveillance
data with air traf�c spoken communications,” inProceedings, vol. 59, no. 1. MDPI, 2020,
p. 14

14. J. Zuluaga-Gomez, P. Motlicek, Q. Zhan, K. Veselý, and R. Braun, “Automatic Speech
Recognition Benchmark for Air-Traf�c Communications,” inProc. Interspeech, 2020, pp.
2297–2301

In addition to the papers above, the following 8 papers, to which I contributed and that are
relevant to this thesis:

1. J. Zuluaga-Gomez, S. Ahmed, D. Visockas, and C. Subakan, “CommonAccent: Exploring
Large Acoustic Pretrained Models for Accent Classi�cation Based on Common Voice,” in
Proc. Interspeech, 2023, pp. 5291–5295

2. M. Kocour, K. Veselý, A. Blatt, J. Zuluaga-Gomez, I. Szöke, J.�Cernocký, D. Klakow,
and P. Motlicek, “Boosting of Contextual Information in ASR for Air-Traf�c Call-Sign
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Recognition,” inProc. Interspeech, 2021, pp. 3301–3305
3. M. Kocour, K. Veselý, I. Szöke, S. Kesiraju, J. Zuluaga-Gomez, A. Blatt, A. Prasad,

I. Nigmatulina, P. Motlí�cek, D. Klakow,et al., “Automatic processing pipeline for collecting
and annotating air-traf�c voice communication data,”Engineering Proceedings, vol. 13,
no. 1, p. 8, 2021

4. M. Rigault, C. Cevenini, K. Choukri, M. Kocour, K. Veselý, I. Szoke, P. Motlicek,
J. Zuluaga-Gomez, A. Blatt, D. Klakow,et al., “Legal and ethical challenges in recording
air traf�c control speech,” inProceedings of the Workshop on Ethical and Legal Issues
in Human Language Technologies and Multilingual De-Identi�cation of Sensitive Data
In Language Resources within the 13th Language Resources and Evaluation Conference,
2022, pp. 79–83

5. H. Helmke, K. Ond�rej, S. Shetty, H. Arilíusson, T. S. Simiganosch, M. Kleinert, O. Ohneiser,
H. Ehr, and J. Zuluaga-Gomez, “Readback Error Detection by Automatic Speech Recogni-
tion and Understanding-Results of HAAWAII project for Isavia's Enroute Airspace,”12th
SESAR Innovation Days., 2022

6. H. Helmke, M. Kleinert, N. Ahrenhold, H. Ehr, T. Mühlhausen, O. Ohneiser, L. Klamert,
P. Motlicek, A. Prasad, J. Zuluaga-Gomez,et al., “Automatic speech recognition and
understanding for radar label maintenance support increases safety and reduces air traf�c
controllers' workload,” inFifteenth USA/Europe Air Traf�c Management Research and
Development Seminar (ATM2023), 2023

7. I. Nigmatulina, S. Madikeri, E. Villatoro-Tello, P. Motlicek, J. Zuluaga-Gomez, K. Pandia,
and A. Ganapathiraju, “Implementing Contextual Biasing in GPU Decoder for Online
ASR,” in Proc. Interspeech, 2023, pp. 4494–4498

8. E. Villatoro-Tello, S. Madikeri, J. Zuluaga-Gomez, B. Sharma, S. S. Sarfjoo, I. Nigmat-
ulina, P. Motlicek, A. V. Ivanov, and A. Ganapathiraju, “Effectiveness of text, acoustic, and
lattice-based representations in spoken language understanding tasks,” inIEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2023,
pp. 1–5

In addition to the papers above, I contributed to 9 additional papers that are either published on
workshops, journal or pre-print servers (not included in the thesis for space reasons):

1. M. Ravanelli, T. Parcollet, A. Moumen, S. de Langen, C. Subakan, P. Plantinga, Y. Wang,
P. Mousavi, L. D. Libera, A. Ploujnikov, F. Paissan, D. Borra, S. Zaiem, Z. Zhao, S. Zhang,
G. Karakasidis, S.-L. Yeh, A. Rouhe, R. Braun, F. Mai, J. Zuluaga-Gomez,et al., “Open-
Source Conversational AI with SpeechBrain 1.0,” inarXiv:2407.00463, 2024

2. I. Nigmatulina, R. Braun, J. Zuluaga-Gomez, and P. Motlicek, “Improving callsign recog-
nition with air-surveillance data in air-traf�c communication,” Idiap Research Institute.
Idiap Research Institute, 2021, pp. 1–5

3. D. Khalil, A. Prasad, P. Motlicek, J. Zuluaga-Gomez, I. Nigmatulina, S. Madikeri, and
C. Schuepbach, “An Automatic Speaker Clustering Pipeline for the Air Traf�c Communi-
cation Domain,”Aerospace, vol. 10, no. 10, p. 876, 2023
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4. N. Ahrenhold, H. Helmke, T. Mühlhausen, O. Ohneiser, M. Kleinert, H. Ehr, L. Klamert,
and J. Zuluaga-Gómez, “Validating Automatic Speech Recognition and Understanding
for Pre-Filling Radar Labels—Increasing Safety While Reducing Air Traf�c Controllers'
Workload,”Aerospace, vol. 10, no. 6, p. 538, 2023

5. S. Burdisso, J. Zuluaga-Gomez, E. Villatoro-Tello, M. Fajcik, M. Singh, P. Smrz, and
P. Motlicek, “IDIAPers@ Causal News Corpus 2022: Ef�cient Causal Relation Identi�ca-
tion Through a Prompt-based Few-shot Approach,” inProceedings of the 5th Workshop on
Challenges and Applications of Automated Extraction of Socio-political Events from Text
(CASE), 2022, pp. 61–69

6. M. Fajcik, M. Singh, J. Zuluaga-Gomez, E. Villatoro-Tello, S. Burdisso, P. Motlicek, and
P. Smrz, “IDIAPers@ Causal News Corpus 2022: Extracting Cause-Effect-Signal Triplets
via Pre-trained Autoregressive Language Model,” inProceedings of the 5th Workshop on
Challenges and Applications of Automated Extraction of Socio-political Events from Text
(CASE), 2022, pp. 70–78

7. A. Prasad, J. Zuluaga-Gomez, P. Motlicek, S. Sarfjoo, I. Nigmatulina, O. Ohneiser, and
H. Helmke, “Grammar Based Speaker Role Identi�cation for Air Traf�c Control Speech
Recognition,”12th SESAR Innovation Days., 2022

8. Q. Zhan, X. Xie, C. Hu, J. Zuluaga-Gomez, J. Wang, and H. Cheng, “Domain-Adversarial
Based Model with Phonological Knowledge for Cross-Lingual Speech Recognition,”Elec-
tronics, vol. 10, no. 24, p. 3172, 2021

9. S. Madikeri, S. Tong, J. Zuluaga-Gomez, A. Vyas, P. Motlicek, and H. Bourlard, “Pkwrap: a
pytorch package for lf-mmi training of acoustic models,”arXiv preprint arXiv:2010.03466,
2020

1.4 Contributions to Projects

This thesis contains a set of contributions that can be categorized into multiple research and
innovation projects.

1.4.1 ATCO2

In ATCO2 project, I participated on data collection and curation. ASR training for both, hybrid-
based and E2E models. Also, I proposed multiple NLU systems for ATC, such as callsign and
command extraction, speaker role detection and text-based speaker diarization. Finally, we
released multiple datasets under the ATCO2 project for different ASR and NLU tasks.

The work was supported by European Union's Horizon 2020 project No. 864702 - ATCO2
(Automatic collection and processing of voice data from air-traf�c communications), which is a
part of Clean Sky Joint Undertaking.
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1.4.2 HAAWAII

In HAAWAII project, my main contribution was on ASR training for both, hybrid-based and E2E
models.

The work was supported by European Union's Horizon 2020 project No. 884287 - HAAWAII
(Highly automated air-traf�c controller workstations with arti�cial intelligence integration).

1.4.3 EUROCONTROL

In the industrial EUROCONTROL project, I contributed to the development of a pseudo-pilot
system [16], which can aid the training of ATCos by integrating ASR and NLU tools in the
learning process. The �rst version of the pseudo-pilot system was presented in Paris, France in
2022. This work was enlarged with a publication in the Aerospace journal [3].

1.4.4 Uniphore

In the industrial Uniphore project, I worked on large-scale pseudo-labeling of speech with foun-
dational speech models, focused on conversational speech for call-center use cases. Additionally,
I contributed with ASR streaming solutions for call-center speech in English. Section 4.1,
Section 4.2 and Section 4.3 are my contributions to this project.
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2 Background

In this chapter, we cover foundational background on automatic speech recognition (ASR) and
spoken language understanding (SLU), the primary domains of interest in this thesis. We start
with a comprehensive overview of the fundamental components and paradigms of ASR and
SLU, including both cascaded and end-to-end methodologies. After, we de�ne the challenging
applications that serve as the domains covered in this thesis. Lastly, we discuss the primary
evaluation metrics employed to assess the performance of these systems.

2.1 Automatic Speech Recognition

Automatic speech recognition (ASR) is an interdisciplinary research �eld that aims to develop
techniques and methods that allow the recognition and translation of spoken language into
text. Generally, recorded speech is represented as a sequence of acoustic feature vectors or
observations: X , whereas the output word sequence is represented byW . During recognition or
decoding, the main goal is �nding the most likelyW given the input sequenceX . Traditionally,
this task is addressed with statistical models trained on a labeledcorpus with audio-text pairs, as
D = f X n ; W n g. The most likely word sequence (Ŵ ) can be modeled as:

Ŵ = arg m
W

ax P (W jX ): (2.1)

The problem is further expanded using Bayes Theorem:

P (W jX ) =
PAM (X jW )PLM (W )

P(X )
; (2.2)

where,PAM (X jW ) stands for the likelihood of the feature sequenceX , given the word
sequenceW . This term is normally denoted as the acoustic model (AM). The language model
(LM), PLM (W ), denotes the probability of the word sequence.P(X ) is the a-priori probability
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Figure 2.1: Hybrid-based ASR system architecture. The inference pipeline consists offeature
extraction, acoustic matchingby acoustic model andsearchby HMM decoder that uses HCLG
recognition network. On the output are text transcripts. The output can be alatticeor confusion
network. From [5].

of the feature sequenceX , but it is ignored during the maximization operation due to its
independence from the word sequence. Equation 2.3 is further simpli�ed asP(X ) is a constant
for any word sequence, as follows:

Ŵ = arg m
W

ax PAM (X jW ) PLM (W ): (2.3)

To summarize, the ASR systems rely on an acoustic and language model as stated above.
Currently, there are two main ASR paradigms, where different strategies, architectures, and
procedures are employed for blending all these modules in one “system" [37, 38].

2.1.1 Hybrid-based Modeling

Automatic speech recognition with hybrid systems is based on hidden Markov models (HMM)
and deep neural networks (DNN). DNNs are an effective module for the estimating the posterior
probability of a given set of possible outputs (e.g., phone- or tri-phone state). These posterior
probabilities can be seen as pseudo-likelihoods or “scale likelihoods”, which can be interfaced
with HMM modules [39, 40]. HMMs provide a structure for mapping a temporal sequence of
acoustic features, e.g., Mel-frequency cepstral coef�cients (MFCCs) or mel-�lter banks (Fbanks)
into a sequence of states [41, 40].

Hybrid systems have a separated pronunciation lexicon, language model, and acoustic model, as
shown in Figure 2.1. They are optimized separately, which allows more freedom to estimate the
right set of hyper-parameters of each module. This includes the integration of more resources to
build better LM or lexicons.
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Lexicon The lexiconis a table that maps words into pronunciations (phoneme-strings). It
is a resource used by the HMM-based ASR systems. Numerous ASR engines used the CMU
Pronouncing Dictionary (lexicon),1 which de�nes the phoneme set, and it is used as the training
data for the grapheme-to-phoneme (G2P) module that synthesizes pronunciations of “new words”.
Example of a pronunciation for a `spelled acronyms' like “KLM” is represented as“k ey eh
l eh m” . The vocabularyis the set of �nite possible words that an ASR systems can generate,
while each word has a pronunciation mapped from the lexicon. In general, the lexicon can be
viewed as a Finite State Transducer (FST). One key advantage of hybrid systems versus other
ASR paradigms is that the text data (e.g., words, dictionary) and pronunciation of new words are
added before training, hoping to match the target domain.

Inference with hybrid-based ASR To generate a hypothesized transcript from the input
sequence of features, the scores of AM and LM are combined using a decoding graph. We aim
at �nding the most likely word sequencêW (transcription), in the matrix of acoustic scores.
The search explores HMM paths that exist in a recognition network, termedHCLG graph(see
Figure 2.1). The standard decoding algorithm is based on two ideas:token passing[42] andbeam
search[43]. The search combines scores from the AM, LM and lexicon, where the Equation 2.3
gets into:

Ŵ = arg m
S

ax PAM (SjX ) � PG(S) (2.4)

In Equation 2.4, the AM scores are the model posteriorsPAM (SjX ), whereX is the time-series
of input features andS is an HMM state-sequence. The language model and lexicon scores are
both represented in the graph scorePG(S) that is present in the HCLG recognition network.� is
an empirical scaling constant, for chain models the optimal� = 1 :0.

The HCLG graph The HCLG graph is a Weighted Finite State Transducer (WFST). It is
composed of a language model graphG, pronunciation lexicon graphL, context dependency
graphCand phoneme HMM graphsH. The HCLG graph contains graph costsPG that originate
from its source graphs, while the most important source is the language model [44].

Overall, hybrid systems still remain one of the best and most �exible approaches for building
ASR engines when relatively low amount of audio-text pairs is available for training. In contrast,
with the large growth of computational power and unlabeled data, new ASR paradigms have
emerged. This includes E2E ASR, which do not rely on HMMs and do not require complicated
pronunciation lexicons.

1Dictionary at: http://www.speech.cs.cmu.edu/cgi-bin/cmudict.
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2.1.2 End-to-End Modeling

End-to-end (E2E) speech recognition aims at directly transcribing speech to text without requiring
alignments between acoustic frames (i.e., input features) and output characters/words. In hybrid
systems, this is a key step where lattices from a previous Gaussian Mixture Model (GMM) and
HMM model and alignments created on the �y are required to train the ASR system. Unlike
the hybrid approaches, the E2E model learns a direct mapping between acoustic frames and text
units (e.g., subword units or characters) or words in a single step towards the �nal objective of
interest. Finally, E2E systems attempt to bypass the suboptimal issues that arise from training
separately the AM and LM. In Figure 2.2 we list the three more prominent E2E architecture.

Figure 2.2: Top three prominent end-to-end ASR architectures. (a) CTC; (b) Transducer, and (c)
attention-based encoder–decoder.

CTC-based modeling

Connectionist Temporal Classi�cation (CTC) [45, 46] is a sequence discriminative training
criterion used in ASR. Unlike methods requiring frame-level alignments between input feature
sequencesX u and target label sequencesyu , CTC circumvents this need. Analogous to the state
sequence de�nition in HMMs, CTC is initiated by establishing the notion of a path betweenX u

andyu . A plausible path is constructed by extending the label sequenceyu of sizeU, to match
the input acoustic length ofT. This extension involves the repetition of any label and/or the
insertion of the blank symbol (� ),2 i.e., no label. Collectively, this results in what is termed the
CTC path. There have been numerous work on CTC-based ASR [47, 48, 49, 50, 51], whereas
the model architecture is in Figure 2.2 (a). Despite the simplicity of CTC models, there are two
problems: (1) The output sequence lengthU has to be smaller than the input sequence lengthT;
(2) output at timestampt is assumed to be independent, e.g., ofx t � 1, andx t+1 [52].

2Blank symbol denotes emitting no label at a given time stept.

12



2.1 Automatic Speech Recognition

Neural Transducer based ASR

Neural Transducer, usually termed Recurrent Neural Network-Transducer (RNN-T)3 is a sequence-
to-sequence model [53]. Transducer models solve both problems of CTC (§2.1.2). First, it allows
multiple label outputs at each timestamp, and second, it adds a predictor network that acts as a
weak language model, given context based on the previous decoding steps. In a typical neural
transducer model (Figure 2.2b) there are three networks: the encoder, predictor, and joiner [54].
The encoder processes audio frames to produce acoustic embeddings. The predictor generates
token embeddings in an auto-regressive manner, taking previous non-blank tokens as input.
Lastly, the joiner combines the outputs from the encoder and predictor to predict a probability
distribution over the tokens in the vocabulary. Overall, the output can be written as:

X0:t = Encoder(x0:t ); (2.5)

Y1:u = Predictor(y1:u); (2.6)

Joint= Linear(X0:t ) + Linear(Y1:u); (2.7)

P(yu+1 jX0:t ; Y1:u) = Softmax(Joiner(Joint)) ; (2.8)

whereX0:t is the output from encoder;Y1:u are the token-embeddings from Predictor; andP
is the probability of predictingyu+1 given past tokens and audio embeddings as input. Recent
work aiming at reducing the computational requirements of transducer models, utilize a stateless
predictor [55] network, i.e., no RNNs or Transformer layers are required. It is composed
of an embedding layer and one 1-D Convolution Neural Network (CNN) layer. Finally, the
joiner network consists of one linear layer. Furthermore, the encoders, such as LSTM [56],
Conformer [57], Zipformer [58] or FastConformer [59] are trained from scratch and require
large amount of in-domain supervised data to achieve acceptable WER. The Transducer models
employ the vanilla RNN-T loss [53], but more ef�cient variants such as pruned-transducer loss
are also used, which is a memory-ef�cient alternative to standard RNN-T loss [60].4

Within the transducer framework, the usage of Transformer [61] encoders leads to the Transformer-
Transducer (TT) [62, 63]. This architecture is a popular choice for streaming ASR [64, 65, 66]
because of its robustness and low WERs.

Encoder-Decoder modeling

Attention-based encoder-decoder (AED) models are a growing family of models that �rst `encode'
the input features into a higher dimensional space of an “embedding” by the encoder block (henc

t ).
Then, the decoder block classi�es the “latent features” (Cu) into a sequence of tokens de�ned
by the vocabulary.5 AED models are optimized to learn the audio-text alignment directly. An

3Even though it is widely known as RNN-T, it does not require RNNs. For instance, Transformer-based encoders
are frequently used.

4Available at k2 toolkit: https://github.com/k2-fsa/k2.
5In most recent work, word-based vocabularies [8, 10] have been replaced by sub-word units, e.g., byte-pair

encoding (BPE) [67] or sentence piece [68] or even character-level vocabularies [49].
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Figure 2.3: Cascaded and end-to-end spoken language understanding systems. On the right are
the main applications covered in this thesis.

example of such models is in Figure 2.2 (c). AED and CTC-based architectures differ from
hybrid-based models. For instance, they do not require an explicit LM, as all the blocks are
learned end-to-end. However, these E2E models still lag on edge cases, such as recognition
of keywords or named entities [15]. Prior work aimed at integrating pretrained LMs intro the
decoding frameworks via shallow fusion [69] for improved WER. Intending to overcome the
misalignment problem in CTC systems (§ 2.1.2), latest research has targeted a combination of
CTC and AED loss functions, termed hybrid CTC/attention [70]. This novel approach has shown
improved performance in ASR [71] or in speech-to-text translation [72, 8].

Self-supervised learning Current state-of-the-art (SOTA) models on ASR exploit the self-
supervised learning (SSL) paradigm [73, 74, 48]. SSL is a training technique capable of leveraging
large-scale unlabeled audio to develop robust large foundational speech models (FSM) [49, 75,
76]. In [77], authors explore a way to perform ASR without using any labeled data in a complete
unsupervised fashion. Normally, a �ne-tuning stage is required to specialize an SSL-based
FSM in a given task. By default, this setup requires much fewer labeled samples compared to
standard supervised learning. By applying SSL, these systems have dramatically improved ASR
performances on English [49] and multiple other languages [51, 50, 78]. Including models that
can perform ASR on more than 1000 languages [79, 80].

2.2 Spoken Language Understanding

Spoken Language Understanding (SLU) is the underlying key component of interactive smart
devices such as voice assistants, social bots, and intelligent home devices. Typically, SLU aims
at parsing spoken utterances into corresponding structured semantic concepts through a pipeline
or “cascaded" approach. Both approaches are listed in Figure 2.3. Effectively interpreting human
interactions through classi�cation of intent and slot �lling [27] plays a crucial role in SLU, that
is why this task has received substantial attention in industry and academia. This thesis covers
multiple SLU downstream tasks that can be interfaced from ASR transcriptions or that can be
performed in end-to-end fashion.
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2.2.1 Cascaded Spoken Language Understanding

In cascaded SLU, the spoken utterances are transcribed by an ASR engine, while its hypotheses
are processed by an NLU module, e.g., to identify intents and perform slot �lling.6 The cascaded
pipeline is the basic method to perform NLU from speech, i.e., SLU. One main advantage over
other approaches is that we do not need paired speech-intent (or slot) samples, as the tasks are
carried out by separately optimized models. However, there are some key disadvantages, such as:
(1) errors in the ASR transcripts are directly propagated to the NLU module, normally trained
only on correct transcriptions; (2) prosodical and non-phonetic aspects present in the spoken
utterance are not taken into account. Even though, the classical text-based approach is mostly
used in industrial applications and is still an active research area [81].

2.2.2 End-to-end Spoken Language Understanding

More recently, end-to-end (E2E) SLU systems have gained popularity [82, 83, 84, 85]. E2E SLU
acts as an individual single model that directly predicts the intent from speech without exploiting
an intermediate text representation. In particular, it directly optimizes the performance metrics of
SLU. Due to the complex structure of speech signals, a large SLU database along with high-end
computational resources (e.g., GPU cluster) are required for training E2E models. In [85], several
E2E SLU encoder-decoder solutions are investigated. For instance, instead of directly mapping
speech to SLU target [83], pretrained acoustic and language models can be used for downstream
SLU tasks, showing to be an effective paradigm [86, 82] over training from scratch.

2.2.3 Intent Classi�cation & Slot Filling

Intent classi�cation Intent classi�cation is a key component of SLU systems, particularly in
the context of chatbots, virtual assistants, and other conversational AI applications. Its goal is
to determine the intention behind a user's spoken input or query. For example, if a user says,
“Book a �ight to Colombia for next Tuesday" the intent might be: "book a flight ". In
cascaded approaches, the ASR component can be modeled by �ne-tuned SSL-based models
such as XLSR [50] or wav2vec 2.0 [49]. In addition, the NLU component can be modeled by
well-known pretrained LMs such as, BERT [87], RoBERTa [88], or DeBERTa [89]. The most
classical example to perform intent classi�cation follows Equation 2.9.

yi = sof tmax (W i h1 + bi ); (2.9)

whereW i are learnable weights (of a classi�cation model),h1 is the hidden representations
from the[CLS] token7 in BERT, andbi the bias vector. This is adapted from [90].

6In practice, the 1-best transcript representation is the one sent to the NLU model for intent detection.
7[CLS] represents sentence level classi�cation, and it captures a representation of a whole sentence in a single

vector.
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Slot �lling Slot �lling is another important task in NLU, particularly in the context of under-
standing user queries or commands that involve speci�c parameters or entities. In slot �lling, the
goal is to identify and extract relevant pieces of information (slots) from the user's input. These
slots typically correspond to speci�c entities such as dates, times, locations, names, etc. Contin-
uing with the example above, slot �lling would involve identifying entities like "Colombia "
(destination) and "next Tuesday " (date of travel). Slot �lling helps in extracting structured
information from unstructured text, which can then be used by downstream. Equation 2.10 can
be used to perform slot �lling with a �ne-tuned BERT model, as:

ys
n = sof tmax (W shn + bs); n 2 1; :::; N: (2.10)

Differently from Equation 2.9, in Equation 2.10, we take the remaining hidden stateshn ; n 2
1; :::; N instead of onlyh1 to classify each input token, see further details in [90].

Other downstream applications In this work, we also propose downstream applications from
speech that can be cataloged as SLU, see right block in Figure 2.3 for examples. Other SLU/NLU
tasks that are partially covered in this thesis are part-of-speech tagging, chunking, NER [91, 92],
and semantic role labeling [93]. As part of this thesis, we propose (1) end-to-end cross-talk and
speaker change detection [8]; (2) accent classi�cation for different languages [20]; (3) end-to-end
ASR and NER.

2.3 Target Domains and Databases

In this section, we examine the main applications targeted in this thesis. We explore several
challenging applications bounded by lack of annotated data or audio quality. The covered
applications are in Figure 2.4 to Figure 2.7.

2.3.1 Read & Prompted Speech

Prompted and read speech entails verbal communication where the speaker reads aloud text
from a prepared document or reacts to cues provided by an external source, such as a script or
instructions. Important databases in this domain include LibriSpeech [94], GigaSpeech [95],
TED-LIUM-3 [96], and CommonVoice [97]. Compared to conversational speech, this domain
typically employs more formal language. Speakers may adjust their speech pace to synchronize
with prompts or scripted text, resulting in a more consistent speech rate. Instances of read speech
include audiobook narration or individuals reading from a teleprompter during live broadcasts for
prompted speech. In Figure 2.4, we outline the essential characteristics of this speech domain.
For further exploration of related work and baseline models, we direct readers to hybrid and
E2E-based ASR from Section 2.1. Finally, an important aspect of read and prompted speech
is that ASR systems show lower WERs [94, 97] w.r.t conversational speech [98]. See further
information in Section 3 of XLSR-Transducer paper [51].
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Figure 2.4: Characteristics of read and prompted speech.

Read and Prompted Databases

Librispeech LibriSpeech [94] is a popular ASR benchmark derived from audiobooks, specif-
ically the LibriVox project. The corpus contains approximately 1000h of 16kHz read English
speech, and it provides utterance level segmentation. Librispeech is positioned as one of the main
datasets to refer when new ASR architectures are developed. In this thesis, we employ the full
dataset of 960h and the of�cial dev-{clean,other} and test-{clean,other} subsets.

CommonVoice The CommonVoice dataset is a multilingual corpus of read speech, comprising
several thousand hours of audio in more than 100 languages [97]. We use this database across
this thesis for multiple task, e.g., ASR and speech-to-text translation. Per language statistics are
in Table 2.1. CommonVoice is one of our preferred datasets as it offers: (1) a well-established
train/dev/test subsets partitioning; (2) proper and robust annotation protocol for multiple lan-
guages; (3) large speaker variability; (4) from low- (Czech or Swedish) to high-resource (English)
subsets; (5) it is an evolving dataset (i.e., updated each three months with new data).

CoVoST-2 This dataset targets speech-to-text translation (ST) based on CommonVoice. CoVoST-
2 [2] provides data for translating from English into 15 languages (En! X) and from 21 languages
into English (X! En). We redirect the reader to the of�cial paper for further details and subset
partitioning per language [2].8

TED-LIUM3 TED-LIUM v3 consists of audio recordings and transcriptions of TED talks,
which are presentations delivered at TED conferences covering a wide range of topics such as
science, technology, entertainment, and global issues. In this work, we use the version 3, i.e,
TED-LIUM3, which includes the previous two versions [99]. It contains 452h of audio sampled
at 16kHz [96].9 Each recording is composed of a sphere(.sph) formatted audio �le, and its
corresponding transcripts in stm(.stm) format.10

8The dataset is also available at: https://github.com/facebookresearch/covost.
9The dataset contains 317h/135h male/female audio, with 2028 unique speakers.

10The authors utilized the Kaldi Toolkit [100] to align .stm and .sph �les.
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Table 2.1: CommonVoice train and test splits used for multiple purposes in this Thesis. We use
CommonVoice-v11, tag:cv-corpus-11.0-2022-09-21.

Language Train set Test set

Nb. Utt Duration [hr] Nb. Utt Duration [hr]

English (EN) 947k 1503 16K 27
Catalan (CA) 904k 1403 16.3 28
French (FR) 484k 698 16K 26
German (DE) 478k 759 16K 27
Belorussian (BE) 346k 470 15.8k 26
Spanish (ES) 230k 340 15.5K 26
Italian (IT) 152k 223 15k 26
Dutch (NL) 30k 37 10k 14
Portuguese (PT) 18k 20 8.6k 11
Polish (PL) 16k 24 8.2k 11

Figure 2.5: Characteristics of spontaneous and call-center based conversational speech.

2.3.2 Conversational Speech

In this thesis, we partly focus on conversational speech as it presents increased challenge w.r.t
to read and prompted speech. Below, we discuss two types of conversational speech: (1)
Spontaneous speech and (2) Call-Center Speech. See Figure 2.5.

Spontaneous Conversational Speech

Spontaneous conversational speech refers to natural, unscripted communication between two
or more speakers engaged in a conversation. Unlike prompted or read speech, which may
follow a prepared script or respond to external cues, spontaneous conversational speech arises
from the spontaneous interaction between speakers without prior planning or rehearsal. It
includes everyday interactions, such as informal discussions and casual exchanges in various
social contexts. The content of the conversation emerges dynamically based on the participants'
thoughts, feelings, and interactions. In addition, it often involves colloquial language, slang,
informal expressions, and �ller words (e.g., "um," "uh," "like"). Participants take turns speaking
and listening, with interruptions and speech overlaps, which transform the task of ASR particularly
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challenging. Also, the topics can shift regularly within the conversation, re�ecting the dynamic
nature of conversational speech. In the community, challenging conversational scenarios include:
(1) multi-party dialogues [101, 102, 103, 104]; (2) cross-talk and overlapped speech [105, 106,
107]; or (3) conversational speech for speci�c domains, such as call-center [108, 109] or air
traf�c control dialogues [4, 5].

Call-center Conversational Speech

Call-center speech is a branch of conversational speech that refers to spoken interactions between
call-center agents and customers during customer service or support calls. The conversations are
scripted or semi-scripted, and agents are trained to follow speci�c protocols and guidelines. They
focus on addressing customer inquiries, resolving issues, or providing assistance, i.e., rather than
engaging in casual conversation. Call-center agents also manage a more formal vocabulary than
customers. Overall, conversational speech can be seen as a task-oriented dialogue.

The main challenges when working with call-center audio are: (1) variable noise, where low
SNR levels can make the ASR and SLU tasks challenging; (2) users' accent that cannot be
known a-priori and might be out-of-domain for the ASR; (3) speci�c domain and vocabulary.
Using ASR and SLU tools within the call-center domain can help to automate pipelines, which
can signi�cantly reduce the time spent by agents with customers. This translates to large cost
reductions and higher client satisfaction.

Conversational Speech Databases

CallHome English public database The CallHome English dataset (LDC97S42) contains
natural conversational stereo-audios between multiple speakers. It consists of 120 unscripted
30-minute telephone conversations between native speakers of English. All calls originated in
North America. Most conversations are calls between family members or close friends. The
transcript includes named entities annotation. This dataset poses challenges due to its natural
conversational nature, known to be challenging for ASR modeling.

Fisher-CallHome Spanish-to-Eglish public database The Fisher and Callhome corpora
respectively comprises 170h and 20h of audio and transcripts of telephone conversations in
Spanish.11 The Spanish-to-English translations are available from [98]. We refer to these
corpora as Fisher-Callhome. This corpus is well suited for multi-turn ASR and ST, as it contains
a signi�cant amount of labeled data and non-segmented (audio) long conversation between
speakers. We merged both corpora for training.

11Linguistic Data Consortium (LDC) IDs are: LDC2010S01, LDC2010T04, LDC96S35, LDC96T17
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Figure 2.6: Detailed cascaded pipeline for transcription, tagging, and extraction of key informa-
tion in an ATCo-pilot conversation. PTT: push-to-talk.

AMI Meeting Corpus AMI is a multi-modal dataset comprising 100h of recorded meetings.
For a comprehensive introduction to the corpus, please refer to the corpus overview [110].12

Approximately two-thirds of the data has been collected using a scenario where participants
assume various roles within a design team, progressing through a design project from inception
to completion over a day. The remaining portion consists of spontaneously occurring meetings
across diverse domains. We only employ the Independent headset microphone (IHM) subset in
this thesis.

2.3.3 Air Traf�c Control Communications

Air traf�c control (ATC) is a service provided by air navigation service providers (ANSPs) with
the aim to plan and manage air traf�c throughout voice communications. The communication
is mainly carried by air traf�c controllers (ATCos) and pilots. ATC ensures safe, orderly, and
ef�cient air traf�c �ow. The primary objectives of ATCos are to prevent collisions between
aircraft, maintain safe distances between them, and provide navigational assistance and guidance
to pilots [18]. The ATC task has shown to be extremely stressful and highly voice demanding
because of the impact a small mistake can make. Several attempts towards increasing the
con�dence and reducing the workload of pilot-controller communication have been pursued in
the past, including experiments with ASR and SLU.13 In practice, spoken ATC communications
are automatically transcribed and then analyzed with SLU systems, typically in a cascaded format.
An example of this process is given in Figure 2.6.

12Instructions for accessing the data are provided in: https://groups.inf.ed.ac.uk/ami/corpus/.
13For example, reducing the amount of time that ATCos spent introducing spoken commands in their workstations.
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ATC speech presents multiple challenges w.r.t other domains, e.g., conversational or read speech.
See Figure 2.7 for further information. This thesis explains how we can overcome those challenges
to build useful tools, e.g., reducing ATCo's workload14 by integrating different ASR and SLU
systems [4, 5, 18] in a cascaded format [111].

Challenges and Motivations

The ATC domain can be catalogued as a low-resource constrained and challenging scenario that
presents several challenges, as shown below.

Signal perspective ATC communications present unique challenges from a signal processing
perspective, particularly due to the noisy nature of the speech compared to standard ASR corpora.
Pilot communications are typically transmitted via very-high-frequency (VHF) receivers that
introduce both channel and cockpit noise, with signal-to-noise ratios (SNR) ranging from 5 to
20 dB. In this thesis, we leverage data collected from multiple sources that employ low-cost
hardware to gather extensive quantities of ATC communications near airports. Although this data
is typically unannotated and of lower quality, it provides a signi�cant resource for developing
robust ASR systems by integrating additional contextual information, such as radar data, to
compensate for audio quality de�ciencies. Similarly, obtaining high quality data from ANSPs is
very dif�cult, for legal issues [23]. It is important to note that ASR systems that lack training on
enhanced data or clean speech inputs, such as those from ANSPs, may produce transcripts that
are too noisy for effective use in subsequent SLU systems.

From a signal perspective, working with ATC speech introduces several critical challenges:
• High variability in speech due to factors like stress and fatigue among speakers;
• speech variations between different speakers;
• wide range of accents and dialects;
• the unique nature of ATC communications, which do not �t into categories of spontaneous,

read, or command speech.
Addressing these issues is crucial for advancing the reliability and accuracy of ASR systems for
the ATC domain.

Data scarcity A limitation in developing highly-accurate ASR and SLU systems for ATC is
the lack of supervised data. Likewise, generate the transcriptions of such data is extremely costly,
e.g., a raw ATCo-pilot voice communication recording of one hour–including silences–requires
between eight and ten man-hours of transcription effort [112].15 This produces� 10 to 15
minutes of pure speech, after removing the silences [113, 112].

14Note that workload reduction might translate to reduced �ight time, e.g., decreasing overall operational costs and
the environmental impact of aircraft.

15Mainly as it requires highly trained participants, often active or retired ATCos
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Figure 2.7: Characteristics of air traf�c control communications speech.

Constrained domain ATC is built for speci�c domains, e.g., one airport or en-route/approach
scenarios [18]. The process of adapting pretrained ASR and SLU models to different airports
or control areas requires new in-domain data, which remain challenging to collect and annotate.
For instance, ATC audio data collected from one airport, e.g.,airport X , in general, do not
transfer well toairport Y .

Related Work

Research attempting to aid ATCos by ASR dates back as far as the 70s'. First, systems aimed at
isolated word recognition, speaker veri�cation and command recognition for military applica-
tions [126]. Exploratory research towards integration of ASR technologies to aid ATCos started
in the late 80s, with [127]. Several other research directions target user-friendly and robust
automatic systems to train ATCos, or the so called `pseudo-pilots' [128]. Akin training systems
have been proposed by [129, 113, 130, 131, 124].

We shortlist 4 well-known European-based projects that aims at developing speech and text-based
tools to aid ATCos in their daily tasks. Initially,MALORCAproject16 was a step forward in
demonstrating that ASR tools can cut down ATCos workload [132] while increasing the overall
ef�ciency [133]. Then,HAAWAIIproject17 has led initiatives to extract key entities (e.g., named-
entity recognition or slot �lling) in the transcribed dialogues produced by an ASR system [134].
SESAR2020's Solution 97.2[135] stands as one of the �rst attempts to analyze the impact of
ASR and SLU tools in the performance of ATCos in simulated tower and ground environments.
Finally, ATCO2project (our corpora) aimed at reducing the human work needed to develop
ASR and SLU tools for ATC, mainly by integrating semi-supervised techniques to improve
the pseudo-transcription process [22, 18]. While theMALORCA, HAAWAIIandSolution 97.2
corpora are not public,ATCO2developed a pipeline to collect large quantities of ATC speech
data, which are distributed to the public through ELDA.18

16MAchine Learning Of speech Recognition models for Controller Assistance: http://www.malorca-project.de/wp/.
17Highly Automated ATC Workstations with Arti�cial Intelligence Integration: https://www.haawaii.de/wp/.
18Available for purchase at: http://catalog.elra.info/en-us/repository/browse/ELRA-S0484.
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Table 2.2: Air traf�c control communications related public and private ATC databases. The
ATCO2 corpusis a large-scale public database with audio, pseudo-labels and radar information.
yfull database after silence removal.yyspeaker accents depend on the airport's location, however,
the accent of pilots are not known at any time of the communication due to privacy regulations.
Table taken from previous work [5].

Database Details Licensed Accents Hoursy Reference

Private databases

HAAWAII Real data from Iceland and Lon-
don airports

% Icelandic,
British

47 [13]

MALORCA Real data: LOWW and LKPR % German, Czech 13 [114] [115]
AIRBUS Real data from LFBO % French 100 [116]
VOCALISE Real data from terminal maneu-

vering area and area control cen-
ter in France

% French 150 [117]

ENAC Real data from two French en-
route control centers and one ma-
jor airport

% French 22 [118]

Public databases

ATCOSIM Simulated in studio, added cock-
pit noise. Recordings split by
gender (Male/Female)

X Swiss German,
German, French

10.7 [119]

UWB-ATCC Real data from LKPR X Czech 13.2 [120]
LDC-ATCC Real data from 3 US airports:

KBOS, KDCA and KDFW
X American En-

glish
26.2 [121]

HIWIRE Simulated in studio, ATC
prompts, added cockpit noise

X French, Greek,
Italian, Spanish

28.7 [122]

ATCSpeech Real accented Mandarin Chinese
and English

X Chinese and En-
glish

57.8 [123, 124]

Corpora released by ATCO2 project

ATCO2 corpora ATC data from different airports and countries. Low quality but large-scale data.

ATCO2-test-set Transcribed audio X Severalyy 4
ATCO2-PL-set Pseudo-transcribed audio X Severalyy 5281 [22]

Free access databases releseased by ATCO2 project

ATCO2-test-set-1h 'ASR dataset': https://www.
atco2.org/data

X Severalyy 1 [22]

ATCO2-ELD set 'LID dataset': https://www.atco2.
org/data

X Severalyy 26.5 [125]

Public and Private ATC corpora For our experiments, we use all the open-source corpora
from Table 2.2, exceptATCSpeech. The data provided by ANSPs is much higher quality than
the one collected by ATCO2. This is due to the hardware quality used to record the audio data.
In addition to these resources, as we have access to private corpora, we use them for supervised
training. Speci�cally, we useHAAWAII, MALORCA, andAIRBUS. For brevity, we do not cover
the details of each database. We redirect the reader to published work in [18, 5, 22, 21] for further
details.
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Figure 2.8: ATCO2 corpus ecosystem. Blue circles denote transcriptions only available for
ATCO2 test set corpus. Green circles denote transcriptions and metadata available for both
ATCO2 test setcorpus andATCO2 pseudo-labeledcorpus (see Table 2.2 bottom).

Public corpora released - ATCO2: the ATCO2 corpora19 is one of our main test-beds for ASR
and SLU systems for ATC. In this setup, we have access to large-scale databases, albeit usually
of lower quality as the ones provided by ANSPs. The ATCO2 provides pseudo-labeled ATC data
for more than 10 airports, see Table 2.2. An important part of the work on ATC includes the
recording, processing, collection, and labeling (or pseudo-labeling) of the ATCO2 corpora. See
further details in Figure 2.8. In [5] we cover technical details about how we collected, prepared
and open-source this data for the wide research community.20

2.4 Evaluation Metrics

In this thesis we validate results with a wide range of evaluation metrics. This includes acoustic
and text-based metrics, as shown below.

19ATCO2 project website: https://www.atco2.org/.
20The collection, pre-processing and pseudo-labeling of the ATCO2 corpora is a signi�cant contribution of this

thesis. See the corpus open-sourced at https://catalogue.elra.info/en-us/repository/browse/ELRA-S0484/.
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