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THIRAN, for dedicating their time to review this thesis and for their constructive feedback.
I am also grateful to the Idiap secretariats and administrative staff for facilitating my stay in
Switzerland and for fostering a conducive research environment.

I am also thankful to Ernie Pusateri from Apple Boston and David, Xing, Sundar and Marcello
from Amazon-AWS Seattle, whose guidance and collaboration during my two internships in US
profoundly enriched my knowledge on speech recognition and translation and familiarized me
with the intricacies of the industry environment.

I am thankful too to my colleagues–which became friends–from Idiap, where I shared incredible
moments, such as hiking, trekking, camping, skiing, SUPing, biking, traveling, Caves Ouverting,
picnicking, etc. Across the years, I shared many moments with a first batch of friends, specially
with Julian, Apoorv & Sargam, François, Florian Piras (my Parce and an invaluable friend),
Florian Mai, Weipeng, Suraj, Suhan, Neha, Laurent, Amir, Zohreh, Eklavya, Tilak, Bogdan,
Chloe, Louise, Enno, Yulia, Colombine, Esau and Sergio. Then, and due to the changing nature
of a research institute, I had the chance to become friend of incredible people, including Fabio

iii



Acknowledgements

(aka Faf), Andrei, Anshul, Arya & Pierre, Darya, Alina, Olena, Karl, Shashi & Yacouba,
Roberto, Mirko, Maxime, Laura, etc. Special thanks to Barbara for the last six months of nice
talks, walks, and train rides! Some names might be missing, but all of them are in my heart. All
these friends, that influenced who I am today, and that took a key role in shaping my career, thank
you all! Special thanks to my ex-flatmates Neha and Suhan. I feel lucky to have shared time at
Idiap and at home, it truly felt like home.

I also feel incredibly fortunate to have met Alex (my Parce!) and later Valentina. They were
a constant source of support during the challenging times of my PhD, always engaging in
conversations about science as well as lighter topics. From discussing AI, servers, microchip
manufacturing, and OpenAI to debating Venezuelan versus Colombian arepas and pan de bonos,
their companionship made a significant difference in these years. I’ll always cherish the wonder-
ful memories of cooking Reina Pepiada together after running multiple times in Lausanne.

Also, I am thankful to my "Latin" friends in Lausanne, which supported me throughout my PhD.
Specially, thanks to Rafa (Noah & Simona), Franco, Alfredo, Andres, Josie, and Tahel. Also,
to many more "Latin/Colombian" friends across Europe, such as Sergio, Marco, Nico, Hernán
and David, I feel truly lucky to have met them.

Reflecting on my PhD journey, I express my gratitude to my first mentor in research, Pablo
Bonaveri (Universidad Autonoma del Caribe). He was the first person who sparked my interest
in research. Without his advice, support and time, I would not have taken the path of a Master’s
Degree, which later lead to a PhD. I am thankful too to all my previous professors and teachers
who partly had a role in shaping who I am today.

Finally, I extend my heartfelt thanks to my family back in Colombia. Nora, Omar, Daniela,
Esteban, and Paula. For their unwavering support, advice, encouragement, and mostly, love,
throughout this challenging yet rewarding journey. Without them, this would not have been
possible. I love you all.

“Switzerland is the best country to pursue a PhD"

Lausanne, August 28, 2024 Juan Pablo Zuluaga Gomez

iv



Abstract
Automatic speech recognition (ASR) and spoken language understanding (SLU) is the core
component of current voice-powered AI assistants such as Siri and Alexa. It involves speech tran-
scription with ASR and its comprehension with natural language understanding (NLU) systems.
Traditionally, SLU runs on a cascaded setting, where an in-domain ASR system automatically
generates the transcripts with valuable semantic information, e.g., named entities and intents.
These components have been generally based on statistical approaches with hand-crafted features.
However, current trends have shifted towards large-scale end-to-end (E2E) deep neural networks
(DNN), which have shown superior performance on a wide range of SLU tasks. For example,
ASR has seen a rapid transition from traditional hybrid-based modeling to encoder-decoder and
Transducer-based modeling. Even though there is an undeniable improvement in performance,
other challenges have come into play, such as the urgency and need of large-scale supervised
datasets; the need of additional modalities, such as contextual knowledge; massive GPU clusters
for training large models; or high-performance and robust large models for complex applications.
All of this leads to major challenges. This thesis explores solutions to these challenges that arise
from complex settings. Specifically, we propose approaches: (1) to overcome the data scarcity
on hybrid-based and E2E ASR models, i.e., low-resource applications; (2) for integration of
contextual knowledge at decoding and training time, which leads to improved model quality; (3)
to fast develop streaming ASR models from scratch for challenging domains without supervised
data; (4) to reduce the computational budget required at training and inference time by proposing
efficient alternatives w.r.t the state-of-the-art E2E architectures. Similarly, we explore solutions
on the SLU domain, including analysis on the optimal representations to perform cascaded SLU,
and other SLU tasks aside from intent and slot filing that can be performed in an E2E fashion.
Finally, this thesis closes by covering STAC-ST and TokenVerse, two novel architectures that
can handle ASR and SLU tasks seamlessly in a single model via special tokens.

Keywords: Automatic Speech Recognition, Spoken Language Understanding, Conversational
Speech, Air Traffic Control Communications, End-to-End ASR, Low-Resource ASR.
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Résumé
La reconnaissance automatique de la parole (ASR) et la compréhension du langage parlé (SLU)
sont au cœur des assistants d’intelligence artificielle à commande vocale actuels, tels que Siri
et Alexa. Elle implique la transcription de la parole avec la ASR et sa compréhension avec
des systèmes de NLU. Traditionnellement, le SLU fonctionne en cascade, où un système ASR
dans le domaine génère automatiquement les transcriptions avec des informations sémantiques
précieuses, par exemple les entités nommées et les intentions. Ces composants ont généralement
été basés sur des approches statistiques avec des caractéristiques créées à la main. Cependant,
les tendances actuelles se sont orientées vers les DNN à grande échelle de E2E, qui ont montré
des performances supérieures sur un large éventail de tâches SLU. Par exemple, l’ASR a connu
une transition rapide de la modélisation traditionnelle basée sur les hybrides à la modélisation
basée sur les encoder-decoder et les Transducers. Même si l’amélioration des performances est
indéniable, d’autres défis sont entrés en jeu, comme l’urgence de données supervisées à grande
échelle, le besoin de modalités supplémentaires, telles que la connaissance contextuelle, les
clusters GPU massifs pour l’entraînement de grands modèles, ou les grands modèles performants
et robustes pour les applications complexes. Tout ceci conduit à des défis majeurs. Cette thèse
explore les solutions à ces défis qui découlent de contextes complexes. Plus précisément, nous
proposons des approches : (1) pour surmonter la rareté de données sur les modèles ASR hybrides
et E2E, les applications à faibles ressources ; (2) pour l’intégration de la connaissance contextuelle
au moment du décodage et de l’entraînement, ce qui permet d’améliorer la qualité du modèle ;
(3) pour développer rapidement des modèles ASR en continu à partir de zéro pour les domaines
difficiles sans données supervisées ; (4) pour réduire le budget de GPU requis au moment de
l’entraînement et de l’inférence en proposant des alternatives efficaces par rapport aux architec-
tures E2E les plus récentes. De même, nous explorons des solutions dans le domaine du SLU, y
compris l’analyse des représentations optimales pour effectuer le SLU en cascade, et d’autres
tâches SLU en dehors de l’intention et du classement des créneaux qui peuvent être effectuées
d’une manière E2E. Enfin, cette thèse se termine par l’étude de STAC-ST et TokenVerse,
deux nouvelles architectures qui peuvent traiter les tâches ASR et SLU de manière transparente
dans un modèle unique via des jetons spéciaux.

Mots-clés : ASR, SLU, Langage conversationnel, communications de contrôle du trafic aérien
(ATC), End-to-End ASR, ASR à ressources limitées.



Contents
Acknowledgements iii

Abstract v

Résumé

Acronyms v

List of Figures ix

List of Tables xiv

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Contributions to Projects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4.1 ATCO2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4.2 HAAWAII . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4.3 EUROCONTROL . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4.4 Uniphore . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Background 9
2.1 Automatic Speech Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Hybrid-based Modeling . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.2 End-to-End Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Spoken Language Understanding . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.1 Cascaded Spoken Language Understanding . . . . . . . . . . . . . . . 15
2.2.2 End-to-end Spoken Language Understanding . . . . . . . . . . . . . . 15
2.2.3 Intent Classification & Slot Filling . . . . . . . . . . . . . . . . . . . . 15

2.3 Target Domains and Databases . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.1 Read & Prompted Speech . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.2 Conversational Speech . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.3 Air Traffic Control Communications . . . . . . . . . . . . . . . . . . . 20

i



Contents

2.4 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.4.1 Metrics for Speech-based Models . . . . . . . . . . . . . . . . . . . . 25
2.4.2 Metrics for Text-based Models . . . . . . . . . . . . . . . . . . . . . . 26

3 Data and Task Bounded Low-Resource Speech Recognition 29
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1 Supervised ASR Learning for Challenging Applications . . . . . . . . . . . . . 30
3.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.1.2 Databases and Experimental Setup . . . . . . . . . . . . . . . . . . . . 31
3.1.3 Results & Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 Fine-Tuning of Large Pretrained Models for ASR . . . . . . . . . . . . . . . . 35
3.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2.2 Databases and Experimental Setup . . . . . . . . . . . . . . . . . . . . 36
3.2.3 Incremental Training and Gender Bias . . . . . . . . . . . . . . . . . . 38
3.2.4 Results & Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3 Using Contextual Knowledge for Hybrid-Based ASR . . . . . . . . . . . . . . 44
3.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.3.2 Contextual Biasing for Hybrid-based ASR . . . . . . . . . . . . . . . . 45
3.3.3 Step 1–Injecting Contextual Knowledge During ASR Decoding . . . . 46
3.3.4 Step 2–Injecting Contextual Knowledge Post-ASR Decoding . . . . . . 47
3.3.5 Results & Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.4 Using Contextual Knowledge for End-to-End ASR . . . . . . . . . . . . . . . 50
3.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.4.2 Contextual Biasing with Aho-Corasick Algorithm . . . . . . . . . . . . 52
3.4.3 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.4.4 Model Training & Evaluation . . . . . . . . . . . . . . . . . . . . . . 55
3.4.5 Results & Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.5 Using Contextual Knowledge at ASR Training Time . . . . . . . . . . . . . . 59
3.5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.5.2 Contextual Semi-Supervised ASR Training . . . . . . . . . . . . . . . 60
3.5.3 Databases and Experimental Setup . . . . . . . . . . . . . . . . . . . . 61
3.5.4 Results & Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.6 Building ASR Systems for ATC . . . . . . . . . . . . . . . . . . . . . . . . . 66

4 Speed and Compute Bounded Low-Resource Speech Recognition 67
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.1 Fast Transducer ASR Prototyping with Pretrained Models . . . . . . . . . . . . 68
4.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.1.2 From Encoder-Decoder to Transducer ASR . . . . . . . . . . . . . . . 70
4.1.3 ASR Pseudo Labeling . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.1.4 Knowledge Distillation with Large Models . . . . . . . . . . . . . . . 70
4.1.5 Databases and Experimental Setup . . . . . . . . . . . . . . . . . . . . 71
4.1.6 Results & Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

ii



Contents

4.2 Use of Large Pretrained Models for Transducer-based ASR . . . . . . . . . . . 77
4.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.2.2 XLSR-Transducer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.2.3 Efficient Streaming ASR with Attention Sinks . . . . . . . . . . . . . 80
4.2.4 Databases and Experimental Setup . . . . . . . . . . . . . . . . . . . . 80
4.2.5 Results & Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.3 Improved Streaming Transducer With Attention Sinks . . . . . . . . . . . . . . 85
4.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.3.3 Databases and Experimental Setup . . . . . . . . . . . . . . . . . . . . 87
4.3.4 Results & Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.4 Compute-Bounded Low-Resource Speech Recognition with HyperConformer . 91
4.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.4.2 HyperMixer Architecture . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.4.3 Multi-head HyperMixer for Efficient ASR . . . . . . . . . . . . . . . . 95
4.4.4 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.4.5 Results & Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5 Towards Better Spoken Language Understanding 101
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.1 Spoken Language Understanding of Air Traffic Control Communications . . . 102
5.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.1.2 Slot Filling & Named Entity Recognition . . . . . . . . . . . . . . . . 103
5.1.3 Callsign Recognition and Understanding . . . . . . . . . . . . . . . . 106
5.1.4 Speaker Role Detection . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.2 Text-Based Joint Speaker Role & Speaker Change Detection . . . . . . . . . . 110
5.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
5.2.2 Databases and Experimental Setup . . . . . . . . . . . . . . . . . . . . 112
5.2.3 BERTraffic System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
5.2.4 Evaluation protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
5.2.5 Results & Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.3 Benchmarking Multiple Spoken Language Understanding Representations . . . 119
5.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
5.3.2 Multiple NLU/SLU Representations . . . . . . . . . . . . . . . . . . . 121
5.3.3 Databases and Experimental Setup . . . . . . . . . . . . . . . . . . . . 122
5.3.4 Results & Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6 Joint Speech Recognition and Spoken Language Understanding 127
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.1 Token-Based Multitasking for Encoder-Decoder Models . . . . . . . . . . . . 128
6.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
6.1.2 Speaker-Turn Aware Conversational Speech Translation System . . . . 130
6.1.3 Databases and Experimental Setup . . . . . . . . . . . . . . . . . . . . 132

iii



Contents

6.1.4 Results & Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
6.1.5 Benchmarking STAC-ST . . . . . . . . . . . . . . . . . . . . . . . . 137

6.2 Token-Based Multitasking for Transducer Models . . . . . . . . . . . . . . . . 140
6.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
6.2.2 TokenVerse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
6.2.3 TokenVerse Training & Inference . . . . . . . . . . . . . . . . . . . 142
6.2.4 Ablations within TokenVerse . . . . . . . . . . . . . . . . . . . . . . . 143
6.2.5 Task-Specific Baselines, Metrics & Evaluation Protocol . . . . . . . . 143
6.2.6 Databases and Experimental Setup . . . . . . . . . . . . . . . . . . . . 145
6.2.7 Results & Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

7 Conclusions and Future Directions 149
7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
7.2 Limitations and Future Directions . . . . . . . . . . . . . . . . . . . . . . . . 150

Bibliography 153

A Appendix to Section 6.1, Chapter 6 185
A.1 Fisher-CALLHOME Data Distribution . . . . . . . . . . . . . . . . . . . . . . 185
A.2 Evaluating Different CTC Weights . . . . . . . . . . . . . . . . . . . . . . . . 186
A.3 Complete Main Evaluation Results on Fisher-CALLHOME . . . . . . . . . . . 186
A.4 More Examples and Analysis on Speaker-Turn and Cross-Talk Detection . . . . 188
A.5 Complete Ablation Results for [TURN] & [XT] Task Tokens . . . . . . . . . 190
A.6 More Details of VAD-Based Segmentation . . . . . . . . . . . . . . . . . . . . 190
A.7 Complete Results of Scaled STAC-ST vs. Whisper . . . . . . . . . . . . . . . 192
A.8 Complete Results of STAC-ST for Single-Turn ST . . . . . . . . . . . . . . . 192
A.9 Microsoft Speech Language Translation (MSLT) Corpus Detailed Results . . . 194

A.9.1 Dataset characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 194
A.10 STAC-ST on CoVoST2 & CommonVoice . . . . . . . . . . . . . . . . . . . . 197

A.10.1 Scaling Up STAC-ST . . . . . . . . . . . . . . . . . . . . . . . . . . 197

Curriculum Vitae 199

iv



Acronyms
AC Aho-Corasick
AI Artificial Intelligence
AM Acoustic Model
AED Attention-Based Encoder Decoder
ATC Air Traffic Control
ATM Air Traffic Management
ASR Automatic Speech Recognition
ANSPs Air Navigation Service Providers
ATCo Air Traffic Controller
ATCC Air Traffic Control Communication
ADS-B Automatic Dependent Surveillance–Broadcast
BPE Byte-Pair Encoding
CER Character Error Rate
CTC Connectionist Temporal Classification
CNN Convolutional Neural Network
Conformer Convolution-Augmented Transformer
dB Decibel
DER Diarization Error Rate
DNN Deep Neural Networks
E2E End-To-End
ELD English Language Detection
ENDP Endpointing
ELDA European Language Resources Association
FST Finite State Transducer
FSM Foundational Speech Model
ICAO International Civil Aviation Organization
GMM Gaussian Mixture Model
GELU Gaussian Error Linear Units
HMM Hidden Markov model
JER Jaccard Error Rate
KD Knowledge Distillation

v



Contents

LF-MMI Lattice-Free Maximum Mutual Information
LM Language Model
ML Machine Learning
MT Machine Translation
MLP Multilayer Perceptron
MFFCs Mel-frequency Cepstral Coefficients
MHSA Multi-Head Self-Attention
NE Named Entity
NER Named Entity Recognition
NLL Negative Log-Likelihood
NLP Natural Language Processing
NLU Natural Language Understanding
OOD Out-of-Domain
OOV Out-of-Vocabulary
OSN OpenSky Network
PL Pseudo-Label
PER Phoneme Error Rate
PTT Push-To-Talk
RTX Real-Time Factor
RNN Recurrent Neural Network
RNN-T RNN-Transducer
SC Sequence Classification
SD Speaker Diarization
SF Shallow Fusion
ST Speech-to-Text Translation
SCD Speaker Change Detection
SLU Spoken Language Understanding
SSL Self-Supervised Learning
SST Self-Supervised Training
SNR Signal-To-Noise
SOT Serialized Output Training
SRD Speaker Role Detection
TT Transformer-Transducer
TDNN Time Delay Neural Network
TDNNF Factorized TDNN
VAD Voice Activity Detection
VHF Very-High Frequency
WCN Word Confusion Network
WER Word Error Rate
WFST Weighted Finite State Transducer

vi



List of Figures
2.1 Hybrid-based ASR system architecture. . . . . . . . . . . . . . . . . . . . . . 10
2.2 Top three prominent end-to-end ASR architectures. (a) CTC; (b) Transducer, and

(c) attention-based encoder–decoder. . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Cascaded and end-to-end spoken language understanding systems. . . . . . . . 14
2.4 Characteristics of read and prompted speech. . . . . . . . . . . . . . . . . . . 17
2.5 Characteristics of spontaneous and call-center based conversational speech. . . 18
2.6 Detailed cascaded pipeline for transcription, tagging, and extraction of key

information in an ATCo-pilot conversation. PTT: push-to-talk. . . . . . . . . . 20
2.7 Characteristics of air traffic control communications speech. . . . . . . . . . . 22
2.8 ATCO2 corpus ecosystem. Blue circles denote transcriptions only available for

ATCO2 test set corpus. Green circles denote transcriptions and metadata available
for both ATCO2 test set corpus and ATCO2 pseudo-labeled corpus (see Table 2.2
bottom). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1 Overview of Chapter 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2 WERs for models fine-tuned with variable amount of utterances (x-axis) on both,

private (left plot) and public (right plot) databases. . . . . . . . . . . . . . . . . 39
3.3 BERT-based NER pipeline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.4 Proposed biasing approaches at beam search time with Aho-Corasick string

matching algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.5 Aho-Corasick trie: blue lines are fail arcs and green lines are output arcs. . . . 53
3.6 NE accuracy for different approaches on 4 languages of CommonVoice. Including

a list improves NE accuracy while marginally decreasing performance when
adding n-gram LM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.7 Process of retrieving a list of callsigns (contextual data) from OpenSky Network.
This is the list of all possible verbalization of each callsign. . . . . . . . . . . . 61

3.8 Contextual semi-supervised training pipeline. . . . . . . . . . . . . . . . . . . 63
3.9 CA-WER performance on liveatc_mix (noisy) and Prague (clean) test sets for

different discount parameters used at the moment of creating the biasing WFST. 64

4.1 Overview of Chapter 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.2 Proposed approach for efficient psuedo-labeling with Foundational Speech Models. 69
4.3 WERs for offline Zipformer models on six languages of CommonVoice. . . . . 73

vii



List of Figures

4.4 Ablation of impact of mixing in supervised data during training with very weak
pseudo-labels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.5 Box plots per CommonVoice language for multiple streaming decoding settings. 75
4.6 XLSR-Transducer architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.7 Masking strategies for streaming XLSR-Transducer . . . . . . . . . . . . . . . 79
4.8 Non-streaming. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.9 Chunk-size of 16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.10 Multi-chunk streaming. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.11 WERs on AMI eval set for XLSR-Transducer trained on three configurations and

decoded on multiple streaming scenarios. . . . . . . . . . . . . . . . . . . . . 82
4.12 The attention sink effect when decoding with limited left context. . . . . . . . . 86
4.13 WERs per language for low latency chunk-wise decoding, chunk=320 ms. . . . 88
4.14 Multiple decoding results per language, including attention sink frames. Decod-

ing is reported only with left context chunks of 1. . . . . . . . . . . . . . . . . 89
4.15 Layout of Conformer versus HyperConformer. . . . . . . . . . . . . . . . . . . 92
4.16 Forward pass of small (left) and medium sized (right) models. . . . . . . . . . 97
4.17 Forward pass of 1 and 8 heads for HyperConformer.. . . . . . . . . . . . . . . 97
4.18 Time and GPU consumption (GB) of HyperConformer architecture. . . . . . . 97

5.1 Overview of Chapter 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.2 (a) Named entity recognition (or Slot filling) and (b) speaker role detection based

on sequence classification (SC) for ATC utterances. . . . . . . . . . . . . . . . 104
5.3 Proposed callsign recognition and understanding system. . . . . . . . . . . . . 107
5.4 Proposed pipeline for the BERTraffic model. . . . . . . . . . . . . . . . . . . . 113
5.5 JER for nine models fine-tuned with increased amount of samples per database. 116
5.6 Overview of the considered NLU/SLU methodologies for the proposed experi-

ments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.1 Overview of Chapter 6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
6.2 A two-speaker multi-turn conversational segment. . . . . . . . . . . . . . . . . 129
6.3 Proposed model architecture of STAC-ST for multi-turn & multi-speaker ST. . 131
6.4 Fisher-CALLHOME test set distribution of segment length with three different

segmentation approaches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
6.5 Speaker activity on a Fisher corpus sample. . . . . . . . . . . . . . . . . . . . 136
6.6 ST performance on Fisher-CALLHOME test data using different segmentation

techniques for long-form audio. . . . . . . . . . . . . . . . . . . . . . . . . . 137
6.7 a) Proposed unified token augmentation protocol for SCD, ENDP, and NER. b)

TokenVerse unifies multiple speech and NLP tasks (e.g., T1+T2+T3) in a single
model within the neural Transducer framework. . . . . . . . . . . . . . . . . . 141

6.8 Absolute changes in text-based evaluation w.r.t all-tasks TokenVerse in @F1. 148

A.1 Ablation of the CTC weight in the overall loss computation and its impact in
BLEU and WERs for Fisher and CALLHOME development & evaluation sets. 185

viii



List of Figures

A.2 Ground-truth speaker activities and CTC spikes of [TURN] and [XT] task
tokens on three randomly selected Fisher samples. . . . . . . . . . . . . . . . . 189

A.3 Data distribution for Fisher test set with different segmentation approaches. . . 191
A.4 We compare different segmentation techniques with two training data configura-

tions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
A.5 WERs and BLEU scores on four different language directions of CoVoST2 corpus. 198

ix





List of Tables
2.1 CommonVoice train and test splits . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2 Air traffic control communications related public and private ATC databases. . 23

3.1 ATC in-domain training and test sets. OOD denotes out-of-domain set. . . . . . 32
3.2 ASR benchmark with different ASR architectures, vocabularies, and amount of

in-domain and OOD training data. . . . . . . . . . . . . . . . . . . . . . . . . 34
3.3 Characteristics of public and private databases, from Table 2.2. The 32h train

set includes NATS and ISAVIA, while the 132h set includes these and multiple
datasets from Table 2.2. †baseline WERs with hybrid-based ASR trained on ATC
data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4 WERs on four ATC test sets with with greedy decoding or beam search decoding
with a 4-gram ARPA LM integrated by shallow fusion . . . . . . . . . . . . . 40

3.5 WERs on different ATC test sets of w2v2 models. . . . . . . . . . . . . . . . . 42
3.6 WERs on ATCOSIM for models fine-tuned with w2v2-L-60k and greedy decoded. 43
3.7 Callsigns: compressed and extended (airlines designators are in bold) . . . . . 45
3.8 Test sets with callsigns per utterance (csgn per utt.) — median of callsign per

utterance in the surveillance data. . . . . . . . . . . . . . . . . . . . . . . . . 46
3.9 Results of callsign extraction with ASR boosting (ASR-B) and post-boosting

(NLP-B): the accuracy of callsign recognition (%) is calculated for the callsigns
in ICAO format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.10 Test sets with context information (statistics). †utterances with at least one NE. 54
3.11 SF for the out-of-domain evaluation with Zipformer Giga-XL. . . . . . . . . . 56
3.12 WERs of biasing techniques for Transducer models trained on 4 languages of

CommonVoice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.13 Ablation of decoding speed (RTFX; higher, better) and character error rate (CER)

on OOV words with SF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.14 WERs of multiple ASR systems for different test sets. The default discount

parameter (DP) in ASR systems with lattice (lat.) re-scoring is 2.0. . . . . . . . 65

4.1 Maximum number of characters allowed in each pseudo-labeled word with
Whisper. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.2 WERs for Zipformer models trained with PLs only or PLs+supervised data for
six CommonVoice languages. . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

xi



List of Tables

4.3 WERs on the AMI eval set with standard streaming decoding. . . . . . . . . . 81
4.4 WERs of streaming XLSR-Transducer on five CommonVoice languages. . . . . 83
4.5 WERs on AMI eval set for varied decoding settings with attention sink. . . . . 84
4.6 Full WERs on 15 CommonVoice languages and comparison w.r.t multiple Whis-

per models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.7 Complete streaming decoding with attention sink ablation for TEDLIUM dataset. 90
4.8 Impact of scaling up the training data in XLSR-Transducer. We train XLSR-

Transducer models with larger train subsets and report WERs with beam search
decoding and model averaging of 5. †only available for whisper-large-v3. . . . 90

4.9 WERs on the official LibriSpeech dev and test sets for models trained on the
960h LibriSpeech set with HyperConformer. . . . . . . . . . . . . . . . . . . . 96

4.10 Performance of Conformer and HyperConformer when trained on 100h Lib-
riSpeech (10× less data). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.1 Different performance metrics for callsign, command and values classes of the
NER system. Metrics reported for each of the 5-fold cross-validation scheme
on ATCO2-test-set corpus with a bert-base-uncased model. @P, @R, and
@F1 refer to precision, recall and F1-score, respectively. Numbers in bold refer
to the top performance per column among folds. †mean score over the 5 folds. . 106

5.2 Different performance metrics for the speaker role detection experiments. Metrics
reported on ATCO2-test-set corpus with a bert-base-uncased model. @P,
@R, and @F1 refer to precision, recall and F1-score, respectively. Numbers in
bold refer to the top performance per column. . . . . . . . . . . . . . . . . . . 108

5.3 Conversation between two speakers with correct SAD and SCD and SCD error. 111
5.4 Train and test statistics per database. . . . . . . . . . . . . . . . . . . . . . . . 112
5.5 Token-level JER from predictions using different train (column 1) and test sets. 115
5.6 Comparison of acoustic VBx and text-based SD on ATCo, PILOT, and MIXED

subsets of SOL-Cnt and UWB-ATCC test sets. . . . . . . . . . . . . . . . . . . 117
5.7 SLURP statistics. SLURPO: original, while SLURPF is a cleaner version of

SLURP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
5.8 WER% on SLURP Test sets with the XLSR-53 English model before and after

adaptation with SLURPF train subset. . . . . . . . . . . . . . . . . . . . . . . 124
5.9 Accuracy and F1-scores on intent classification for different representations. . . 125

6.1 Fisher-CALLHOME corpus statistics. . . . . . . . . . . . . . . . . . . . . . . 132
6.2 ASR and ST performance of STAC-ST with different training data configurations. 134
6.3 ASR and ST performance of STAC-ST with the incremental addition of task

tokens. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
6.4 Speaker change detection performance of STAC-ST measured by F1, MDR and

FAR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
6.5 ASR and ST performance with increasing model size of STAC-ST and Whisper. 138
6.6 ASR and ST performance with the official single-speaker manual segmentation. 139

xii



List of Tables

6.7 Datasets statistics with token metadata per subset for the public and private
datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

6.8 WERs (%) for ASR on DefinedAI with TokenVerse. †task tokens are removed
from both referene and hypothesis. . . . . . . . . . . . . . . . . . . . . . . . . 145

6.9 [SCD] and [ENDP] time-based evaluation. FA: false alarm; MS: missed speech;
DER: detection error rate. †F1-score computed from the Coverage-Purity per-
spective. ‡single-task model per task, i.e., SCD and ENDP. . . . . . . . . . . . 146

6.11 Text-based performances of TokenVerse on the [NE] (exact- and soft-match)
and [ENDP]. P: precision; R: recall. †upper-bound: BERT model evaluated on
text references. ‡model trained on [ENDP] or [NE] task. . . . . . . . . . . . 147

6.10 F1-score and WERs for CallHome Eval set on different tasks with TokenVerse.
†time-based F1 score. ‡baselines are computed with PyAnnote for SCD or with
fine-tuned BERT on ENDP and NER (exact-match). . . . . . . . . . . . . . . 147

A.1 Main characteristics of each train, development and test subset of Fisher and
CALLHOME corpora, after pre-processing. . . . . . . . . . . . . . . . . . . . 186

A.2 BLEU scores on each multi-turn dataset for all the official Fisher-CALLHOME
development and test subset. AVG lists the average between dev and test sets. . 187

A.3 WERs on each multi-turn dataset for all the official Fisher-CALLHOME de-
velopment and test subset. AVG lists the average between dev and test sets.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

A.4 BLEU scores on each single-turn dataset for all the official Fisher-CALLHOME
development and test subset. AVG lists the average between dev and test sets. . 187

A.5 WERs on each single-turn dataset for all the official Fisher-CALLHOME de-
velopment and test subset. AVG lists the average between dev and test sets.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

A.6 Performance of STAC-ST on speaker change detection on the multi-turn dataset
for all official Fisher-CALLHOME test sets. Tolerance is ablated from 0.1 up to
1 second. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

A.7 Ablation of the impact of encoding speaker turn and cross-talk information with
[TURN] and [XT]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

A.8 Comparison between Whisper versus scaled STAC-ST using more training data. 192

A.9 Comparison between previous work vs. scaled STAC-ST. . . . . . . . . . . . 193

A.10 Main characteristics of MSLT dataset [1] used in our experiments. We list the
details for each language pair and for each task, i.e., ASR and ST. . . . . . . . 194

A.11 BLEU scores and WERs for different models trained with CoVoST2 and Com-
monVoice and evaluated on the DE → DE & EN direction of MSLT corpus. . . 195

A.12 BLEU scores and WERs for different models trained with CoVoST2 and Com-
monVoice and evaluated on the EN → EN & DE direction of MSLT corpus. . . 195

A.13 BLEU scores and WERs for different models trained with CoVoST2 and Com-
monVoice and evaluated on the FR → FR & EN direction of MSLT corpus. . . 196

xiii



List of Tables

A.14 CoVoST2 and CommonVoice dataset splits used in our work. We list the number
of samples (#) and cumulative hours (Hr.) per each subset. . . . . . . . . . . . 197

A.15 WERs and BLEU scores on different language directions of CoVoST2 [2] corpus.
Numbers denote performance on the test set. . . . . . . . . . . . . . . . . . . 198

xiv



1 Introduction

In the evolving landscape of speech technology, foundational speech models (FSMs) have become
the key component to unify various speech tasks such as automatic speech recognition (ASR)
and spoken language understanding (SLU). Multilingual settings have also shown promising per-
formance, particularly in well-defined benchmarks and databases. However, despite this progress,
FSMs encounter challenges in certain scenarios. For instance, their robustness in low-latency,
low-resourced and complicated applications, such as the ones with limited supervised data and
compute, remains a concern.

Questions arise about the feasibility of developing ASR systems without supervised data and the
effective extraction of relevant information from spoken conversations using SLU techniques.
Additionally, the impracticality of FSMs on streaming settings motivates for further exploration.
This thesis addresses these questions from multiple perspectives. In the following section, we
summarize motivations and challenges of current ASR and SLU systems.

1.1 Motivation

Not enough supervised data The necessity to achieve high accuracy and low WERs with
limited supervised data indicates the need for innovative approaches in multiple speech tasks.
Fine-tuning from large pretrained FSMs emerge as viable solutions to mitigate the scarcity
of supervised data. Additionally, augmenting ASR systems with additional modalities during
training and decoding holds the potential for enhanced performance. In this thesis, we explore
the integration of contextual knowledge (e.g., surveillance or radar data in the domain of air
traffic control dialogues) as an extra modality interfaced with ASR systems during training and
decoding to improve overall WERs.

Usage of contextual information In pursuit of reducing WERs on low-resource settings,
leveraging contextual information becomes essential. Traditional methods for improving WERs
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often entail costly architecture modifications or large supervised training datasets. However, in
this thesis, we propose to leverage contextual data to enhance certain n-grams at ASR inference
time, thus aiding the recognition of rare words without incurring on substantial architectural
changes or increased training data.

Fast Streaming ASR prototyping Real-life industrial applications demand rapid development
of ASR systems, often with limited in-domain supervised data and with the need to run on low-
latency streaming fashion. This poses significant challenges, including (1) in-domain data scarcity,
(2) the inherent complexity of streaming ASR w.r.t offline decoding, and (3) strict time constraints
for model development. To address these challenges, we propose several approaches: (1)
reducing the time and supervised data required for ASR development via knowledge distillation,
(2) proposing a linearized alternative of the attention mechanism in Transformers to improve
training efficiency and decoding speed, (3) employing high quality pseudo-labeled data from
FSMs to overcome data scarcity, and (4) introducing the attention sink mechanisms within
the ASR field to improve performance in challenging low-latency streaming scenarios without
compromising decoding speed.

Spoken language understanding In many industrial applications, ASR serves as a preliminary–
intermediary–step before performing higher-level NLU or SLU tasks. We address multiple
NLU/SLU tasks, including intent detection, slot filling, and speaker role detection, both in
cascaded and end-to-end formats, with and without reliance on intermediate ASR hypotheses.

Enabling multitasking with special tokens End-to-end joint ASR and SLU models offer
compelling advantages, such as reduced parameter counts and unified optimization process across
multiple downstream tasks. However, challenges arise concerning paired data availability for
various tasks. Our contributions include demonstrating the feasibility of training attention-based
encoder-decoder and transducer models for multiple task by leveraging special tokens, enabling
decoding of ASR, speech-to-text translation, and acoustic named-entity recognition within a
unified framework.
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1.2 Thesis Outline

1.2 Thesis Outline

The outline of this thesis is summarized below by chapter.

Chapter 2 In this chapter, we provide a gentle introduction to automatic speech recognition
and its two most prominent paradigms: hybrid-based ASR and end-to-end ASR. Next, we review
spoken language understanding and the two methods currently used, the cascaded and the end-
to-end pipeline. Later, we examine the three domains and applications targeted in this thesis,
including (1) read and prompted speech; (2) conversational speech; and (3) air traffic control
communications. Finally, we provide a comprehensive overview of the evaluation metrics utilized
throughout this thesis, to evaluate ASR and SLU systems across various tasks and domains.

Chapter 3 In this chapter, the focus lies on challenging ASR applications constrained by
the availability of supervised data, particularly in air traffic control (ATC) communications.
Benchmarking ASR for ATC with open-source databases is introduced, revealing the existing gap
between large-scale ASR systems and niche applications like ATC. We also propose strategies
for leveraging pretrained FSMs to overcome data scarcity, along with innovative approaches to
incorporate contextual information (e.g., surveillance or user data) during decoding. Furthermore,
we propose an approach to leverage contextual information for improved semi-supervised training
on ATC speech under low resource settings.

Chapter 4 Afterward, we tackle training-and-compute-bounded challenges in ASR, particularly
for conversational speech. Novel methods for rapidly developing transducer-based streaming
ASR solutions are presented, leveraging FSMs through sequence-level knowledge distillation.
Effective techniques for data selection and filtering are introduced to mitigate errors propagated
from pseudo-labels, enhancing training efficiency and reducing computation time while achieving
lower WERs. Additionally, an adaptation of semi-supervised learning-based models to the
transducer architecture, termed XLSR-Transducer, is proposed. We close the chapter with the
introduction of HyperConformer, a novel architecture that achieves comparable or superior ASR
recognition performance compared to Conformer while exhibiting greater efficiency in terms of
inference speed, memory usage, parameter count, and availability of training data.

Chapter 5 Here, we explore advancements in SLU for challenging applications such as ATC
communications. We explore various downstream tasks such as slot filling, callsign highlighting,
and joint speaker role and change detection. Then we perform a comprehensive benchmarking
of text, acoustic, and lattice-based representations for intent and slot-filling on a challenging
database for in-home personal robot assistants (SLURP).
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Chapter 6 Finally, the thesis concludes by examining joint ASR and SLU architectures where
we optimize a single model for multiple tasks via task tokens that condition the models at training
and decoding time. Specifically, we propose solutions for two prominent E2E architectures:
(1) attention-based encoder-decoder and (2) transducer-based architectures. This chapter cover
the following tasks: multilingual ASR and speech-to-text translation, cross-talk detection, and
acoustic-based speaker turn detection. All of these tasks are of large relevance, especially for
industrial applications, that might require low-latency solutions.

1.3 Publications

This thesis is a compilation of 3 journal publications and 14 conference publications where I am
first author or contributed significantly:

Journal papers (published or submitted):

1. J. Zuluaga-Gomez, A. Prasad, I. Nigmatulina, P. Motlicek, and M. Kleinert, “A Virtual
Simulation-Pilot Agent for Training of Air Traffic Controllers,” Aerospace, vol. 10, no. 5,
p. 490, 2023

2. J. Zuluaga-Gomez, I. Nigmatulina, A. Prasad, P. Motlicek, D. Khalil, S. Madikeri, A. Tart,
I. Szoke, V. Lenders, M. Rigault, et al., “Lessons Learned in Transcribing 5000 h of Air
Traffic Control Communications for Robust Automatic Speech Understanding,” Aerospace,
vol. 10, no. 10, p. 898, 2023

3. J. Zuluaga-Gomez, K. Veselý, I. Szöke, A. Blatt, P. Motlicek, M. Kocour, M. Rigault,
K. Choukri, A. Prasad, S. S. Sarfjoo, et al., “ATCO2 Corpus: A Large-Scale Dataset for
Research on Automatic Speech Recognition and Natural Language Understanding of Air
Traffic Control Communications,” Submitted to Data-centric Machine Learning Research
(DMLR) Journal, arXiv preprint arXiv:2211.04054, 2024

Conference papers (published, submitted, or to be submitted):

1. J. Zuluaga-Gomez, S. Kumar, et al., “Improved Streaming Transformer Transducer With
Attention Sinks,” in To be Submitted to ARR (long paper), 2024

2. I. Nigmatulina, J. Zuluaga-Gomez, et al., “Fast Streaming Transducer ASR Prototyping via
Knowledge Distillation with Whisper,” in Submitted to EMNLP 2024 (long paper). [Equal
contribution], 2024

3. J. Zuluaga-Gomez, Z. Huang, X. Niu, R. Paturi, S. Srinivasan, P. Mathur, B. Thompson,
and M. Federico, “End-to-End Single-Channel Speaker-Turn Aware Conversational Speech
Translation,” in Proceedings of the 2023 Conference on Empirical Methods in Natural
Language Processing, 2023, pp. 7255–7274

4. I. Nigmatulina, J. Zuluaga-Gomez, et al., “Improved contextual adaptation with an external
n-gram language model for Transducer-based ASR,” in Submitted to INTERSPEECH 2024,
2024
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5. S. Kumar, S. Madikeri, J. Zuluaga-Gomez, I. Nigmatulina, E. Villatoro-Tello, S. Burdisso,
P. Motlicek, K. Pandia, and A. Ganapathiraju, “TokenVerse: Unifying Speech and NLP
Tasks via Transducer-based ASR,” in arXiv:2407.04444, 2024

6. S. Kumar, S. Madikeri, J. Zuluaga-Gomez, E. Villatoro-Tello, I. Nigmatulina, P. Motlicek,
M. K. E, and A. Ganapathiraju, “XLSR-Transducer: Streaming ASR for Self-Supervised
Pretrained Models,” in arXiv:2407.04439, 2024

7. F. Mai, J. Zuluaga-Gomez, T. Parcollet, and P. Motlicek, “HyperConformer: Multi-head
HyperMixer for Efficient Speech Recognition,” in Proc. Interspeech, 2023, pp. 2213–2217

8. J. Zuluaga-Gomez, A. Prasad, I. Nigmatulina, S. S. Sarfjoo, P. Motlicek, M. Kleinert,
H. Helmke, O. Ohneiser, and Q. Zhan, “How Does Pre-trained Wav2Vec 2.0 Perform on
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in IEEE Spoken Language Technology Workshop (SLT). IEEE, 2023, pp. 205–212
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in IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).
IEEE, 2022, pp. 6282–6286

11. A. Prasad, J. Zuluaga-Gomez, P. Motlicek, S. Sarfjoo, I. Nigmatulina, and K. Veselý,
“Speech and Natural Language Processing Technologies for Pseudo-Pilot Simulator,” in
12th SESAR Innovation Days. Sesar Joint Undertaking., 2022
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and Untranscribed ATC Data in ASR Systems,” in Proc. Interspeech, 2021, pp. 3296–3300

13. J. Zuluaga-Gomez, K. Veselý, A. Blatt, P. Motlicek, D. Klakow, A. Tart, I. Szöke, A. Prasad,
S. Sarfjoo, P. Kolčárek, et al., “Automatic call sign detection: Matching air surveillance
data with air traffic spoken communications,” in Proceedings, vol. 59, no. 1. MDPI, 2020,
p. 14

14. J. Zuluaga-Gomez, P. Motlicek, Q. Zhan, K. Veselý, and R. Braun, “Automatic Speech
Recognition Benchmark for Air-Traffic Communications,” in Proc. Interspeech, 2020, pp.
2297–2301

In addition to the papers above, the following 8 papers, to which I contributed and that are
relevant to this thesis:

1. J. Zuluaga-Gomez, S. Ahmed, D. Visockas, and C. Subakan, “CommonAccent: Exploring
Large Acoustic Pretrained Models for Accent Classification Based on Common Voice,” in
Proc. Interspeech, 2023, pp. 5291–5295

2. M. Kocour, K. Veselý, A. Blatt, J. Zuluaga-Gomez, I. Szöke, J. Černocký, D. Klakow,
and P. Motlicek, “Boosting of Contextual Information in ASR for Air-Traffic Call-Sign
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Recognition,” in Proc. Interspeech, 2021, pp. 3301–3305
3. M. Kocour, K. Veselý, I. Szöke, S. Kesiraju, J. Zuluaga-Gomez, A. Blatt, A. Prasad,

I. Nigmatulina, P. Motlíček, D. Klakow, et al., “Automatic processing pipeline for collecting
and annotating air-traffic voice communication data,” Engineering Proceedings, vol. 13,
no. 1, p. 8, 2021

4. M. Rigault, C. Cevenini, K. Choukri, M. Kocour, K. Veselý, I. Szoke, P. Motlicek,
J. Zuluaga-Gomez, A. Blatt, D. Klakow, et al., “Legal and ethical challenges in recording
air traffic control speech,” in Proceedings of the Workshop on Ethical and Legal Issues
in Human Language Technologies and Multilingual De-Identification of Sensitive Data
In Language Resources within the 13th Language Resources and Evaluation Conference,
2022, pp. 79–83

5. H. Helmke, K. Ondřej, S. Shetty, H. Arilíusson, T. S. Simiganosch, M. Kleinert, O. Ohneiser,
H. Ehr, and J. Zuluaga-Gomez, “Readback Error Detection by Automatic Speech Recogni-
tion and Understanding-Results of HAAWAII project for Isavia’s Enroute Airspace,” 12th
SESAR Innovation Days., 2022

6. H. Helmke, M. Kleinert, N. Ahrenhold, H. Ehr, T. Mühlhausen, O. Ohneiser, L. Klamert,
P. Motlicek, A. Prasad, J. Zuluaga-Gomez, et al., “Automatic speech recognition and
understanding for radar label maintenance support increases safety and reduces air traffic
controllers’ workload,” in Fifteenth USA/Europe Air Traffic Management Research and
Development Seminar (ATM2023), 2023

7. I. Nigmatulina, S. Madikeri, E. Villatoro-Tello, P. Motlicek, J. Zuluaga-Gomez, K. Pandia,
and A. Ganapathiraju, “Implementing Contextual Biasing in GPU Decoder for Online
ASR,” in Proc. Interspeech, 2023, pp. 4494–4498

8. E. Villatoro-Tello, S. Madikeri, J. Zuluaga-Gomez, B. Sharma, S. S. Sarfjoo, I. Nigmat-
ulina, P. Motlicek, A. V. Ivanov, and A. Ganapathiraju, “Effectiveness of text, acoustic, and
lattice-based representations in spoken language understanding tasks,” in IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2023,
pp. 1–5

In addition to the papers above, I contributed to 9 additional papers that are either published on
workshops, journal or pre-print servers (not included in the thesis for space reasons):

1. M. Ravanelli, T. Parcollet, A. Moumen, S. de Langen, C. Subakan, P. Plantinga, Y. Wang,
P. Mousavi, L. D. Libera, A. Ploujnikov, F. Paissan, D. Borra, S. Zaiem, Z. Zhao, S. Zhang,
G. Karakasidis, S.-L. Yeh, A. Rouhe, R. Braun, F. Mai, J. Zuluaga-Gomez, et al., “Open-
Source Conversational AI with SpeechBrain 1.0,” in arXiv:2407.00463, 2024

2. I. Nigmatulina, R. Braun, J. Zuluaga-Gomez, and P. Motlicek, “Improving callsign recog-
nition with air-surveillance data in air-traffic communication,” Idiap Research Institute.
Idiap Research Institute, 2021, pp. 1–5

3. D. Khalil, A. Prasad, P. Motlicek, J. Zuluaga-Gomez, I. Nigmatulina, S. Madikeri, and
C. Schuepbach, “An Automatic Speaker Clustering Pipeline for the Air Traffic Communi-
cation Domain,” Aerospace, vol. 10, no. 10, p. 876, 2023
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4. N. Ahrenhold, H. Helmke, T. Mühlhausen, O. Ohneiser, M. Kleinert, H. Ehr, L. Klamert,
and J. Zuluaga-Gómez, “Validating Automatic Speech Recognition and Understanding
for Pre-Filling Radar Labels—Increasing Safety While Reducing Air Traffic Controllers’
Workload,” Aerospace, vol. 10, no. 6, p. 538, 2023

5. S. Burdisso, J. Zuluaga-Gomez, E. Villatoro-Tello, M. Fajcik, M. Singh, P. Smrz, and
P. Motlicek, “IDIAPers@ Causal News Corpus 2022: Efficient Causal Relation Identifica-
tion Through a Prompt-based Few-shot Approach,” in Proceedings of the 5th Workshop on
Challenges and Applications of Automated Extraction of Socio-political Events from Text
(CASE), 2022, pp. 61–69

6. M. Fajcik, M. Singh, J. Zuluaga-Gomez, E. Villatoro-Tello, S. Burdisso, P. Motlicek, and
P. Smrz, “IDIAPers@ Causal News Corpus 2022: Extracting Cause-Effect-Signal Triplets
via Pre-trained Autoregressive Language Model,” in Proceedings of the 5th Workshop on
Challenges and Applications of Automated Extraction of Socio-political Events from Text
(CASE), 2022, pp. 70–78

7. A. Prasad, J. Zuluaga-Gomez, P. Motlicek, S. Sarfjoo, I. Nigmatulina, O. Ohneiser, and
H. Helmke, “Grammar Based Speaker Role Identification for Air Traffic Control Speech
Recognition,” 12th SESAR Innovation Days., 2022

8. Q. Zhan, X. Xie, C. Hu, J. Zuluaga-Gomez, J. Wang, and H. Cheng, “Domain-Adversarial
Based Model with Phonological Knowledge for Cross-Lingual Speech Recognition,” Elec-
tronics, vol. 10, no. 24, p. 3172, 2021

9. S. Madikeri, S. Tong, J. Zuluaga-Gomez, A. Vyas, P. Motlicek, and H. Bourlard, “Pkwrap: a
pytorch package for lf-mmi training of acoustic models,” arXiv preprint arXiv:2010.03466,
2020

1.4 Contributions to Projects

This thesis contains a set of contributions that can be categorized into multiple research and
innovation projects.

1.4.1 ATCO2

In ATCO2 project, I participated on data collection and curation. ASR training for both, hybrid-
based and E2E models. Also, I proposed multiple NLU systems for ATC, such as callsign and
command extraction, speaker role detection and text-based speaker diarization. Finally, we
released multiple datasets under the ATCO2 project for different ASR and NLU tasks.

The work was supported by European Union’s Horizon 2020 project No. 864702 - ATCO2
(Automatic collection and processing of voice data from air-traffic communications), which is a
part of Clean Sky Joint Undertaking.
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1.4.2 HAAWAII

In HAAWAII project, my main contribution was on ASR training for both, hybrid-based and E2E
models.

The work was supported by European Union’s Horizon 2020 project No. 884287 - HAAWAII
(Highly automated air-traffic controller workstations with artificial intelligence integration).

1.4.3 EUROCONTROL

In the industrial EUROCONTROL project, I contributed to the development of a pseudo-pilot
system [16], which can aid the training of ATCos by integrating ASR and NLU tools in the
learning process. The first version of the pseudo-pilot system was presented in Paris, France in
2022. This work was enlarged with a publication in the Aerospace journal [3].

1.4.4 Uniphore

In the industrial Uniphore project, I worked on large-scale pseudo-labeling of speech with foun-
dational speech models, focused on conversational speech for call-center use cases. Additionally,
I contributed with ASR streaming solutions for call-center speech in English. Section 4.1,
Section 4.2 and Section 4.3 are my contributions to this project.
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2 Background

In this chapter, we cover foundational background on automatic speech recognition (ASR) and
spoken language understanding (SLU), the primary domains of interest in this thesis. We start
with a comprehensive overview of the fundamental components and paradigms of ASR and
SLU, including both cascaded and end-to-end methodologies. After, we define the challenging
applications that serve as the domains covered in this thesis. Lastly, we discuss the primary
evaluation metrics employed to assess the performance of these systems.

2.1 Automatic Speech Recognition

Automatic speech recognition (ASR) is an interdisciplinary research field that aims to develop
techniques and methods that allow the recognition and translation of spoken language into
text. Generally, recorded speech is represented as a sequence of acoustic feature vectors or
observations: X , whereas the output word sequence is represented by W . During recognition or
decoding, the main goal is finding the most likely W given the input sequence X . Traditionally,
this task is addressed with statistical models trained on a labeled corpus with audio-text pairs, as
D = {Xn, W n}. The most likely word sequence (Ŵ ) can be modeled as:

Ŵ = arg m
W

ax P (W |X). (2.1)

The problem is further expanded using Bayes Theorem:

P (W |X) = PAM (X|W )PLM (W )
P (X) , (2.2)

where, PAM (X|W ) stands for the likelihood of the feature sequence X , given the word
sequence W . This term is normally denoted as the acoustic model (AM). The language model
(LM), PLM (W ), denotes the probability of the word sequence. P (X) is the a-priori probability
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Figure 2.1: Hybrid-based ASR system architecture. The inference pipeline consists of feature
extraction, acoustic matching by acoustic model and search by HMM decoder that uses HCLG
recognition network. On the output are text transcripts. The output can be a lattice or confusion
network. From [5].

of the feature sequence X , but it is ignored during the maximization operation due to its
independence from the word sequence. Equation 2.3 is further simplified as P (X) is a constant
for any word sequence, as follows:

Ŵ = arg m
W

ax PAM (X|W ) PLM (W ). (2.3)

To summarize, the ASR systems rely on an acoustic and language model as stated above.
Currently, there are two main ASR paradigms, where different strategies, architectures, and
procedures are employed for blending all these modules in one “system" [37, 38].

2.1.1 Hybrid-based Modeling

Automatic speech recognition with hybrid systems is based on hidden Markov models (HMM)
and deep neural networks (DNN). DNNs are an effective module for the estimating the posterior
probability of a given set of possible outputs (e.g., phone- or tri-phone state). These posterior
probabilities can be seen as pseudo-likelihoods or “scale likelihoods”, which can be interfaced
with HMM modules [39, 40]. HMMs provide a structure for mapping a temporal sequence of
acoustic features, e.g., Mel-frequency cepstral coefficients (MFCCs) or mel-filter banks (Fbanks)
into a sequence of states [41, 40].

Hybrid systems have a separated pronunciation lexicon, language model, and acoustic model, as
shown in Figure 2.1. They are optimized separately, which allows more freedom to estimate the
right set of hyper-parameters of each module. This includes the integration of more resources to
build better LM or lexicons.

10



2.1 Automatic Speech Recognition

Lexicon The lexicon is a table that maps words into pronunciations (phoneme-strings). It
is a resource used by the HMM-based ASR systems. Numerous ASR engines used the CMU
Pronouncing Dictionary (lexicon),1 which defines the phoneme set, and it is used as the training
data for the grapheme-to-phoneme (G2P) module that synthesizes pronunciations of “new words”.
Example of a pronunciation for a ‘spelled acronyms’ like “KLM” is represented as “k ey eh

l eh m”. The vocabulary is the set of finite possible words that an ASR systems can generate,
while each word has a pronunciation mapped from the lexicon. In general, the lexicon can be
viewed as a Finite State Transducer (FST). One key advantage of hybrid systems versus other
ASR paradigms is that the text data (e.g., words, dictionary) and pronunciation of new words are
added before training, hoping to match the target domain.

Inference with hybrid-based ASR To generate a hypothesized transcript from the input
sequence of features, the scores of AM and LM are combined using a decoding graph. We aim
at finding the most likely word sequence Ŵ (transcription), in the matrix of acoustic scores.
The search explores HMM paths that exist in a recognition network, termed HCLG graph (see
Figure 2.1). The standard decoding algorithm is based on two ideas: token passing [42] and beam
search [43]. The search combines scores from the AM, LM and lexicon, where the Equation 2.3
gets into:

Ŵ = arg m
S

ax PAM (S|X)κ PG(S) (2.4)

In Equation 2.4, the AM scores are the model posteriors PAM (S|X), where X is the time-series
of input features and S is an HMM state-sequence. The language model and lexicon scores are
both represented in the graph score PG(S) that is present in the HCLG recognition network. κ is
an empirical scaling constant, for chain models the optimal κ = 1.0.

The HCLG graph The HCLG graph is a Weighted Finite State Transducer (WFST). It is
composed of a language model graph G, pronunciation lexicon graph L, context dependency
graph C and phoneme HMM graphs H. The HCLG graph contains graph costs PG that originate
from its source graphs, while the most important source is the language model [44].

Overall, hybrid systems still remain one of the best and most flexible approaches for building
ASR engines when relatively low amount of audio-text pairs is available for training. In contrast,
with the large growth of computational power and unlabeled data, new ASR paradigms have
emerged. This includes E2E ASR, which do not rely on HMMs and do not require complicated
pronunciation lexicons.

1Dictionary at: http://www.speech.cs.cmu.edu/cgi-bin/cmudict.

11

http://www.speech.cs.cmu.edu/cgi-bin/cmudict
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2.1.2 End-to-End Modeling

End-to-end (E2E) speech recognition aims at directly transcribing speech to text without requiring
alignments between acoustic frames (i.e., input features) and output characters/words. In hybrid
systems, this is a key step where lattices from a previous Gaussian Mixture Model (GMM) and
HMM model and alignments created on the fly are required to train the ASR system. Unlike
the hybrid approaches, the E2E model learns a direct mapping between acoustic frames and text
units (e.g., subword units or characters) or words in a single step towards the final objective of
interest. Finally, E2E systems attempt to bypass the suboptimal issues that arise from training
separately the AM and LM. In Figure 2.2 we list the three more prominent E2E architecture.

Predictor

Softmax

Encoder

Joint Network

Encoder

Softmax

Softmax

Encoder

Attention

Decoder

(a) CTC (b) Transducer (c) Encoder-decoder

Figure 2.2: Top three prominent end-to-end ASR architectures. (a) CTC; (b) Transducer, and (c)
attention-based encoder–decoder.

CTC-based modeling

Connectionist Temporal Classification (CTC) [45, 46] is a sequence discriminative training
criterion used in ASR. Unlike methods requiring frame-level alignments between input feature
sequences Xu and target label sequences yu, CTC circumvents this need. Analogous to the state
sequence definition in HMMs, CTC is initiated by establishing the notion of a path between Xu

and yu. A plausible path is constructed by extending the label sequence yu of size U , to match
the input acoustic length of T . This extension involves the repetition of any label and/or the
insertion of the blank symbol (ϕ),2 i.e., no label. Collectively, this results in what is termed the
CTC path. There have been numerous work on CTC-based ASR [47, 48, 49, 50, 51], whereas
the model architecture is in Figure 2.2 (a). Despite the simplicity of CTC models, there are two
problems: (1) The output sequence length U has to be smaller than the input sequence length T ;
(2) output at timestamp t is assumed to be independent, e.g., of xt−1, and xt+1 [52].

2Blank symbol denotes emitting no label at a given time step t.
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Neural Transducer based ASR

Neural Transducer, usually termed Recurrent Neural Network-Transducer (RNN-T)3 is a sequence-
to-sequence model [53]. Transducer models solve both problems of CTC (§2.1.2). First, it allows
multiple label outputs at each timestamp, and second, it adds a predictor network that acts as a
weak language model, given context based on the previous decoding steps. In a typical neural
transducer model (Figure 2.2b) there are three networks: the encoder, predictor, and joiner [54].
The encoder processes audio frames to produce acoustic embeddings. The predictor generates
token embeddings in an auto-regressive manner, taking previous non-blank tokens as input.
Lastly, the joiner combines the outputs from the encoder and predictor to predict a probability
distribution over the tokens in the vocabulary. Overall, the output can be written as:

X0:t = Encoder(x0:t), (2.5)

Y1:u = Predictor(y1:u), (2.6)

Joint = Linear(X0:t) + Linear(Y1:u), (2.7)

P (yu+1|X0:t, Y1:u) = Softmax(Joiner(Joint)), (2.8)

where X0:t is the output from encoder; Y1:u are the token-embeddings from Predictor; and P

is the probability of predicting yu+1 given past tokens and audio embeddings as input. Recent
work aiming at reducing the computational requirements of transducer models, utilize a stateless
predictor [55] network, i.e., no RNNs or Transformer layers are required. It is composed
of an embedding layer and one 1-D Convolution Neural Network (CNN) layer. Finally, the
joiner network consists of one linear layer. Furthermore, the encoders, such as LSTM [56],
Conformer [57], Zipformer [58] or FastConformer [59] are trained from scratch and require
large amount of in-domain supervised data to achieve acceptable WER. The Transducer models
employ the vanilla RNN-T loss [53], but more efficient variants such as pruned-transducer loss
are also used, which is a memory-efficient alternative to standard RNN-T loss [60].4

Within the transducer framework, the usage of Transformer [61] encoders leads to the Transformer-
Transducer (TT) [62, 63]. This architecture is a popular choice for streaming ASR [64, 65, 66]
because of its robustness and low WERs.

Encoder-Decoder modeling

Attention-based encoder-decoder (AED) models are a growing family of models that first ‘encode’
the input features into a higher dimensional space of an “embedding” by the encoder block (henc

t ).
Then, the decoder block classifies the “latent features” (Cu) into a sequence of tokens defined
by the vocabulary.5 AED models are optimized to learn the audio-text alignment directly. An

3Even though it is widely known as RNN-T, it does not require RNNs. For instance, Transformer-based encoders
are frequently used.

4Available at k2 toolkit: https://github.com/k2-fsa/k2.
5In most recent work, word-based vocabularies [8, 10] have been replaced by sub-word units, e.g., byte-pair

encoding (BPE) [67] or sentence piece [68] or even character-level vocabularies [49].
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Figure 2.3: Cascaded and end-to-end spoken language understanding systems. On the right are
the main applications covered in this thesis.

example of such models is in Figure 2.2 (c). AED and CTC-based architectures differ from
hybrid-based models. For instance, they do not require an explicit LM, as all the blocks are
learned end-to-end. However, these E2E models still lag on edge cases, such as recognition
of keywords or named entities [15]. Prior work aimed at integrating pretrained LMs intro the
decoding frameworks via shallow fusion [69] for improved WER. Intending to overcome the
misalignment problem in CTC systems (§ 2.1.2), latest research has targeted a combination of
CTC and AED loss functions, termed hybrid CTC/attention [70]. This novel approach has shown
improved performance in ASR [71] or in speech-to-text translation [72, 8].

Self-supervised learning Current state-of-the-art (SOTA) models on ASR exploit the self-
supervised learning (SSL) paradigm [73, 74, 48]. SSL is a training technique capable of leveraging
large-scale unlabeled audio to develop robust large foundational speech models (FSM) [49, 75,
76]. In [77], authors explore a way to perform ASR without using any labeled data in a complete
unsupervised fashion. Normally, a fine-tuning stage is required to specialize an SSL-based
FSM in a given task. By default, this setup requires much fewer labeled samples compared to
standard supervised learning. By applying SSL, these systems have dramatically improved ASR
performances on English [49] and multiple other languages [51, 50, 78]. Including models that
can perform ASR on more than 1000 languages [79, 80].

2.2 Spoken Language Understanding

Spoken Language Understanding (SLU) is the underlying key component of interactive smart
devices such as voice assistants, social bots, and intelligent home devices. Typically, SLU aims
at parsing spoken utterances into corresponding structured semantic concepts through a pipeline
or “cascaded" approach. Both approaches are listed in Figure 2.3. Effectively interpreting human
interactions through classification of intent and slot filling [27] plays a crucial role in SLU, that
is why this task has received substantial attention in industry and academia. This thesis covers
multiple SLU downstream tasks that can be interfaced from ASR transcriptions or that can be
performed in end-to-end fashion.

14



2.2 Spoken Language Understanding

2.2.1 Cascaded Spoken Language Understanding

In cascaded SLU, the spoken utterances are transcribed by an ASR engine, while its hypotheses
are processed by an NLU module, e.g., to identify intents and perform slot filling.6 The cascaded
pipeline is the basic method to perform NLU from speech, i.e., SLU. One main advantage over
other approaches is that we do not need paired speech-intent (or slot) samples, as the tasks are
carried out by separately optimized models. However, there are some key disadvantages, such as:
(1) errors in the ASR transcripts are directly propagated to the NLU module, normally trained
only on correct transcriptions; (2) prosodical and non-phonetic aspects present in the spoken
utterance are not taken into account. Even though, the classical text-based approach is mostly
used in industrial applications and is still an active research area [81].

2.2.2 End-to-end Spoken Language Understanding

More recently, end-to-end (E2E) SLU systems have gained popularity [82, 83, 84, 85]. E2E SLU
acts as an individual single model that directly predicts the intent from speech without exploiting
an intermediate text representation. In particular, it directly optimizes the performance metrics of
SLU. Due to the complex structure of speech signals, a large SLU database along with high-end
computational resources (e.g., GPU cluster) are required for training E2E models. In [85], several
E2E SLU encoder-decoder solutions are investigated. For instance, instead of directly mapping
speech to SLU target [83], pretrained acoustic and language models can be used for downstream
SLU tasks, showing to be an effective paradigm [86, 82] over training from scratch.

2.2.3 Intent Classification & Slot Filling

Intent classification Intent classification is a key component of SLU systems, particularly in
the context of chatbots, virtual assistants, and other conversational AI applications. Its goal is
to determine the intention behind a user’s spoken input or query. For example, if a user says,
“Book a flight to Colombia for next Tuesday" the intent might be: "book a flight". In
cascaded approaches, the ASR component can be modeled by fine-tuned SSL-based models
such as XLSR [50] or wav2vec 2.0 [49]. In addition, the NLU component can be modeled by
well-known pretrained LMs such as, BERT [87], RoBERTa [88], or DeBERTa [89]. The most
classical example to perform intent classification follows Equation 2.9.

yi = softmax(W ih1 + bi), (2.9)

where W i are learnable weights (of a classification model), h1 is the hidden representations
from the [CLS] token7 in BERT, and bi the bias vector. This is adapted from [90].

6In practice, the 1-best transcript representation is the one sent to the NLU model for intent detection.
7[CLS] represents sentence level classification, and it captures a representation of a whole sentence in a single

vector.
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Slot filling Slot filling is another important task in NLU, particularly in the context of under-
standing user queries or commands that involve specific parameters or entities. In slot filling, the
goal is to identify and extract relevant pieces of information (slots) from the user’s input. These
slots typically correspond to specific entities such as dates, times, locations, names, etc. Contin-
uing with the example above, slot filling would involve identifying entities like "Colombia"
(destination) and "next Tuesday" (date of travel). Slot filling helps in extracting structured
information from unstructured text, which can then be used by downstream. Equation 2.10 can
be used to perform slot filling with a fine-tuned BERT model, as:

ys
n = softmax(W shn + bs), n ∈ 1, ..., N. (2.10)

Differently from Equation 2.9, in Equation 2.10, we take the remaining hidden states hn, n ∈
1, ..., N instead of only h1 to classify each input token, see further details in [90].

Other downstream applications In this work, we also propose downstream applications from
speech that can be cataloged as SLU, see right block in Figure 2.3 for examples. Other SLU/NLU
tasks that are partially covered in this thesis are part-of-speech tagging, chunking, NER [91, 92],
and semantic role labeling [93]. As part of this thesis, we propose (1) end-to-end cross-talk and
speaker change detection [8]; (2) accent classification for different languages [20]; (3) end-to-end
ASR and NER.

2.3 Target Domains and Databases

In this section, we examine the main applications targeted in this thesis. We explore several
challenging applications bounded by lack of annotated data or audio quality. The covered
applications are in Figure 2.4 to Figure 2.7.

2.3.1 Read & Prompted Speech

Prompted and read speech entails verbal communication where the speaker reads aloud text
from a prepared document or reacts to cues provided by an external source, such as a script or
instructions. Important databases in this domain include LibriSpeech [94], GigaSpeech [95],
TED-LIUM-3 [96], and CommonVoice [97]. Compared to conversational speech, this domain
typically employs more formal language. Speakers may adjust their speech pace to synchronize
with prompts or scripted text, resulting in a more consistent speech rate. Instances of read speech
include audiobook narration or individuals reading from a teleprompter during live broadcasts for
prompted speech. In Figure 2.4, we outline the essential characteristics of this speech domain.
For further exploration of related work and baseline models, we direct readers to hybrid and
E2E-based ASR from Section 2.1. Finally, an important aspect of read and prompted speech
is that ASR systems show lower WERs [94, 97] w.r.t conversational speech [98]. See further
information in Section 3 of XLSR-Transducer paper [51].
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Read & Prompted Speech
- Controlled scenarios 
- Monologue speech 
- Structured setting 
- Open grammar 
- Mid vocabulary diversity 
- Multiple accents 
- High-quality speech

Read Speech
Librispeech-103-1241-0002-60: "matthew
enjoyed the drive after his own fashion except
during the moments when he met women and
had to nod to them for in prince edward island"

Open source databases
- LibriSpeech 
- GigaSpeech 
 

Prompted Speech
CV-EN-POD1000000004_S0000020: "you know
you have to learn how to like chop everything up
and set it aside and"

Open source databases
- CommonVoice 
- CoVoST-2 
 

Figure 2.4: Characteristics of read and prompted speech.

Read and Prompted Databases

Librispeech LibriSpeech [94] is a popular ASR benchmark derived from audiobooks, specif-
ically the LibriVox project. The corpus contains approximately 1000h of 16kHz read English
speech, and it provides utterance level segmentation. Librispeech is positioned as one of the main
datasets to refer when new ASR architectures are developed. In this thesis, we employ the full
dataset of 960h and the official dev-{clean,other} and test-{clean,other} subsets.

CommonVoice The CommonVoice dataset is a multilingual corpus of read speech, comprising
several thousand hours of audio in more than 100 languages [97]. We use this database across
this thesis for multiple task, e.g., ASR and speech-to-text translation. Per language statistics are
in Table 2.1. CommonVoice is one of our preferred datasets as it offers: (1) a well-established
train/dev/test subsets partitioning; (2) proper and robust annotation protocol for multiple lan-
guages; (3) large speaker variability; (4) from low- (Czech or Swedish) to high-resource (English)
subsets; (5) it is an evolving dataset (i.e., updated each three months with new data).

CoVoST-2 This dataset targets speech-to-text translation (ST) based on CommonVoice. CoVoST-
2 [2] provides data for translating from English into 15 languages (En → X) and from 21 languages
into English (X → En). We redirect the reader to the official paper for further details and subset
partitioning per language [2].8

TED-LIUM3 TED-LIUM v3 consists of audio recordings and transcriptions of TED talks,
which are presentations delivered at TED conferences covering a wide range of topics such as
science, technology, entertainment, and global issues. In this work, we use the version 3, i.e,
TED-LIUM3, which includes the previous two versions [99]. It contains 452h of audio sampled
at 16kHz [96].9 Each recording is composed of a sphere (.sph) formatted audio file, and its
corresponding transcripts in stm (.stm) format.10

8The dataset is also available at: https://github.com/facebookresearch/covost.
9The dataset contains 317h/135h male/female audio, with 2028 unique speakers.

10The authors utilized the Kaldi Toolkit [100] to align .stm and .sph files.

17

https://github.com/facebookresearch/covost


Chapter 2. Background

Table 2.1: CommonVoice train and test splits used for multiple purposes in this Thesis. We use
CommonVoice-v11, tag: cv-corpus-11.0-2022-09-21.

Language Train set Test set

Nb. Utt Duration [hr] Nb. Utt Duration [hr]

English (EN) 947k 1503 16K 27
Catalan (CA) 904k 1403 16.3 28
French (FR) 484k 698 16K 26
German (DE) 478k 759 16K 27
Belorussian (BE) 346k 470 15.8k 26
Spanish (ES) 230k 340 15.5K 26
Italian (IT) 152k 223 15k 26
Dutch (NL) 30k 37 10k 14
Portuguese (PT) 18k 20 8.6k 11
Polish (PL) 16k 24 8.2k 11

Conversational Speech
 
-  Unstructured setting 
- Low-to-high vocabulary diversity 
- Multiple accents 
- Challenging speech 
- Environmental noise 
 

Spontaneous Speech
SPK1: Hello Pablo! 
SPK2: Hi Carlos, how was the match? 
SPK1: It was great! Lausanne won the cup! 
SPK2: Where was the match?

Call-Center Speech
SPK1: Hi, this is Fromagerie du Bourg how can
I help you?
SPK2: I am Carlos, is Gruyere the best cheese
you have over there?

Open source databases
- Fisher-Callhome Spanish 
- Callhome English 
- AMI-IHM 
 

Private databases
- DefinedAI English 

Figure 2.5: Characteristics of spontaneous and call-center based conversational speech.

2.3.2 Conversational Speech

In this thesis, we partly focus on conversational speech as it presents increased challenge w.r.t
to read and prompted speech. Below, we discuss two types of conversational speech: (1)
Spontaneous speech and (2) Call-Center Speech. See Figure 2.5.

Spontaneous Conversational Speech

Spontaneous conversational speech refers to natural, unscripted communication between two
or more speakers engaged in a conversation. Unlike prompted or read speech, which may
follow a prepared script or respond to external cues, spontaneous conversational speech arises
from the spontaneous interaction between speakers without prior planning or rehearsal. It
includes everyday interactions, such as informal discussions and casual exchanges in various
social contexts. The content of the conversation emerges dynamically based on the participants’
thoughts, feelings, and interactions. In addition, it often involves colloquial language, slang,
informal expressions, and filler words (e.g., "um," "uh," "like"). Participants take turns speaking
and listening, with interruptions and speech overlaps, which transform the task of ASR particularly
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challenging. Also, the topics can shift regularly within the conversation, reflecting the dynamic
nature of conversational speech. In the community, challenging conversational scenarios include:
(1) multi-party dialogues [101, 102, 103, 104]; (2) cross-talk and overlapped speech [105, 106,
107]; or (3) conversational speech for specific domains, such as call-center [108, 109] or air
traffic control dialogues [4, 5].

Call-center Conversational Speech

Call-center speech is a branch of conversational speech that refers to spoken interactions between
call-center agents and customers during customer service or support calls. The conversations are
scripted or semi-scripted, and agents are trained to follow specific protocols and guidelines. They
focus on addressing customer inquiries, resolving issues, or providing assistance, i.e., rather than
engaging in casual conversation. Call-center agents also manage a more formal vocabulary than
customers. Overall, conversational speech can be seen as a task-oriented dialogue.

The main challenges when working with call-center audio are: (1) variable noise, where low
SNR levels can make the ASR and SLU tasks challenging; (2) users’ accent that cannot be
known a-priori and might be out-of-domain for the ASR; (3) specific domain and vocabulary.
Using ASR and SLU tools within the call-center domain can help to automate pipelines, which
can significantly reduce the time spent by agents with customers. This translates to large cost
reductions and higher client satisfaction.

Conversational Speech Databases

CallHome English public database The CallHome English dataset (LDC97S42) contains
natural conversational stereo-audios between multiple speakers. It consists of 120 unscripted
30-minute telephone conversations between native speakers of English. All calls originated in
North America. Most conversations are calls between family members or close friends. The
transcript includes named entities annotation. This dataset poses challenges due to its natural
conversational nature, known to be challenging for ASR modeling.

Fisher-CallHome Spanish-to-Eglish public database The Fisher and Callhome corpora
respectively comprises 170h and 20h of audio and transcripts of telephone conversations in
Spanish.11 The Spanish-to-English translations are available from [98]. We refer to these
corpora as Fisher-Callhome. This corpus is well suited for multi-turn ASR and ST, as it contains
a significant amount of labeled data and non-segmented (audio) long conversation between
speakers. We merged both corpora for training.

11Linguistic Data Consortium (LDC) IDs are: LDC2010S01, LDC2010T04, LDC96S35, LDC96T17
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PTT

Audio

Stream

ryanair nine two bravo

quebec turn right heading

zero nine zero

ryanair nine two bravo

quebec turn right heading

zero nine zero
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degrees ryan air

nine two bravo

quebec

nine zero

degrees ryanair

nine two bravo

quebec

qantas seven

thirty three

contact
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qantas seven

thirty three

contact

departures

contact

departures

qantas seven

thirty three 

contact

departures

qantas seven

thirty three  

...

...
ASR

Tagger

[1] - ATCO - 00.10 - 00.20: ryanair nine two bravo quebec turn right heading zero nine zero

[2] - PILOT - 00.24 - 00.40: nine zero degrees ryanair nine two bravo quebec

[3] - ATCO - 00.42 - 00.50: qantas seven thirty three contact departures

[4] - PILOT - 01.01 - 01.10: contact departures qantas seven thirty three 

Figure 2.6: Detailed cascaded pipeline for transcription, tagging, and extraction of key informa-
tion in an ATCo-pilot conversation. PTT: push-to-talk.

AMI Meeting Corpus AMI is a multi-modal dataset comprising 100h of recorded meetings.
For a comprehensive introduction to the corpus, please refer to the corpus overview [110].12

Approximately two-thirds of the data has been collected using a scenario where participants
assume various roles within a design team, progressing through a design project from inception
to completion over a day. The remaining portion consists of spontaneously occurring meetings
across diverse domains. We only employ the Independent headset microphone (IHM) subset in
this thesis.

2.3.3 Air Traffic Control Communications

Air traffic control (ATC) is a service provided by air navigation service providers (ANSPs) with
the aim to plan and manage air traffic throughout voice communications. The communication
is mainly carried by air traffic controllers (ATCos) and pilots. ATC ensures safe, orderly, and
efficient air traffic flow. The primary objectives of ATCos are to prevent collisions between
aircraft, maintain safe distances between them, and provide navigational assistance and guidance
to pilots [18]. The ATC task has shown to be extremely stressful and highly voice demanding
because of the impact a small mistake can make. Several attempts towards increasing the
confidence and reducing the workload of pilot-controller communication have been pursued in
the past, including experiments with ASR and SLU.13 In practice, spoken ATC communications
are automatically transcribed and then analyzed with SLU systems, typically in a cascaded format.
An example of this process is given in Figure 2.6.

12Instructions for accessing the data are provided in: https://groups.inf.ed.ac.uk/ami/corpus/.
13For example, reducing the amount of time that ATCos spent introducing spoken commands in their workstations.
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ATC speech presents multiple challenges w.r.t other domains, e.g., conversational or read speech.
See Figure 2.7 for further information. This thesis explains how we can overcome those challenges
to build useful tools, e.g., reducing ATCo’s workload14 by integrating different ASR and SLU
systems [4, 5, 18] in a cascaded format [111].

Challenges and Motivations

The ATC domain can be catalogued as a low-resource constrained and challenging scenario that
presents several challenges, as shown below.

Signal perspective ATC communications present unique challenges from a signal processing
perspective, particularly due to the noisy nature of the speech compared to standard ASR corpora.
Pilot communications are typically transmitted via very-high-frequency (VHF) receivers that
introduce both channel and cockpit noise, with signal-to-noise ratios (SNR) ranging from 5 to
20 dB. In this thesis, we leverage data collected from multiple sources that employ low-cost
hardware to gather extensive quantities of ATC communications near airports. Although this data
is typically unannotated and of lower quality, it provides a significant resource for developing
robust ASR systems by integrating additional contextual information, such as radar data, to
compensate for audio quality deficiencies. Similarly, obtaining high quality data from ANSPs is
very difficult, for legal issues [23]. It is important to note that ASR systems that lack training on
enhanced data or clean speech inputs, such as those from ANSPs, may produce transcripts that
are too noisy for effective use in subsequent SLU systems.

From a signal perspective, working with ATC speech introduces several critical challenges:
• High variability in speech due to factors like stress and fatigue among speakers;
• speech variations between different speakers;
• wide range of accents and dialects;
• the unique nature of ATC communications, which do not fit into categories of spontaneous,

read, or command speech.
Addressing these issues is crucial for advancing the reliability and accuracy of ASR systems for
the ATC domain.

Data scarcity A limitation in developing highly-accurate ASR and SLU systems for ATC is
the lack of supervised data. Likewise, generate the transcriptions of such data is extremely costly,
e.g., a raw ATCo-pilot voice communication recording of one hour–including silences–requires
between eight and ten man-hours of transcription effort [112].15 This produces ∼ 10 to 15
minutes of pure speech, after removing the silences [113, 112].

14Note that workload reduction might translate to reduced flight time, e.g., decreasing overall operational costs and
the environmental impact of aircraft.

15Mainly as it requires highly trained participants, often active or retired ATCos
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Public Databases

Private Databases

Air Traffic Control Speech

- Semi-structured setting 
- Fixed Vocabulary 
- Closed domain 
- Low-resource scenario

- Multiple accents  
- Multiple languages 
- Low-quality speech

ATCOSIM

UWB-ATCC

LDC-ATCC

ATCO2

MALORCA AIRBUS

HAAWAII

Figure 2.7: Characteristics of air traffic control communications speech.

Constrained domain ATC is built for specific domains, e.g., one airport or en-route/approach
scenarios [18]. The process of adapting pretrained ASR and SLU models to different airports
or control areas requires new in-domain data, which remain challenging to collect and annotate.
For instance, ATC audio data collected from one airport, e.g., airport X , in general, do not
transfer well to airport Y .

Related Work

Research attempting to aid ATCos by ASR dates back as far as the 70s’. First, systems aimed at
isolated word recognition, speaker verification and command recognition for military applica-
tions [126]. Exploratory research towards integration of ASR technologies to aid ATCos started
in the late 80s, with [127]. Several other research directions target user-friendly and robust
automatic systems to train ATCos, or the so called ‘pseudo-pilots’ [128]. Akin training systems
have been proposed by [129, 113, 130, 131, 124].

We shortlist 4 well-known European-based projects that aims at developing speech and text-based
tools to aid ATCos in their daily tasks. Initially, MALORCA project16 was a step forward in
demonstrating that ASR tools can cut down ATCos workload [132] while increasing the overall
efficiency [133]. Then, HAAWAII project17 has led initiatives to extract key entities (e.g., named-
entity recognition or slot filling) in the transcribed dialogues produced by an ASR system [134].
SESAR2020’s Solution 97.2 [135] stands as one of the first attempts to analyze the impact of
ASR and SLU tools in the performance of ATCos in simulated tower and ground environments.
Finally, ATCO2 project (our corpora) aimed at reducing the human work needed to develop
ASR and SLU tools for ATC, mainly by integrating semi-supervised techniques to improve
the pseudo-transcription process [22, 18]. While the MALORCA, HAAWAII and Solution 97.2
corpora are not public, ATCO2 developed a pipeline to collect large quantities of ATC speech
data, which are distributed to the public through ELDA.18

16MAchine Learning Of speech Recognition models for Controller Assistance: http://www.malorca-project.de/wp/.
17Highly Automated ATC Workstations with Artificial Intelligence Integration: https://www.haawaii.de/wp/.
18Available for purchase at: http://catalog.elra.info/en-us/repository/browse/ELRA-S0484.
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Table 2.2: Air traffic control communications related public and private ATC databases. The
ATCO2 corpus is a large-scale public database with audio, pseudo-labels and radar information.
†full database after silence removal. ††speaker accents depend on the airport’s location, however,
the accent of pilots are not known at any time of the communication due to privacy regulations.
Table taken from previous work [5].

Database Details Licensed Accents Hours† Reference

Private databases

HAAWAII Real data from Iceland and Lon-
don airports

% Icelandic,
British

47 [13]

MALORCA Real data: LOWW and LKPR % German, Czech 13 [114] [115]
AIRBUS Real data from LFBO % French 100 [116]
VOCALISE Real data from terminal maneu-

vering area and area control cen-
ter in France

% French 150 [117]

ENAC Real data from two French en-
route control centers and one ma-
jor airport

% French 22 [118]

Public databases

ATCOSIM Simulated in studio, added cock-
pit noise. Recordings split by
gender (Male/Female)

✓ Swiss German,
German, French

10.7 [119]

UWB-ATCC Real data from LKPR ✓ Czech 13.2 [120]
LDC-ATCC Real data from 3 US airports:

KBOS, KDCA and KDFW
✓ American En-

glish
26.2 [121]

HIWIRE Simulated in studio, ATC
prompts, added cockpit noise

✓ French, Greek,
Italian, Spanish

28.7 [122]

ATCSpeech Real accented Mandarin Chinese
and English

✓ Chinese and En-
glish

57.8 [123, 124]

Corpora released by ATCO2 project

ATCO2 corpora ATC data from different airports and countries. Low quality but large-scale data.

ATCO2-test-set Transcribed audio ✓ Several†† 4
ATCO2-PL-set Pseudo-transcribed audio ✓ Several†† 5281 [22]

Free access databases releseased by ATCO2 project

ATCO2-test-set-1h ’ASR dataset’: https://www.
atco2.org/data

✓ Several†† 1 [22]

ATCO2-ELD set ’LID dataset’: https://www.atco2.
org/data

✓ Several†† 26.5 [125]

Public and Private ATC corpora For our experiments, we use all the open-source corpora
from Table 2.2, except ATCSpeech. The data provided by ANSPs is much higher quality than
the one collected by ATCO2. This is due to the hardware quality used to record the audio data.
In addition to these resources, as we have access to private corpora, we use them for supervised
training. Specifically, we use HAAWAII, MALORCA, and AIRBUS. For brevity, we do not cover
the details of each database. We redirect the reader to published work in [18, 5, 22, 21] for further
details.
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Figure 2.8: ATCO2 corpus ecosystem. Blue circles denote transcriptions only available for
ATCO2 test set corpus. Green circles denote transcriptions and metadata available for both
ATCO2 test set corpus and ATCO2 pseudo-labeled corpus (see Table 2.2 bottom).

Public corpora released - ATCO2: the ATCO2 corpora19 is one of our main test-beds for ASR
and SLU systems for ATC. In this setup, we have access to large-scale databases, albeit usually
of lower quality as the ones provided by ANSPs. The ATCO2 provides pseudo-labeled ATC data
for more than 10 airports, see Table 2.2. An important part of the work on ATC includes the
recording, processing, collection, and labeling (or pseudo-labeling) of the ATCO2 corpora. See
further details in Figure 2.8. In [5] we cover technical details about how we collected, prepared
and open-source this data for the wide research community.20

2.4 Evaluation Metrics

In this thesis we validate results with a wide range of evaluation metrics. This includes acoustic
and text-based metrics, as shown below.

19ATCO2 project website: https://www.atco2.org/.
20The collection, pre-processing and pseudo-labeling of the ATCO2 corpora is a significant contribution of this

thesis. See the corpus open-sourced at https://catalogue.elra.info/en-us/repository/browse/ELRA-S0484/.
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2.4 Evaluation Metrics

2.4.1 Metrics for Speech-based Models

Word error rate For ASR, we employ the word error rate (WER) metric. Given a refer-
ence transcript and a hypothesis produced by an ASR system, we can compute WER with
Equation 2.11.

WER [%] = Insertions + Deletions + Substituticions
Total Number of Words in Reference

, (2.11)

where the number of insertions, deletions, and substitutions are obtained by aligning reference
and hypothesis with edit distance [100]. WER is measured in percentage and lower WER means
more accurate ASR system.

Character error rate Similar to WER, character error rate (CER) focuses on errors produced
by the model only on the character level. Before running edit distance, we split the reference and
hypothesis in characters and then compute CER. Phoneme error rate (PER) is also a widely used
metric, though is not employed in this thesis. CER is useful (over WER) when a more granular
analysis of errors is required. It therefore provides insights into the accuracy of individual
characters recognized by the ASR system.

Real-time factor & Latency Throughput is measured using the inverse of the real-time factor
(RTF) metric. It is defined such as:

RTFX = audio inferred (seconds)
compute time (seconds) , (2.12)

it is the inverse of the RTF (Real Time Factor) metric, such as RTFX = 1/RTF.

Acoustic-based diarization For speaker diarization (SD), we use diarization error rate (DER)
and Jaccard Error Rate (JER) as metrics. DER measures the fraction of time that the segment is
not attributed correctly to a speaker or to non-speech, as shown below:

DER = false alarm + miss detection + speaker confusion
Total duration of speech in the reference file

, (2.13)

where false alarm is the duration of non-speech incorrectly classified as speech, missed detection
is the duration of speech incorrectly classified as non-speech, confusion is the duration of speaker
confusion, and total is the total duration of speech in the reference. JER is a recently proposed
metric [136] that avoids the bias towards the dominant speaker, i.e., evaluating equally all
speakers. The JER is defined in Equation 2.14:

JER = 1 − 1
#speakers

∑
speaker

maxcluster
|speaker ∩ cluster|
|speaker ∪ cluster|

, (2.14)
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where speaker is the selected speaker from reference and maxcluster is the cluster from the system
with maximum overlap duration with the currently selected speaker.

2.4.2 Metrics for Text-based Models

Named-entity WER & Accuracy In addition to WER, we evaluate the accuracy and WER of
ASR systems only on named entities (NEs): NE-A and NE-WER. Both metrics are calculated
after the reference and hypothesis are aligned, and only on the strings containing NEs. NE-A is
computed binary, i.e., “correct” – when the NE is completely recognized correctly, “incorrect” –
when at least one error occurs within the NE. An example of this metric for ATC systems is the
Callsign-WER, which measueres WER only on the sequence of words that belong to a callsign in
an utterance.

Out-of-vocabulary ratio In ASR systems, out-of-vocabulary (OOV) words refer to words that
are not present–thus cannot be hypothesized–in the system’s lexicon. When an ASR system
encounters an OOV word at decoding time, it may struggle to accurately recognize and transcribe
it, leading to higher WERs overall. For instance, OOV words are categorized with the "<unk>"
(unknown) symbol, depending on the system’s design. The OOV ratio can be computed as the
total number of OOV words divided by the total number of words.

BLEU score BLEU is a method for evaluation of machine translation (and speech-to-text
translation) systems. BLEU score was introduced in [137] and is composed by:

1. Modified Precision:
• Used to measure the accuracy of n-grams (contiguous sequences of n words) in the

candidate translation w.r.t the reference translations;
• precision for each n-gram length (from 1 to N ) is computed and then averaged using

geometric mean.
2. Brevity Penalty (BP):

• The brevity penalty factor (BP) is applied to account for the length of the candidate
translation compared to the reference translations.

• If the candidate translation length (c) is shorter than the effective reference corpus
length (r), BP is calculated as e(1−r/c), else BP = 1.

3. Combining Precision and Brevity Penalty:
• The BLEU score is computed by multiplying the brevity penalty (BP) with the

exponential of the weighted sum of the logarithms of the modified precision scores
for all n-gram lengths up to N .

• The weights wn are positive values that sum up to 1 and are typically uniform (e.g.,
wn = 1

N for N equal to 4).
The BLEU score is designed to capture the precision of the candidate translation relative to the
reference translations, while also considering brevity, as represented by Equation 2.15. A higher
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BLEU score indicates a better match between the candidate and reference translations [137].

BLEU = BP × exp
(

N∑
n=1

wn log pn

)
(2.15)
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3 Data and Task Bounded Low-
Resource Speech Recognition

Introduction

In this chapter, we propose multiple approaches on how to develop high-performance ASR
systems for challenging low-resource applications such as air traffic control (ATC) (§ 3.1) and
conversational speech (§ 3.4). Additionally, we propose strategies on how to bypass challenges
due to amount of supervised data (§ 3.2) or how to leverage contextual information at decoding
(§ 3.3 and § 3.4) and training time (§ 3.5). An graphical overview of this chapter is in Figure 3.1.

Chapter 3
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Figure 3.1: Overview of Chapter 3.
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3.1 Supervised ASR Learning for Challenging Applications

This work conveys an exploratory benchmark of several state-of-the-art ASR models
trained on more than 170 hr of air traffic control (ATC) speech. We demonstrate that
the cross-accent flaws due to speakers’ accents are minimized when we scale up the
supervised training data, making the system suitable for the challenging ATC domain.
To the author’s knowledge, this is the first time that such an amount of ATC-related
databases have been employed to developed ASR systems. Our ASR system attains a
WER of 7.75% across four databases. An additional 35% relative improvement in WER
is achieved when training a TDNNF system with BPE based vocabulary.

Publication Note
The material presented in this section has been used in the following publications:

• J. Zuluaga-Gomez, P. Motlicek, Q. Zhan, K. Veselý, and R. Braun, “Automatic Speech Recognition
Benchmark for Air-Traffic Communications,” in Proc. Interspeech, 2020, pp. 2297–2301

• J. Zuluaga-Gomez, I. Nigmatulina, A. Prasad, P. Motlicek, D. Khalil, S. Madikeri, A. Tart, I. Szoke,
V. Lenders, M. Rigault, et al., “Lessons Learned in Transcribing 5000 h of Air Traffic Control
Communications for Robust Automatic Speech Understanding,” Aerospace, vol. 10, no. 10, p. 898,
2023

• J. Zuluaga-Gomez, A. Prasad, I. Nigmatulina, P. Motlicek, and M. Kleinert, “A Virtual Simulation-Pilot
Agent for Training of Air Traffic Controllers,” Aerospace, vol. 10, no. 5, p. 490, 2023

Supplementary materials related to this section:
• Code: GitGub repository at https://github.com/idiap/atco2-corpus
• ATCO2 project website: https://www.atco2.org/

Major contributions Problem definition and experimental design and setup. Data preparation. Trained the
hybrid-based ASR systems for the experiments. Lead the work, including the paper write up.

3.1.1 Introduction

The communication methods between pilots and Air-Traffic Controllers (ATCos) have remained
almost unchanged for many decades, where the ATCo’s main task is to transfer spoken guidance
to pilots during all flight phases (e.g., approach, landing, or taxi) and at the same time providing
safety, reliability, and efficiency. This task has shown to be extremely stressful because of
the consequences that a small mistake can generate. Several attempts towards increasing the
confidence and reducing the workload of pilot-ATCo communication have been pursued in
the past, including experiments with ASR. Initially, due to budget and scarcity of computing
power, previous work only targeted isolated word recognition, or ‘voice activity detection’.
Currently, most research targets low-latency ASR. Military applications were one of the first
attempts involving engines for command-related ASR; Beek et al. [126] studies ASR within
military applications such as speaker verification, commands recognition and system control
of aircraft. They concluded that ATC speech has a very limited vocabulary, speaker-dependent
issues and environmental noises that need to be addressed to produce a sufficiently-reliable
system. Initially, the integration of ASR technologies in ATCo started in the late 80s’ with Hamel
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et al. report [127]; but lately, ASR technologies has been successfully deployed on ATC training
simulators. For example, Matrouf et al. [128] proposed a user-friendly and robust system to train
ATCos based on hierarchical frames and history of dialogues, i.e., context-dependent system.
Similarly, DLR [128], MITRE [129] and more recently UPM-AENA [113] under the INVOCA
project proposed akin training systems. Previous project MALORCA has demonstrated that ASR
tools can reduce ATCos workload [132] and increase the efficiency [133], where also it addressed
the lack of transcribed ATC speech data using semi-supervised training1 to decrease WERs and
command error rates [114, 115]. ATCO2 project aimed at developing a unique platform to collect,
organize and pre-process air-traffic speech data from airspace available either directly through
publicly accessible radio frequency channels (such as LiveATC [140]), or indirectly from ANSPs.
One of the current challenges of ASR engines for ATCo communications is the changing ATCos
accent and vocabularies across different airports.

In this work, we present the first results of ATCO2 based on six ATC corpora. First, we explore
transfer learning from a Deep Neural Network (DNN) system trained on an out-of-domain
(OOD) corpus, then we contrast the results with SOTA ASR systems, e.g., TDNNF [141] and
CNN+TDNNF. Secondly, given the high likelihood of out-of-vocabulary (OOV) words ratio due
to the intrinsic changing behavior of the air-space, we experimented with Byte-Pair Encoding
(BPE) based vocabularies [67], as it allows the ASR system to recognize words not seen during
training (but part of the vocabulary).

3.1.2 Databases and Experimental Setup

Databases The ATC-related databases used in this work are listed in Table 2.2 and in Table 3.1.
This accounts for nearly 180 hr (training and test sets) of pure ATC speech. In this work, we also
measured the impact of transfer learning from ASR engines trained on out-of-domain databases
as part of the proposed benchmark: (1) we merge Librispeech [94] (960h) and Commonvoice [97]
(500h English subset); (2) we pre-train a TDNN-F model; and finally, (3) we adapt the pretrained
models using in-domain data. See the data description Section 2.3.1. In order to measure the
impact of the amount of training data for ASR, we merged six command-related databases in
three training sets as shown in Table 3.1. In case of ATCOSIM, we split the database (by speakers)
in a 80/20 ratio (i.e., we used 80% of data as train/validation and the remaining 20% as test
set). In case of MALORCA database, it comprises two ATC approaches (collected from two
ANSPs), Vienna and Prague. The remaining databases were collected, processed and released
from different projects; we redirect the reader to their references. In fact, AIRBUS held in 2018 a
challenge [116] related to ASR and callsign detection (CSD) of ATCos speech segments; Authors
in [142] convey the results of the top 5 teams. It is important to mention that we do not compare
our results with theirs because the evaluation set (5h) was not released by AIRBUS; nevertheless,
we created from the train data a test set of 350 utterances (∼1h). The proposed acoustic models
are evaluated on four different test sets, where characteristics such as ATCo accent, spoken
commands, airport’s origin and quantity of training data vary.

1also studied for under-resourced languages [138, 139]
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Table 3.1: ATC in-domain training and test sets.
OOD denotes out-of-domain set.

Train data-sets

Name Hours Description

Train1 38.7 ATCOSIM (train) + MAL-
ORCA (Vienna+Prague) +
UWB-ATCC

Train2 137.7 AIRBUS + LDC-ATCC +
Hiwire

Tr1+Tr2 176.4 Train1 + Train2
OOD
set

∼1500 Out-of-domain set: Lib-
rispeech + Commonvoice

Test data-sets

ATCOSIM 2.5 20% of ATCOSIM train
set

PRAGUE 2.2 From MALORCA set
VIENNA 1.9 From MALORCA set
AIRBUS 1 From AIRBUS set

Lexicon The word list used to build the lex-
icon was assembled from the transcripts of
all the ATC databases (i.e., Tr1+Tr2, in Ta-
ble 3.1) and from some other publicly avail-
able resources (i.e., lists with names of air-
lines, airports, and ICAO alphabet, see [5]).
The pronunciations were synthesized with
Phonetisaurus [143]. The G2P (grapheme-to-
phoneme) model was trained on Librispeech
lexicon, and we inherited its set of phonemes.
Additionally, we adopted a BPE-based vocab-
ulary system [67], limiting the number of sub-
word mergers to 2000. BPE efficiently seg-
ments words into smaller units, facilitating the
handling of an open vocabulary and the inte-
gration of new lexical entries, particularly use-
ful in ASR systems as evidenced by various
studies [144, 145, 146]. This feature is partic-
ularly advantageous for ATC communications,
which predominantly use callsigns but also in-
clude a significant number of foreign proper
nouns potentially absent in conventional word-based models. For generating pronunciations, we
utilize a character-based sub-word lexicon where words are decomposed into characters—used in
place of phonetic units—to derive their pronunciations.

Language modeling For language modeling, we employed n-gram LMs developed using
SRI-LM [147], training on the transcripts from both Tr1 and Tr2 datasets. Initially, we utilize
a 3-gram model (denoted as ‘LM-3’) for decoding, followed by a 4-gram model (‘LM-4’) for
re-scoring purposes, as shown in our results (Table 3.2). Additionally, a 6-gram model (‘LM-6’)
was developed specifically for our BPE setup.

ASR model training All experiments are conducted using the Kaldi speech recognition
toolkit [100]. We report results on two state–of-the-art DNN-based acoustic architectures. We
train Factorized TDNN or TDNNF [141] with ∼1500h of OOD speech (see Table 3.1) and then
we adapt the resulting model with the three proposed training sets, Train1, Train2 and Tr1+Tr2.
Afterward, we perform flat-start CNN+TDNNF training without any kind of transfer learning
or adaptation; the idea behind this is to measure quantitatively whether the amount/accent of
training data helps to reduce WERs. We use the standard chain lattice-free maximum mutual
information (LF-MMI) based Kaldi’s recipe for both architectures, which includes 3-fold speed
perturbation and one third frame subsampling.
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Lattice-free maximum mutual information training LF-MMI training of TDNNF models
still relies on a HMM-GMM model to build both the alignments and lattices needed during train-
ing. The HMM-GMM models are trained with only the OOD, i.e., Librispeech + Commonvoice.
We followed the standard Kaldi’s recipe which requires 100-dimensional i-vector features, 3-fold
speed perturbation, and lattices for LF-MMI training supervision. The TDNNF system trained on
the OOD training set (∼1500h) is labeled as ‘TDNNF-B’. To measure the impact of the amount
of training data on performance in the target domain, we train once with and once without transfer
learning on the three different ATC train sets presented in Table 3.1. Models trained with transfer
learning have ‘TF’ in the name, e.g., TDNN-TF-B. The systems without transfer learning simply
are denoted according to their architectures, i.e., TDNNF, CNN+TDNNF or TDNNF-BPE.

3.1.3 Results & Discussion

Results of Table 3.2 are split into four blocks. First, TDNNF-B is trained on a 1500h OOD
set. This is our base model for transfer learning. Second, TDNNF-B model is adapted to the
different ATC datasets (using TDNNF-B as seed), i.e., Train1, Train2 and Tr1+Tr2. Third,
we compare WERs for TDNNFs without transfer learning. Finally, we present results on a
CNN+TDNNF chain model and TDNNF trained with BPE units. The base model performs
poorly on the ATC data. This is not surprising as Librispeech and Commonvoice are both read
speech with mostly clean audio. ATC speech is more noisy, the speakers talk much quicker, and
the accents are stronger. Despite the significant difference in domains, the pretraining still helps
when the target dataset is not too large, i.e., compare first two rows in Table 3.2. Note that large
differences in performance of the models trained on either Train1 or Train2 can be explained
by whether the accent(s) in the test set were also present in the training set. Once the target
domain dataset becomes large enough, we do not see the benefit of pretraining (see the last row
of the TDNNF-TF-B and the TDNNF models). The last block of experiments provides a broader
cover of different DNN architectures and techniques on our proposed ASR benchmark for ATC
communications. There is no clear winner. The CNN+TDNNF system yielded a new baseline of
5% WER for ATCOSIM, showing a relative improvement on WERs of 16.7% and 3.9% when
compared to TDNNF-TF-B and TDNNF. The best model for Vienna dataset was TDNNF trained
on Tr1+Tr2 and scored with a 4-gram LM, whereas for Prague it was TDNNF with 6-gram
and lexicon based on BPE. Compared to previous experiments on MALORCA [114, 115], our
approach yields 29.8% and 37.9% relative WER improvement for Vienna and Prague.

We further investigated why the BPE model performs significantly better on the Prague test set,
and found that the difference in performance is entirely explained by reduced deletions (five times
more deletions in TDNNF and CNN+TDNNF than TDNNF-BPE system). The word-based model
is obviously not able to recognize OOV words, which is the primary reason for the deletion errors.
The OOV rates on Prague, Vienna, AIRBUS and ATCOSIM test sets are 3.3%, 1.1%, 0.0% and
0.1%. This shows that the BPE system is capable of recognizing OOVs and thereby improving
performance; although, it does come at a cost since the BPE models also perform significantly
worse on some test sets. Additionally, we noticed that the BPE based model performs better
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Table 3.2: ASR benchmark with different ASR architectures, vocabularies, and amount of
in-domain and OOD training data.

System Train Set Params.
Word Error Rates (WER) % - (test sets)

Vienna Prague AIRBUS ATCOSIM

LM-3 LM-4 LM-3 LM-4 LM-3 LM-4 LM-3 LM-4

TDNNF-B OOD set 23.1M 95.8 95.8 47.6 43.3 80.6 77.5 67.5 63.4

TDNNF-TF-B
Train1

20.8M
7.6 7.1 9.1 9.0 53.6 51.4 7.5 7.3

Train2 30.2 26.2 19.3 17.8 14.9 14.6 23.9 20.5
Tr1+Tr2 7.5 6.9 8.6 8.4 15.2 14.7 5.9 6.0

TDNNF
Train1

20.8M
8.1 7.5 8.9 8.7 67.8 66.7 8.5 8.1

Train2 33.2 30.2 20.1 18.8 14.6 14.5 23.4 19.6
Tr1+Tr2 7.1 6.6 8.1 7.9 14.6 14.4 5.3 5.2

CNN+TDNNF Tr1+Tr2 14.3M 7.1 6.7 8.1 7.9 15.1 14.7 5.0 5.1
LM-6 (BPE) LM-6 (BPE) LM-6 (BPE) LM-6 (BPE)

TDNNF-BPE Tr1+Tr2 20.8M 7.6 5.1 15.1 7.2

on foreign words (even when the word-based model includes these words). We attribute this to
the character-based lexicon system, which generalizes better to foreign languages which are not
closely related to English. For the ATCOSIM corpora, we obtain 63.4% WER with TDNNF-B
and an improvement to 8.1% WER when training only on Train1 set. An additional 10% relative
WER improvement can be obtained if employing transfer learning, reaching 7.3% absolute WER.
Finally, with the intention to explore different amount of training data and ASR architectures, we
reach an absolute WER of 5.0% when using a CNN+TDNNF system trained on Tr1+Tr2.

Conclusions This work introduces a benchmark of different ASR architectures for ATC speech.
This is the first study employing six ATC databases spanning more than 176h of speech data.
In addition, these corpora strongly related in both, phraseology and structure to ATCos-pilots
communications. Therefore, this work partly deals with the challenge that arises from the lack of
supervised databases, that many previous studies have referenced.
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3.2 Fine-Tuning of Large Pretrained Models for ASR

Recent work on self-supervised pre-training focus on leveraging large-scale unlabeled
speech data to build robust E2E acoustic models (AM) that can be later fine-tuned on
ASR. Yet, few works investigated the impact on performance when the data properties
substantially differ between the pre-training and fine-tuning phases, termed domain shift.
We target this scenario by analyzing the robustness of Wav2Vec 2.0 and XLS-R models
on downstream ASR for a completely unseen domain, air traffic control communications.
Our contributions answer the three questions below:

1. How robust pretrained E2E models are on new domains, such as ATC?
2. How much in-domain ATC labeled data is required to fine-tune an E2E model that

reaches on-par performance with regard to hybrid-based models?
3. How robust are E2E models on speech from different genders?

Publication Note
The material presented in this section is adapted from the following publication:

• J. Zuluaga-Gomez, A. Prasad, I. Nigmatulina, S. S. Sarfjoo, P. Motlicek, M. Kleinert, H. Helmke,
O. Ohneiser, and Q. Zhan, “How Does Pre-trained Wav2Vec 2.0 Perform on Domain-Shifted ASR? An
Extensive Benchmark on Air Traffic Control Communications,” in IEEE Spoken Language Technology
Workshop (SLT). IEEE, 2023, pp. 205–212

Supplementary materials related to this section:
• GitHub repository at: https://github.com/idiap/w2v2-air-traffic
• ATCO2 project website: https://www.atco2.org/
• Pretrained ATC models in HuggingFace: https://huggingface.co/Jzuluaga/, IDS: wav2vec2-

large-960h-lv60-self-en-atc-atcosim, wav2vec2-xls-r-300m-en-atc-uwb-atcc-and-atcosim,
wav2vec2-large-960h-lv60-self-en-atc-uwb-atcc, wav2vec2-xls-r-300m-en-atc-uwb-atcc and
wav2vec2-xls-r-300m-en-atc-atcosim

Major contributions Problem definition and experimental design and setup. Data preparation. Training and
E2E fine-tuning for ASR experiments. Lead the work, including the paper write up.

3.2.1 Introduction

A substantial amount of recent work on E2E acoustic modeling including ASR exploits self-
supervised learning (SSL) of speech representations [48] including autoregressive models [73, 74]
and bidirectional models [48, 76]. Self-supervised learning is a training technique capable of
leveraging large-scale unlabeled speech to develop robust acoustic models [49, 75]. In fact, [77]
explores a way to perform ASR without any labeled data in a complete unsupervised fashion.
In a standard setup, E2E models trained by SSL are later fine-tuned on downstream tasks with
much fewer labeled samples compared to standard supervised learning. With the use of SSL,
the systems have dramatically improved ASR performances on English speech datasets [49],
such as LibriSpeech [94]. Similarly, performance on cross-lingual speech recognition is largely
improved by SSL [148, 50]. It can be assumed that SSL-based pre-training allows models to
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capture a good representation of acoustics, which can be leveraged across different languages
for ASR. This work reviews the robustness of two well-known E2E acoustic models trained by
SSL (i.e., Wav2Vec 2.0 and XLS-R) on a completely unseen domain: air traffic control (ATC)
communications.

Contribution and motivation Only a few previous works intended to measure the effect of
domain mismatch between pre-training and fine-tuning phases of E2E models [149]. First, we
show that E2E SSL pretrained models learn a strong representation of speech. Fine-tuning on a
downstream task is computationally less expensive than training from scratch, and it requires less
in-domain supervised data to achieve comparable WERs w.r.t hybrid-based ASR. Second, we
hypothesize that pretrained multilingual models (i.e., [50]) perform better on ATC speech data that
contains accented English. Potentially, due to the strong speech representation acquired during
SSL phase, which translates into a more accent-agnostic AM. Third, E2E models have gained
exponential interest in the research community. Even so, little investigation has been carried
out about estimating the WERs gap produced by gender disparities (few ones [150, 151, 152]).
In this work, we fill this gap by analyzing running experiments with ATC audio from different
genders.

We believe this work is impactful because the ASR field is advancing in a fast manner, where
each month many FSM are poured into the research field with outstanding performances on
well-known corpora, e.g., LibriSpeech [94]. Nonetheless, little has been examined in many other
domains, such as ATC communications. Thus, it is of particular interest to evaluate and assess
the performance of these FSM on ‘lagged’ fields.

3.2.2 Databases and Experimental Setup

This research experiments with seven ATC datasets in the English language with various accents,
variable speech rate, and data quality, as listed in Table 3.3. With the aim of encouraging open
research on ATC,2 we experiment with four public databases. To the author’s knowledge, this is
the first work that open sources code in the field of robust ASR targeted to ATC.

Databases For all of our experiments, we up-sample all audio recordings to 16 kHz. Addition-
ally, there are not any official train/dev/test splits for LDC-ATCC, UWB-ATCC and ATCOSIM
databases. Therefore, we split them following the proportions in Table 3.3. We also make sure
that there is no speaker or utterance overlaps between each subset.

ASR model training Our experimental setup is split into three parts, which aims to answer
each of the questions raised in the Section 3.2.1. Initially, we compare the WERs of several E2E
models when fine-tuned with ATC audio. We define two training datasets, i) 32h of annotated

2Generally, ASR for ATC lags behind due to privacy clauses and contracts for data and code release.
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data from NATS and ISAVIA database and ii) 132h of ATC speech data from different projects
(including all the training data from Table 3.3), and we redirect the reader to [17] for further
details. For now on, we refer to these datasets as 32h and 132h ‘fine-tuning sets’. Later, we
evaluate the low-resource scenario by fine-tuning E2E models with different amount of data, for
this, we use NATS and ISAVIA as private databases, and LDC-ATCC and UWB-ATCC as public
databases. Finally, we evaluate the WER shift by fine-tuning E2E models with audio data from
different genders of ATCOSIM database.

Table 3.3: Characteristics of public and private
databases, from Table 2.2. The 32h train set includes
NATS and ISAVIA, while the 132h set includes these
and multiple datasets from Table 2.2. †baseline WERs
with hybrid-based ASR trained on ATC data.

Characteristics

Dataset Train / Test SNR [dB] WER [%]†

Private databases

NATS 18h / 0.9h ≥20 7.7
ISAVIA 14h / 1h 15-20 12.5
LiveATC-Test - / 1.8h 5-15 35.8

Public databases

ATCO2-Test - / 1.1h 10-15 24.7
LDC-ATCC 23h / 2.6h 10-15 -
UWB-ATCC 10.4h / 2.6h ≥20 -
ATCOSIM 8h / 2.4h ≥20 -

Baseline hybrid-based ASR All ex-
periments are conducted with Kaldi
toolkit [100]. The baseline models are
composed of six convolution layers and
15 factorized time-delay neural network
(∼31M trainable parameters). We fol-
low the standard Kaldi’s chain LF-MMI
training recipe [153]. The input features
are high-resolution MFCCs with online
cepstral mean normalization. The fea-
tures are extended with i-vectors. We
use 3-gram ARPA LM during decoding.
The model is trained for 5 epochs on
132h of ATC speech (that includes NATS
and ISAVIA). This model is closed re-
lated to the one presented in Section 3.1.
Further information and baseline perfor-
mances can be found in our previous
work [17, 19, 18]. SOTA WERs are listed
in the last column of Table 3.3.

End-to-end ASR We use four configurations of Wav2Vec 2.0/XLS-R models. From now
on, we refer to these models with the following tags: i) w2v2-B: BASE model;3 ii) w2v2-L:
LARGE-960h model;4 iii) w2v2-L-60K: LARGE-960h-LV60K model;5 iv) w2v2-XLS-R: XLS-R
model.6 We fetched all models’ checkpoints from HuggingFace platform [155, 156]. Later, we
perform standard fine-tuning with ATC speech data.

Hyperparameters end-to-end ASR We fine-tune each model for 10 k steps, with a 500-step
warm-up phase (∼5% of total updates). The feature extractor is frozen throughout the fine-

395M parameters, pretrained on train-set 960h LibriSpeech [94].
4317M parameters pretrained and then fine-tuned with LibrSpeech 960h train-set.
5Same as w2v2-L but uses LibriSpeech + 60kh Libri-Light [154] during the pre-training phase.
6300M parameters pretrained on 436kh of publicly available data in 128 languages [50].
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tuning phase. The learning rate is increased linearly until γ = 1e−4 during warm-up, then
it linearly decays. We use CTC loss function [45]. Dropout [157] is set to dp = 0.1 for the
attention and hidden layers. We use GELU activation function [158] and AdamW [159] optimizer
(β1=0.9, β2=0.999, ϵ=1e−8). We fine-tune each model on a single RTX 3090 with an effective
batch size of 72. All the models use a character-based lexicon, i.e., we concatenate the English
alphabet with symbols and the blank symbol, i.e., in total the vocabulary is composed of 32
characters. We use greedy decoding after applying Softmax to obtain the most likely character at
each time step. Finally, we apply a data augmentation strategy similar to SpecAugment [160] as
in previous work [49].7 All E2E models in this section use the same set of hyperparameters.

Language modeling We concatenate all text transcripts and train 2/3/4-gram ARPA LMs. The
LMs are integrated by shallow fusion with a Python CTC decoder, PyCTCDecode.8 4-gram
LMs performed systematically better (∼2% relative WER reduction) compared to 2-gram LMs
in all test sets. We report results only with 4-gram LM, as in [49]. We set α = 0.5 and β = 1.5,
which corresponds to the LM and length normalization weights. We set the beam size to 100.

3.2.3 Incremental Training and Gender Bias

Incremental training With the recent success of SSL pretrained E2E models, it has become
of particular interest to quantify how much data is actually needed to perform effectively on a
downstream task. It is also important for low-resource tasks, such as ATC, where few tens of hours
of labeled data are available for training or fine-tuning. In most ATC cases, data from one airport
does not generalize well to other airports (for instance, see Table 3.5) due to a considerable AM
domain-shift (accent, speaker rates and audio quality), as well as a LM domain-shift (dominance
of different vocabulary). We analyze model performance versus different fine-tuning data sizes.
We experimented with four few-shot learning scenarios with less than one hour (∼1k utterances)
of fine-tuning data. We split the experiments in two. First, we fine-tuned nine models on private
databases, either NATS or ISAVIA data, as depicted on the left plot of Figure 3.2 (x-axis refers to
number of utterances used during fine-tuning in log scale). Second, with the aim of open research,
we performed the same approach on public databases, i.e., LDC-ATCC and UWB-ATCC. The
results are on the right plot of Figure 3.2.

Gender experiments We use the free and open-source ATCOSIM database to carry the gender
experiments. We obtained the gender labels for each utterance from the original ATCOSIM gold
annotations.9 We split the train set into increasing sizes of 1h, 2h, 3h, 3.5h, and also by gender.
We aim at both, analyzing the performance in WERs caused by fine-tuning an E2E with audio
from different gender, and to measure the performance gain by scaling up the fine-tuning data.
We trained four models for each gender (using the same hyperparameters as the ones described

7We mask the input sequence with a probability p = 0.075, and M = 12 consecutive frames.
8Website URL: https://github.com/kensho-technologies/pyctcdecode
9Check our public GitHub repository for more details: https://github.com/idiap/w2v2-air-traffic.
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Figure 3.2: WERs for models fine-tuned with variable amount of utterances (x-axis) on both,
private (left plot) and public (right plot) databases. Each data point corresponds to a train/test
subset from the same dataset. 100, 1k and 10k utterances are roughly 5 min (few-shot), 1 h, and
10h, respectively. All the evaluations are reported with w2v2-L-60K model and without shallow
fusion with in-domain LM. We also list the WER reduction (WERR) [%] by scaling up the
fine-tuning set size from 100 to 800 utterances.

above and with the same model: w2v2-L-60k) and report the results in Table 3.6.

3.2.4 Results & Discussion

We structure the discussion of the results by addressing concrete questions. Our main hypothesis
is that E2E models trained by SSL learn a robust representation of speech [49] and perform well
on downstream tasks, i.e., ASR or multilingual ASR [50].

Breaking the paradigm, hybrid-based or E2E ASR? Although hybrid-based ASR modeling
has been the default for several years, a new wave of E2E architectures pretrained by SSL for
joint AM and LM is taking its place. We compare E2E models to our best hybrid-based ASR
trained with the 132h fine-tuning set on Kaldi (Baseline, first row, Table 3.4). For E2E AMs
we select two models. First, w2v2-L-60k to evaluate NATS and ISAVIA test sets, which is only
fine-tuned on the 32h set, i.e., in-domain data. Second, w2v2-XLS-R+ for ATCO2-Test and
LiveATC-Test test sets, which is trained on 132h of ATC speech data [17, 19]. The 132h set is
a more diverse set, and it was also used to train the hybrid-based baseline model. We obtained
30 and 41% relative WER reduction (WERR) on NATS and ISAVIA when using w2v2-L-60k
instead of our hybrid-based ASR baseline. The improvement is considerable, even though the
baseline model is trained on four times more data than w2v2-L-60k (see Table 3.4). Similarly,
w2v2-XLS-R+ (last row: Table 3.4) surpasses the hybrid-based model on all four test sets, but
more significantly on the two most challenging, ATCO2-Test and LiveATC-Test sets. In total,
19 and 30% relative WERR on ATCO2-Test and LiveATC-Test were obtained, respectively
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Table 3.4: WERs on four ATC test sets with with greedy decoding or beam search decoding with
a 4-gram ARPA LM integrated by shallow fusion. Models are fine-tuned on NATS and ISAVIA.
Unlab. data column: denotes the audio data using during the E2E pre-training stage: LS:
LibriSpeech 960h train-set [94], LV: LibriVox 60kh train-set [154] and ML: 436kh of multilingual
speech data [50]. ∗baseline WERs of Wav2Vec 2.0 [49] and XLS-R [50] models on LibriSpeech
test-other set when fine-tuned on 10h of labeled data (comparable to our setup). †best Kaldi
hybrid-based model (see [17, 19]) trained with the 132h set. ††models fine-tuned with 132h of
ATC speech data (instead of 32h) and twice the number of steps, i.e., 20k. Numbers in bold refer
to top WERs overall and underline with 132h set.

Unlab. NATS ISAVIA ATCO2-Test LiveATC-Test LS∗

Model (θ) data Greedy +LM Greedy +LM Greedy +LM Greedy +LM -

Baseline (31M)
Hybrid-based † - - 7.7 - 12.5 - 24.7 - 35.8 -

BASE (95M)
w2v2-B LS 10.7 8.4 12.5 10.1 45.6 40.1 48.1 42.2 7.8

LARGE (317M)
w2v2-L LS 9.3 7.6 11.7 9.5 44.9 40.0 47.5 41.4 6.1
w2v2-L-60k LS+LV 6.8 5.4 8.8 7.3 34.6 31.2 39.8 34.5 4.9
w2v2-L-60k+†† LS+LV 9.3 7.4 11.2 9.1 23.3 21.2 31.1 27.2 -

XLS-R (300M)
w2v2-XLS-R ML 8.4 6.5 10.5 8.2 39.1 33.8 42.9 36.7 15.4
w2v2-XLS-R+†† ML 9.0 7.4 10.4 8.3 22.8 19.8 29.7 24.9 -

(hybrid-based → w2v2-XLS-R+).

However, it is worth mentioning that hybrid-based ASR is still considered the default implemen-
tation in many industrial applications due to some advantages over E2E models. Two examples
are, hybrid-based ASR does not require high-performance computing (e.g., GPUs) to perform
real-time inference, while E2E models relies heavily on GPUs for speed. Further, hybrid-based
ASR can be easily deployed for streaming scenarios with minimum degradation on WERs.
Yet, E2E models still involve considerable architectural modifications to attain comparable
WERs [161, 162, 163].

Does additional partially in-domain data increases ASR performance? We answer this
question by comparing models fine-tuned either on the 132h or 32h set. The former set is a mix
of public and private databases, while the latter is only NATS + ISAVIA, thus private. Note that
NATS and ISAVIA are clean in-domain ATC speech corpora, i.e., considered as in-domain on the
32h set and partially in-domain otherwise (132h set). Differently, ATCO2-Test and LiveATC-Test
can be considered noisy and partially out-of-domain sets, i.e., airport, acoustic, and LM mismatch.

To address this question, we only focus on w2v2-L-60k and w2v2-L-60k+ models fine-tuned on
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the 32h and 132h sets, respectively.10 We analyze the WERs obtained by greedy decoding to
focus only on joint acoustic and language ASR modeling (see Section 2.1.2). A degradation
on WERs is observed for the in-domain test sets, NATS: 6.8% → 9.3% WER and ISAVIA:
8.8% → 11.2% WER. This is mainly to the addition of data that does not match NATS and
ISAVIA. Contrary, there was considerable WER reduction on the partly out-of-domain sets,
ATCO2-Test: 34.6% → 23.3% WER and LiveATC-Test 39.8% → 31.1% WER. NATS test
set (ISAVIA: 1% relative WERR) was impacted by the addition of partly-in-domain data, i.e.,
∼7% relative WER reduction. Nevertheless, challenging test sets improved dramatically, i.e.,
ATCO2-Test and LiveATC-Test 43% and 33% relative WERR.

Do multilingual pretrained E2E models help? To answer this question we compare w2v2-
L-60k+ and w2v2-XLS-R+ models, which use the same hyperparameters, fine-tuning setup
and beam search decoding with LM. We obtain a relative WERR of 8.8%, 6.6% and 8.5% on
ISAVIA, ATCO2-Test and LiveATC-Test, respectively (no improvement on NATS). Significant
improvement is seen on the most challenging test sets (SNR: 5-10 dB) which contain accented
English speech, i.e., ATCO2-Test and LiveATC-Test. Hence, multilingual pretrained models bring
a tiny, but noticeable boost in performance compared to single-language pretrained E2E models.
This observed behavior can be attributed to the fact that w2v2-XLS-R have seen considerably
more multilingual and accented audio data during the pre-training phase [50] in comparison to
w2v2-L-60k [49].

The annotation process of ATC speech demands large amount of time. Thus, pre-transcription
with an in-domain ASR model becomes an interesting path as it can subtantly decrease the
overall annotation time. Following this idea, we believe that is of special interest for the research
community to quantify how much audio data is needed to reach acceptable WERs for the ATC
use case. We validated this idea by performing experiments with different amounts of fine-tuning
data (utterances), thus it is up to the interested party to define the ‘acceptable’ WER threshold for
the given application (e.g., deployment or pre-labeling only).

How much data do we need to fine-tune Wav2Vec 2.0 and XLS-R models? We also in-
vestigate the effect on WERs when different amounts of fine-tuning data are used during the
fine-tuning phase. We divide the set of experiments by either using only public or private
databases. The WERs on the private databases are given in the left plot of Figure 3.2. All the
experiments are based on the most robust E2E model from Table 3.4 i.e., w2v2-L-60K.11 The
plots of Figure 3.2 denote the WERs for models evaluated with greedy decoding and without LM.
We fine-tune 18 models varying the training data set (either NATS or ISAVIA) and varying the
amount of fine-tuning samples. We initially tested the few-shot learning scenario (‘worse-case’),
where only 100 labeled utterances (∼5 min) were used for fine-tuning, and achieved WERs of

10Note that the results are still comparable for the XLS-R AM, i.e., w2v2-XLS-R versus w2v2-XLS-R+.
11We select the best model based on lowest WERs on out-of-domain test sets, i.e., ATCO2-Test and LiveATC-Test.

See last row Table 3.4.
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40% and 43.9% for ISAVIA and NATS. Further, ∼50% relative WERR is obtained by scaling up
the fine-tuning data to 50 minutes (800 utterances). Specifically, NATS 43.9% → 22.7% WER
and ISAVIA 40.6% → 21.3% WER. Lastly, if all available data (∼14h) is used, we reach an
8.8% and 6.8% WER for ISAVIA and NATS, respectively. This represents an ∼80% relative
WERR compared to the low-resource setup (100 utterances). With around 8h (∼8000 utterances),
w2v2-L-60K beats the performance of our SOTA hybrid-based ASR (which uses four times more
training data). We follow the same methodology to evaluate the public databases. We also train
9 models for each dataset, i.e., LDC-ATCC and UWB-ATCC. We list the WERs on the right
plot of Figure 3.2 for both test sets. Here, we note similar behaviors, thus we reach similar
conclusions. First, scaling-up the fine-tuning data from 5 to 50 minutes brought ∼45% relative
WERR for both, LDC-ATCC and UWB-ATCC test sets (similar trend in private databases, NATS
and ISAVIA). Not surprisingly, further gains in WERs are achieved if we increase the fine-tuning
data up to 11h. Previous research has not explored E2E modeling12 in the area of ATC, thus,
these WERs can be adopted as baselines.

Table 3.5: WERs on different test sets. Models
are fine-tuned only on public databases and fixed
to 11h of audio data. All systems are w2v2-L-60k
and WERs are obtained with greedy decoding
and no LM. †test set split by gender (Male/Fe-
male).

Test set
Train set LDC UWB ATCO2 ATCOSIM (M/F)†

LDC-ATCC 25.0 64.1 58.7 41.1 / 35.7
UWB-ATCC 54.6 21.9 47.9 32.5 / 24.6

Transferability between ATC corpora We
have stated before that E2E models fine-tuned
on a specific ATC corpus might not trans-
fer well to different ATC corpora.13 To test
this hypothesis, we train models with differ-
ent public databases and test them on four
test sets which reflect different ATC scenar-
ios (e.g., data not seen during training). We
fixed the model (w2v2-L-60k), training data
size to 11h, and same hyperparameters. From
Table 3.5, we can conclude that UWB-ATCC
corpus transfers better to different databases,
for instance LDC-ATCC. In this case, if we fine-tune w2v2-L-60k with UWB-ATCC set and test
it on LDC-ATCC the performance is 54% WER, whereas inversely the performance is 64%, i.e.,
∼10% absolute WERR. Similarly, the model trained on UWB-ATCC fits better ATCO2 test by a
large margin compared to LDC-ATCC, i.e., 10% absolute WER reduction.14

Gender bias on ATC speech We analyze the gender bias on ATCOSIM dataset, which provides
the gender labels for each utterance. The results are listed in Table 3.6. It is evident that the
experiments with female voice performed systematically better in all training scenarios (1h to
3.5h fine-tuning set). We also aimed to test the possibility that the speech rate was the main cause
of this behavior. In average, each female recording has a speech rate of 3.4 words per second

12Training scripts to replicate the right plot of Figure 3.2 are public in our GitHub repository.
13This assumption also applies to hybrid-based ASR models.
14This conclusion can be supported because UWB-ATCC training data partially matches ATCO2 test set signal

quality.
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Table 3.6: WERs on ATCOSIM for models fine-tuned with w2v2-L-60k and greedy decoded. We
experiment with different fine-tuning set sizes. WERs are reported on 0.7h of speech (only from
the same gender) sampled from the original test set, i.e., train-test within the same gender. †list
the WER reduction by scaling from 1h→3.5h.

Dataset size WERR†

Gender 1h 2h 3h 3.5h (1h →3.5h)

Male 36.70 31.42 29.20 28.72 21.74%
Female 17.62 13.91 13.46 12.37 29.79 %

(WPS) while male has an average of 2.9 WPS.15 In order to determine whether female recordings
are of better quality than the male ones, or whether the E2E model have some bias acquired
during the pre-training phase, we calculated the WERR when fine-tuning the model between 1h
to 3.5h of audio. Following Table 3.6 we can see that in the female experiments the reduction on
WERs is higher than on the male side by around 8% absolute when scaling from 1h to 3.5h.

We believe that E2E models (e.g., Wav2Vec 2.0) might carry little but noticeable gender bias. For
instance, previous work have concluded that gender unbalance might affect E2E models during
the pre-training phase [151]. However, this bias can be mitigated by adding a small amount of
data from the opposite gender [150]. In conclusion, it is still prudent to perform more thorough
experiments before reaching hard judgments in this regard, or at least, in ATC communications.

Conclusions Our experiments show large recognition improvements of Wav2Vec 2.0 and
XLS-R compared to hybrid-based ASR baselines. Quantitatively, between 20% and 40% relative
WERR was obtained on ISAVIA and NATS test sets, but also on challenging databases with
multiple accents, i.e., ATCO2-Test and LiveATC-Test. Furthermore, we demonstrated that
pretrained models allow rapid fine-tuning with small quantities of adaptation data. Finally, this
is the first research aiming at analyzing the performance of large-scale SSL acoustic models on
ATC.

15WPS computed from the training sets.
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3.3 Using Contextual Knowledge for Hybrid-Based ASR

Automatic speech recognition (ASR), as the assistance of speech communication between
pilots and air-traffic controllers, can significantly reduce the complexity of the task and
increase the reliability of transmitted information. ASR engines can lead to a lower
number of incidents caused by misunderstanding and improve air traffic management
(ATM) efficiency. Evidently, high accuracy predictions, especially, of key information,
i.e., callsigns and commands, are required to minimize the risk of errors. We prove that
combining the benefits of ASR and NLP methods to make use of surveillance data (i.e.,
an additional modality) helps to considerably improve the recognition of key entities
(named entities) in the ATC speech, i.e., callsigns.
In this work, we investigate a two-step key entities boosting approach:

• (1) ASR step: weights of probable callsign n-grams are boosted in G.fst and/or in
the decoding FST (lattices);

• (2) NLP step: callsigns (named entities) extracted from the improved ASR tran-
script with NER are correlated with the surveillance data to select the most suitable
one.

Publication Note
The material presented in this section is adapted from the following publications:

• I. Nigmatulina, J. Zuluaga-Gomez, A. Prasad, S. S. Sarfjoo, and P. Motlicek, “A two-step approach
to leverage contextual data: speech recognition in air-traffic communications,” in IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2022, pp. 6282–6286

• M. Kocour, K. Veselý, A. Blatt, J. Zuluaga-Gomez, I. Szöke, J. Černocký, D. Klakow, and P. Motlicek,
“Boosting of Contextual Information in ASR for Air-Traffic Call-Sign Recognition,” in Proc. Inter-
speech, 2021, pp. 3301–3305

• I. Nigmatulina, S. Madikeri, E. Villatoro-Tello, P. Motlicek, J. Zuluaga-Gomez, K. Pandia, and A. Gana-
pathiraju, “Implementing Contextual Biasing in GPU Decoder for Online ASR,” in Proc. Interspeech,
2023, pp. 4494–4498

Supplementary materials related to this section:
• Code - GitGub repository at: https://github.com/idiap/contextual-biasing-on-gpus
• ATCO2 project website: https://www.atco2.org/

Major contributions Problem definition and experimental design and setup. Data preparation. Proposed
the idea of integrating contextual information with a second NLP step, leading to substantial improvements in
callsign recognition accuracy. Trained the hybrid-based ASR systems. Actively participated in the article write
up.

3.3.1 Introduction

There are multiple key entities in speech communication between pilots and Air-Traffic Con-
trollers (ATCo), i.e., callsigns, which are used for identification of aircraft. ASR systems aiming
to recognize callsigns in real time while requiring high recognition accuracy (below ∼5% WER).
Particularly, the callsigns are unique aircraft identifiers, of which the first part is an abbreviation
of the airline name and the last part is a flight number that contains a digit combination and
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may also incorporate an additional character combination, e.g., TVS84J (see Table 3.7). At a
certain time point, only few aircraft are usually in the radar zone, which means only a limited
number of callsigns can be referred to in the ATCo communications. If a recognized callsign
does not match any ‘active’ callsign registered by radar at the given time point, it means that there
is no corresponding aircraft in the airspace and the automatically recognized command (from
voice communication) is invalid. Therefore, contextual information coming from the surveillance
(radar) data allows adjusting ASR system predictions that can significantly increase its accuracy.
However, the use case of combining contextual knowledge with input speech does not mean
the ASR scenario can be considered as closed-set callsign recognition. Instead, the solution is
implemented with an ASR and open-set list of callsigns, since in scenarios such as “en-route"
different aircraft can appear on the communication frequency listened by ATCo.

Table 3.7: Callsigns: compressed and extended
(airlines designators are in bold)

Callsign Extended callsign

SWR2689 swiss two six eight nine
RYR1RK ryanair one romeo kilo
RYR1SG ryanair one sierra golf

Although contextual information has been
already used in previous ATC studies for
ASR [164, 165, 166, 167], or more recently
in [21, 26, 17]; it has never been adapted for
both, ASR and concept extraction outputs si-
multaneously and without a need of any ad-
ditional knowledge (e.g., manual annotation,
well-defined classes, etc.). This research aims
to leverage the available contextual informa-
tion by combining ASR and NLP methods.
We believe that ASR and NLP are complementary tasks rather than standalone ones. Whereas
ASR exploits speech to produce a sequence of words, NLP exploits the intrinsic characteristics
of text for a downstream task. ASR normally struggles to model long sequences, while state-of-
the-art NLP systems allow extracting key information from whole chunks of text; for instance, an
entire ATC utterance. In the proposed approach, we focus on an iterative use of contextual data to
take advantage of a combination of ASR and NLP modules. (1) First, boosting the probability of
active callsigns in ASR system (FST-boosting), (2) second, boosting ASR outputs (NLP-boosting)
in order to correct those predicted callsigns, which are not present in the surveillance data.

3.3.2 Contextual Biasing for Hybrid-based ASR

Contextual data within ASR systems can be integrated by modifying weights of target n-grams
in the grammar or/and in the ASR output lattices, e.g., by mean of generalized composition of
an in-domain LM and Weighted Finite State Transducers (WFSTs) with the target contextual
n-grams [168, 169, 170]. A similar approach has been recently adopted in the ATC domain [22,
21, 29] and proved to offer a significant gain in callsign recognition. A list of callsigns to
be boosted is regularly changing and needs to be updated dynamically per each utterance.
Thus, weights of callsign n-grams are dynamically modified in the WFST. The first of the
methods is lattice rescoring, where the weights are adjusted on the word recognition lattices
from the first pass decoding. In the other method, weights are dynamically modified directly
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in the grammar (G.fst), which allows having target n-grams boosted before the decoding is
performed [29]. For our experiments, we will adopt the lattice rescoring approach. Besides
aiming to reduce WERs, contextual information for ATC has been also used to improve concept
extraction [164, 165, 166, 167]. Schmidt et al. [164] applied a Context-Free Grammar (CFG)-
based LM, limiting the search space according to the contextual data. Shore et al. [165] and
Oualil et al. [166, 167] build a CFG-based concept extractor with all semantic concepts of ATC
embedded in XML annotation tags.

3.3.3 Step 1–Injecting Contextual Knowledge During ASR Decoding

Table 3.8: Test sets with callsigns per utterance (csgn per
utt.) — median of callsign per utterance in the surveillance
data.

N of utt Csgn
Test set with w/o per Min All csgns

a csgn utt

LiveATC 581 29 28 40 280K
M-Prague 784 88 5 82 17K
M-Vienna 877 38 19 65 59K
NATS 794 73 50 50 168K

In hybrid-based ASR systems, the
different knowledge sources are rep-
resented as WFSTs, which are com-
bined by the ‘composition’ opera-
tor together in the final decoding
graph [171]. Information from ad-
ditional knowledge sources can also
be integrated into a system by means
of composition. Our first integration
of contextual knowledge into ASR is
done on the LM level (G-extension).
The idea is to boost callsign n-grams
already available in LM, and even
more important to add those callsign
n-grams, which are absent (e.g., >3 words sequences in 3-gram LM). We build a contextual
FST that includes all possible callsigns per utterance: all callsigns registered by the radar at
different time stamps (from 17K to 280K callsigns to boost in different test sets; see last column
in Table 3.8). Then, the main G.fst is composed with the contextual G_biased.fst and the result
of composition is used in the final decoding HCLG graph. The second integration of contextual
information (lattice rescoring) is done per utterance on top of the decoding lattices which allows
flexible adaptation to new-coming contextual information avoiding changing the main decoding
graph (HCLG) (see [29]). Weights in lattices are rescored according to the surveillance data:
for each test utterance, a FST biased to callsigns n-grams registered at the time stamp when an
utterance is created and composed with lattices created in the first pass:

Lattices′ = Lattices ◦ biasing_FST, (3.1)

weights updated in the composition are used for final predictions.
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BERT

ryanair nine two bravo quebec turn right heading zero nine zero
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Tokenizer
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Command

Value
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Figure 3.3: BERT-based NER pipeline.

3.3.4 Step 2–Injecting Contextual Knowledge Post-ASR Decoding

Our approach for integrating contextual knowledge on ASR transcripts (e.g., 1-best hypothesis)
is based on a two-step pipeline. Each step conveys an independent module, as below.

Step 2.1–Named Entity Recognition (NER) module ATC communications carry rich infor-
mation such as callsigns, commands, values, and units; they can be seen as ‘named entities’.
We propose a NLP-based system to extract such information from ASR transcripts. We defined
callsigns, commands, units, values, greetings, OR the rest (e.g., ‘None’ class) as tags for the NER
task, as depicted in Figure 3.3. First, we download a BERT [87] model from Huggingface [155]
and then fine-tune it on NER task. We use 12k sentences (∼12h of speech), where each word
has a tag. Specifically, we use the LiveATC database for this purpose, see more information
in [18]. We developed a data augmentation pipeline in order to increase the amount of training
data for NER, i.e., we generated 1M samples from the initial 12k sentences. The pipeline has
four actions that modify the training sample: add, delete, swap, or move the callsign across the
utterance–sentence–. Delete and move actions, remove and keep the same callsigns, respectively;
add and swap generate a sentence with a new callsign picked randomly from a pre-defined
callsign list by the user. This makes the approach flexible and easy to deploy in multiple settings.

Step 2.2–Re-ranking module based on Levenshtein distance The BERT-based system for
NER allows us to extract the callsign from a given transcript or ASR 1-best hypotheses. Recogni-
tion of this entity is crucial where a single error produced by the ASR system affects the whole
entity (normally composed of three to eight words). Additionally, speakers regularly shorten
callsigns in the conversation making it impossible for an ASR system to generate the full entity
(e.g., ‘three nine two papa’ instead of ‘austrian three nine two papa’, ‘six lima yankee’ instead
of ‘hansa six lima yankee’). One way to overcome this issue is to re-rank entities extracted by
the BERT-based NER system with the surveillance data. The output is a list of tags that match
words or sequences of words in an input utterance. As our only available source of contextual
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knowledge are callsigns registered at a certain time and location, we extract callsigns with the
NER system and discard other entities. Correspondingly, each utterance has a list of callsigns
expanded into word sequences (shown in Table 3.7). As input, the re-ranking module takes (i) a
callsign extracted by the NER system and (ii) an expanded list of callsigns. It then compares a
given n-gram sequence against a list of possible n-grams, and finds the closest match from the
list of surveillance data based on the weighted Levenshtein distance. We skip the re-ranking in
case the NER system outputs a ‘NO_CALLSIGN’ flag (no callsign recognized).

ASR modeling The acoustic model is a CNN-TDNNF trained on approximately 1200 hours
of ATC labeled augmented data [18, 19] with the Kaldi framework [100]. First, the training
databases (195 hours) were augmented by adding noises that match LiveATC audio [18] channel
(one batch between 5-10 dB and other 10-20 dB SNR). Afterward, we applied speed perturbation,
i.e., generates 1200 hours of training data. The model was further improved with 700h of
semi-supervised data collected in LiveATC for different airports from Europe [139].16 The LM
is 3-gram trained on the same data as the AM with an additional corpus from various public
resources such as airlines names, airports, ICAO alphabet and way-points in Europe.

3.3.5 Results & Discussion

As a baseline, we use callsign extraction done directly on the outputs of our ASR system. Then,
we apply the proposed boosting techniques (G-extension, lattice rescoring, NLP-boosting) in
different combinations to see how they can benefit from each other. In Table 3.9, the results
of the experiments are presented on four different test sets with accuracy of callsign (ICAO)
recognition. Overall, the proposed metrics help to improve the baseline accuracy from 30.6%
to 53.7% absolutely, or from 32.1% to 60.4% relatively (for the test sets Prague and NATS
correspondingly; when the NATS set gets the highest improvement being the out-of-domain
data). The best results are always achieved with the use of NLP-boosting. For LiveATC and
NATS sets, the out-of-domain sets in the ASR training, the best performance is achieved with the
combination of NLP-boosting and ASR-boosting (lattice rescoring) methods.

At the same time, the G-extension has a contradicting effect. It helps to improve results comparing
to the baseline for the LiveATC and Vienna sets, yet, its combination with lattice rescoring
achieves worse accuracy than lattice rescoring alone. The possible drawback of the G-extension
method is that a very high number of available callsigns are boosted in LM FST (see last
column 3.8). It can introduce confusion when combining with the lattice rescoring boosting
method, which focuses on only current callsigns. Also, this does not need any modifications
during the decoding and serves as a general domain adaptation. Thus, G-extension can be used to
improve the outputs when other methods are not available, otherwise, we skip it. The number of
callsigns used to boost the ASR outputs may also degrade the performance of lattice rescoring.

16Note that the hybrid-based ASR system in this work is more robust w.r.t the one presented in Section 3.1 due to
the data augmentation process.
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Table 3.9: Results of callsign extraction with ASR boosting (ASR-B) and post-boosting (NLP-B):
the accuracy of callsign recognition (%) is calculated for the callsigns in ICAO format.

Method Test sets (callsign recognition accuracy)

LiveATC Prague Vienna NATS

ASR outputs + Callsign extraction (baseline) 42.8 64.4 48.4 35.2

Lattice rescoring G-extension NLP-boosting

✓ - - 53.1 66.9 59.6 37.1
- ✓ - 44.4 64.3 49.2 34.8
✓ ✓ - 52.8 66.9 52.1 36.8
- - ✓ 88.4 95.0 86.0 87.0
✓ - ✓ 88.5 94.8 84.3 88.9
- ✓ ✓ 87.7 95.0 85.6 88.2
✓ ✓ ✓ 88.0 94.7 84.0 88.0

Gold annotations + Callsign extraction (oracle) 89.7 72.2 59.6 67.4
+ NLP-Boosting 89.3 95.4 87.0 94.0

ASR WER (without boosting) 32.4 3.4 9.2 24.4

Although in this case, the number of callsigns did not exceed 50, we investigated its impact. The
test sets have different numbers of boosted n-grams, from 5 to 50 (see Table 3.7), but even with
50 boosted callsigns the recognition accuracy goes considerably up comparing to the baseline.
Along with the evaluation of boosting methods on the ASR outputs, we provide the ‘oracle’
results, when callsigns are extracted on the ground truth transcriptions (Gold annotations line in
Table 3.9). This comparison allows estimating the impact of the proposed methods to the callsign
extraction improvement, when no ground truth information is available. Even if the ‘oracle’
scores always stay better, the accuracy achieved with our systems shows close and comparable
results. No improvement with NLP-boosting on the ground truth transcription for LiveATC test
set can be explained by already high accuracy of callsign extraction, as LiveATC data was used to
fine-tune the NER. Our methods demonstrate consistent results for data of different quality. The
level of noise in the recordings of LiveATC and MALORCA test sets is very different, as well as
WERs achieved by their baseline ASR systems (the last line in Table 3.9; [29]). Nevertheless, we
see considerable improvement for all test sets and the general tendency stays the same.

Conclusion We investigated a two-step approach of integrating contextual radar data in order
to dynamically improve the recognition of callsigns per utterance. We demonstrated that the
best result is achieved with (1) NLP-boosting and (2) NLP-boosting+lattice rescoring methods
on all test sets of different recording quality with the significant improvement, i.e., from 32.1%
to 60.4% of relative improvement on callsign recognition accuracy across the evaluated data
sets. Introduction of contextual information considerably improves recognition of callsigns
and, thus, recognition of ATCo messages in general. As a noisy environment leading to lower
recognition accuracy is often a reality in pilot-ATCo communication, the proposed methods and
their combination will definitely benefit the recognition of the key information in ATCo speech.
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3.4 Using Contextual Knowledge for End-to-End ASR

Despite the recent success of end-to-end models for automatic speech recognition (ASR),
recognizing out-of-vocabulary (OOV) words, rare words, and fast domain adaptation
with text, are still challenging. We propose a light on-the-fly method to improve ASR
performance with the shallow fusion of an n-gram language model (LM) with the Aho-
Corasick (AC) string matching algorithm. The AC algorithm has proved to be more
efficient than other methods and allows fast context adaptation. An n-gram LM is
introduced as a graph with fail and output arcs, where the arc weights are adapted
from the n-gram probabilities. In addition, our method is used as a support to keyword
biasing when the LM is combined with the context bias entities to improve the overall
performance. We demonstrate our findings on 4 languages, 2 public and 1 private datasets,
including the performance on named entities and OOV words.
Our contributions are covered below:

• To the best of our knowledge, this is the first use of the AC algorithm to integrate
word-level n-gram LMs, previously used only for keywords biasing;

• combining n-gram LM with keyword biasing in a single trie;
• as English is the dominant language in SF studies, we extend our evaluation to 3

other languages from CommonVoice;
• analysis of the method performance on NEs, OOV words, and real-time factor

(RTFX) measures.

Publication Note
The material presented in this section is adapted from the following publication:

• I. Nigmatulina, J. Zuluaga-Gomez, et al., “Improved contextual adaptation with an external n-gram
language model for Transducer-based ASR,” in Submitted to INTERSPEECH 2024, 2024

Supplementary materials related to this section:
• Code - GitGub repository at: https://github.com/idiap/contextual-biasing

Minor contributions Problem definition and experimental design and setup. Trained the Transformer-
Transducer models for experiments on CommonVoice. Data curation and creation of the biasing lists using
a pre-trained BERT model on the NER task. Trained the Transformer LM for the experiments. Actively
participated in the article write up.

3.4.1 Introduction

Available contextual text data (in-domain text data, specific terminology, proper names, etc.)
can considerably improve the performance of ASR. With the recent advance of End-to-End
(E2E) speech recognition and its replacement of the hybrid models, the dynamic incorporation of
contextual information and text-domain adaptation of the E2E models is still an open research
question. It is mainly due to the difficulty of adapting the internal language model (ILM; [172,
173, 174]) which is implicitly trained with the overall E2E loss, compared to the stand-alone
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language model (LM). It is also a reason why many decoding methods aim to integrate an
external LM [175]. The traditional methods of integrating contextual text data are divided into
two directions: (1) when the information is introduced during the decoding without any change in
the ASR architecture, i.e., rescoring and shallow fusion (SF) [176, 175, 177, 178], and (2) when
the model is trained to be able to accept context when needed [179, 180]. In the latter group
of methods, the ASR model usually includes an additional contextual module and needs the
corresponding train data. Since it is not always possible to train a separate specialized model, we
focus on the first group of methods, which can be applied to any ASR model and are considered
the least costly methods of context integration, where the context is integrated directly during
decoding with beam search.

Shallow fusion means log-linear interpolation of the score from the E2E model with an external
contextual LM. SF of an external LM typically yields WER reduction in the target domain. Doing
SF with a list of target entities [69, 177] can bias the hypotheses towards particular words or
named entities (NE), e.g., proper names, terminology, geographical names, etc. For the speed and
convenience of the decoding, contextual information is usually presented as a graph: n-gram LM
– as a Weighted Finite-State Transducer (WFST) [171, 26], bias list – as a prefix Trie [177].17

The disadvantage of the standard WFST and keyword prefix trie algorithm is that they do not
support the mismatch cases in a search trie when the search string fails.

Recent studies show the efficiency of the classical string-matching Aho-Corasick (AC) algo-
rithm [181] for NLP tasks [182] and keyword biasing in ASR [178]. Inspired by these works,
we apply the AC algorithm for SF with a simple n-gram LM in ASR beam search decoding.
Since [178] uses AC to improve the performance of keyword biasing, additionally, we propose
an extension of the method by combining keywords with the LM n-grams and building a unified
context graph (see Figure 3.4). We demonstrate our results with a Transformer-Transducer model
(Zipformer-based encoder [58]) in four languages and three datasets.

Related work SF can be seen as a dynamic rescoring strategy that happens during beam search
decoding and before pruning [176]. SF refers to log-linear interpolation between the ASR outputs
and a separately optimized language model (LM) at each step of the beam search:

y∗ = arg max log P (y|x) + λ log PC(y), (3.2)

where PC(y) is an in-domain or context-biased contextual LM and λ is a hyperparameter to
control the impact of the contextual LM on the overall model score [176, 175]. Authors in [176]
show the effectiveness of SF with neural-network LM (NN-LM) at reducing error compared
to the n-gram LM. SF with NN-LM, however, considerably slows down the decoding and is
not suitable for fast context change. Moreover, training an NN-LM demands a lot more data
than training a statistical n-gram LM which can be an obstacle in the low-resource scenario.
Furthermore, [175] improve SF with biasing at the subword unit level instead of word level and

17https://github.com/kensho-technologies/pyctcdecode
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Figure 3.4: Proposed biasing approaches at beam search time with Aho-Corasick string matching
algorithm. This approach works with Transformer-Transducer models with negligible speed
reduction w.r.t beam search alone.

use a set of common prefixes (“call”, “text”) to avoid adding irrelevant bias. [177] integrate
context keywords directly with the keyword prefix trie search algorithm without a need to train
any LM. Our work is the most similar to [178], where they improve the keyword prefix trie
method for context biasing with the AC algorithm. The main difference is that we apply the AC
algorithm with the word-level n-gram LM and further combine it with keyword biasing.

3.4.2 Contextual Biasing with Aho-Corasick Algorithm

Aho-Corasick algorithm The AC algorithm proposed by [181] is a text pattern string matching
algorithm where the search is done in linear time. The algorithm has three data structures as
a representation of a search set, or a transition diagram: a trie, an output table, and a failure
function (Figure 3.5). The output table is a set of suffixes reached from any node which are the
target search strings. The failure function is applied when some search strings may be suffixes
of others [183]. For example, if a trie includes the word “CAN” but does not include the word
“CAT”, when the string “CAT” fails to match, the failure transition will backtrack it to the prefix
CA- from “CAN”. The algorithm is implemented by building a finite state machine that allows
backoff arcs not only to get the root of the graph or the lower-order n-gram (e.g., from a 4-gram
to a 3-gram) when a string end is reached but also to do failure transitions to backtrack a string in
case of its fail. This allows finding partial matches and also makes the arrays of the trie sparse,
which helps improve the efficiency of the algorithm since the prefix match is not duplicated.
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Graph for: A / CAN / CANON / AN / ON
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Figure 3.5: Aho-Corasick trie: blue lines are fail arcs and green lines are output arcs.

Shallow fusion with the n-gram word level LM The main idea of our approach is to apply
the AC algorithm to SF with word-based n-gram LM, and thus, build an AC prefix trie directly
with LM n-grams and LM log probability weights. The Transducer model we use is trained at
the BPE units level [67]. However, the n-gram LM we integrate is word-based, as it provides
word-level statistics and greater transparency in case of modification or biasing. Since the ASR
model outputs its hypotheses at the BPE level, the LM n-grams are first converted into strings of
BPE units with SentecePieces [68].18 During keyword biasing in decoding, whenever a string
match occurs between a hypothesis and a string in the context trie, a fixed positive cost is added
to the log probability of the matched candidate. In the case of n-gram LM, we want to use LM
weights to ensure balanced bias across all LM n-grams.

Assuming n-gram LM weights (e.g., in ARPA) are on a logarithmic scale, i.e., log probabilities,
and aiming to find some positive costs that would best correspond to these LM weights, we
convert LM log probabilities back to probabilities by taking an exponent. Although the n-gram
weights are log-based 10 probabilities, experimentally applying exponential with base e instead
of 10 shows better adaptation results on our datasets, and all further reported results are achieved
with exponential based-e.19 For each n-gram, a cost received from its word-level LM weight
is assigned to each subword arc of the n-gram. Not dividing the n-gram cost by the number of
subwords pieces gives the best improvement.

To control for the influence of word-level statistics integrated on the subword level, we evaluated
the performance of OOV words. Moreover, the AC algorithm’s ability to find partial matches is
beneficial for OOV words recognition.

18https://github.com/google/sentencepiece
19We followed this approach based on experimental results. A larger hyper-parameter search or a scaling parameter

could help to avoid this step.
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Contextual biasing with the n-gram LM An AC-based trie is proposed to bias keywords
in [178] and a natural extension of the described method is to combine an n-gram LM with target
keywords. To combine LM n-grams and keywords, a single context trie is built. First, all the
n-grams of the LM are added with their respective weights, and then the keywords are added
with a bias cost depending on whether the keyword n-gram is present in the LM and already has
some weight, or is not in the LM. The costs for in-LM and out-of-LM keywords were tuned for
different datasets, and for most of our datasets they are 1.0 and 1.5 respectively.

Implementation For our experiments, we use the k2/Icefall framework that provides training
recipes and decoding scripts including an implementation of the AC algorithm for keyword
biasing.20 Decoding uses subword-level beam search, which we adapted for SF with the AC
trie and a word n-gram LM. For all the experiments, we use the same Zipformer-Transducer
model, and the difference in results is only due to decoding. The baseline is the default beam
search without SF. The other experiments include SF with the following external contexts:
(1) Transformer-LM, (2) n-gram LM, (3) n-gram LM with the AC-based trie, (4) keyword biasing
with the AC-based trie, (5) the combination of n-gram LM and keyword biasing with the AC-
based trie. As fast and flexible context integration is critical in many practical scenarios, we
include an estimate of decoding time using the inverse real-time factor (RTFX), which is the ratio
between the length of the processed audio and the decoding time.

3.4.3 Experimental Setup

Table 3.10: Test sets with context information
(statistics). †utterances with at least one NE.

Test set Size Duration Biasing entities

(hours) unique nb. utt†

DefinedAI 2K utt. 6 367 486
Earnings21 18K utt. 39 1013 -
CV-EN 16K utt. 27 1173 1125
CV-DE 16K utt. 27 1985 1906
CV-FR 16K utt. 26 600 549
CV-ES 15.5K utt. 26 122 135

Dataset description As our experiments in-
clude keyword biasing, besides audio and cor-
responding transcriptions we also need key-
word lists with entities to bias. There are only
a few publicly available test sets that satisfy
this criterion, mostly in English. We evalu-
ate the proposed biasing approaches on one
private (DefinedAI.21 banking, insurance, and
healthcare domain) and two public datasets
(Earnings21,22 stock market domain [185];
and CommonVoice [97]); see Table 3.10. The
DefinedAI and Earnings21 datasets have gold
named-entities (NEs) that we use as bias lists:
DefinedAI has manually annotated NE tags within each transcription (the main reason why we
use this data set), Earnings21 has two general biasing lists based on the NER23 [184]. The

20https://github.com/k2-fsa/icefall/blob/master/icefall/context_graph.py
21Private dataset obtained from an internal industrial project. See more information on DefinedAI website:

https://www.defined.ai
22We split audios into 3-minute segments for decoding, as in [184].
23The oracle and the distractor lists are released by [184]. We employ the oracle list only.
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CommonVoice public dataset is chosen to provide evidence on different languages, but it does
not have gold annotated entities, so we prepared the NE bias lists ourselves.

Biasing lists for CommonVoice To create bias lists for CommonVoice, we use BERT models
fine-tuned on the NER task to label, extract, and collect NEs for English (EN), German (DE),
French (FR), and Spanish (ES) test sets.24 We download the checkpoints from HuggingFace [155]
and run NER for each language individually. We then remove all the single-word NEs, e.g.,
unigrams, to reduce noisy outputs that can hinder the biasing approach. The statistics after
running this approach are in Table 3.10. Experiments on CommonVoice serve two purposes:
(1) evaluate the SF approach on non-English languages and (2) see the impact of biasing lists
with numerous unique entities, e.g., DE subset has ∼2k unique entities. Note that DE and EN
languages contain more unique entities w.r.t FR and ES.

3.4.4 Model Training & Evaluation

Transformer-Transducer Training For all the experiments, we use Zipformer stateless trans-
ducer model [55] proposed and described in detail in [58]. For evaluation on DefinedAI and
Earnings21 test sets, we take the pretrained Zipformer model on Gigaspeech-XL dataset [95].25

as Earnings21 has only test data and for DefinedAI we have access to only a small amount of
train data, i.e., 50h. The choice of training data is motivated by a previous study on Earnings21,
where the authors use Gigaspeech as training data [184], and we can consider this scenario close
to domain adaptation, as DefinedAI and Earnings21 are domain-specific data.

For experiments on CommonVoice, we train Zipformer models for each language on the corre-
sponding train set; we train from scratch with the latest Icefall Transducer recipe and its default
training hyper-parameters. This includes ScaledAdam optimizer [186] and learning rate scheduler
with a 500-step warmup phase [61] followed by a decay phase dictated by the number of steps
(7.5k) and epochs (3.5 epochs) [58]. The neural Transducer model is jointly optimized with
an interpolation of simple and pruned RNN-T loss [60, 53] and CTC loss [45] (λ = 0.1). The
learning rate peak is set to lr = 5.0e−2 and we train each model for 30 epochs on a single RTX
3090 GPU.

Language modeling For shallow fusion with AC algorithm, we train 3-gram word-level LMs
with SRILM [147]; for SF without AC algorithm, we train Transformer-based [61] LMs and
5-gram BPE LMs. To train n-gram LMs, for all test sets except Earnings21, we use text data
from the corresponding train sets. For Earnings21, we use transcriptions from Earnings22 [187],
which is a different dataset but from the same domain. To train Transformer LMs, we use
GigaSpeech-XL text data for DefinedAI and Earnings21 and language-specific CommonVoice

24ES: mrm8488/bert-spanish-cased-finetuned-ner; EN: dslim/bert-base-NER-uncased; FR: cmarkea/
distilcamembert-base-ner; DE: fhswf/bert_de_ner.

25Gigaspeech-XL: 10kh of transcribed audio data, model: yfyeung/icefall-asr-gigaspeech-zipformer-2023-10-17
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Table 3.11: SF for the out-of-domain evaluation with Zipformer Giga-XL. SF-AC: SF with
Aho-Corasick; NE-A: named-entity accuracy; NE-WER: named-entity WER.

Model GigaSpeech DefinedAI Earnings21

WER ↓ WER ↓ NE-A ↑ WER ↓ NE-WER ↓

1) Baseline 10.6 10.4 68.0 14.4 49.2
2) SF+Transf.-LM 10.6 10.2 69.3 14.9 49.9
3) SF+n-gram LM 10.6 10.2 68.2 16.8 48.4
4) SF-AC+n-gram LM 10.6 10.0 70.0 12.9 45.3
5) SF-AC+bias-list - 10.4 77.9 16.7 38.4
6) SF-AC+4)+5) - 10.0 73.3 13.1 42.3

text data from train sets. Each Transformer model is trained for 10 epochs and has around 38M
params.26

Evaluation protocol In addition to the word error rate (WER) metric, we evaluate the accuracy
and WER only on NEs: NE-A and NE-WER. NE metrics are calculated after the reference
and hypothesis alignment and only strings containing NEs are taken into account. Accuracy is
calculated binary: “correct” – when the NE is completely recognized correctly, “incorrect” –
when at least one word-level error occurs within the NE. For evaluation on Earnings21, we use
the fstalign tool27 and for NEs we used only “PERSON” and “ORG” categories. To measure
OOV words recognition, we choose the character error rate (CER) metric because we believe
it can better reflect the model’s performance when relying primarily on acoustic data. Finally,
RTFX is measured on the DefinedAI test set with one RTX 3090 GPU.

3.4.5 Results & Discussion

SF-AC of n-gram LM To distinguish between out-of-domain and in-domain performance,
we present results on DefinedAI and Earnings21 (Table 3.11) separately from CommonVoice
(Table 3.12 and Figure 3.6). For both setups, the results of fusion n-gram LM with AC trie lead
to relative WER reduction w.r.t beam search alone: 3.8% for DefinedAI, 10.4% for Earnings21,
1.5%, 1.3%, 2%, and 2.6% for EN, DE, FR, and ES from CommonVoice respectively. Moreover,
for the out-of-domain sets, it improves the performance compared to the fusion with Transformer-
LM: i.e., from 10.2 to 10.0 for DefinedAI and from 14.9 to 12.9 for Earnings21. In addition to
improved performance, training n-gram LM is fast and easy and can be done even with a small
corpus (e.g., 50h in the case of DefinedAI), which will benefit low-resource scenarios.

SF-AC of n-gram LM+keywords The biggest improvement on NEs is always achieved with

26Transformer-LM recipe: https://github.com/k2-fsa/icefall/tree/master/icefall/transformer_lm
27Provided by authors of [185] as the dataset references are in a special NLP-format: https://github.com/revdotcom/

fstalign
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Table 3.12: WERs of biasing techniques for Transducer models trained on 4 languages of
CommonVoice. SF-AC: SF with Aho-Corasick. Our models are competitive or even outperform
Whisper.

Model EN DE FR ES

Previous work

Whisper-S (244M) [188] 14.5 13.0 22.7 10.3
Whisper-M (769M) [188] 11.2 8.5 16.0 6.9

Ours (Zipformer - 70M params)

1) Baseline 13.5 7.7 10.0 7.8
2) SF+Transf.-LM 13.3 7.6 9.8 7.7
3) SF+n-gram LM 13.3 7.6 9.8 7.6
4) SF-AC+n-gram LM 13.3 7.6 9.8 7.6
5) SF-AC+bias-list 13.7 7.7 9.9 7.8
6) SF-AC+4)+5) 13.2 7.4 9.8 7.6

keyword biasing: 14.6% and 22% for DefinedAI and Earnings21 of relative improvement in
accuracy w.r.t baseline (Table 3.11). Yet, the overall WER does not improve or even degrades,
e.g., in the case of Earnings21. The overall WER is improved if keyword biasing is combined with
n-gram LM: relative improvement w.r.t keyword biasing alone is by 3.8%, 21.6%, 3.6%, 3.9%,
1%, and 2.6% for DefinedAI, Earnings21, and CommonVoice EN, DE, FR, and ES respectively.
It is also important to note that different datasets have different numbers of NEs and utterances
that contain NEs (see Table 3.10). This explains the lowest impact of fusion on the WER for FR
and ES, i.e., they have the least number of NEs.

Figure 3.6 illustrates the difference in the NE accuracy between different methods, where the
most notable is the comparison between keyword biasing VS keyword biasing+n-gram LM. Along
with the overall improvement in WER, combining n-gram LM with keyword biasing results in
some degradation in NE recognition compared to keyword biasing alone. When an n-gram LM
is added, the overall n-gram statistics change making it more difficult to promote specific key
entities. A similar tendency is observed for the DefinedAI and Earnings21 datasets.

RTFX The RTFX results in Table 3.13 show that decoding with keyword biasing+n-gram LM
is slightly slower compared to beam search [43] alone28 and thus it can be used on-the-fly: RTFX
of the keyword biasing+n-gram LM method (experiment (5)) is 6.0% lower than the baseline (1)
and there is no degradation w.r.t keyword biasing (4). Although the WER performance of n-gram
LMs SF “with” VS “without” AC-algorithm is the same on all the test sets (compare the 2nd and
the 3th experiment rows in Table 3.11 and 3.12), decoding with SF-AC ((3) in Table 3.13) is 31%
faster than with SF without AC (2): 77.8 RTFX against 111.1.

28See code in k2/Icefall in: https://github.com/k2-fsa/icefall/blob/master/egs/librispeech/ASR/pruned_transducer_
stateless2/beam_search.py.
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Figure 3.6: NE accuracy for different approaches on 4 languages of CommonVoice. Including a
list improves NE accuracy while marginally decreasing performance when adding n-gram LM.

Table 3.13: Ablation of decoding speed (RTFX; higher, better) and character error rate (CER) on
OOV words with SF. SF-AC: SF with Aho-Corasick. Note that SF-AC+n-gram LM+bias-list
improves CER with a negligible decrease in RTFX.

Model Defined-AI

oov-CER ↓ RTFX ↑

1) Baseline 35.0 120.7
2) SF+n-gram-LM 36.2 77.8
3) SF-AC+n-gram LM 34.2 111.1
4) SF-AC+bias-list 32.9 113.5
5) SF-AC+3)+4) 32.6 117.3

OOV words The word level statistics from n-gram LM do not lead to any degradation of
recognition of OOVs on the subword level (Table 3.13). The n-gram LM fusion with the AC
algorithm improves by 2.3% over the baseline and 5.5% over the n-gram LM fusion without AC.
This can be explained by the ability of AC to find partial matches. The best OOV performance
with keyword biasing and keyword biasing+n-gram LM methods is because the DefinedAI bias
list includes some OOV words.

Conclusion We demonstrate the benefits of integrating n-gram LMs with a Transformer-
Transducer model during decoding with SF and an Aho-Corasick-based trie. The n-gram LM
weights are loaded into the trie and during decoding the Aho-Corasick string matching algorithm
is used. This leads to significantly faster decoding than SF without AC, on-par WERs overall,
and no loss in decoding time (RTFX) with regard to shallow fusion alone.
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3.5 Using Contextual Knowledge at ASR Training Time

In this final section, we propose a two-step approach to add contextual knowledge during
semi-supervised training to reduce WERs on the parts of the utterance that contains the
callsign, a named entity. Initially, we represent in a WFST the contextual knowledge (i.e.,
air-surveillance data) of an ATCo-pilot communication. Then, during Semi-Supervised
Training (SST) the contextual knowledge is added by second-pass decoding (i.e., lattice
re-scoring). Results show that ‘unseen domains’ are further aided by contextual SST
when compared to standalone SST. For this task, we introduce the Callsign Word Error
Rate (CA-WER) as an evaluation metric, which only assesses ASR performance of the
spoken callsign in an utterance.

Publication Note
The material presented in this section is adapted from the following publication:

• J. Zuluaga-Gomez, I. Nigmatulina, A. Prasad, P. Motlicek, K. Veselý, M. Kocour, and I. Szöke,
“Contextual Semi-Supervised Learning: An Approach to Leverage Air-Surveillance and Untranscribed
ATC Data in ASR Systems,” in Proc. Interspeech, 2021, pp. 3296–3300

Supplementary materials related to this section:
• ATCO2 project website: https://www.atco2.org/

Major contributions Problem definition and experimental design and setup. Data preparation. Trained the
hybrid-based ASR systems for the experiments. Lead the work, including the paper write up.

3.5.1 Introduction

In this section, we introduce the usage of contextual knowledge at training time of Hybrid-based
ASR systems. This section differs from Section 3.3 and Section 3.4, as both focus only on
boosting information at decoding time. Thus, the main contribution of this section is how we can
leverage large amounts of untranscribed data with contextual knowledge to improve the gains
w.r.t semi-supervised learning alone.

Current commercial ASR systems are trained on thousands of annotated audio-text pairs, whereas
in the ATC domain not even a considerable fraction of that amount is available for supervised
training. Recent research on ASR in ATC has concluded that the lack of annotated speech data
and its high production cost are current issues holding the development of fully autonomous
ASR systems [112]. Some previous research addressed the lack of transcribed ATC speech data
using SST (e.g., ASR tasks applied to under-resourced languages [189, 138, 190]) to decrease
WERs [114, 115]. Here, we investigate the effect of integrating contextual knowledge from air-
surveillance data into the SST pipeline to further boost the performance w.r.t SST alone. Similar
research adding contextual knowledge into the decoding graph (HCLG.fst) or by re-scoring
lattices after the decoding step were described in [191, 169, 168, 192]. Modifying the Language
Model (LM) with prior knowledge is reviewed in [193, 194]. Contextual biasing for hybrid-based
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ASR is covered in the thesis in Section 3.3 and Section 3.4 for E2E models.

3.5.2 Contextual Semi-Supervised ASR Training

An ATCo-pilot communication heavily relies on the very particular context they are in. Char-
acteristics such as airplane location, altitude, departure or arrival, and air-space status define
the information that could be uttered by the speakers (small deviations are allowed in specific
scenarios). For instance, an ASR system can leverage this particular contextual information
(mentioned above) as prior knowledge to increase its performance. However, aspects such as
speaker’s characteristics, location and context, low SNR levels, and air-space status increase the
challenge of ASR for the ATC task.

Contextual adaptation in ASR Our work relies mostly on adding air-surveillance data as
contextual knowledge in the ASR system, also known as ‘contextual ASR’. Contextual ASR
has been an active topic of research in the last decade, where companies such as Google and
Microsoft have leveraged contextual data (e.g., user location and contact list) for boosting mobile
devices’ ASR performance. One of the straightforward ways of adding context into the system
is by biasing the LM. See Section 3.3 for further information about the lattice re-scoring and
G-boosting (or G-extension). See Section 3.3 for further information.

Contextual ASR in air-traffic control communications The ICAO is the entity that reg-
ulates the phraseology and grammar used in ATCo-pilot voice communications. A standard
communication starts with a callsign, followed by a command, and a value. One of the main
challenges in ATC (thus in ASR) is to correctly identify the sequence of words in the utterance
that denotes the callsign, which specifically addresses an individual aircraft. This research focuses
on using a list of callsigns as prior knowledge in the ASR system to reduce the search space,
thus increasing overall recognition performance. Previous work has attempted to incorporate
contextual knowledge in the recognition process [165, 166, 164, 167]. We redirect the reader to a
general review about spoken instruction understanding in the ATC domain to [111]. Nevertheless,
most of the previously cited works in ASR for ATC employ only data from few airports assuming
high-quality speech, i.e., high SNR ∼20dB. Despite this, it is hard to determine the quality of
ATC speech in advance due to external elements, e.g., weather, cockpit or environmental noise.

Semi-supervised training in ASR SST has been proven to be an important asset for ASR in
many tasks. The goal of SST is to leverage large amounts of non-annotated (i.e., data augmented
with automatically generated transcripts) data to boost the performance of the ASR trained in a
supervised manner. There have been many recent studies leveraging untranscribed data during
ASR training; for example, pre-training and self-training methods in end-to-end ASR systems
[195]. Other research has leveraged non-annotated data for ASR in low-resource languages [139].
Regarding ATC voice communications, previous researchers have explored different techniques
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Figure 3.7: Process of retrieving a list of callsigns (contextual data) from OpenSky Network.
This is the list of all possible verbalization of each callsign.

for leveraging untranscribed ATC data with SST [114, 115].

3.5.3 Databases and Experimental Setup

Database We use a mix between supervised and untranscribed data. The set of supervised ATC
databases contains a mix of private and public corpora, as referenced in Table 2.2. 29 On the other
hand, there are several ways to obtain untranscribed ATC speech data. For this study we gathered
data from two sources that rely on VHF receivers: i) open-source channels such as LiveATC30,
and ii) recordings from low-to-mid-quality VHF receivers offered by the contributors from the
ATCO2 project. The recording quality is proportional to the placement of the VHF receiver
(close or far from an airport, surrounding environment or altitude of the plane) and the quality
of the hardware itself. First, we manually transcribed 1.9h of recordings (mostly noisy speech)
from LiveATC to assemble a challenging test set. We tag it as ‘liveatc_mix’ including recordings
from EIDW, LSZH, KATL, EHAM, ESGG, and ESOW airports. The SNR levels for liveatc_mix
test set ranges from 5-15 dB. Secondly, we gathered 67h (49 thousand segments) of ATCo-pilot
speech with high-quality setups of VHF receivers in Prague (LKPR) and Brno (LKTB) airports
from August 2020 until January 2021. We tag it as ‘unsup_vhf_67h’ untranscribed train set.
We annotated 5 minutes (without silences) of speech collected with VHF receivers from Brno
airport (not present in the supervised data), i.e., ‘aiport_lktb_vhf ’ test set. Additionally, we
automatically extract timestamp and location information for each utterance in unsup_vhf_67h to
extract callsigns list, as listed in Figure 3.7.

Integrating contextual knowledge in semi-supervised training Currently, all the airplanes
circulating in Europe must be equipped with Automatic Dependent Surveillance–Broadcast
(ADS-B) and Mode S modules which transmit almost in real-time their information as meta-data

29(We use, ATCOSIM, UWB-ATCC, LDC-ATCC, MALORCA, and AIRBUS.
30LiveATC.net is a streaming audio network consisting of local receivers tuned to aircraft communications:

https://www.liveatc.net/
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such as altitude, velocity, callsign, and direction. OpenSky Network31 stores ATC information
through feeding ADS-B data from network of feeders placed all around the world, and collecting
ADS-B data through receivers (similar to VHF voice communication). This data can be retrieved
by defining a query. We define a query based on the utterances’ timestamp and scanned area
(unsup_vhf_67h untranscribed set). OSN retrieves a list of callsigns in ICAO format for each
utterance that match the query criteria (potentially one callsign from this list is present in the given
utterance). However, our ASR system is trained with transcripts that have the verbalized version
of the callsigns instead of ICAO format. We developed an algorithm that verbalizes the ICAO
callsigns into different versions. The process is then repeated for each callsign from the callsign
list. Figure 3.7 shows the pipeline to assemble the contextual data from the verbalized callsign
list for one utterance. Finally, we repeat this pipeline for each utterance of the unsupervised train
set, unsup_vhf_67h.

Verbalizing a call-sign Our previous work can give a more in-depth idea on how the list of
callsigns are retrieved and verbalized [18, 22]. An example of this process for the call-sign ICAO
code: TVS123AB is:

skytravel one two three alfa bravo

skytravel three alfa bravo

skytravel alfa bravo

skytravel one alfa bravo

skytravel one two bravo

tango victor sierra one two three alfa bravo

one two three alfa bravo

three alfa bravo

alfa bravo

Baseline ASR system The lexicon is composed of a word-list assembled from the transcripts
of all available annotated train databases and from additional public resources (e.g., airlines
names, airports, countries, ICAO alphabet, way-points, etc.). The pronunciation of new words
is obtained with Phonetisaurus G2P [143]. The language model is a tri-gram LM created by
interpolating several LMs. An additional LM (only used during the interpolation, to further
tune the final LM) is built from external data such as expanded callsigns from 2019,32 expanded
runaways (all combinations) and European way-points. All experiments are conducted with
Kaldi speech recognition toolkit [100]. We report results with hybrid-based ASR systems. The
models are composed of six convolution layers and 15 factorized time-delay neural network, i.e.,
CNN-TDNNF. We use the standard chain Lattice-free MMI (LF-MMI) based Kaldi’s recipe [153]

31OpenSky Network: provides open access of real-world air traffic control data to the public.
32Website URL - Crowdsourced air traffic data from The OpenSky Network 2020: https://zenodo.org/record/

3901482
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Figure 3.8: Contextual semi-supervised training pipeline.

for training the seed and SST-based models. It also requires 100-dimensional i-vector features
and 40-dimension MFCC features. We triple the training data by adding noises between 5-10dB
SNR and then between 10-20dB SNR. The baseline ASR system is trained on all available data
for 5 epochs, denoted as ‘seed system’.

Contextual semi-supervised training We follow the standard recipe for SST [139], where a
seed system produces word recognition lattices of the untranscribed data set (e.g., unsup_vhf_67h),
which are then mixed with the lattices generated on manually transcribed data to train a new
acoustic model. In hybrid ASR, lattices are representations of search results that act as ‘interme-
diate format’ that contain timing information with more details than plain 1-best string or n-best
lists. Lattices generated on manually transcribed and untranscribed data are mixed and a new
model is trained with this merged data. There are several ways to add contextual knowledge
in the ASR system, e.g., tuning LM towards a defined sequence of n-grams, modifying G.fst
when making HCLG graph, or simply re-scoring lattices. This research only explores lattice
re-scoring during SST. Initially, we create a Weighted Finite-State Transducer (WFST) graph for
each utterance in the untranscribed dataset (i.e., unsup_vhf_67h). The WFST is constructed from
n-grams of the verbalized callsign list (air-surveillance data retrieved from OSN). Afterward,
the baseline lattices of unsup_vhf_67h (generated during the first pass decoding) are composed
with its particular callsign WFST in a second pass decoding (see Section 3.3). The re-scored
lattices are then used to retrain the acoustic model again, as presented in Figure 3.8. In the lattice
re-scoring approach, lattices’ weights are re-scored to increase the probability of given callsign
sequences. The expanded callsigns (represented in WFST) get boosted during the re-scoring
process, thus they become more probable to appear in the hypothesized transcripts.
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Figure 3.9: CA-WER performance on liveatc_mix (noisy) and Prague (clean) test sets for different
discount parameters used at the moment of creating the biasing WFST.

3.5.4 Results & Discussion

We perform four different experiments to test the inclusion of contextual knowledge in SST. First,
we train a baseline AM (i.e., seed model) without SST (first row of Table 3.14). Then, we train
a new acoustic model from scratch with SST, the seed model is used to generate the lattices of
the untranscribed data set (unsup_vhf_67h). Next, we re-scored the untranscribed data lattices
by composing them with the WFSTs (one for each utterance) previously created. The lattice
re-scoring approach relies on a ‘discount’ hyperparameter, which tells how much weight is given
to the ‘contextual knowledge’ encoded at the moment the WFST is created. We report the last
result on using a discount parameter of 6.0 instead of 2.0. SST gave much larger improvement for
test sets that matched the data used in semi-unsupervised learning (i.e., similar SNR and airport
location). For example, we obtained around ∼20% relative WER improvements in liveatc_mix
and aiport_lktb_vhf test sets, and 13.6% relative WER improvement in Prague test set by doing
standalone SST. Nevertheless, Airbus and Vienna test sets show a WER degradation. We attribute
this to data-quality mismatch (i.e., the untranscribed VHF data is noisier than the data with
manual transcripts), but also the Airbus and Vienna test sets are from airports not present in
the untranscribed set. It is important to mention that WER improvements in challenging test
sets such as liveatc_mix and aiport_lktb_vhf are more significant because the data is nosier and
some airports are not present in the annotated train set; which is closer to a real-life scenario.
An extra ∼5% relative WER improvement is achieved on liveatc_mix and Prague test sets when
adding contextual knowledge into the SST pipeline. The Prague test set yielded improvements in
WER in all four proposed ASR systems. We believe this is because data was present in both, the
transcribed and untranscribed training sets.

The WER metric measures the ASR performance in the whole utterance, however, our contextual
SST approach only ‘boosts’ the words that belong to a callsign in the hypothesis. For instance,
this process increases the probability of recognizing the correct callsign in the ATCo-pilot
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Table 3.14: WERs of multiple ASR systems for different test sets. The default discount parameter
(DP) in ASR systems with lattice (lat.) re-scoring is 2.0.

System

liv
ea

tc_
mix

aip
or

t_l
ktb_v

hf

Airb
us

Pra
gu

e

Vien
na

seed model 49.7 26.6 11.0 4.4 6.8
+SST 38.3 21.3 12.1 3.8 8.2
+lat. re-scoring 37.3 21.4 12.2 3.8 8.4

SST+lat. re-scoring (DP: 6.0) 36.4 21.3 11.8 3.6 8.4

communication.33 We thus propose a new metric: Callsign WER ‘CA-WER’ which is more
aligned to measure the ASR system performance only on callsigns, between the reference and
hypothesized text. We use texterros34 library to evaluate CA-WER, which needs the verbalized
ground truth callsign per utterance. We evaluated CA-WER for liveatc_mix, Prague, and Vienna
test sets; 610, 875, and 915 utterances have a callsign, respectively. The CA-WER is evaluated
for different discount parameters (hyperparameter in the WFSTs). Figure 3.9 shows that lattice
re-scoring helps in all cases for liveatc_mix, and it helps Prague test set after a discount value
of 4.0. Vienna test set is skipped from Figure 3.9, because there were no significant variations
across different discount parameters. Even though there is a degradation in WER for Vienna test
set when adding contextual knowledge, we obtained 7.5% relative CA-WER improvement when
comparing it with the ‘+SST’ model (thus showing the robustness of the proposed approach).
Discount parameter of 5.0 is best, i.e., 17.5% and 14% CA-WER relative improvement on
liveatc_mix (CA-WER: 39.88% → 32.9%) and Prague (CA-WER: 3.48% → 2.99%) test sets,
respectively.

Conclusions In this section (similar to Section 3.3), we introduce an SST-based approach
that leverages contextual knowledge. It relies on ATC speech and air-surveillance data as input
modalities. First, we create a biasing WFST for each utterance, that encodes n-grams sequences
of verbalized callsigns retrieved from OpenSky Network. This prior knowledge in the format of
WFST is then added into the SST recipe to further improve the acoustic models.

33The callsign is composed of five to seven words, i.e., 25% of the transcript.
34https://github.com/RuABraun/texterrors
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3.6 Building ASR Systems for ATC

This section gather the main solutions covered in Chapter 3 and propose some directions to build
reliable ASR systems for ATC communications.

• Step 1 Supervised data is imperative for training custom ASR systems for ATC applica-
tions. There are multiple open source ATC databases (see Table 2.2), albeit of small size
w.r.t databases sizes for current E2E models. The first step is that we propose to acquire
the ATCO2 corpora which contains more than 5000h of pseudo-labeled ATC audio with a
robust in-domain hybrid-based ASR system developed by ATCO2. This data has proven to
be reliable to train hybrid-based and E2E systems from scratch and without other source
of supervised data, see [3]. Moreover, the lessons learned from ATCO2 data annotation
pipeline [5] can be followed if more pseudo-labeled data is required for a specific use case;

• Step 2 It is important to have good transcriptions practices for unifying multiple open-
source ATC databases. In [196], authors have developed custom ontologies and practices
for ATC annotation. During the ATCO2 project [5], we released a cheat-sheet to provide
guidance on how to annotate ATC speech [4]. We recommend following these practices in
order to minimize confusion due to misspelling of certain specific words, e.g., callsigns;

• Step 3 Developing robust ASR systems for ATC communications is imperative. We
propose multiple solutions on how to develop ASR systems for both, hybrid-based and E2E
ASR. Note that depending on the amount of supervised data available at the training stage,
the latency, and the performance requirements, one could choose one of these architectures.
However, we propose the usage of pre-trained E2E systems, as they have shown lower
WERs, even on low-resource settings;

• Step 4 ATC surveillance data is an appropriate source of real-time contextual information
that can be used to improve ASR outputs. Its integration can lead to substantial benefits in
terms of WERs and improved callsign recognition rates. In this chapter, we cover how to
integrate contextual information for both, hybrid-based and E2E models;

• Step 5 Multiple downstream task are required in real-life ATC applications. We propose
a variety of solutions for NLU, speaker role detection and text-based speaker diarization.
These are cover in Section 5.1 and Section 5.2. Furthermore, NLU tasks are of special
interest in the ATC community because the high-level information can be used to assist
ATCos in their daily tasks, thus, reducing their overall workload.

66
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Resource Speech Recognition

Introduction

In this chapter, we address a variety of challenges when developing ASR for real-life use cases.
We propose (1) a method for ASR prototyping with pseudo-labeled data from foundational speech
models (§ 4.1); (2) a self-supervised-based encoder ported to the transducer architecture (§ 4.2)
and (3) how to improve its WERs on low-latency settings § 4.3; and finally (4) HyperConformer,
a new architecture that achieves comparable or higher recognition performance w.r.t Conformer
while being more efficient than Conformer in terms of inference speed, memory, parameter count,
and available training data (§ 4.4). An overall overview of this chapter is in Figure 4.1.
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Figure 4.1: Overview of Chapter 4.
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4.1 Fast Transducer ASR Prototyping with Pretrained Models

The training of automatic speech recognition (ASR) with little to none supervised data
stills remains an open question. In some cases, this involves a pre-train then fine-tune
stage that requires large data and computational budget. In this work, we demonstrate
that Transformer transducer (TT) models can be trained from scratch in consumer and
accessible GPUs in its entirety with pseudo-labeled (PL) speech from foundational
speech models (FSM). We perform a comprehensive ablation on different aspects of PL-
based TT models such as (1) offline decoding, (2) chunk-wise decoding for low-latency
streaming applications, and (3) TT final WER as the function of the FSM size. Our
results, demonstrate that TT can be trained from scratch without supervised data, even
with very noisy PLs. We validate the proposed methodology on more than six languages
from CommonVoice and propose multiple heuristics to filter out hallucinated PLs.
Our contributions are covered below:

• Comprehensive study of pseudo-labels quality on downstream TT ASR models;
• impact of PL quality on offline versus online settings;
• robust heuristics to filter out noisy and hallucinated PLs from Whisper;
• study of the impact of FSM model size on the final WERs of the TT models.
• multiple ablations, including mix in of supervised data as regularization during

training;
• validation of the proposed approach on six languages from CommonVoice.

Publication Note
The material presented in this section is adapted from the following publication:

• I. Nigmatulina, J. Zuluaga-Gomez, et al., “Fast Streaming Transducer ASR Prototyping via Knowledge
Distillation with Whisper,” in Submitted to EMNLP 2024 (long paper). [Equal contribution], 2024

Major contributions Problem definition and experimental design and setup. Data preparation for Common-
Voice. Trained the Transducer ASR systems for the experiments. Lead the work, including the paper write
up.

4.1.1 Introduction

There are many challenges when developing ASR for industrial applications, including (1)
required large scale databases that generalize across multiple domains; (2) inference under chal-
lenging low-latency settings; and (3) lightweight and reduced number of parameters to minimize
deployment costs. While the first has been solved by training large acoustic foundational speech
models (FSM) with massive databases [51, 80], the latter two strongly relate to architectural
choices, e.g., using Connectionist Temporal Classification (CTC) [45] or transducer-based [53]
modeling.

In industrial applications, large-scale supervised databases in the target domains are not always
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Figure 4.2: Proposed approach for efficient psuedo-labeling with Foundational Speech Models.

available, thus several techniques have been proposed to develop robust ASR models with small
corpora, e.g., (1) data augmentation [160, 197]; (2) only-audio self-supervised pre-training
with large databases and then fine-tuning with small corpora [13, 49, 51] (3) pseudo-label then
fine-tune, e.g., semi-supervised learning [17, 198, 199]. Most of these approaches target the
attention-based encoder-decoder (AED) [70] or CTC-based models. Even though these two
architectures have shown strong results on multiple benchmarks (e.g., Whisper [188]), they still
lag behind in the streaming setting [200].

For industrial use cases, which requires low-latency streaming decoding, the Transducer [53] have
been explored as it naturally supports this configuration [64, 66]. However, TT models are not as
popular as AED or CTC because they were harder to train, until it was shown that they can attain
WERs akin to AED models [54]. The transducer models consist of an encoder, predictor and
joint networks. Using Transformer [61] encoder, lead to Transformer Transducer (TT) [62, 63].
They are trained from scratch, thus requiring large-scale supervised datasets [64, 65] in the target
language and domain.

In this work, we focus on two questions partly unanswered by the research community: (1) Could
we prototype a streaming Transformer-Transducer ASR model of sufficient quality on the target
domain with consumer-level GPUs? (2) Can we train TT models with pure pseudo-labeled (PL)
data? We target the streaming scenario, which is by nature more challenging than standard offline
(full attention) decoding [54]. Despite the robustness of AED models on the offline scenario,
they still require large amount of supervised data. Still, there are works that aim to bring them
to streaming setups [11]. Here, we use TT models [62], where the challenge arises on the fact
that these do not include a self-supervised stage,1 i.e., needing always audio text pairs. We show
that TT models can be trained from scratch in its entirety with PLs from Whisper [188] while
attaining competitive WERs on the streaming scenarios. The overall proposed approach is in
Figure 4.2.

1[201] explore to warm start the encoder with a pretrained SSL-based model, albeit closed source model.
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4.1.2 From Encoder-Decoder to Transducer ASR

The advantage of transducer models over encoder-decoder relies on the fact that it supports
streaming decoding. Only recently, it was demonstrated that these models can surpass standard
AED ASR models [54]. There have been multiple breakthroughs that have made possible the
training of transducer easier, such as (1) pruned transducer loss [60], (2) better architectures,
e.g., FastConformer [59, 65] and HyperConformer [12]; and (3) from the modeling side, e.g.,
model pruning and sparsifiation [202] and quantization [54]. However, little to none work has
been done on fast TT prototyping (∼1 GPU-day fixed compute) with pure pseudo-labeled data.

4.1.3 ASR Pseudo Labeling

Semi-supervised learning [203], pseudo labeling [204], and weakly supervised learning [188] are
a family of methods aiming to partly alleviate the burden of lack of labeled data for supervised
ASR training. These approaches have shown successful WERs on multiple settings and languages.
In practice, a teacher model g is trained on an audio-text paired corpus Dl = {Xi, Yi}, then it
is used to pseudo label a much larger unlabeled only audio corpus, Dpl = {Xi, Y ∗

i }. Then a
smaller model [79] can use Dl and Dpl for supervised training or fine-tuning [205]. However,
PL are often noisy and bounded by g model quality, whereas its use might result in suboptimal
final WERs in the models. This can be solved by either filtering out the most noisy samples or
increasing g model size to increase their quality.2 Several approaches to improve the PL quality,
includes improving the loss functions [198, 206], pairing online and offline models at training
time [203], and by continuous single-language [207, 208] and multilingual pseudo-labeling
setting [199].

4.1.4 Knowledge Distillation with Large Models

Knowledge distillation (KD) is a very well-known technique to distill the knowledge from a
large model into a small model [209]. The former is regarded as the Teacher while the latter
as the Student. In this framework, we first train the teacher model with the correct label (for
supervised training) [210] or in a self-supervised manner. Then, the student model is trained with
the posterior distributions of the pretrained teacher model [211]. The KD setting is also known
as teacher-student training [212]. There has been prior work on KD for CTC [210] and AED
models with Whisper [188] in [213, 214] and Transducer models [215]. Another line of work
has aimed at KD from offline to online transducers into [216] or by using self-supervised models
as teachers [217].

In this work, we focus on sequence-level KD, which means that we use the 1-best hypothesis
obtained from the teacher model instead of using the posterior distribution. This has some
benefits, as the expenses of trading off flexibility, e.g., (1) no need to cache the teacher model

2Here we assume that a larger model attains higher quality, i.e., lower WERs.
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or its outputs into memory; (2) no need to modify the current ASR training pipelines; (3) faster
ASR training w.r.t teacher-student based KD; and (4) we can use highly optimized only inference
pipelines–that support model quantization–for PL generation, e.g., WhisperX [218], which can
lead to faster development.

4.1.5 Databases and Experimental Setup

Our core contribution is the fast prototyping of TT ASR trained with pure pseudo-labeled data
that can work on streaming low-latency settings. We select the Whisper model as our teacher
model [188] due to its strong performance across benchmarks in multiple languages. In addition,
it provides models at different parameter scales, opening the door to studying the effect of how
PLs from different qualities impact downstream TTs models.

Pseudo labeling with WhisperX We use the WhisperX pipeline [218] across all the experi-
ments to generate PLs. It is composed of a (1) voice activity detection step to segment long-form
audio; (2) batching multiple segments for efficient inference; (3) model quantization of Whisper
and C++ implementation on FasterWhisper3 which uses CTranslate2 for fast decoding;4 (4)
model inference and word level alignment. Note that we pseudo-label each training corpus with
5 Whisper model sizes, i.e., tiny, base, small, medium, and large-v3.

Table 4.1: Maximum number of characters allowed in each pseudo-labeled word with Whisper.

Language CA EN DE FR ES IT

Max. characters per word 16 16 30 20 25 22

Data filtering heuristics We developed multiple data selection heuristics (H) to filter-out noisy
and hallucinated PLs:

• H1: remove PL if composed of the same unigram three or more times.
• H2: compute maximum word length from supervised training corpus and removed utter-

ances with one or more PLs larger than the max threshold. See Table 4.1 for the exact
statistics per language. Note that languages that join words, such as German (DE) has a
substantially larger threshold.

• H3: compute wordratio
5 and filter out samples with wordratio less than 1 or more than

4.6

• H4: verbalize all the numbers from the pseudo-labels, remove punctuation and normalize
following the CommonVoice recipe in LHotse [219].

3https://github.com/SYSTRAN/faster-whisper
4https://github.com/OpenNMT/CTranslate2/
5Number of words divided by utterance duration [seconds].
6The WhisperX pipeline uses a VAD system to remove silences in the audio. In our case, CommonVoice utterances

are already pre-segmented, thus we omit this step.
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These heuristics are applied for every training corpora. Similar heuristics are proposed in [79].

Transformer transducer training We train Transformer-Transducer models from scratch for
each language from Common. We use Zipformer stateless [55] TT model [58] with the latest
Icefall Transducer recipe and its default training hyper-parameters.7 This includes ScaledAdam
optimizer [186], learning rate scheduler with a 500-step warmup phase [61] followed by a decay
phase (each 7.5k steps and 3.5 epochs), as in [58]. The neural TT model is jointly optimized
with an interpolation of simple and pruned RNN-T loss [60, 53] and CTC loss [45] (λ = 0.1),
according to:

L = (1 − λ) · LRNNT + λ · LCT C . (4.1)

The peak learning rate is lr = 5.0e−2 and we train each TT for 30 epochs on a single RTX 3090
GPU with only PLs.

Regularization with supervised data We perform experiments where along with PLs we mix
in 100h of randomly selected supervised data from the train set Dl during training. We compute
mixing weights between Dl and Dpl so each training batch contains at least one sample from
Dl. This is achieved with CutSet.Mux function from Lhotse [219].8 All the experiments that
uses PL and supervised data are denoted with +sup. [100h], otherwise, the model is trained
with PL only. As an ablation experiment, we also test the performance by scaling up supervised
data to 200h and 400h when using the weakest FSM, i.e., whisper-tiny. This experiment aims to
(1) compensate for very low-quality PLs, and (2) demonstrate that Whisper PLs (from the largest
models) are of sufficient quality for transducer training without any supervised data.

Enabling streaming decoding with multi-chunk trainingAll the models proposed in this
work can perform streaming decoding. This is achieved by performing chunk-wise multi-
chunk training. During training, we use causal masking of different sizes to enable streaming
decoding under different low-latency configurations [220, 11]. Specifically, we rely on two
lists: chunk-size={640ms,1280ms,2560ms,full} and left-context-frames={64,128,256,full}.9 At
training time, we randomly select the chunk size and the left context chunks for each batch. This
enables the final model to work on a wide variety of streaming settings. At test time, we select 13
different decoding configurations ranging from 320 ms10 to 2560 ms chunks.

CommonVoice database We use the CommonVoice dataset, as described in Table 2.1 in
Section 2.3.1. We use the following languages: Belarusian (BE), Catalan (CA), German (DE),
Spanish (ES), French (FR), and Italian (IT). We use the official train sets and report WERs on the
official test sets. See Table 2.1 for further statistics.

7https://github.com/k2-fsa/icefall/tree/master/egs/librispeech/ASR/zipformer.
8It lazily loads two or more datasets and mixes them on the fly according to pre-defined mixing weights.
9The effective number of left context chunks is computed as left_context_frames//chunk_size.

10Decode chunk size of 320ms is more challenging as it has not been used during training.
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Figure 4.3: WERs for offline Zipformer models on six languages of CommonVoice. Models
are trained with pseudo-labels from different Whisper model sizes (blue graphs). Adding 100h
of supervised data during training (red graph) regularizes the training up to models with 700M
params, especially for languages with less data.

4.1.6 Results & Discussion

We run experiments for each CommonVoice language by training streaming models in a multi-
chunk fashion, i.e., we use masking during training with different configurations which allow our
models to work under different configurations, as in [11, 220]. Specifically, we randomly select
the chunk size from a predefined list for each batch during training.

Baseline offline models In Figure 4.3, we present the offline results for TT models trained
from scratch on PL data only in six languages (depicted by blue graphs). These models are
evaluated only in a non-streaming context to determine the upper bound WERs achievable by
training with PLs of varying qualities. As the size of the Whisper Model increases (shown on a
log-scaled x-axis), there is a corresponding improvement in WERs, also on a log-scale. The best
performance is observed for ES, with the least favourable results for EN. These results show that
our approach adapts across a spectrum of PL data quantities and qualities, ranging from 200h for
IT to over 1000h for CA and EN. We additionally analyzed the performance of models trained on
PLs depending on how well each language is represented in the data used for training Whisper

73



Chapter 4. Speed and Compute Bounded Low-Resource Speech Recognition

100h 200h 400h
Supervised Data [hours]

10

15

20

25

30

35

%
 W

or
d 

Er
ro

r 
Ra

te
Zipformer trained with whisper-tiny PLs

Language
ca
de
es

fr
it

Figure 4.4: Ablation of impact of mixing in supervised data during training with very weak
pseudo-labels. WERs for multiple Zipformer models trained from scratch with whisper-tiny PLs.
Note that adding supervised data significantly yields lower WERs.

models [188]. Yet, no consistent effect is noticed.

Regularization with supervised data Red graphs in Figure 4.3 also show WERs for offline
models that along with PLs include a small amount of supervised data, up to 100h, for regular-
ization. This strategy proves to be beneficial in cases with noisier PLs, particularly for smaller
Whisper models like Whisper-tiny, Whisper-base, and Whisper-small when WER goes down
for all the languages. The benefits, however, decrease or are absent with more accurate PLs
generated by larger models, such as Whisper-medium and Whisper-large-v3. Thus, with our
results on six languages, we can conclude that when supervised data is available, regularization is
recommended for models with weak PLs and can be omitted with strong PLs. The results with
100h regularization are also available in Table 4.2 for offline models.

Scaling-up supervised data helps on cases with very noisy PLs For the ablation experiment
on mixing in more supervised data, we maintain a fixed computational budget for generating PLs
and explore the extent to which supervised data can offset noisy PLs. The results are pictured
in Figure 4.4. Using only Whisper-tiny, we train TT models from scratch for non-English
CommonVoice languages with over 200h of available supervised data (i.e., CA, DE, ES, FR, and
IT). Our results show significant improvements in WER as supervised data increases from 100h
to 200h and even more so up to 400h, especially in languages like Catalan, French, and Italian,
which likely suffer from lower-quality PLs. For this experiment, our oracle results are from the
models fully trained on the supervised data, which can be found in Table 4.2 for offline models.

Low-latency streaming decoding Figure 4.5 lists the streaming decoding results across six
CommonVoice languages, testing 13 different decoding configurations ranging from 320 ms to
2560 ms chunks. We establish upper performance bound with models tested in non-streaming
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mode, and also include a box plot for each TT model trained with PLs derived from various
Whisper model sizes. Larger Whisper models consistently yield lower mean WERs across
all configurations, showing how model performance can fluctuate under different streaming
conditions, with smaller chunk sizes or limited left context posing greater challenges.
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Figure 4.5: Box plots of WERs for six languages of CommonVoice. Streaming Zipformer models
are trained from scratch, with only PLs generated with different Whisper model sizes. Each box
denotes 13 decoding configurations, ranging from challenging (320ms chunk with limited left
context) to more relaxed (2560ms chunk with full left context) streaming settings. (Note different
WER scaling on the y-axis.)

Conclusions In this work, we address the challenge of training ASR systems with minimal
supervised data by leveraging TT models trained from scratch using PL speech only derived from
foundational speech models. We conduct a thorough examination of the efficacy of PL-based
TT models across various dimensions, including offline and chunk-wise decoding for streaming
applications, and the influence of FSM size on TT model’s WERs. Our findings reveal that TT
models can be effectively trained from scratch on noisy PLs, highlighting that this approach works
even on low-quality PLs. We introduce robust heuristics to filter out unreliable and hallucinated
PLs and explore the effects of FSM size on TT performance.
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Table 4.2: WERs for six CommonVoice languages. The Zipformer models are trained with
pseudo-labeled data from different Whisper models. We also report WERs when a small amount
of supervised data is added during training, denoted as "sup. [100h]". Models are trained
from scratch in ∼1 day GPU time and contain ∼70M parameters.

Experiment CA EN DE FR ES IT
1200h 1000h 600h 600h 317h 200h

Whisper-tiny (θ = 39M)

Whisper model [188] 51.0 28.8 34.5 49.7 30.3 44.5
Zipformer + only PL 41.1 21.6 25.7 33.8 20.1 32.2

+ sup. [100h] 36.8 20.9 22.7 29.7 16.1 19.8

Whisper-base (θ = 74M)

Whisper model [188] 39.9 21.9 24.5 37.3 19.6 30.5
Zipformer + only PL 30.5 19.2 19.4 24.7 14.8 22.6

+ sup. [100h] 27.9 19.1 17.5 21.8 12.6 16.2

Whisper-small (θ = 244M)

Whisper model [188] 23.8 14.5 13.0 22.7 10.3 16.0
Zipformer + only PL 18.6 17.2 13.4 16.5 10.6 14.8

+ sup. [100h] 17.4 17.0 12.8 15.8 10.3 12.9

Whisper-medium (θ = 769M)

Whisper model [188] 16.4 11.2 8.5 16.0 6.9 9.4
Zipformer + only PL 14.0 16.7 11.3 13.7 9.5 12.1

+ sup. [100h] 13.7 16.5 11.3 13.5 9.5 12.0

Whisper-large-v3 (θ = 1.5B)

Whisper model [188] 14.1 9.4 6.4 13.9 5.6 7.1
only PL 12.8 16.2 10.6 12.4 8.9 11.1

+ sup. [100h] 12.8 16.3 10.7 12.3 9.1 11.6
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4.2 Use of Large Pretrained Models for Transducer-based ASR

Self-supervised pretrained models exhibit competitive performance in automatic speech
recognition on fine-tuning, even with limited in-domain supervised data for training.
However, popular pretrained models are not suitable for streaming ASR because they are
trained with full attention context. In this chapter, we introduce XLSR-Transducer, where
the XLSR-53 model is used as encoder in transducer setup. Our experiments on the AMI
dataset reveal that the XLSR-Transducer achieves 4% absolute WER improvement over
Whisper large-v2 and 8% over a Zipformer transducer model trained from scratch. To
enable streaming capabilities, we investigate different attention masking patterns in the
self-attention computation of transformer layers within the XLSR-53 model.
Our contributions are covered below:

• Introduction of the XLSR-Transducer, a multilingual SSL encoder based transducer
model, demonstrating significant WER improvement on the AMI dataset compared
to large speech foundational models and other open-source ASR models;

• extension to streaming XLSR-Transducer and a systematic study of chunk size
and past context on training and inference;

• to author’s knowledge, this is the first work that explores the attention sink [221]
phenomenon for streaming ASR which leads to improved WER; and

• Evaluation of the XLSR-Transducer on AMI and five languages of CommonVoice
dataset in low resource settings.

Publication Note
The material presented in this section is adapted from the following publication:

• S. Kumar, S. Madikeri, J. Zuluaga-Gomez, E. Villatoro-Tello, I. Nigmatulina, P. Motlicek, M. K. E,
and A. Ganapathiraju, “XLSR-Transducer: Streaming ASR for Self-Supervised Pretrained Models,” in
arXiv:2407.04439, 2024

Minor contributions Trained and validated the XLSR-Transducer models on the CommonVoice dataset.
Experimental validation on the masking patterns to enable streaming decoding with XLSR-Transducer for
CommonVoice dataset. Participated in the article write up.

4.2.1 Introduction

In streaming ASR, partial hypotheses are generated for each audio chunk sequentially [65, 220]
to produce the transcript for the full audio, whereas the entire audio segment is available for
non-streaming decoding. Depending on the latency requirements, the chunk size may vary from
few hundred milliseconds to few seconds [220]. Typically, a drastic degradation in word error rate
(WER) is observed when non-streaming models are decoded in streaming fashion [66], because
only a limited context is available. In this work, we propose a variety of attention masking
patters that enable streaming training and decoding of our XLSR-Transducer model. We also
study the importance of chunk sizes and left context size by varying them during inference. For
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instance, at decoding time, increasing left context typically enhances ASR performance [220],
at the expense of increased latency. Recently, it was shown that the transformer layers learn to
assign disproportionate attention scores to few initial tokens for streaming language models [221],
termed as attention sinks. We study the effects of attention sinks for the first time in streaming
ASR. Formally, at decoding time, we allow the transformer layers in XLSR to attend to a few
initial frames in addition to designated frames in chunk and past context. In theory, this reduces
total computation required for processing an audio chunk during streaming decode.

4.2.2 XLSR-Transducer

Predictor

Softmax

Encoder

Joint Network

a) Transformer-Transducer

1) Supervised data 
2) Not suited for low-resource
settings 
3) requires multilingual audio-text 
4) Offline and online decoding

1) Unlabeled audio data 
2) Suitable for low-resource
settings 
3) Multilingual pre-trained (only
audio) 
4) Offline and online decoding

b) Trained from scratch

c) SSL pretrained (XLSR)

Pruned Transducer Loss 
Low memory
required

state-less 
(1D CNN)

Figure 4.6: Current state-of-the-art a) Transducer
ASR includes state-less predictor, pruned trans-
ducer loss and b) Transformer-based encoder,
trained from scratch. We replace the encoder
by XLSR-53, an SSL model suitable for low-
resource applications. Our contributions lead to
the c) XLSR-Transducer.

In a typical Transformer-Transducer (TT)
ASR model (Figure 4.6a), there are three net-
works: the encoder, predictor, and joiner. The
encoder processes audio frames to produce
acoustic embeddings. The predictor generates
token embeddings in an auto-regressive man-
ner, taking previous non-blank tokens as input.
Lastly, the joiner combines the outputs from
the encoder and predictor to predict a probabil-
ity distribution over the tokens in the vocabu-
lary. In this work, we utilize a stateless predic-
tor [55] composed of an embedding layer and
one 1-D CNN layer, and the joiner network
consists of one linear layer. Typically, the en-
coders [56, 57, 58] are trained from scratch
and require a large amount of in-domain su-
pervised data to achieve decent WER, which
may not always be feasible. We train the TT
model using the pruned-transducer loss [60] from k211 toolkit.

Non-Streaming XLSR-Transducer In contrast to encoders trained from scratch, recent ad-
vancements in SSL pretrained models demonstrate competitive performance [80, 51] when
fine-tuned with a limited amount of labeled data for ASR. Previously, the ASR models employing
SSL pretrained models have utilized CTC loss [45], encoder-decoder based architecture [70, 12],
and Lattice-Free MMI loss [222] (hybrid approach) for training. Furthermore, we integrate pre-
trained models as encoders in the TT setup, as illustrated in Figure 4.6c. One notable advantage
is the ability to achieve strong ASR performance with relatively low amounts of training data.
We select XLSR-53 [51] as our encoder model, which takes raw audio as input and outputs audio
frames with a frame duration of 25 ms and a stride of 20 ms. The selection of XLSR-53 is driven
by its large-scale pre-training on multilingual audio, which has demonstrated competitive ASR

11https://github.com/k2-fsa/k2
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frames

fra
m

es

1-chunk left context full left context attention sink in ASR

Figure 4.7: Masking strategies for streaming XLSR-Transducer. Multi-chunk training allows
decoding with variable chunk size (blue) and left context (orange). Each square denotes “n”
frames. Attention sink (yellow) allows context from the first n frames. Our results show that
attention sink frames offer a better trade-off w.r.t increasing left context alone, leading to
lower WERs.

performance [51] in the low-resource across multiple languages.

Streaming XLSR-Transducer XLSR is typically trained and decoded using the entire audio
sample. This makes the proposed XLSR-Transducer non-streaming, despite the use of stateless
predictor and linear joiner that are inherently streaming. The main challenge to port SSL models
to streaming is the use of self-attention in the transformer layers [61], i.e., computed over entire
acoustic frames of an utterance. Here, we present multiple masking patterns [220] to limit
the frame context over which self-attention is computed, simulating streaming ASR within the
XLSR-Transducer setup.

Chunked masking For a typical streaming ASR, decoding partial hypotheses should occur
after receiving a few audio frames, known as the chunk size. As depicted in Figure 4.7a, we
implement chunk-wise decoding by masking frames outside a specific chunk during the forward
pass from the XLSR model. The mask is applied after dot-product computation during self-
attention, ensuring that each frame inside a chunk has access to all the frames within that chunk.
Note that the XLSR model also includes a CNN front-end, which takes raw audio as input. Thus,
we feed chunk-size equivalent raw waves to the CNN front-end sequentially and concatenate
them across the time dimension to obtain all the frames for an utterance. In this work, we explore
chunk sizes of 16, 32, 64, and 128, translating to approximately 320 ms, 640 ms, 1280 ms, and
2560 ms, respectively, for XLSR.

Chunked masking with variable left context chunks In practice, when decoding chunk “n",
we have access to all the previous chunks, which can be utilized as left context. As illustrated
in Figures 4.7b and 4.7c, a variable number of left context chunks can be utilized during the
self-attention computation of a chunk, with the possibility of using the full left context. The
number of frames in the left context is a multiple of the chunk size, as this can be efficiently
implemented to store past chunks in the cache.

Streaming training and decoding The use of non-streaming XLSR-Transducer for streaming
decoding with the described masking patterns presents a challenge. The model has been trained
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on full context, creating a train-test mismatch. To address this challenge, we train the model
in streaming fashion using a fixed chunk size and left context. Flexibility in our chunked mask
implementation allow us to perform both streaming and non-streaming decoding using a single
model. The advantage of our method is that it only affects the fine-tuning stage, and we can avoid
the computationally prohibitive pre-training.

Multi-chunk Training In many practical use-cases of streaming ASR, varying the chunk size
at decoding time is often desirable, depending upon latency requirements. However, a streaming
XLSR-Transducer model trained with a fixed chunk size may not yield optimal WERs when
decoded with different chunk sizes. Also, training multiple models for varying chunk sizes may
be infeasible. To address this limitation, we propose randomly selecting the chunk size from the
predefined list mentioned above (chunked masking) for each batch during training.

4.2.3 Efficient Streaming ASR with Attention Sinks

In a recent work on streaming language models (LM) [221, 223], it was shown that a surprisingly
large amount of attention scores during self-attention computation inside transformer layers is
directed towards the initial tokens, termed as attention sinks. This was attributed to the Softmax
operation, which mandates attention scores to sum up to one and in autoregressive LMs, all
subsequent tokens have access to the initial tokens. Consequently, the model may find it easier to
learn to assign large scores to these initial tokens. In our streaming model training, where we
utilize full left context, we employ a similar setup. This leads us to introduce the first utilization
of the attention sinks in the context of streaming ASR during inference. Specifically, as depicted
in Figure 4.7d, we enable self-attention to focus on not only frames within a chunk and left
context chunks, but also on the initial few frames.

4.2.4 Databases and Experimental Setup

AMI and CommonVoice First, we train and evaluate the XLSR-Transducer model on the
individual head microphone (IHM) split from the AMI dataset [110] containing audios with a
sampling rate of 16 kHz. We use the default recipe for AMI from lhotse12 toolkit to prepare the
train, dev and eval sets containing 80h, 8.8h, 8.5h of audios respectively. In all our experiments
on the AMI dataset, we use WER on the dev set to select the best epoch and report the results
on the eval set. Second, we validate XLSR-Transducer on five non-English languages from
CommonVoice-v11 [97].13 This includes Catalan (CA), Belarusian (BE), Spanish (ES), French
(FR) and Italian (IT). To keep experimentation under the low-resource domain, we extract
randomly a 100h subset from the training data per language. Later, we train streaming and
non-streaming models. We report WERs on the full official test sets.

12https://github.com/lhotse-speech/lhotse
13CommonVoice-v11: cv-corpus-11.0-2022-09-21)
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Table 4.3: WERs on the AMI eval set. On non-streaming decoding† XLSR-Transducer yields
significant WER reduction. On streaming decoding, the multi-chunk training (multiple) provides
significant gain w.r.t encoders trained from scratch with minimal degradation in non-streaming
performance. ‡encoder-decoder model. ¶decoding chunk size 2000 ms.

Encoder Chunk Size Chunk Size decoding

train-time 320 ms 1280 ms full-att†

decoding: non-streaming ASR

Whisper large-v2 (1.6B)‡ [188] - - - 16.9
FastConformer (1.1B) [59] - - - 15.6
Zipformer (70M) - - - 21.0

decoding: streaming ASR

FastConformer (114M)¶ [65] - - 24.2 -
Zipformer (70M) multiple 28.5 24.6 23.2

XLSR (300M) full-att 35.3 17.8 12.7
XLSR (300M) 320 ms 17.1 15.0 14.2
XLSR (300M) 1280 ms 19.7 14.5 13.1
XLSR (300M) multiple 17.7 14.2 12.9

Zipformer-Transducer Baseline We establish strong baselines by training non-streaming
and streaming Zipformer transducer models [58] from scratch, following the AMI recipe14

from Icefall toolkit (we only use the IHM set). The (1) state-less Predictor [55] consists of an
embedding layer and one 1-D CNN layer, (2) the joiner consists of 1 linear layer. We use the
default hyperparameters and train for 30 epochs [58]. We use beam search with width of 4.

XLSR-Transducer Training The XLSR-transducer model is constructed from the Icefall’s
Transducer recipe for AMI dataset adapted with the XLSR model from fairseq [224]. The fine-
tuning uses Scaled Adam [186] and a learning rate scheduler with a 500-step warmup phase [61]
followed by a decay phase directed by number of steps and epochs. We optimize the model with
pruned RNN-T loss [60, 53] with a learning rate of lr= 1.25e−3 and lr= 5.0e−3 for AMI and
CommonVoice. We train AMI and CommonVoice models for 10 and 20 epochs, respectively.

4.2.5 Results & Discussion

Non-streaming ASR We benchmark first the XLSR-Transducer model for non-streaming
ASR on the AMI dataset and the results are reported in the Table 4.3 (full-attn). We compare
against large open source foundational speech models. It can be seen that the proposed XLSR-
Transducer model achieves significant improvement in WERs. Specifically, it achieves a relative
improvement of 19% in WER when compared to the best open source large foundational ASR

14github.com/k2-fsa/icefall/tree/master/egs/ami
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Figure 4.9: Chunk-size of 16.
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Figure 4.10: Multi-chunk streaming.

Figure 4.11: Plots of WERs on AMI eval set for XLSR-Transducer trained on three configurations
(a, b and c) and decoded on multiple streaming scenarios. Note that adding one or more left-
context chunks at decoding time reduces WERs dramatically.

model. Next, we train a Zipformer encoder based transducer model from scratch and observe that
XLSR-Transducer yields 39% relative improvement in WER. It is clear that there are significant
advantages of using pretrained encoders in TT setup for low resource ASR.

Streaming ASR First, we decode the non-streaming trained XLSR-Transducer model in
streaming fashion by applying different masks. Results are reported in the Table 4.3, where full
left context is used during decoding. The XLSR-Transducer achieves significant improvement
over Zipformer and FastConformer based transducer models. Despite the improvements, there is
a significant degradation from non-streaming performance because the model was not trained for
streaming. When the model was trained for streaming with full left context and decoded using a
chunk size of 320 ms, the performance improves (35.3% → 17.1% WER) because of the train-test
matched chunk size setting. We also train models with larger chunk sizes, but it degrades the
performance, showcasing the importance of context during self attention computation inside a
chunk which the model may have learned during training. As we increase the chunk duration
during decoding (320 ms → 1280 ms), the performance improves monotonically [66], which
is expected due to larger context available for frame attention score computation. Now, the
streaming trained models are decoded in non-streaming, which can serve as performance upper
bound. We observe that increasing chunk size during training improves the non-streaming
performance and even when chunk size of 320 ms is used during training, the results only degrade
by 1.5% in absolute WER. When random chunk sizes are used during training, the gap is 0.2%
when compared with the best non-streaming ASR performance. Overall, a streaming trained
XLSR-Transducer model using random chunk sizes shows best WER when decoded in streaming
fashion with 1280 ms chunk duration and performance gap for non-streaming decoding is minimal.
Thus, a single model can be used for both streaming and non-streaming ASR.

Streaming ASR with variable left context Using full left context during training and decoding
will incur additional computation, which may not always be desirable. Limiting left context
during training of streaming models resulted in significant degradation of results; therefore, we
use full left context for all streaming XLSR-Transducer training. Figure 4.11 list WERs when
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Table 4.4: WERs of streaming XLSR-Transducer on five CommonVoice languages. Models are
fine-tuned on random 100h train subset and with multi-chunk training. full-att: non-streaming
decoding. †CA is 28h long, and the remaining 26h. ‡median (duration) in seconds.¶non-streaming
training and decoding.

Lang† Test Set Streaming model - chunk size [ms] full-att¶

#utt [50%-dur]‡ 320 640 1280 2560 full-att full-att

CA 16k 6.1 17.5 15.2 13.9 12.9 12.0 10.7
BE 15.8k 5.7 20.0 17.5 15.9 14.8 13.8 13.7
ES 15.5k 6.1 17.7 15.0 13.5 12.2 11.3 10.8
FR 16k 5.7 24.3 21.6 20.0 18.7 17.6 17.1
IT 15k 6.3 18.5 15.9 14.3 13.1 12.1 11.5

the number of left context chunks is varied during inference. Note that the left context duration
is in multiple chunk size. Increasing the left context improves the performance for all training
scenarios and chunk duration. At the same time, a significant improvement is observed using
just one chunk of left context. Further increase in left context improves WER overall, but the
benefit per left context chunk is lower. When the XLSR-Transducer is trained with multi-chunk
streaming strategy and decoded with 1280 ms chunk size, a relative improvement of only 4% in
WER is observed using full left context instead of one left context chunk. Thus, a limited number
of left context chunks should be enough for most real-world streaming ASR.

XLSR-Transducer on multiple languages We also train the proposed model on five non-
English languages of CommonVoice [97]. WERs are listed in Table 4.4 for multi-chunk streaming
and full-attention non-streaming models. We see competitive WERs for models evaluated under
different streaming conditions, with constant WERs improvement as chunk size increases; similar
behavior is reported in [66]. The upper-bound WERs are obtained with a model trained and
evaluated in non-streaming fashion, i.e., last column of Table 4.4. We note negligible WER
degradation (up to 1.5% absolute WER, worse CA; best BE) for full-attention decoding (full-att)
on streaming models vs. their non-streaming counterparts. This confirms the robustness of
XLSR-Transducer on multiple languages.

Streaming ASR with attention sinks In theory, restricting left context chunks should lead
to overall latency improvements for streaming ASR. The recent observation of attention sinks
phenomena [221, 225], where the transformer models learn to assign relatively higher attention
scores to initial tokens, may help in reducing the overall computation required to decode one
chunk of audio in streaming ASR. WERs on the AMI dataset are reported in Table 4.5. For
different chunk sizes and left context, we observe that increased frames for attention sinks
improve the performance monotonically. Specifically, for a smaller chunk of 320 ms, using 1
left context chunk and 16 frames (i.e., 320 ms) for attention sinks performs better than using 2
left context chunks by 12% in relative terms despite attending over the same number of frames.
We do not observe a significant reduction in WERs beyond a chunk size of 640 ms. Overall, our
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Table 4.5: WERs on AMI eval set for varied decoding settings. Adding attention sinks offer a
better trade off than larger left context. (blue) denotes relative WER reduction w.r.t no attention
sink within same chunk and left context. †nb. of chunks. ‡nb. attention sink frames.

Decoding settings Decoding chunk-size

Left-context† attn-sink‡ 320 ms 640 ms

full none 17.7 15.5

1

none 25.9 – 18.1 –

1 22.9 (+11.6) 17.4 (+4.1)

4 21.4 (+17.4) 16.8 (+7.1)

16 19.7 (+23.7) 16.3 (+10.0)

2

none 22.5 – 16.7 –

1 20.9 (+7.3) 16.4 (+1.7)

4 20.0 (+11.3) 16.2 (+3.2)

16 18.9 (+16.1) 15.9 (+4.8)

4 none 19.8 15.9

results show that it is better to use attention sinks than increasing left context chunks beyond
1 for improved performance. We also run decoding with attention sinks on the CommonVoice
dataset and observe similar trends but do not include a results table for brevity.

Conclusions This section demonstrates that using an SSL pretrained model as encoder in the
transducer framework, termed as XLSR-Transducer, leads to significant improvement in WER
on AMI and multiple languages from CommonVoice corpora. We explore various chunked
masks and left context configurations to enable streaming decoding in XLSR. Our findings across
2 datasets and 6 languages shows that the proposed model achieves streaming performance
comparable to non-streaming ASR.
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4.3 Improved Streaming Transducer With Attention Sinks

Chunk-wise decoding with left context is a popular choice for streaming automatic
speech recognition (ASR). In the most challenging applications, limited left context is
enforced to reduce processing time and computational budget. In this work, we explore
novel phenomena from the NLP domain called attention sink, where at decoding time,
we allow attention to initial frames in addition to left context chunks. We validate this on
Transformer-Transducers (TT) models trained from scratch for more than 10 languages
of CommonVoice under several low-resource ASR settings, ranging from 17h to 100h
of fine-tuning supervised data. We show that on challenging streaming settings with
limited left context history, attention sink yields a 12% word error rate (WER) reduction
w.r.t increasing left context alone, thus being more computational friendly. This is an
extension of Section 4.2.
Our contributions are covered below:

• we extend the XLSR-Transducer model [11] by an exhaustive ablation of the
attention sink phenomena within the streaming TT ASR framework,

• study of attention sink on more than 10 languages from CV, where we show
consistent WERs reduction with regard to only increasing left context alone;

• we ablate XLSR-Transducer equipped with attention sink on low-latency settings
with chunks from 320 ms up to 2560 ms.

Publication Note
The material presented in this section is adapted from the following publication:

• J. Zuluaga-Gomez, S. Kumar, et al., “Improved Streaming Transformer Transducer With Attention
Sinks,” in To be Submitted to ARR (long paper), 2024

Minor contributions This is an extension of Section 4.2. I trained and validated the XLSR-Transducer
models on CommonVoice for attention sink phenomena on multiple languages. Lead the work, including the
paper write up.

4.3.1 Introduction

Automatic speech recognition has been largely impacted by end-to-end (E2E) modeling to
an extent that it has become ubiquitous in the literature. Currently, the most prominent E2E
architectures includes Connectionist Temporal Classification (CTC) [45, 80, 51], attention-based
encoder-decoder (AED) [188, 70], and the neural Transducer architectures [53, 60]. While
CTC and AED-based models are non-streaming by design, they can be ported to streaming at
inference time, albeit with caveats e.g., drastic downstream WER degradation or hallucinated
outputs [226, 227]. However, neural transducers–or Transformer-Transducer (TT)–support
streaming decoding by nature, thus we focus from now only on this architecture. In streaming
ASR, we generate partial hypotheses sequentially for incoming audio. The audio is processed
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Figure 4.12: The attention sink effect when decoding with limited left context. It is more efficient
than standard decoding and yields ∼12% WER reduction w.r.t increasing left context alone.
WERs for models trained with 100h of data and averaged across 13 languages of CommonVoice.

in a chunk-wise manner until we reach the end of the stream [220]. Aspects such as chunk size,
left context and its size can determine the quality of the hypothesis and the latency of the system.
This contrasts with non-streaming decoding methods, where the entire audio segment is available
for processing at once, i.e., full bidirectional attention decoding.

Despite this rapid growth of interest, there are some caveats of E2E models: (1) AEDs do not
support streaming by design and (2) transducers models rely on large-scale supervised databases.
Authors in [11] propose to warm start the encoders in TT models with the XLSR-53 model
[51]. This bridges the shortcoming of each architecture, while showing competitive WERs on
the low-resource streaming ASR settings. Furthermore, the authors also explore interesting
phenomena seen in large language models, attention sink [221]. Here, we do an extensive study
on of these aspects and show how to improve model performance under challenging low-latency
streaming settings.

4.3.2 Related Work

There are multiple approaches to improve WERs and latency for AED and transducer models,
including (1) faster word emition with FastEmit [228], or self alignment [229]; (2) model sparsi-
fication [202], quantization [54] and pruning [230, 231]; (3) efficient transducer loss functions,
e.g., pruned RNN-T [60], or (4) efficient encoders, e.g., HyperConformer [12], FastConformer
[59, 65] or stochastic compute reduction for wav2vec 2.0 [232]. In this work, we focus on
improving WERs at decoding time under challenging streaming scenarios, e.g., chunk-wise
decoding with limited chunks and left context.
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4.3.3 Databases and Experimental Setup

CommonVoice and TEDLIUM Databases We use CommonVoice database for experimenta-
tion. See Table 2.1 for further details about each language split. Similarly, we use TEDLIUM for
long-form ASR, see further information about this dataset in Section 2.3.1.

XLSR-Transducer Training and Decoding The XLSR-transducer model is constructed from
the Icefall’s Transducer recipe for AMI dataset [110], adapted with the XLSR model from
fairseq [224]. We follow the same implementation as in [11], see Section 4.2 for further details.
The model is optimized with pruned RNN-T loss [60, 53]. For experiments with CommonVoice
we train for 20 epochs on languages with 100h and for 50 epochs for the ones below that. For
TEDLIUM-v3 we train for 10 epochs. For decoding, we use multiple masking patterns, similar
as in [11]. This includes chunk-wise decoding with (1) full left context, (2) limited left context,
and (3) limited left context with attention sink. As described in Figure 4.12.

Attention sink experiments We run several ablations to validate the attention sink pattern. We
select 10 languages from CommonVoice and train XLSR-Transducer with up to 100h of labeled
data. This ensures that our models are under the mid-to-low resource setting.15 Five languages
are under the low-resource setting, all the way to 17h of labeled data (CS).

4.3.4 Results & Discussion

We run experiments for each CommonVoice language by training streaming XLSR-Transducer
models in a multi-chunk fashion, i.e., we use masking during training with different configurations,
see [11, 220]. More information in Section 4.1.

Non-streaming decoding In Table 4.6, we present the baseline WERs for the XLSR-Transducer
evaluated in a non-streaming mode, serving as an upper performance bound. We also compare
these results with strong AED models such as Whisper [188], despite Whisper models not being
trained on CommonVoice but on substantially larger datasets. Our findings show that XLSR-
Transducer WERs are competitive with Whisper models of similar size, and occasionally even
with the larger Whisper-large-v2. We also run a very low-resource experiment with Swedish
(sv-SE), where we only use 7h of supervised data.

Streaming decoding with attention sink In low-latency settings, reducing left context can
attenuate computational demands, potentially degrading WERs. The integration of attention
sink significantly counters this degradation by enhancing ASR performance even under exigent

15Note that we do not aim to get the best WER with our models, as a standard training from scratch with the full
training corpus most surely lead to lower WERs.
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Table 4.6: Full WERs on 14 CommonVoice languages and comparison w.r.t multiple Whisper
models. †only available for whisper-large-v3. ‡substantial improvements are seen when fine-tuned
to 1kh instead of 100h.

CA BE ES DE FR IT EN SW RW NL PL PT RU CS sv-SE
Supervised data [h.] 100h 100h 100h 100h 100h 100h 100h 100h 100h 33h 24h 20h 32h 17h 7h

Baselines from Whisper [188].

small (θ = 244M) 23.8 - 10.3 13.0 22.7 16.0 14.5 - – 14.2 16.9 12.5 15.0 34.1 22.1
medium (θ = 769M) 16.4 - 6.9 8.5 16.0 9.4 11.2 - – 8.0 10.1 8.1 9.3 18.8 13.7
large-v2 (θ = 1.5B) 14.1 43.7† 5.6 6.4 13.9 7.1 9.4 51.2† – 5.8 7.6 6.3 7.1 13.5 10.6

XLSR-Transducer model

XLSR-T (θ = 317M) 10.7 13.1 10.2 13.4 16.4 10.7 20.3 18.5 35.5‡ 14.0 17.6 13.5 21.2 28.2 43.6

conditions (320 ms chunks without lookahead or substantial left context), as shown in Figure 4.13.
Across all tested languages from CommonVoice, adding 1 to 16 frames of attention sink consis-
tently lowers the WER. Note that these experiments are very challenging as (1) the chunk size is
low, i.e., 320 ms, (2) we do not use any look-head or future context, and (3) the model needs to
work with very small left context.
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Figure 4.13: WERs per language for low latency chunk-wise decoding, chunk=320 ms. X-axis:
number of attention sink frames. Top row: high-resource languages with 100h of training data;
bottom row: mid-to-low resource setting, below 35h. Red line: non-streaming decoding. Dark
line: WER for the experiment with a single left context chunk and 16 attention sink frames.

Low-resource ASR with XLSR-Transducer Further insights from Figure 4.13 reveal that even
with up to 33h of supervised data, the use of attention sink yields notable WER improvements in
languages like NL, RU, PL, and PT. This shows the robustness of XLSR-Transducer equipped
with attention sink for low-resource and challenging streaming conditions.

Attention sink on multiple streaming settings Comprehensive results for 13 CommonVoice
languages under varying conditions are detailed in Figure 4.14. We assess multiple chunk sizes
(16/32/64, i.e., 320 ms/640 ms/1280 ms) and explore the impact of introducing 1 to 16 frames of
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Figure 4.14: Multiple decoding results per language, including attention sink frames. Decoding
is reported only with left context chunks of 1.

attention sink, offering a broad view of XLSR-Transducer performance across different streaming
configurations.

Attention sink on TEDLIUM Table 4.7 list the complete results under different decoding
settings for XLSR-Transducer models trained on TEDLIUM. We also list the upper-bound WER
of 7.2% WER for a system trained and decoded in non-streaming fashion. As shown in Table 4.7,
applying attention sink in configurations with two or fewer left context chunks significantly
benefits the WER across all settings. This establishes the value of attention sink in enhancing
long-form ASR.

Scaling-up the training data We observe drastic WER reductions (as shown in Table 4.8) by
substantially increasing the training data volume for six languages from CommonVoice. In several
instances, our models surpass the performance of Whisper-large-v2, particularly in languages
like CA, FR, and BE, illustrating the scalability and effectiveness of the XLSR-Transducer with
larger training sets.

Conclusions In conclusion, this study validates the phenomena of “attention sinks" within
the streaming Transformer-Transducer framework for ASR. We demonstrate that a significant
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Table 4.7: Complete streaming decoding with attention sink ablation for TEDLIUM dataset.
†number of left chunks at decoding time, which depends on the chunk size per experiment.

#LC† cs=320 ms cs=640 ms cs=1280 ms cs=2560 ms

chunk 0 1 4 8 16 0 1 4 8 16 0 1 4 8 16 0 1 4 8 16

0 85.8 69.0 62.0 60.0 57.5 52.6 43.4 40.0 38.9 37.7 27.0 25.4 23.8 23.2 22.3 16.2 15.6 14.9 14.6 14.3
1 33.5 21.7 15.2 14.2 13.2 16.7 14.2 11.8 11.3 10.9 10.9 10.4 9.6 9.4 9.3
2 24.2 18.2 13.9 12.9 12.3 13.8 12.6 11.0 10.7 10.5 9.7 9.5 9.1 9.1 9.0
4 17.5 15.1 12.7 12.2 11.9 11.5 11.1 10.4 10.2 10.0 9.0 9.0 8.9 8.9 8.8
8 13.2 12.6 11.8 11.5 11.3 10.2 10.2 10.0 10.0 10.0 8.7 8.7 8.7 8.7 8.7

full 10.9 9.8 8.7 8.2

non-streaming training and decoding: 7.2% WER

Table 4.8: Impact of scaling up the training data in XLSR-Transducer. We train XLSR-Transducer
models with larger train subsets and report WERs with beam search decoding and model averaging
of 5. †only available for whisper-large-v3.

CA EN RW DE FR BE ES IT

Baselines from Whisper [188].

whisper-medium (θ = 769M ) 16.4 11.2 - 8.5 16.0 - 6.9 9.4
whisper-large-v2 (θ = 1.5B) 14.1 9.4 - 6.4 13.9 43.7† 5.6 7.1

XLSR-Transducer model (θ = 317M )

W/ 100h sup. data 10.7 20.3 35.5 13.4 16.4 13.1 10.2 10.7

W/ scaled-up: +sup. data 1kh 1kh 1kh 600h 600h 400h 300h 200h
5.8 14.5 21.8 9.0 11.4 7.1 7.7 8.8

improvement in WERs across multiple low-resource languages from the CommonVoice dataset
are achieved under low-latency settings with limited left context. By allowing attention to focus
not only on the immediate left context but also on initial frames, our approach effectively reduces
computational demands while enhancing WERs. The results presented in this section reaffirm
our earlier results presented in [11] and further discussed in Section 4.2.

90



4.4 Compute-Bounded Low-Resource Speech Recognition with HyperConformer

4.4 Compute-Bounded Low-Resource Speech Recognition
with HyperConformer

State-of-the-art ASR systems have achieved promising results by modeling local and
global interactions separately. While the former can be computed efficiently, global
interactions are usually modeled via attention mechanisms, which are expensive for long
input sequences. Here, we address this by extending HyperMixer [233], an efficient
alternative to attention exhibiting linear complexity, to the Conformer architecture for
speech recognition, leading to HyperConformer.
Our contributions are covered below:

• Multi-head HyperConformer achieves comparable or higher recognition perfor-
mance while being more efficient than Conformer in terms of inference speed,
memory, parameter count, and available training data;

• HyperConformer achieves a word error rate of 2.9% on LibriSpeech test-clean
with less than 8M neural parameters and a peak memory during training of 5.7GB,
hence trainable with accessible hardware; and

• encoder speed is between 38% on mid-length speech and 56% on long speech,
faster than an equivalent Conformer.

Publication Note
The material presented in this section is adapted from the following publication (shared first authorship):

• F. Mai, J. Zuluaga-Gomez, T. Parcollet, and P. Motlicek, “HyperConformer: Multi-head HyperMixer
for Efficient Speech Recognition,” in Proc. Interspeech, 2023, pp. 2213–2217

Supplementary materials related to this section:
• Open-source HyperConformer model on SpeechBrain GitHub: https://github.com/speechbrain/

speechbrain/blob/develop/speechbrain/nnet/hypermixing.py
• Recipe for ASR training on SpeechBrain GitHub: https://github.com/speechbrain/speechbrain/blob/

develop/recipes/LibriSpeech/ASR/transformer/hparams/hyperconformer_22M.yaml

Major contributions Problem definition and experimental design and setup. Data preparation. Trained the
encoder-decoder models for the experiments. Co-lead the work, including the integration of HyperMixer in the
speech encoder and the paper write up.

4.4.1 Introduction

Automatic Speech Recognition (ASR) technologies have greatly benefited from deep learning,
reaching unprecedented levels of accuracy and pushing successful products to real-life use cases.
Various architectures of ASR systems co-exist and deliver superlative performance depending
on the task or domain of interest [234]. A prevalent family of ASR systems uses self-attention
and Transformer neural networks to consume the input speech sequence and build powerful
representations both at the acoustic and linguistic levels [235]. Indeed, the ability of Multi-Head
Self-Attention (MHSA) [61] to capture long-term dependencies via its sequence-long receptive
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Figure 4.15: Layout of the general Conformer architecture. Global interactions can be modeled
either with attention leading to a Conformer or with HyperMixer to obtain HyperConformer.
T represents the transpose operation. Skip connections are omitted for simplicity. The global
interaction module is combined sequentially with a convolution module to capture local depen-
dencies, critical for speech-related tasks.

field helped Transformer ASR architectures to outperform the previous state-of-the-art mostly
composed with recurrent neural networks [235]. Nevertheless, ASR not only requires capturing
global interactions describing the semantic and linguistic characteristics of the speech utterance,
but also modeling properly the local interactions that form the speech signal.

Conformer neural networks [57] have been introduced to specifically address this issue. They
combine Transformer and Convolutional Neural Network (CNN) blocks to capture the global and
local dependencies, respectively, leading to improved Word Error Rate (WER). Most prominently,
variations of the Conformer, named Branchformer [236] and E-Branchformer [237] reached the
lowest WER on the widely-adopted LibriSpeech dataset [94] while being trained from scratch
without external data. Following the local and global dependencies’ assumption, Branchformer
architecture physically create two branches per block (a dual path) in the architecture to capture
independently and with adapted mechanisms (i.e., MHSA and CNN) both levels of dependencies.
The latter branches are then merged and passed to the next architecture block. Such approaches
are agnostic to the type of ASR decoding or processing, e.g., Transducers [53], CTC only [45], or
CTC and attention [70]. However, they suffer from a major and well-documented efficiency issue,
as MHSA exhibits a quadratic complexity and memory time-dependency [233]. For instance, the
MHSA block is among the most computationally demanding elements of any Transformer model.
This is especially true for speech processing, as input sequences are often long by nature, e.g.,
longer than 30 seconds for a few LibriSpeech utterances [238, 239]. In addition, large-scale and
Transformer-based Self-Supervised Learning (SSL) models for speech recognition are commonly
trained with sentences voluntarily cropped at 20 to 25 seconds. The latter transformation is
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necessary to enable training with top-tier GPU e.g., Tesla V100 or A100 [50], also making it
potentially intractable to train on more accessible compute infrastructures. This work focuses on
retaining MHSA’s global interactions capabilities beneficial to ASR while lowering significantly
its computational and memory cost.

How to efficiently compute interactions between tokens in Transformer-like architectures is an
active area of research [240]. Most works try to decrease the cost of attention directly, e.g., through
a low-rank approximation [241], linearization [242], clustering [243], or the introduction of sparse
attention patterns [244]. However, token mixing can also be achieved from outside the framework
of attention, opening up considerably novel opportunities for improvement. MLPMixer [245] was
the first to learn a fixed-size MLP for modeling global interactions, with many to follow in the
vision domain [246, 247, 248]. However, the fixed size hinders their adoption for domains with
variable length signals. Existing approaches for speech have strong locality biases [249, 250] and
still rely on small attention modules for the best performance [250]. Recently, [233] proposed
HyperMixer for text processing, which achieved competitive performance to attention at a
substantially lower cost in terms of computation and data. Intuitively, HyperMixer constructs the
token-mixing MLP of MLPMixer dynamically as a function of the data, hence being amenable
to variable length inputs.

4.4.2 HyperMixer Architecture

Figure 4.15 illustrates the different blocks of the introduced HyperConformer. It consists of four
parts: Two feature mixing layers (feed-forward networks) at the bottom and top of the layer, a
module for modeling local interactions, specifically the CNN introduced in [57], and a global
interaction module. In the following, we discuss the global interaction modules bringing token
mixing to the model. Other components of HyperConformer are identical to the Conformer [57].

Capturing Global Interactions Let X ∈ RN×d represent N d-dimensional token vectors,
also equivalent to a latent representation of speech coming from the previous layer on length
N . The global interaction module GI : RN×d → RN×d; X 7→ X ′ is responsible for combining
information from different tokens in such a way that every X ′

:,j contains information from every
X:,i. Such a behavior captures global interactions as it interconnects the different time steps of
the given speech or latent sequence. This may be achieved, for instance, via multi-head attention
or via HyperMixer.

Multi-Head Self-Attention At the core, Multi-Head Self-Attention (MHSA) [61] relies on
scaled dot-product attention:

Attention(X) = Softmax(XXT

√
dk

)X,
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which involves computing the dot product between every pair of input tokens, invoking memory
and runtime complexity of O(N2 · d). The latter is responsible for the quadratic increase in
memory and time consumption of standard Transformer architectures [233]. Further modeling
capabilities are commonly obtained with the introduction of k parallel heads, allowing the model
to attend to information from different representation subspaces, i.e., different views of the data:

MHSA(X) = Concat(head1, . . . , headk)W O,

headi = Attention(XW Q
i , XW K

i , XW V
i ),

with W O, W Q
i , W K

i , W V
i learnable weight parameters.

HyperMixer From a high-level perspective, HyperMixer achieves token mixing over variable
length sequences by dynamically constructing a token mixing MLP through the use of hypernet-
works [251]. The latter models specialize in generating neural network parameters, e.g., weights
and biases. A token-mixing MLP is a multilayer perceptron TM-MLP : Rd×N → Rd×N that
combines information from different tokens for each feature independently, e.g., processing the
Fbank coefficients of each time step of a sequence:

TM-MLP(X)i,: = LayerNorm(W1(σ(W T
2 XT

i,:))), (4.2)

where W1, W2 ∈ RN×d′
are weight matrices with the hidden layer size d′. σ represents some

non-linear activation function; we fix it to GELU [158] following [233]. Furthermore, we add
layer normalization [252] for improved stability. Intuitively, the input layer W1 decides to what
degree each token’s information should be sent to the hidden layer of TM-MLP, and the output
layer W2 decides for each token what information to extract from the hidden layer.

Importantly, W1, W2 themselves are not learnable parameters, which would require the input to
be of the same fixed size at all times. Instead, HyperMixer(X; d, d′), parameterized through the
embedding dimension d and the hidden layer size d′, first dynamically generates W1, W2 from
the inputs themselves with the two hypernetworks MLP1, MLP2:

Wk(X) =


MLPk(X:,1 + p:,1)

...
MLPk(X:,N + p:,N )

 ∈ RN×d′
, k ∈ 1, 2.

MLP1, MLP2 : Rd → Rd′
contain the learnable parameters of HyperMixer, and p:,j are absolute

position embeddings from standards Transformers [61]. After generating the weights, Equa-
tion 4.2 is applied. This determines the complexity of this model: O(N · d · d′), which is the
same asymptotic runtime as the feature mixing layers. Hence, HyperMixer turns the quadratic
memory and inference time complexities to a linear regime.
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4.4.3 Multi-head HyperMixer for Efficient ASR

Analogously to MHSA, we propose an extension of HyperMixer to multi-head HyperMixer
(MHHM) and HyperConformer, by introducing multiple token mixing heads. To this end,
we create k parallel HyperMixerl(·; d/k, d′/k), l ∈ 0..k − 1, which each operates on (d/k)-
dimensional feature subsets of X , whose outputs are again concatenated:

headl = HyperMixerl(X:,(l·(d/k)):(l+1·(d/k)))
MHHM(X) = Concat(head1, . . . , headk)

As a result, and conversely to MHSA, the runtime complexity even further reduces
to: O(k · (N · (d/k) · (d′/k))) = O(N ·d·d′

k ).

4.4.4 Experimental Setup

Our experiments aim at assessing the effectiveness and efficiency of HyperConformer in compar-
ison to Conformer. Hence, we compare vanilla Transformer [61] and Conformer [57] models
to HyperMixer and HyperConformer. In practice, we swap the global interaction module, i.e.,
attention, from regularMHA (which uses absolute position embeddings [61]) of Transformer
and RelPosMHAXL (which uses relative position embeddings [253]) of Conformer to our multi-
head HyperMixer implementation.

Datasets and decoding We validate HyperConformer, on the LibriSpeech dataset [94]. It is
composed of ∼960h of transcribed speech in English. We perform ablations either training on
the 100h set or the full, 960h set, and report results on the dev/test sets and clean/other partitions.
Additionally, we use the text-only corpus16 for external language modeling (LM).17 The LM is a
Transformer based [61] only-encoder model composed of 12 encoder layers, dffn = 3072 and
dmodel = 768, which accounts for 93.3M parameters. Word error rates are reported using beam
search with and without LM shallow fusion.

Neural architectures To gain a comprehensive understanding of performance and primary
trade-offs, we ablate four different architectures in an encoder-decoder style: i) vanilla Trans-
former, ii) Conformer, iii) HyperMixer, and iv) HyperConformer. For the efficiency analysis only,
we also experiment with replacing RelPosMHAXL with regularMHA (Conformer-regular).
All models use a 5K BPE sub-word unit [67] vocabulary. This remains consistent across all exper-
iments and models. At the bottom of the encoder, we incorporated a front-end module consisting
of a 2-layer CNN that receives 80-dim log Mel filterbank features. We use SpecAugment [160]

16See https://www.openslr.org/resources/11/librispeech-lm-norm.txt.gz.
17Pretrained LM from SpeechBrain available in:

huggingface.co/speechbrain/asr-conformersmall-transformerlm-librispeech.
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Table 4.9: WERs on the official LibriSpeech dev and test sets for models trained on the 960h
LibriSpeech set. The results include the four proposed encoder models, including our novel
architecture, HyperConformer. We ablate two different model sizes for each architecture and list
results with and without LM. The last column list the peak memory consumption [GB] of each
architecture under the same training conditions.

Model Par. WER w/o LM WER w/ LM Peak
dev test test Mem.

[M] clean other clean other clean other [GB]

Small sized models (dmodel = 144)

Transformer 6.1 7.7 15.6 7.8 15.8 3.9 8.2 6.45
HyperMixer 5.6 12.9 23.1 13.1 23.4 5.8 12.6 4.04
Conformer 8.7 4.7 11.4 5.0 11.3 3.1 6.8 8.18

HyperConformer 7.9 5.0 12.1 5.3 12.3 2.9 7.0 5.67

Medium-sized models (dmodel = 256)

Transformer 16.2 4.6 10.7 4.7 10.9 2.7 6.1 7.6
HyperMixer 14.4 7.2 15.2 7.5 15.2 3.9 8.3 5.6
Conformer 24.1 3.6 8.8 3.8 8.7 2.6 5.9 10.7

HyperConformer 21.7 3.4 9.0 3.6 9.0 2.3 5.7 8.6

during training with the default configuration in SpeechBrain. To correspond to accessible
hardware as well as to emphasize low-compute resources performance, all models are conceived
within a 25M parameter budget and trained with an 11GB memory constraint, corresponding to
accessible GPU such as the Ti 80 family (or Ti 70 for the small version of HyperConformer).
Hence, we select two model sizes for each architecture, i.e., 8 different scenarios. We use the
same configuration, 10 encoder layers, and 8 attention or HyperMixing heads. However, we set
dmodel = {144, 256} for {base, medium} models, respectively. The feed-forward network
dimensions is set to dffn = 4 · dmodel for all cases. For simplicity, we set the hidden layer size
d′ of TM-MLP to d′ = dffn. We leave an exploration of this hyperparameter to future work.

Training hyperparameters Training is performed by combining the per-frame transformer
decoder output probabilities and CTC [235]. The CTC loss [45] is weighted by α = 0.3
during training. All the models use the same decoder, i.e., 4 Transformer layers. We follow the
default training configuration of the LibriSpeech recipe from SpeechBrain.18 It uses Adam [186]
optimizer, learning rate (lr= 1e−3) scheduler with warmup [61] (25k steps warmup). We train
for 110 epochs, i.e., ∼660k steps when full LibriSpeech and ∼70k when LibriSpeech 100h set.
The recipe also uses dynamic batching, which reduces the overall training time. At decoding
time, we use a beam size of 66 with a CTC weight of ctcw = 0.4. All of our experiments can be
run on accessible GPUs starting from the Ti 70 family.

18Please refer to the SpeechBrain recipe located in recipes/LibriSpeech/ASR/transformer.
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Figure 4.16: Forward pass of small (left)
and medium sized (right) models.
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Figure 4.17: Forward pass of 1 and 8 heads
for HyperConformer..

Figure 4.18: Overall time (minutes) and GPU consumption (GB) required by different architec-
tures for sequences of different lengths. The left plot of (a) and (b) shows the small model, the
right plot shows the mid-size model. Each sequence length in the x-axis represents 1000 samples
from the LibriSpeech dataset. For all plots: Lines denotes time (left y-axis) and markers of GPU
consumption (right y-axis). Batch size is 16 for all configurations.

4.4.5 Results & Discussion

Our experiments are designed to answer two questions: 1) Does HyperConformer perform
competitive to Conformer in terms of word error rates? 2) Is HyperConformer more efficient than
Conformer?

Speech recognition results We compare WERs of different state-of-the-art architectures for
ASR, listing the results in Table 4.9. We find that HyperMixer alone achieves acceptable
performance, especially in combination with a language model, but trails behind Transformer
and Conformer, in all cases. We hypothesize that this is because the crucial local information
in speech signals is difficult to pass through the hidden layer bottleneck of TM-MLP, which
attention does not have. In contrast, HyperConformer performs comparable and often even
better than Conformer in the medium-sized configuration. For instance, HyperConformer beats
Conformer by 0.17% absolute WER on test-other with LM for the medium-sized model. We
explain this as follows: In HyperConformer, i) the convolution module helps to model the local
interactions between tokens, and ii) global interactions can be modeled in and passed through
the multi-head HyperMixer’s bottleneck effectively. Finally, we note that HyperConformer is
amenable to scale, since moving from 7.9M → 21.7M, we obtain a 17.9% relative reduction in
WER on test-other with LM, similar to Conformer.

Efficiency Analysis In [233] is shown that HyperMixer has efficiency benefits regarding
processing speed and training data size. Here, we investigate if these properties also transfer to
the speech domain, particularly, HyperConformer on the ASR task.
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Peak memory consumption The right-hand side of Table 4.9 shows the peak memory con-
sumption when training models of the same size on the same hardware. We observe that
HyperConformer requires substantially less memory than Conformer (-30.6% with small size
and -19.7% with medium size). The effect is stronger on small models than on large ones.
Since larger models are wider (i.e., larger d and d′), the feature mixing components as well as
TM-MLP require considerably more compute in comparison to attention, whose complexity
depends primarily on the sequence length, which remains the same between training scenarios.

Resource consumption depending on sequence length The main advantage of HyperMixer is
its linear complexity compared to attention’s quadratic complexity. To investigate this property,
we measure the peak memory and processing time of the encoder as a function of the length of the
speech sample. To this end, we synthesize 1,000 sentences of 6, 12, 18, 24, and 30 seconds each
by concatenating multiple signals from the LibriSpeech dataset. Figure 4.16 shows the resource
consumption of all models. While HyperConformer and Conformer require similar processing
time at short sequences, HyperConformer is considerably faster at mid-length (18s, small: 37.9%,
mid: 15.2%) and long sequences (30s, small 56.1%, mid: 34.2%), demonstrating its better
asymptotic complexity compared to Conformer. Note that Conformer with regularMHA is
more efficient than RelPosMHAXL. However, this would lead to a performance loss [57], and
HyperConformer is still substantially more efficient.

Number of heads An important technical novelty is the introduction of multi-head HyperMixer,
which allows for multiple parallel views on the data analogous to multi-head attention, while
at the same time reducing the model’s complexity. In preliminary experiments, we found that
HyperConformer with k = 8 heads performs as well as with k = 1 head. At the same time,
moving from a single head to 8 heads reduces the number of parameters in the model by 7.1%
in the small model and 20.8% in the mid-size model. Moreover, as Figure 4.17 shows, the
processing time is reduced substantially by up to 12.6% (small) and 19.9% (mid-size) on the
longest sequences.

Table 4.10: Performance of Conformer and
HyperConformer when trained on 100h Lib-
riSpeech (10× less data). Percentage in brackets
shows relative WER reduction on test-other with
LM.

Model Small size Medium size

Conformer 8.29 7.57
HyperConformer 6.76 (-18.5%) 5.80 (-23.4%)

Low-resource scenario HyperMixer is re-
ported to work better than MHSA in
the low-resource scenario [233]. Here,
we conduct an initial experiment to test
whether HyperConformer inhibits the same
characteristic. To this end, we compare
HyperConformer to Conformer on the 100h
LibriSpeech subset, which is 10 times smaller
than the full dataset. All other training pa-
rameters remain the same. Table 4.10 shows
the results. In this scenario, HyperConformer
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performs around 20% better than Conformer, suggesting better data efficiency.

Conclusions HyperConformer is a new architecture for efficient ASR introduced in this work.
It integrates the benefits of the Convolution module from Conformer, which models local interac-
tions, and the hypernetwork-based architecture, HyperMixer, which models global interactions.
We were able to attain comparable or lower WERs (2.28/5.42 in test clean/other) HyperConformer
when compared to Conformer. In addition, this novel architecture is substantially faster on long
sequences, while also requiring less GPU memory during training. We believe HyperConformer
is a green alternative to previous established Transformer and Conformer based models for ASR.
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5 Towards Better Spoken Language
Understanding

Introduction

This chapter focuses on natural and spoken language understanding (NLU/SLU). In complex
scenarios and applications, the pipelines include SLU models that are fed with ASR outputs, thus
(1) we tackle multiple NLU tasks, including slot filling and callsign highlighting for ATC (§ 5.1)
and speaker change and speaker role detection (§ 5.2) for ATC. Furthermore, (2) we explore
different modalities and representations that can be used for SLU, such as text, acoustic, lattice
and multimodal (§ 5.3). An overall overview of this chapter is in Figure 5.1.

Chapter 5
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and Role
Detection

Section 5.2
Benchmarking
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SLU/NLU for  
Air Traffic Control

Section 5.3

✅  Pure text-based system  
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Figure 5.1: Overview of Chapter 5.
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5.1 Spoken Language Understanding of Air Traffic Control Com-
munications

Until the previous decade, research on air traffic control (ATC) communications was
directed at only transcribing the dialogues between ATCos and pilots. However, transcrip-
tion is only one intermediate task and further information, such as, entity highlighting
(also known as intent and slot filling) or speaker role detection is imperative in real-life
ATC control rooms. The process of parsing these high-level entities from ATC audio can
be seen as SLU, or from text as NLU. In this work, we propose several approaches to
handle ATC speech and extract high-level information and entities that can be used in
downstream tasks.
Our contributions are covered below:

• We introduce the first open-source model in the field of ATC for slot filling based
on a newly open sourced database;a

• we provide a comprehensive ablation of multiple SLU tasks for the field of ATC,
including slot filling, ASR, speaker role detection and callsign highlighting;

• we introduce a 4h test set for the field of ATC that contains labels for ASR and
multiple SLU tasks. A 1h open-source version (ATCO2-test-set-1h) that is available
for free.b

Publication Note
The material presented in this section is adapted from the following publications:

• J. Zuluaga-Gomez, K. Veselý, I. Szöke, A. Blatt, P. Motlicek, M. Kocour, M. Rigault, K. Choukri,
A. Prasad, S. S. Sarfjoo, et al., “ATCO2 Corpus: A Large-Scale Dataset for Research on Automatic
Speech Recognition and Natural Language Understanding of Air Traffic Control Communications,” Sub-
mitted to Data-centric Machine Learning Research (DMLR) Journal, arXiv preprint arXiv:2211.04054,
2024

• J. Zuluaga-Gomez, A. Prasad, I. Nigmatulina, P. Motlicek, and M. Kleinert, “A Virtual Simulation-Pilot
Agent for Training of Air Traffic Controllers,” Aerospace, vol. 10, no. 5, p. 490, 2023

• J. Zuluaga-Gomez, K. Veselý, A. Blatt, P. Motlicek, D. Klakow, A. Tart, I. Szöke, A. Prasad, S. Sarfjoo,
P. Kolčárek, et al., “Automatic call sign detection: Matching air surveillance data with air traffic spoken
communications,” in Proceedings, vol. 59, no. 1. MDPI, 2020, p. 14

Supplementary materials related to this section:
• Code - GitHub repository at: https://github.com/idiap/bert-text-diarization-atc and in https://github.

com/idiap/atco2-corpus.
• ATCO2 project website: https://www.atco2.org/

Major contributions Problem definition and experimental design and setup. Data preparation for ASR and
NLU experiments. Trained and fine-tuned the NLP models for the experiments. Lead the work, including the
papers write up.

aThe full ATCO2 corpus is available for purchase through ELDA in http://catalog.elra.info/en-us/
repository/browse/ELRA-S0484.

bThis test set can be accessed for free in https://www.atco2.org/data.
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5.1 Spoken Language Understanding of Air Traffic Control Communications

5.1.1 Introduction

Previous work has explored different NLP tasks in the area of ATC. For instance, [111] describes
a set of entities and elements that are present in ATC communications that are of special interest,
e.g., commands and instructions [130]. The authors recommend that an operational system should
be composed of an ASR module to obtain the word-level transcripts of the communication. Later,
a subsequent system should extract ATC-related key entities and then parse them into a specific
grammar. We redirect the reader to [196], which developed an ATC-structured grammar accepted
by several European institutes. Furthermore, in [111], the process of extracting key entities from
audio is summarized in an entire pipeline composed of three submodules. Namely, speaker role
detection, intent classification and, slot filling (analogous to NER but on audio level). They aim at
inferring the near-future air traffic dynamics, which can aid ATCos in their daily task. In addition,
this system can notice communication errors caused by one of the speakers, also known as hear
or read back errors. Some exploratory work addressing NLP and NLU on the framework of
HAAWAII and ATCO2 projects (see Table 2.2) is described in [34, 14].

In this section, we describe our baselines for two tasks related to NLP and NLU.1 In air traffic
control applications, in addition to transcripts generated by an ASR system, we can also extract
rich metadata from the transcripts and audio. Some examples are–but not limited to–:

• ✓ What are the high-level entities in the communication? → named-entity recognition
(NER) or slot filling (SF). Previous work is presented in [15].

• ✓ Who is talking? ATCo or pilot → speaker role detection (SRD), sequence classification.
Early work is presented in [34].

• % Is the pilot responding the correct information? → read-back error detection. Previous
work is presented in [24] under HAAWAII project, and in [31] funded by SESAR 2020
PROSA project (PJ.10-W2), as well as in some others submissions [254, 25],

• % Is the communication being uttered in English language? → English language detection
(ELD). Previous work is presented in [125].

We present baselines only on the above items marked with ✓, while the items marked with%
are, either covered in previous work or left as future research directions. Generally speaking,
extracting the above-mentioned information could allow to further fulfill other ATC tasks, e.g.,
pre-filling radar labels in the ATC control rooms. Or, for example, reduce the workload of ATCos
and make them more efficient by automating manual and hard work. Also, this leads to reduced
overall probability of incidents and accidents due to air traffic management erroneous procedures.

5.1.2 Slot Filling & Named Entity Recognition

Named entity recognition, or NER, is one of the most explored tasks in the field of information
extraction and NLP [255]. NER aims to locate and classify entities in unstructured text into

1As we work on top of ASR transcripts, these tasks can be also cataloged as SLU.
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Figure 5.2: (a) Named entity recognition (or Slot filling) and (b) speaker role detection based on
sequence classification (SC) for ATC utterances. Both systems fine-tune a pretrained BERT [87]
model for ATC tasks. The NER systems recognizes callsign, command and values, while the SC
assigns a speaker role to the input sequence.

pre-defined classes or categories. Examples are, persons or organization names, expressions,
or, for instance, callsigns or commands in ATC (see Figure 5.2). Initially, NER was based
on handcrafted lexicons, ontology, dictionaries, and rules [256]. Even though these systems
were interpretable and understandable, they were prone to human errors. Collobert et al. [93]
introduced machine learning-based methods for text processing in topics such as part-of-speech
tagging, chunking, NER, and semantic role labeling. Further interesting works on NER are
[91] focusing on multilingual NER for Slavic languages, and [92] presenting a broad survey
of NER methods. In practice, a NER system can be crafted by fine-tuning a pretrained LM,
e.g., BERT [87], RoBERTa [88], or DeBERTa [89]. Nonetheless, these models are data hungry
and need expensive GPUs during its training and inference. Further work has been directed at
reducing their computational footprint, by performing, for example, knowledge distillation [257].

Air traffic control communications frequently carry structured information. A typical ATCo-pilot
utterance consists of three major entities: The Callsign as plane-identifier, which is followed by
the command and a value that specifies the command further. An example of the entities is shown
in Figure 5.2. Furthermore, an example of a tagged transcript is as follows:

<COM> CLIMBING TO </COM> <VAL> FLIGHT LEVEL SEVEN ZERO </VAL>

<CAL> OSCAR KILO TANGO UNIFORM ROMEO </CAL>

For the labeling the IOB format is used, which stands for inside, outside and beginning. This
results in the labels B-CALL, I-CALL and O (same for COM and VAL). The label B-CALL
marks the beginning of the callsign in the transcript, while I-CALL labels are used for words of
the callsign that are inside the named entity. All words that are outside a callsign are marked with
the O tag or the other classes. The task of the NER module is to produce the correct label for
each word in the transcript. The correct labeling of the transcript above will look as follows:
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“B-com I-com B-val I-val I-val I-val B-call I-call I-call I-call I-call”

The ATCO2-test-set corpus provides transcription on the word level that assigns pieces of text to
these specific classes. We developed a baseline system to extract such information from ASR
outputs, as depicted in Figure 5.2. An early implementation of this system was covered in [15].
However, these experiments were carried over private databases, so it is difficult to compare with
our current results. This is the main reason of open sourcing scripts to fine-tune a NER model
with the version of ATCO2-test-set corpus.2

Experimental Setup

Our experiments are carried out with ATCO2-test-set corpus only, for both, training and eval-
uation.3 The main reason is that none of the public databases from Table 2.2 contain NER
transcriptions. As a workaround, we implemented a simple k-fold cross-validation scheme. We
define K = 5 folds, with a 70/10/20 ratio for train/dev/test subsets, respectively. We use ground
truth transcripts for training and testing NER.

We download BERT4 [87] from HuggingFace [155, 156]. We append a linear layer with a
dimension of 7 on top of the last layer of the BERT model.5 The model is later fine-tuned on the
NER task, with each Fold K of the train splits. Each model is fine-tuned on an NVIDIA GeForce
RTX 3090 for 10k steps. During experimentation, we use the same learning rate of γ = 5e−5
with a linear learning rate scheduler. Dropout [157] is set to dp = 0.1 for the attention and hidden
layers, while Gaussian Error Linear Units (GELU) is used as activation function [158]. We also
employ gradient norm clipping [258]. We fine-tune each model with an effective batch size of 32
over 50 epochs with AdamW [159] optimizer (β1=0.9, β2=0.999, ϵ=1e−8).

Results

We report the results obtained from the 5-fold cross validation experiments. We split the results
by tags, i.e., callsign, command and values. For each of them, we report precision, recall and
F1-scores in Table 5.1. We obtained an average of 0.97, 0.82 and 0.87 F1-score for callsign,
commands and values. We observed that the command class was the most challenging among the
three classes. We believe this is because commands contain extra complexity in comparison to
callsigns and values. For example, in some cases the ATCos or pilots use several commands, or
these are sometimes mixed in the same utterance. In contrary, callsigns follow a standard form,
composed of an airline designator, numbers, and letters (spelled in ICAO phraseology). Values
are composed of cardinal numbers and some standard words, e.g., ‘flight level’. We also noted a

2See the model in https://huggingface.co/Jzuluaga/bert-base-ner-atc-en-atco2-1h.
3We provide in the GitHub repository the utterance IDs splits utilized for these experiments.
4We use the pretrained version of bert-base-uncased with 110 million parameters for all the experiments.
5Following the Inside–outside–beginning (IOB) format, i.e., two outputs for each NER class. In this case, we have

callsign, command and values. an extra class for the "outside" tag, i.e., none.
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Table 5.1: Different performance metrics for callsign, command and values classes of the NER
system. Metrics reported for each of the 5-fold cross-validation scheme on ATCO2-test-set
corpus with a bert-base-uncased model. @P, @R, and @F1 refer to precision, recall and
F1-score, respectively. Numbers in bold refer to the top performance per column among folds.
†mean score over the 5 folds.

Fold Callsign Command Values

@P @R @F1 @P @R @F1 @P @R @F1

1 0.97 0.98 0.97 0.80 0.81 0.81 0.86 0.86 0.86
2 0.97 0.98 0.97 0.83 0.86 0.85 0.86 0.89 0.87
3 0.97 0.97 0.97 0.81 0.85 0.83 0.87 0.87 0.87
4 0.98 0.98 0.98 0.78 0.80 0.79 0.85 0.90 0.87
5 0.97 0.98 0.98 0.80 0.83 0.81 0.87 0.89 0.88

AVG† 0.97 0.98 0.97 0.80 0.83 0.82 0.86 0.88 0.87

significant irregularity in performance for the command class between the 5 folds (see column:
Command in Table 5.1). For example, worse → best scenario on F1-score was 0.79 → 0.85,
almost a six-point drop. A five-point drop is also seen in precision and recall. These results are
seen when comparing fold 2 (best) against fold 4 (worst).

In conclusion, the results from Table 5.1 are the first official baseline for NER6 on the ATCO2-test-
set corpus. However, there is room for improvement. For instance, implementing semi-supervised
learning or data augmentation should bring robustness and yield higher performance. Similarly,
one can pretrain the LM directly on ATC text rather than standard English text, which should
bring in additional benefits. We leave this line of research for future work.

5.1.3 Callsign Recognition and Understanding

The named entity recognition system is capable to select words which form a callsign (i.e.,
highlight ‘swiss two six eight nine’). However, ICAO Callsign Extraction produces the callsign
directly in ICAO format (e.g., SWR2689), which is more useful for applications. This is not
trivial because callsigns get commonly shortened, if the situation is obvious (e.g., ‘swiss two
six eight nine’ → ‘six eight nine’, or ‘swiss eight nine’). And the underlying ASR produces
errors in its automatic transcripts. In this work, we explored two approaches. In [259], the ICAO
callsign is retrieved by a BERT-based Encoder-Decoder neural network. This system directly
takes outputs from an in-domain ASR system and extracts the ICAO callsign without relying on
Named Entity Recognition as an intermediate step. The model uses a list of callsigns, i.e., context
information, to predict the callsign in ICAO format. The advantage of this sequence-to-sequence
approach is, that it does not just select the best callsign from the surveillance list, but it can also

6After extensive research, to authors’ knowledge, this is the first official baseline on NER for air traffic control
communications. We have not found any other work that is both, open-source and that targets NER.
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extract unknown callsigns, that are not present in the initial list. The overall approach is depicted
in Figure 5.3.

Transcript Surveillance

OSN

ADS-B

Encoder - Decoder Model

ICAO callsign

Figure 5.3: Proposed callsign recognition
and understanding system. The dotted path
marks the optional surveillance retrieval via
OpenSky Network (OSN) with the aid of
the transcripts timestamp and VHF receiver
location. Taken from [259].

The second approach–covered in [15]–performs
NER to extract the callsign within the sentence,
which is later ranked by Levenshtein distance with
the ones in the callsign list from the surveillance
data. This approach always selects a callsign from
the list. We showed that boosting callsigns with the
combination of ASR and NLP methods eventually
leads up to 53.7% of an absolute, or 60.4% of a
relative, improvement in callsign recognition.

5.1.4 Speaker Role Detection

In NLP, text classification or sequence classification
(SC) is a task that assigns a label or a class to a
sequence of words [260, 261]. The hypothesis is
that the words within the given text share a common
role and meaning inside the sentence’s grammatical
structure. One of the most acknowledged forms of
SC is sentiment analysis, which assigns a label like
positive, negative, or neutral to a sequence of text
embeddings [262]. Nowadays, state-of-the-art SC
systems are based on the well-known Transformer,
e.g., BERT [87] or RoBERTa [88]. Akin to NER,
SC is considered a downstream task operating on
ASR output.

In ATC, the dialogues are built on top of a well-defined lexicon and dictionary, which follows a
simple grammar. This standard phraseology has been defined by the ICAO [263] to guarantee
the safety and reduce miscommunications between the ATCos and pilots. In this work, we
propose some baselines on the SC task aimed at detecting the speaker role from transcribed ATC
communications (sentences). Our previous work on speaker role detection is covered in [14, 34].

Experimental Setup

The SC experiments are similar to the ones in NER (see above). Specifically, we use the same
model (bert-base-uncased), hyperparameters (e.g., number of epochs), optimizer, dropout
rates, etc. However, here, we fine-tuned the model on the SC task rather than NER. We append a
linear layer with a dimension of 4 on top of the last layer of the BERT model, i.e., a two-class

107



Chapter 5. Towards Better Spoken Language Understanding

Table 5.2: Different performance metrics for the speaker role detection experiments. Metrics
reported on ATCO2-test-set corpus with a bert-base-uncased model. @P, @R, and @F1
refer to precision, recall and F1-score, respectively. Numbers in bold refer to the top performance
per column.

Training Corpus ATCO PILOT AVG
@P @R @F1 @P @R @F1 @F1

LDC-ATCC 0.87 0.73 0.79 0.70 0.86 0.77 0.78
UWB-ATCC 0.88 0.83 0.86 0.80 0.85 0.82 0.84

LDC-ATCC + UWB-ATCC 0.92 0.78 0.85 0.76 0.91 0.83 0.84

classification model.7 Here, each word is assigned a tag as belonging to ATCo or pilot, thus, we
have "B-atco", "I-atco", "B-pilot", and "I-pilot" tags.

We employed LDC-ATCC8 and UWB-ATCC9 datasets for fine-tuning and ATCO2-test-set corpus
for testing. In LDC-ATCC and UWB-ATCC databases, speaker roles tags for each sample are
marked in the original transcripts. And, we use ground truth ASR transcripts the evaluation. We
create speaker-independent train/test splits based on the original databases. The split IDs for each
subset are registered in the public GitHub repository of this paper.

Results

We report the baseline results for speaker role detection in Table 5.2. Differently from NER,
we only used ATCO2-test-set corpus for evaluation. We trained three models using different
training datasets. From Table 5.2 we can see that pilots’ communications are more challenging
for our model in comparison to the ones from ATCos. For instance, in the model fine-tuned with
LDC-ATCC corpus, there is a two-point drop in F1-scores for pilots, i.e., 0.79 → 0.77 F1-score.
Similar behavior is seen in the model fine-tuned with UWB-ATCC corpus, i.e., a four-point drop
in F1-scores, 0.86 → 0.82. However, models trained on the later show more robustness for both
classes in comparison to the one trained with LDC-ATCC.

We also investigated the performance benefit of combining both datasets. For this experiment, we
only obtained one point increase for the pilot class, while one point decrease for the ATCo class,
both in comparison to the model trained on UWB-ATCC only. It is important to keep in mind
that ATCO2-test-set corpus is a completely unseen dataset throughout all the experiments. We

7Seee further details in the open-source repository: https://github.com/idiap/atco2-corpus.
8The Air Traffic Control Corpus (LDC-ATCC) corpus is public in: https://catalog.ldc.upenn.edu/LDC94S14A. It

comprises recorded speech for use in the area of ASR for ATC. The audio data is composed of voice communication
traffic between various controllers and pilots.

9The UWB-ATCC corpus is released by the University of West Bohemia, and it can be downloaded for free
in: https://lindat.mff.cuni.cz/repository/xmlui/handle/11858/00-097C-0000-0001-CCA1-0. The corpus contains
recordings of communication between ATCos and pilots. The speech is manually transcribed and labeled with the
speaker information, i.e., whether ATCo or pilot is speaking and when.
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are convinced that integrating a small in-domain development set could boost the performances.
Further research towards text-based speaker diarization and speaker role detection is carried in [4].
Here, we study the SC task for ATC with different models architectures, including BERT [87],
RoBERTa [88] and DeBERTa [89].

Conclusions This work represents a significant step forward in the field of ATC. Here, we
explore NLU/SLU based approaches to extract the high-level information from ATCo-pilot
dialogues. We have introduced innovative models and extensive resources, including the first
open-source model for slot filling in ATC communications and a detailed ablation study across
multiple SLU tasks. Our contributions show that it is possible to enhance the operational efficiency
of ATC systems while reducing the risk of miscommunication and increasing overall airspace
safety. This integrated approach of ATC understanding could significantly alleviate the workload
of ATCos. Finally, we open sourced several models, databases, and scripts to replicate our results,
which is already making an impact in the community.
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5.2 Text-Based Joint Speaker Role & Speaker Change Detection

Automatic speech recognition (ASR) allows transcribing the communications between
air traffic controllers (ATCos) and aircraft pilots. The transcriptions are used later to
extract ATC named entities, e.g., aircraft callsigns. One common challenge is speech
activity detection (SAD) and speaker diarization (SD). In the failure condition, two or
more segments remain in the same recording, jeopardizing the overall performance. We
propose a system that combines SAD and a BERT model to perform speaker change
detection and speaker role detection (SRD) by chunking ASR transcripts, i.e., SD with
a defined number of speakers together with SRD. The proposed model is evaluated on
real-life public ATC databases.

Publication Note
The material presented in this section is adapted from the following publication:

• J. Zuluaga-Gomez, S. S. Sarfjoo, A. Prasad, I. Nigmatulina, P. Motlicek, K. Ondrej, O. Ohneiser, and
H. Helmke, “BERTRAFFIC: Bert-based joint speaker role and speaker change detection for air traffic
control communications,” in IEEE Spoken Language Technology Workshop (SLT). IEEE, 2023, pp.
633–640

Supplementary materials related to this section:
• Code - GitHub repository at: https://github.com/idiap/bert-text-diarization-atc
• Models at HuggingFace: https://huggingface.co/Jzuluaga, ID for speaker role:
bert-base-speaker-role-atc-en-uwb-atcc and
bert-base-token-classification-for-atc-en-uwb-atcc;
ID for NER: bert-base-ner-atc-en-atco2-1h

Major contributions Problem definition and experimental design and setup. Data preparation for experiments
on text-based speaker diarization. Trained and fine-tuned the NLP models for the experiments. Lead the work,
including the paper write-up.

5.2.1 Introduction

Automatic speech recognition (ASR) allows transcribing the communications between air traffic
controllers (ATCos) and aircraft pilots. The transcriptions are used later to extract ATC named
entities, e.g., aircraft callsigns. One common challenge is speech activity detection (SAD) and
speaker diarization (SD). In the failure condition, two or more segments remain in the same
recording, jeopardizing the overall performance. We propose a system that combines SAD and
a BERT model [87] to perform speaker change detection and speaker role detection (SRD) by
chunking ASR transcripts, i.e., SD with a defined number of speakers together with SRD. The
proposed model is evaluated on real-life public ATC databases. Previous work concluded that
higher accent variability and noise level cause ASR systems to yield up to two times higher word
error rates (WER) for pilots’ utterances compared to ATCos’ utterances [142]. In addition, close
and cross-talk between ATCo and pilots induce traditional speaker diarization (SD) systems to
yield low performances. Thus, this jeopardizes the speaker change detection (SCD) step and
subsequently the ASR system ends up processing utterances with multiple speakers.
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Table 5.3: Conversation between two speak-
ers with correct SAD and SCD (rows 1 and
2) and SCD fault (row 3, words in bold).
†samples from SOL-Cnt test set.

Speaker Label Detected segment†

ATCo (spk. 1) <s> november six two nine
charlie tango report when es-
tablished </s>

Pilot (spk. 2) <s> report when established
november six two nine charlie
tango </s>

Mixed (SAD
and SCD
failed)

<s> november six two nine
charlie tango report when es-
tablished report when estab-
lished </s> <s> november six
two nine charlie tango </s>

Motivation Already existent acoustic-based SD
systems, like [264] or end-to-end neural-based
SD [265], show promising performances for many
applications. However, in ATC communications,
given its limitations such as high speaker rate, close-
talk, and noise levels, relying solely on the acoustic
level has shown to be insufficient. Additionally,
standard SD systems add one layer of complexity
to the whole ATC pipeline,10 weakening the flexi-
bility to transfer the already tuned pipelines to other
environments. Thus, text-based SD stands as an
interesting solution.

Contribution In this work, we fine-tune a pre-
trained BERT model [87] to jointly perform tagging
and chunking. Chunking allows splitting sentences
into tokens (or words) and then merging them in
meaningful subgroups. Here, a phrase (or entity) is
composed of a full single-speaker utterance of ATCo or pilot (see Table 5.3). By applying chunk-
ing in a multi-speaker and multi-segment utterance, one can perform speaker change detection
(SCD) and speaker role detection (SRD) simultaneously on the text level (Figure 5.4 mid-box).
The proposed approach simplifies the standard SD pipeline, moving up the task from the acoustic
level to text level, i.e., post ASR. We stack the BERT model on top of a speech activity detection
(SAD) module to create a text-based SD, which from now on we call ‘BERT SD system’. Speaker
diarization systems answer the question “who spoke when?”. SAD, segmentation or SCD,
embedding extraction, clustering and labeling are the main parts of a SD system. An overview
of acoustic-based diarization is covered in our previous work [14], including state-of-the-art
approaches based on DNNs, i.e., end-to-end neural diarization (EEND) [265, 266, 267, 268].

Text-based speaker role detection Early text-based techniques for SRD or SCD relied on
handcrafted lexicons, dictionaries, and rules. They are prone to human errors and not robust
against noisy labels, e.g., produced by standard ASR systems. Collobert et al. [93] introduced
machine learning methods for text processing in part-of-speech tagging, chunking, and semantic
role labeling. In this work, we employ chunking, which means tagging and splitting an ATC
utterance. This allows us to perform jointly SCD and SRD from text. In [269] a text-based
SRD for multiparty dialogues is proposed, but limited to SRD. Text-based diarization has been
proposed in the past by [270, 271]. However, these previous works do not take into account the
text structure, grammar, and syntax.

10A standard ATC pipeline is composed of signal processing, SAD and SD, ASR and NLU.
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Contrasting with previous work Different to other systems, e.g., EEND or traditional acoustic-
based SD, our model is fed with text inputs only (e.g., ASR transcripts). The field of ATC shows
limitations and advantages w.r.t acoustic-based EEND. Limitations: ATC audio is noisy (below
15 dB SNR) with close and cross-talk speech. Advantages: the number of speaker roles are
known and the ATC grammar is well defined, albeit it differs between ATCo and pilots (e.g.,
speaker roles). Thus, we leverage those advantages in order to show that a fully text-based joint
SCD and SRD system can perform on par or even better than traditional acoustic-based SD.

5.2.2 Databases and Experimental Setup

Table 5.4: Train and test statistics per database. ATCo and
pilot columns: single-speaker segments. Mixed column:
samples with two or more segments. †real-life ATC set
with SAD failure.

Database ATCo Pilot Mixed Ref

Private databases

SOL-Cnt† 662 / 138 945 / 204 535 / 205 [272]
HAAWAII 18724 / 1954 21099 / 2299 - / - [13]

Public databases

ATCO2 - / 1772 - / 1350 - / - [22]
LDC-ATCC 12694 / 1515 14216 / 1446 - / - [121]
UWB-ATCC† 4577 / 1157 6669 / 1713 735/174 [120]

Databases and annotation proto-
col We use a mix of private and
public database as describe in Ta-
ble 5.4.11 In addition to manual
speech transcripts, speaker labels
and time segmentation (e.g., AT-
Co/pilot/mixed) are also available.
The BERT model starts by tagging
each word of the transcript (ground
truth or ASR transcript) with a
set of tags that follows the well-
known IOB format (Inside-Outside-
Beginning). In IOB format, each en-
tity (a full sentence in our case) is
composed of two tags: (i) the Begin-
ning defines which token/word is the start of the sentence ‘B-’, and (ii) the Inside tag ‘I-’ defines
which tokens/words belongs to that specific sentence. We define ATCo recordings as Speaker1,
while pilot segments as Speaker2 (green and red in Figure 5.4, respectively). We do not use the
Outside tag, i.e., we know that each word belongs to one class.

Data augmentation We implemented a simple yet effective data augmentation pipeline to
counteract the class imbalance in the train sets (see Table 5.4). First, we split the training sets
on either ATCo (speaker 1) or pilot (speaker 2) subset. Then, we generate new sentences from
the initial set of utterances for each database (e.g., HAAWAII ∼39k utterances). Each new
sample depends on: (i) the number of sentences to be concatenated, and (ii) the speaker label
of each sentence. New samples are composed of one to four sentences, each with an equal
chance of being drawn from the ATCo or pilot dictionary. We generate ∼350 MB of text data

11SOL-Cnt: a private database recorded and collected over EU-funded industrial research project that aims to
reduce ATCos’ workload with an ASR-supported aircraft radar label. Voice utterances of ATCos and pilots have
been recorded in the operations’ room at the ANSP site of Austrocontrol in Vienna, Austria. PJ.16-W1-04 project
[272]: https://www.sesarju.eu/projects/cwphmi.
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Figure 5.4: Left block: data augmentation pipeline. Augmented samples contain between one
and four utterances (probabilities of 40%, 30%, 20% and 10%). New sentences have equal chance
to be sampled from the ATCo or pilot dictionary. Central block: BERTraffic pipeline. Right
block: pipeline to compare acoustic (VBx) and text-based joint SRD and SCD.

(∼1M sentences) in this way. We emphasize that in ATC, there is no need to have a correlation
between previous and next sentences/utterances. This is due to the fact that speaker 1 (ATCo)
communicates to several speakers 2 (pilots). The stream of information received and transmitted
by the speakers is not dependent on ‘left’ or ‘right’ context. Therefore, concatenating various
segments randomly would not degrade substantially the WERs.12 The left block in Figure 5.4
depicts the proposed data augmentation pipeline.

5.2.3 BERTraffic System

The performance of our BERT-based SRD and SCD system is contrasted with a standard acoustic-
based SD system. We use an out-of-the-box VBx system to evaluate the SOL-Cnt and UWB-ATCC
test sets, which contain real-life ATC audio where segmentation failed. For both, BERT and
acoustic-based SD systems, we use the same multilingual ASR-based SAD module [273] to
remove the silence in the recording files.

Speaker role and speaker change detection module The SRD and SCD systems are built on
top of a pretrained BERT model [87] downloaded from HuggingFace [155, 156]. The model is
later fine-tuned with either the original or the augmented databases, on the tagging and chunking
task (following IOB format). We append a linear layer with a dimension of 4 on top of the last
layer of the BERT model, i.e., we use the same classes and tags in Section 5.1. Then, we fine-tune
each model on a RTX 3090 for 3k steps, with a learning rate scheduler that first warms up the

12We measure WERs on the original and augmented test sets. The relative WER degradation is less than 1%.
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learning rate until γ = 5e−5 for 500 steps, and then it linearly decays. We employ AdamW [159]
optimizer (β1=0.9, β2=0.999, ϵ=1e−8) and dropout [157] of dp = 0.1 for the attention and
hidden layers. We use GELU activation function [158]. We train all models with an effective
batch size of 64.

Acoustic-based diarization module For details of the VBx model, the reader is referred
to [264]. This model uses a Bayesian hidden Markov model (BHMM) to find speaker clusters in
a sequence of x-vectors. Here, the x-vector extractor uses DNN architecture based on ResNet101.
The input to the ResNet is 64 log Mel filter bank features extracted every 10 msec using 25 msec
window. In the first step, Agglomerative Hierarchical Clustering (AHC) is applied to the extracted
x-vectors. Then, Variational Bayes HMM over x-vectors is applied using the AHC output. For
achieving the best performance on the database with short duration files with a maximum of two
speakers, we tuned the probability of not switching speakers between frames (loopP) and speaker
regularization coefficient (Fb) to 0.7 and 6, respectively.

Automatic speech recognition We train a hybrid-based ASR system tailored for ATC speech
with Kaldi toolkit [100]. The system follows the standard recipe, e.g., uses MFCC and i-vectors
features with standard chain training based on lattice-free MMI. Similar as in Section 3.1. We use
the same ASR system for both speakers roles, ATCo and pilot. The training recipe and databases
(including the training sets are Table 5.4) are covered in [22, 19, 29, 15].

5.2.4 Evaluation protocol

The experiments are prepared to answer three questions: (i) how reliable is the BERTraffic on
SRD and SCD system on ground truth transcripts? (ii) How is the performance impacted when
using automatically generated (ASR) transcripts instead of ground truth transcripts?13 And, (iii)
which system performs better on real-life ATC speech data, text or acoustic-based SD?

Evaluation: First, for acoustic-based diarization we use DER and Jaccard Error Rate (JER)
as metrics. See more information in the SD subsection of Section 2.4. Second, for Speaker
role detection, we use with JER on the token level (which is more aligned to SD) on the five
proposed test sets. SOL-Cnt and UWB-ATCC databases have utterances with more than one
speaker per utterance. Thus, we test BERTraffic on SD on these two test sets. We first analyze
the model performance on the ideal case, i.e., we used the ground truth audio annotations to
obtain JERs per test set, thus assuming we have access to a perfect ASR system (0% WER). We
employ the Scikit-learn14 Python library to calculate these scores. Third, for speaker change

13This is a real-life scenario where ASR transcripts are fed to the BERT SD system instead of ground truth
transcripts.

14We use weighted Jaccard error rate score. It calculates metrics for each class (i.e., ATCo and pilot), and finds their
average weighted by support (the number of true instances for each class). This accounts for label imbalance.
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Table 5.5: Token-level JER from predictions using different train (column 1) and test sets. We
report the mean ± STD across five training runs with different seeds. Bold: best performance
over public databases. Underline: the highest performance per column.

Model Test: public databases Test: private database

Database # samples ATCO2 UWB-ATCC LDC-ATCC HAAWAII SOL-Cnt

Evaluation: public databases

LDC-ATCC 26.9k 31.3 ± 2.4 35.8 ± 2.0 8.1 ± 0.7 28.7 ± 3.1 52.6 ± 1.3
UWB-ATCC 11.2k 21.6 ± 0.7 10.7 ± 0.6 18.7 ± 2.6 15.2 ± 1.4 18.7 ± 1.7
↪→ + LDC-ATCC 38.1k 19.8 ± 0.9 11.3 ± 0.4 7.1 ± 1.3 14.2 ± 1.4 24.0 ± 1.9

Evaluation: private databases

HAAWAII 39.8k 23.9 ± 0.6 22.3 ± 1.7 14.1 ± 1.2 6.5 ± 0.7 48.5 ± 1.4
↪→ +LDC+UWB 77.9k 17.5 ± 0.2 11.5 ± 0.5 7.5 ± 0.6 6.2 ± 0.3 26.8 ± 2.0

detection we use DER and JER on one private (SOL-Cnt) and one public (UWB-ATCC) test
set, which contains utterances with one or two speakers. For creating the segments from the
BERTraffic SCD system, we used forced alignment between audio and ground truth text using
the ASR module. Also, time information from the ASR output transcripts are used to create the
segments of the BERTraffic SD system on the ASR transcripts.

5.2.5 Results & Discussion

Baseline performance of BERT SD We discuss the results listed in Table 5.5. Here, we aim at
evaluating two aspects of the BERT SD system. First, we assess how well the model behaves on
out-of-domain corpora. We fine-tune BERT models on each database and evaluate it on all five
test sets. We call this: transferability between corpora. Second, we establish baselines on both,
public and private databases. Each model is fine-tuned five times with different seeds, hence we
report the mean and standard deviation across runs. Not to our surprise, test data that matched
the fine-tuning one performed particularly well. LDC-ATCC and UWB-ATCC test sets reached
less than 10% JER, while ∼20% JER for ATCO2.

One aspect that can shed light on new research is how public databases transfer to private ones.
This can help future research to set a starting point, thus reducing the costs inherit by developing
tools from scratch, e.g., SD system for ATC. We noted that UWB-ATCC corpus was more
challenging for the BERT SD model compared to LDC-ATCC and HAAWAII corpora (6.5% and
8.1% JER, respectively). However, this system performed consistently better on all the other test
sets, if we compare the model fine-tuned on UWB-ATCC versus the ones on LDC-ATCC and
HAAWAII. We believe that the transferability to new domain of UWB-ATCC corpus is higher
compared to LDC-ATCC and HAAWAII (see ‘UWB-ATCC’ row in Table 5.5 and compare it
with LDC-ATCC or HAAWAII).
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Figure 5.5: JER for nine models fine-tuned with increased amount of samples per database. We
evaluate models on two configuration. (1) in domain experiments (HAAWAII, LDC-ATCC and
UWB-ATCC) and (2) out of domain test sets (ATCO2 and SOL-Cnt). For the two later (blue and
yellow dashed lines), we report the results of the model fine-tuned with UWB-ATCC database.

Does adding more data help? Here, we evaluate the BERT SD system by performing an
ablation where the amount of fine-tuning data is incremental. In total, 9 models per database are
studied, as depicted in Figure 5.5 (each data point represents one model). We report token-based
JERs which are more aligned to standard SD. For the public databases, we obtained 65, 43, and
37% relative improvement in JERs on LDC, UWB, and ATCO2, respectively, by scaling up the
fine-tuning data from 100 to 2000 samples. This number goes up to more than 50% relative JERs
improvement if we use 10k samples (69% relative improvement for LDC). We note the same
behavior on the private databases. At least 50% relative improvement is seen by scaling up the
data from 100 samples → 2000 samples, on both, HAAWAII and SOL-Cnt experiments. To
our surprise, UWB-ATCC models transfer particularly well on the two out-of-domain test sets
(i.e., ATCO2 and SOL-Cnt). This gives insights that our approach works well on both, public
and private databases. We believe this is an acceptable starting point for the future research on
text-based SRD and SCD (not only aligned to ATC).

Robustness of BERT speaker diarization on ASR transcripts We evalute the BERT SD
system on SOL-Cnt and UWB-ATCC test sets, which contain utterances with more than one
speaker (mixed subset). We feed BERTraffic with 1-best transcripts obtained from our in-domain
hybrid-based ASR system [15]. Table 5.6 lists the results with an additional line for ‘ASR output’.
In the single-speaker case (either ATCo or pilot), the degradation (ASR transcripts instead of
ground truth text) in SD from the BERT SD was no more than 1% absolute JER and DER (worse,
Pilot subset 2.4 → 3.7% DER reduction in SOL-Cnt set). In the MIXED case, the degradation
varied between 0.1% JER and 0.6% DER absolute in SOL-Cnt set, and 3.5% JER and 1.1% DER
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Table 5.6: Comparison of acoustic VBx and text-based SD on ATCo, PILOT, and MIXED subsets
of SOL-Cnt and UWB-ATCC test sets. Bold: top performance. †acoustic-based SD. ††BERTraffic
trained on all corpora with data augmentation and evaluated on ground truth (_GT) or ASR
outputs (_ASR).

Sol-Cnt test set UWB-ATCC test set
DER (%) ↓ JER (%) ↓ DER (%) ↓ JER (%) ↓

Model AT / PI / MIX AT / PI / MIX AT / PI / MIX AT / PI / MIX

Acoustic-based speaker diarization
Acoustic_aIB† 14.8 / 13.9 / 13.1 15.6 / 13.5 / 25.5
Acoustic_VBx† 5.8 / 7.8 / 10.3 7.0 / 10.9 / 22.2 0.8 / 1.2 / 14.4 0.6 / 0.7 / 39.4

Text-based speaker diarization
BERT_GT†† 2.4 / 2.4 / 8.9 1.0 / 2.2 / 15.0 1.2 / 1.7 / 5.8 1.1 / 1.1 / 16.6
BERT_ASR†† 3.0 / 3.7 / 9.5 1.5 / 3.2 / 15.1 1.6 / 1.5 / 6.9 1.2 / 1.2 / 20.1

absolute in UWB-ATCC set. This behavior is mainly due to the noisy labels produced by the ASR
system (see [18]), i.e., 13%/14% WER on SOL-Cnt and UWB-ATCC test sets.

Breaking the paradigm, acoustic or text-based speaker diarization? On challenging tasks
such as ATC, where the rate of speech is high and contains mainly close-talk recordings, the
standard acoustic-based SD systems are prone to fail and merge two or more segments together.
An example is SOL-Cnt database (see Table 5.4) where ∼38% of the test set contains more than
one speaker or/and segment per utterance (i.e., ‘Mixed’). We compare acoustic-based and BERT
SD on private (SOL-Cnt) and public (UWB-ATCC) test sets. Similar to SOL-Cnt, UWB-ATCC set
contains more than one speaker per utterance. We list the results in Table 5.6. In order to contrast
both approaches, we compute the JER on the extracted segments, not on the text-level tokens (as
done before). Both systems use the same SAD for segmentation. The acoustic-based SD, uses the
Hungarian algorithm [274] for assigning the system clusters to the reference speakers. As a result,
it evaluates SCD and clustering without identifying the speaker roles. For estimating the DER,
we align the text with audio data and prepare the labeled segments from it. Using this alignment,
the output of the BERT SD system is comparable to the acoustic-based diarization system. For
computing the scores in all systems, the collar of 150 msec was considered. We found out that in
noisy conditions, acoustic-based SD mistakenly oversplits the segments with one speaker (either
ATCo or pilot). However, the BERT SD seems to be very robust on these segments (3.0/3.7% →
5.8/7.8% DER for ATCo/pilot of SOL-Cnt test set). Even in the mixed scenario of this set, the
BERT SD system (9.5% DER) extended with data augmentation outperformed the acoustic-based
model (10.3% DER) by 7.7%, relatively. On a cleaner set with shorter segments, VBx system
shows the best performance on the segments with one speaker. However, in the mixed segments,
the BERT SD system outperformed the VBx by a marginal improvement.

117



Chapter 5. Towards Better Spoken Language Understanding

Conclusions In this work, we demonstrated that acoustic-based tasks such as speaker diarization
can be enhanced or even replaced by natural language processing techniques. Even including
challenging tasks such as SD for ATC communications. Additionally, we developed a simple and
flexible data augmentation pipeline for ATC text data. To the authors’ knowledge, this is the first
time that a BERT-based SD could fully replace an acoustic-based SD in the field of ATC.
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5.3 Benchmarking Multiple Spoken Language Understanding Rep-
resentations

This section covers an exhaustive evaluation of different representations to address the
intent classification problem in a Spoken Language Understanding (SLU) setup. We
benchmark text, lattice and a multimodal approach to perform the SLU intent detection.
Our work provides a comprehensive analysis of what could be the achievable performance
of different SOTA SLU systems under different circumstances, e.g., automatically- vs.
manually-generated transcripts. We evaluate the systems on the publicly available
SLURP spoken language resource corpus. Our results indicate that using richer forms
of Automatic Speech Recognition (ASR) outputs, namely word-consensus-networks,
allows the SLU system to improve in comparison to the 1-best setup (5.5% relative
improvement). However, crossmodal approaches, i.e., learning from acoustic and text
embeddings, obtains performance similar to the oracle setup, a relative improvement of
17.8% over the 1-best configuration, being a recommended alternative to overcome the
limitations of working with automatically generated transcripts.

Publication Note
The material presented in this section is adapted from the following publication:

• E. Villatoro-Tello, S. Madikeri, J. Zuluaga-Gomez, B. Sharma, S. S. Sarfjoo, I. Nigmatulina, P. Motlicek,
A. V. Ivanov, and A. Ganapathiraju, “Effectiveness of text, acoustic, and lattice-based representations
in spoken language understanding tasks,” in IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP). IEEE, 2023, pp. 1–5

Supplementary materials related to this section:
• Code - GitGub repository at: https://github.com/idiap/slu_representations

Minor contributions Validation of the HERMIT architecture. Participated in the article write up and results
analysis.

5.3.1 Introduction

Spoken Language Understanding (SLU) is the underlying key component of interactive smart
devices such as voice assistants, social bots, and intelligent home devices. Effectively interpreting
human interactions through classification of intent and slot filling plays a crucial role in SLU.
Therefore, it is not surprising that the SLU problem has received substantial attention in industry
and academia. A comprehensive and exhaustive introduction to NLU and SLU is in Section 2.2.
An important aspect of current non-E2E SLU systems is that they rely on an ASR system for
transcripts generation. Thus, there have been efforts to design tighter integration of ASR and
NLU systems beyond 1-best ASR results, e.g., by means of encoding several ASR hypotheses
through lattice-based representations. A lattice is a compact representation encoding multiple
ASR hypotheses obtained at the decoding step. Its use has shown to be key in boosting the
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Figure 5.6: Overview of the considered NLU/SLU methodologies for the proposed experiments.

performance of IR systems [275].

In this direction, there are several works adopting word confusion networks (WCNs) as input to
NLU systems to preserve information in possible hypotheses [276, 277]. The main advantage
of WCN-based approaches is that they are less sensitive to the ASR errors. Finally, recent
approaches based on multi-modal information have been proposed [84]. The main motivation
behind this idea is founded on how humans interpret, in the real world, the meaning of an
utterance and corresponding semantics from various cues, thus, assuming that the acoustic and
linguistic content of a speech signal may carry complementary information for deriving robust
semantic information of an utterance.

Overall, despite the promising results, there still exists a gap between the demonstrated capability
of SLU systems and the requirements of an industrial application, e.g., a generalized voice assis-
tant. For instance, E2E approaches mostly focus on databases with limited semantic complexity
and structural diversity [278]. Additionally, most of the current benchmarks on SLU are widely
saturated, where the obtained performances (F1-scores) are near perfect. Examples of such cases
are results reported on ATIS [279], Fluent Speech Commands [82], or SNIPS [280] datasets.
Hence, to validate the robustness of recent SLU approaches under a more realistic scenario, it
becomes necessary to focus on SLU tasks that incorporate more complex semantics and numerous
intent classes and slots. To the best of our knowledge, such benchmarking, comparing the wide
variety of SLU approaches, has not been performed recently.

In this work, we present an extensive analysis of different SLU techniques, ranging from pure
text-based alternatives to methods that are able to process richer forms of ASR outputs. Overall,
our work has three salient features: (1) we evaluate and compare under the same circumstances
four big families of SLU approaches, namely: text-based, lattice-based, multimodal, and end-to-
end, (2) our performed evaluation is done considering a more realistic scenario, i.e., where no
access to manual transcriptions exists, but instead, ASR transcripts are given as input to the SLU
systems, and (3) we describe several inconsistencies found in the SLURP [281] dataset, one of
the most challenging test beds for SLU systems.

Figure 5.6 depicts an overview of the considered SLU techniques in our experiments: (a)
conventional or pipeline-oriented NLU/SLU approaches, (b) Lattice-based SLU architectures,
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and (c) multimodal (text+acoustic) architectures. Although not shown in the figure, we also
report the performance of very recent E2E methods.

5.3.2 Multiple NLU/SLU Representations

Conventional NLU/SLU systems We selected the HERMIT architecture [282] as the repre-
sentative approach for this category of systems. HERMIT, a HiERarchical MultI-Task Natural
Language Understanding architecture, was designed for effective semantic parsing of domain-
independent user utterances, extracting meaning representations in terms of high-level intents
and frame-like semantic structures. According to the authors, HERMIT stands out for being a
cross-domain, multi-task architecture, capable of recognizing multiple intents in human-machine
interactions. The central motivation behind the design of the HERMIT architecture is the model-
ing of the dependence among three tasks, namely, dialogue acts identification, intents, and slots.
For this, the authors addressed the NLU problem using a seq2seq model employing BiLSTM en-
coders and self-attention mechanisms, followed by CRF tagging layers. HERMIT was validated
in two large datasets with a high number of intent labels (58 to 68 classes), reporting a perfor-
mance of F1=86%. We re-implemented HERMIT in PyTorch [224], with the following changes:
we exchanged the encoder layer based on ELMO embeddings with a BERT [87] encoder, we
replaced the BiLTSM encoders by GRU modules and used the AdamW optimizer. We evaluate
the performance of our implementation of HERMIT when either, manual transcriptions (1-best)
or ASR outputs extracted from the XLS-R model are used, see Figure 5.6.a).

Lattice-based SLU One main limitation of pipeline SLU systems is their sensitivity to the
errors present in the ASR transcriptions. There are SLU systems robust against ASR errors
based on lattices and WCNs [277, 283]. Although both, word lattices and WCNs contain
more information than N-best lists, WCNs have been proven more efficient in terms of size
and structure, thus representing a more plausible alternative when designing SLU systems that
receive as input a graph-based structure. We re-implemented a very recent WCN-based approach,
namely WCN-BERT [277]. Originally, the WCN-BERT architecture consists of three parts:
a BERT encoder for jointly encoding, an utterance representation model, and an output layer
for predicting semantic tuples. The BERT encoder exploits posterior probabilities of word
candidates in WCNs to inject ASR confidences. Multi-head self-attention is applied over both
WCNs and system acts to learn context-aware hidden states. The utterance representation model
produces an utterance-level vector by aggregating final hidden vectors. Finally, WCN-BERT
adds both discriminative and generative output layers to predict semantic tuples. WCN-BERT
stands out for being able to leverage the timing information and confidence scores that are part of
standard WCNs. Authors evaluated the performance of WCN-BERT on DSTC2 dataset [284], a
corpus of dialogs in the restaurant search domain between a human and automatic agent (i.e.,
human-machine conversations) reporting and overall F1=87.91%. For our experiments, we only
keep the WCN-BERT encoder and the multi-head attention layers to generate the utterance-level
representation from the original model in [277]. On top of this, we concatenate a fully-connected
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layer to perform intent classification.

Multimodal SLU It refers to the process of embeddings alignment for explicitly minimizing
the distance between speech embeddings and the text embeddings from state-of-the-art text
encoders like BERT [87]. Thus, the speech embeddings that are used for downstream tasks
are made to share a common embedding space with the textual embeddings, leading to better
performance in SLU tasks, e.g., intent detection. However, there are a few challenges involved
in the process of modeling such multimodal human language time-series, namely: 1) inherent
non-aligned data due to variable sampling rates for the sequences from each modality; and 2)
long-range dependencies between elements across modalities. In order to address these problems,
we implemented a solution based on the Multimodal Transformer (MulT) [285]. MulT depicts an
end-to-end model that extends the standard Transformer network [61] to learn representations
directly from unaligned multimodal streams. At the heart of MulT, there is a cross-modal
attention module, which attends to the crossmodal interactions at the scale of the entire utterances.
It merges multimodal time-series via a feed-forward fusion process from multiple directional
pairwise crossmodal transformers. Specifically, each crossmodal transformer serves to repeatedly
reinforce a target modality with the low-level features from another source modality by learning
the attention across the two modalities’ features.

In our experiments, we adopted the ideas proposed in MulT [285]. Hence, given two input
modalities, each crossmodal transformer block (one for each modality) keeps updating its
sequence. Thus, the crossmodal transformer learns to correlate meaningful elements across
modalities. As a final step, outputs are concatenated and passed through a self-attention module
to collect temporal information to make predictions. The last elements of the sequence are passed
through fully-connected layers to make the intent prediction.

5.3.3 Databases and Experimental Setup

ASR Module with XLSR-53 As shown in Figure 5.6, we consider the XLSR-53 model as main
ASR component [51]. XLSR-53 learns cross-lingual speech embeddings by pretraining a single
generic model from raw waveform of speech in multiple languages. The structure of XLSR is
similar to Wav2Vec 2.0 [49], which is trained using contrastive loss over masked latent speech
representations and jointly learns a quantization of the latent embeddings shared across languages.
We then fine-tune XLSR-53 model [51] with 390h of English data from AMI and Switchboard
datasets using E2E-LFMMI loss function [286, 287] with biphone units [222, 288, 36]. A
grapheme-based lexicon of size 1M was used, and the LM was trained with 34M utterances
from publicly available English datasets including People’s speech, Fisher, Switchboard, AMI,
Wikitext103, and subsets of Common Crawl and Reddit datasets. To improve XLSR-53’s
generalization on English conversational speech, we fine-tuned it using 560h of untranscribed
data crawled from YouTube.15 On the YouTube data, we followed an incremental semi-supervised

15This subset was selected from conversational video calls in English language.
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Table 5.7: SLURP statistics. SLURPO: original, while SLURPF is a cleaner version of SLURP.

Statistics SLURPO SLURPF

Audio Files 72,277 50,568
↪→ Close range 34,603 25,799
↪→ Far range 37,674 24,769

Duration [hr] 58 37.2
Av. length [s] 2.9 2.6
Nb. of intents 48 47

learning approach with four iterations [139]. For decoding, we use the WFST decoder from
Kaldi [100], with a beam width of 15.

SLURP database To perform our experiments we used the SLURP dataset [281], a publicly
available multi-domain dataset for E2E-SLU, which is substantially bigger and more diverse than
other SLU resources. SLURP is a collection of audio recordings of single-turn user interactions
with a home assistant. Table 5.7 contains a few statistics about SLURP. During a manual analysis,
we found many inconsistencies in SLURP annotations. Basically, we identified cases where the
manual transcription does not correspond to what is being said in its corresponding audio file.
Thus, we considered as erroneous those audio files for which the manual transcription did not
match with the automatic transcription, or whose transcripts were inconsistent (i.e., not the same)
in the corresponding metadata files. By following this approach, we detected that nearly 30%
(20h) of the original data contains some type of inconsistency. We refer as SLURPF to the subset
of SLURP without these inconsistent files (see Table 5.7).

Model Training Experiments from EXP1 - EXP7 correspond to the results of conventional
NLU/SLU techniques. We employ the implementation of the HERMIT architecture [282]. As
can be observed in Table 5.9, differences among these experiments are on the type of data used
for training and evaluating the HERMIT model, i.e., combinations of either manual transcripts
or 1-best ASR outputs. EXP8 - EXP9 correspond to the experiments done using WCN-based
representations. Notice that for both set of experiments, i.e., conventional NLU and WCN-
based, we used the XLS-R model, not-adapted and adapted to SLURP, to obtain the transcripts
and WCNs respectively. Finally, EXP10-EXP12 corresponds to the experiments done using
the crossmodal transformer. Similarly, we evaluate the performance of this approach under
circumstances where the XLS-R model is not adapted to the target domain (EXP10), and when
adapted to SLURP (EXP11), and one last experiment using acoustic embeddings obtained from
HuBERT (EXP12) model.16

16To generate the acoustic embeddings we followed the SpeechBrain [289] SLURP recipe: https://github.com/
speechbrain/speechbrain/tree/develop/recipes/SLURP
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5.3.4 Results & Discussion

Table 5.8: WER% on SLURP Test sets with the XLSR-53
English model before and after adaptation with SLURPF

train subset.

System Dev (WER%) Test (WER%)

Headset All Headset all

No adaptation 23.4 34.0 23.0 34.4
Adapted to SLURP 13.3 16.1 13.0 15.5

Table 5.9 shows the obtained ex-
perimental results for all the bench-
marked architectures. Column “Exp”
indicates the name of the experi-
ment, “Input Type” describes what
type of data was used for training
and evaluating (dev and test) the cor-
responding experiment. For those
experiments with the tag manual it
means ground truth transcriptions
were used, while 1-best refers to the
automatically generated transcriptions using the XLSR-53 model. Column “XLSR-53 adaptation”
indicates whether the XLSR-53 model was fine-tuned to the SLURP dataset. In order to do the
XLSR-53 adaptation, the English ASR model described in Section 2.4 was fine-tuned with the
train subset of the SLURPF data without changing the LM. ASR performances before and after
fine-tuning to SLURP are given in Table 5.8. And finally, SLURPO and SLURPF depict what
version of the SLURP dataset was used.

Notice that the results obtained in the test partition from the cleaned version of the data, i.e.,
SLURPF , are usually better than those obtained in the original version of the SLURP dataset. To
some extent, this is an indicator that the identified inconsistencies in the original SLURP dataset
were affecting the benchmarked models, resulting in a miss classification of some intents types.

Experiments EXP1, EXP3, and EXP6 represent artificial scenarios, as in a real-world application
we do not expect to have manual transcripts for test partitions. Nevertheless, the best performance
under this configuration, e.g., F1=87% in the SLURPF for EXP6, represents an upper bound
value. Interestingly, this value is even better than the performance obtained in the EXP1, i.e.,
considering only ground truth data. This may be due to an (unexpected) regularization effect
caused by the noise contained in the 1-best transcripts from all the audios of the SLURP. Thus,
it becomes really relevant that WCN-based approaches (EXP8 & EXP9) are able to obtain a
competitive performance against the pipeline 1-best → 1-best NLU experiments (EXP4). Even
though the not-adapted WCN model (EXP8) does not outperform EXP4, this result validates
the existence and the impact of richer ASR hypotheses in the lattice, which helps improve the
performance of the SLU system, especially in noisy data (SLURPO).

Although WCN experiment EXP9 showed a good improvement against the 1-best scenario,
multimodal experiments obtain a remarkable performance, comparable to the performance of
the oracle experiment (EXP1). The main difference between EXP11 and EXP12 is that the
former uses XLSR-53 adapted to SLUPR, while the latter fine-tunes HuBERT toward intent and
slot classification in SLURP. This is the explanation for why EXP12 performance is slightly
better than EXP11 (XLSR-53 adapted). Finally, as reference results from an E2E approach, the
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Table 5.9: Accuracy (ACC) and F1-scores (F1) on intent classification for different representations.
We test our approach with either manual or 1-best approaches. Manual refers to ground truth eval-
uation, while 1-best is obtained by using our ASR module XLSR-53. Thus, manual → manual
represents the oracle scenario (upper bound), while 1-best → 1-best depicts a more real-world
case scenario.

Exp. Input Type XLSR-53
SLURPO SLURPF

Dev (↑) Test (↑) Dev (↑) Test (↑)

train→dev-test adaptation ACC F1 ACC F1 ACC F1 ACC F1

Conventional NLU/SLU

EXP1 manual → manual NA 0.89 0.88 0.85 0.84 0.88 0.87 0.82 0.82
EXP2 manual → 1-best % 0.70 0.65 0.69 0.65 0.74 0.69 0.71 0.67
EXP3 1-best → manual % 0.85 0.85 0.86 0.85 0.86 0.86 0.85 0.83
EXP4 1-best → 1-best % 0.72 0.68 0.73 0.69 0.76 0.71 0.77 0.73

EXP5 manual → 1-best ✓ 0.82 0.81 0.80 0.79 0.84 0.82 0.86 0.84
EXP6 1-best → manual ✓ 0.88 0.87 0.87 0.86 0.88 0.87 0.88 0.87
EXP7 1-best → 1-best ✓ 0.84 0.83 0.83 0.83 0.85 0.84 0.85 0.84

Lattice-based SLU

EXP8 WCN % 0.68 0.67 0.68 0.68 0.69 0.68 0.68 0.68
EXP9 WCN ✓ 0.78 0.77 0.79 0.79 0.80 0.80 0.78 0.77

Multimodal SLU

EXP10 multimodal % 0.75 0.75 0.74 0.73 0.75 0.74 0.76 0.76
EXP11 multimodal ✓ 0.82 0.82 0.83 0.83 0.83 0.83 0.82 0.82
EXP12 multimodal (HuBERT [205]) ✓ 0.87 0.88 0.84 0.84 0.88 0.88 0.86 0.86

SLURP recipe reports F1 values of F1= 0.77 and F1= 0.88 under configurations referred to as
direct and direct Hubert respectively. More details can be found in the respective repository.3

Overall, using a multi-modal approach seems to be the recommended option, as it guarantees
the best performance. Although it should be considered that it represents a costly solution in
terms of computational power. On the contrary, if access to manual transcripts is guaranteed for
training an NLU/SLU system, independently of having (or not) the possibility to adapt the ASR
model toward the target domain, the recommended solution would be to follow a traditional NLU
pipeline.

Conclusions In this work, we successfully benchmark several neural architectures to perform
NLU, pipeline SLU and multi-modal SLU. Our analysis includes SOTA NLU/SLU techniques and
compares them in more realistic scenarios. The presented analysis shed light on state-of-the-art
architectures in the SLU domain, helping future researchers to define more clearly the application
scenario of their proposed solutions. As an additional contribution, we also put together a cleaner
version of the well-known SLURP dataset. During our experimentation process, we found many
inconsistencies between the manual annotations and what was really spoken in the audio files.
This rise concern on the SLU field, as several papers have already reported results on this dataset
without being aware of it.
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6 Joint Speech Recognition and Spoken
Language Understanding

Introduction

In preceding chapters, we investigated how to build ASR and SLU systems for challenging
applications, such as ATC. In this chapter, we showcase the integration and optimization of
multiple tasks within a single model through end-to-end training. In Section 6.1, we demonstrate
how a unified encoder-decoder model can handle ASR, speech-to-text translation, cross-talk, and
speaker change detection via special tokens. Later in Section 6.2, we extend similar methodologies
to the XLSR-Transducer architecture, offering promising applications in streaming industrial
scenarios. An illustrative overview of this chapter is provided in Figure 6.1.

Chapter 6

Multitask encoder-decoder model
Section 6.1

Multitask XLSR-Transducer model
Section 6.2

- ASR, speech-to-text translation 
- cross-talk and speaker change detection 

STAC-ST: Multiple tasks with special tokens

XLSR-53 (🤗 ) 

✅Conversational speech: challenging 
✅  Speaker-turn aware model 
✅  Multilingual model  
✅  Extensive model benchmarking 
✅  From 30M to 298M parameters model 

✅Conversational speech: challenging 
✅Text and time-aligned: 
 - Named-entity recognition 
 - Speaker change detection 
 - Endpointing detection 
✅Low-resource multitask setting 

TokenVerse: Multiple tasks with special tokens

Joint architectures for ASR + SLU

Figure 6.1: Overview of Chapter 6.
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6.1 Token-Based Multitasking for Encoder-Decoder Models

Conventional speech-to-text translation (ST) systems are trained on single-speaker ut-
terances, and they may not generalize to real-life scenarios where the audio contains
conversations by multiple speakers. In this work, we tackle single-channel multi-speaker
conversational ST with an end-to-end and multi-task training model, named Speaker-Turn
Aware Conversational Speech Translation, that combines automatic speech recognition,
speech translation and speaker turn detection using special tokens in a serialized labeling
format. We run experiments on the Fisher-Callhome corpus, which we adapted by merg-
ing the two single-speaker channels into one multi-speaker channel, thus representing
the more realistic and challenging scenario where multi-speaker turns and cross-talks
occur. Experimental results across single- and multi-speaker conditions and against
conventional ST systems, show that our model outperforms the reference systems on the
multi-speaker condition, while attaining comparable performance on the single-speaker
condition. We release scripts for data processing and model training.

Publication Note
This work was conducted during an internship at Amazon Web Services, Amazon in 2023.
The material presented in this section is adapted from the following publication:

• J. Zuluaga-Gomez, Z. Huang, X. Niu, R. Paturi, S. Srinivasan, P. Mathur, B. Thompson, and M. Federico,
“End-to-End Single-Channel Speaker-Turn Aware Conversational Speech Translation,” in Proceedings
of the 2023 Conference on Empirical Methods in Natural Language Processing, 2023, pp. 7255–7274

Supplementary materials related to this section:
• Code - GitGub repository at: https://github.com/amazon-science/stac-speech-translation

Major contributions Problem definition and experimental design and setup. Data preparation in the multi-
task format for model training. Trained and fine-tuned the models for the experiments. Lead the work, including
the paper write up.

6.1.1 Introduction

Speech translation (ST) has seen wide adoption in commercial products and the research commu-
nity [290, 291] due to its effectiveness in bridging language barriers. ST aims to translate audio
of source languages into text of the target languages. This problem was tackled by a cascaded
approach that pipelines Automatic Speech Recognition (ASR) and Machine Translation (MT)
over the last few decades [292, 293, 294]. However, end-to-end speech translation (E2E-ST)
systems [295, 296] have recently gained increasing interest and popularity thanks to their simple
architecture, less error propagation [297], efficient training process, and competitive performance
[298].

Despite the significant advances in E2E-ST [299, 300], most ST systems to date have focused
on translating isolated speech utterances from monologue speech [301], read speech [302] or
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speaker 1 speaker 2 cross-talk

CHANNEL 1

CHANNEL 2

CHANNEL 1 & 2
Proposed Speech-to-Text Translation: multi-turn & multi-speaker

Default Speech-to-Text Translation: single-turn & single-speaker

Figure 6.2: A two-speaker multi-turn conversational segment. Previous work focuses on separated
channels (top box) without considering cross-talks and speaker-turns. STAC-ST targets a more
challenging scenario where multiple speakers converse, with occasional cross-talks due to merged
channels (bottom box).

prompted speech [2]. Being trained on single-turn utterances, these systems may lack the ability
to handle real-life scenarios in which multiple speakers converse, and sometime overlap, in the
same audio channel [303].

In this work, we tackle the more challenging task of multi-speaker conversational ST. We refer to
it as multi-turn & multi-speaker (MT-MS), as opposed to single-turn, which most ST systems
implicitly assume. This is illustrated in Figure 6.2, where a “conversation" between two speakers
recorded with separate channels (top) becomes more difficult to translate if the channels are
merged (bottom), due to the appearance of speaker-turns and cross-talks. In particular, ST with
cross-talks and speaker-turns is difficult because speech content of different sentences is mixed up
or switched. While MT-MS speech has been studied in ASR [304], to the best of our knowledge,
this is the first work that investigates it in end-to-end ST.

We tackle MT-MS ST with an approach we named Speaker-Turn Aware Conversational Speech
Translation (STAC-ST). STAC-ST is a multi-task training framework that combines ASR, ST
and speaker-turn detection using special tokens in a serialized labeling format. It is inspired by a
recent speech foundation model, Whisper [188], which jointly trains ASR, X-to-English ST, voice
activity detection, and language identification with 680kh of speech data using labeling-based
multi-task learning. Our contributions are five-fold:

1. We introduce the task of multi-turn & multi-speaker ST, including cross-talks and speaker-
turns, that expands the realm of ST which so far was limited to single-speaker utterances.

2. Our end-to-end STAC-ST model achieves state-of-the-art BLEU scores on Fisher &
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CALLHOME, a corpus that allows to targets MT-MS, with no degradation on single-turn
ST.

3. We explore a zero-shot scenario where MT-MS ST data is not available for training.
STAC-ST improves ST up to 8 BLEU by leveraging MT-MS ASR targets, mitigating the
necessity of parallel data, which is lacking within the community.

4. Besides serializing transcripts and translations at cross-talks, the STAC-ST model also
shows to learn the task of time-aligned speaker change detection.

5. We conduct extensive ablation studies on important aspects of STAC-ST, including joint
modeling of ASR & ST, impact of model size (up to 300M parameters), data size, and inte-
gration of task tokens. Thus, we shed light on the best practices for building conversational
MT-MS ST systems.

Conversational Speech Translation Work on conversational ST [98, 305, 306] has mainly
focused on single-speaker speech, either segmented manually or automatically, via voice activity
detection. Manual segmentation was assumed in recent studies, based on Fisher and CALLHOME
corpora, on cascaded ST [98], E2E-ST [296, 307], simultaneous ASR & ST [308], streamed
ST [309], and multilingual ST [298]. Automatic segmentation was instead deployed with the
MSLT corpus [1] to target streamed ST [310] as well as language-agnostic streamed ST [300].

In this work, we report results on the Fisher-CALLHOME corpus [303] which, similarly to the
MSLT corpus, offers the opportunity to run contrasting experiments of single-speaker ST versus
MT-MS ST, both without reference segmentation.

Speaker-Turn and Cross-Talk in ASR Speaker-turns and cross-talks have been already
explored in the ASR field and commonly termed, multi-talker ASR. [105] proposes a serialized
output training (SOT) strategy for multi-speaker overlapped speech recognition with special
tokens. At inference time, word, and speaker tags are output in a serialized manner for an
unlimited number of speakers. SOT was later ported to the streaming scenario in [311]. However,
previous work argue that SOT may produce frequent speaker changes, which can degrade the
overall performance. Thus, authors in [107] propose to explicitly incorporate boundary knowledge
with a separate block for speaker change detection task and boundary constraint loss. Furthermore,
multi-talker ASR has also been explored in the streaming [304] and non-streaming setups [312].
Another branch targets cross-talk & multi-talker ASR [313] using speech separation of long-form
conversational speech [314] but these techniques have difficulty handling variable number of
speakers and are not optimized end-to-end for ASR improvements. However, how to effectively
deal with multi-speaker conversational ST has been neglected.

6.1.2 Speaker-Turn Aware Conversational Speech Translation System

This section describes our end-to-end multi-task learning model for multi-turn multi-speaker
conversational ST.
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Figure 6.3: Proposed model architecture of STAC-ST for
multi-turn & multi-speaker ST.

System Diagram Figure 6.3 illus-
trates the proposed multi-task learn-
ing framework for MT-MS ST. The
model is an encoder-decoder Trans-
former architecture inspired by [61].
The multitask training format using
special tokens was inspired by Whis-
per [188], while the integration of
CTC loss was inspired by [70].

STAC-ST has a standard front-
end module. First, frame-level
80-dimensional filterbank features
are extracted from the audio1 every
40ms. Second, we apply SpecAug-
ment [160] on the input audio fea-
tures, an effective data augmentation
technique that masks out certain re-
gions of the input filterbank features. Then, the audio augmented features are passed to a 2-layer
CNN that outputs a 5120-dim vector (flattened 2D→1D output tensor from the CNN layer).
Finally, this vector feeds a linear layer that generates the input to the encoder model. The decoder
takes the encoder outputs and generates a sequence of text. Formally, for each speech segment,
the filterbank features can be represented as: X = {xt ∈ RF }T

t=1 and the reference transcription
or translation as: Y = {wn ∈ V }N

n=1. Where, F is the feature dimension, T is the number
of speech frames, N is the number of text tokens, and V is the vocabulary. During training of
STAC-ST, we concatenate independent datasets DASR = (X, YASR) and DST = (X, YST ), for
ASR & ST, respectively. Samples of training mini-batches are jointly drawn from DASR and
DST .

Serialized Labeling Based on Task Tokens A key component of the model is the serialized
multi-task labeling framework based on special tokens. As shown in Figure 6.3, besides the text
tokens, special tokens are used to specify the task. There are four types of task tokens, i.e., [SL]
(source language), [TL] (target language), [TURN] (speaker-turn), and [XT] (cross-talk). The
first two tokens are language tokens that define the task for either ST (when [SL] ̸= [TL])
or ASR (when [SL] = [TL]). [TURN] and [XT] specify the auxiliary tasks of detecting
speaker-turn changes and cross-talks, which are critical for MT-MS speech processing. The latter
two are more aligned to acoustic tasks. Note that cross-talks always occur during speaker-turn
changes, so [XT] always follows [TURN].

We concatenate transcripts or translations sequentially, appending [TURN] and [XT] tokens
when needed. If utterances ut and ut+1 overlap in time, we append the targets of utterance ut+1

1The audio is always down- or up-sampled to 16 kHz.
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after utterance ut. The order of utterances is determined by their start time. At training time, we
prepend [SL] and [TL] tokens to each sample of DASR and DST , while at inference, both are
preset to specify the desired task.

Joint CTC and NLL Loss STAC-ST jointly models ASR and ST by balancing CTC [45] and
Negative Log-Likelihood (NLL) losses [315], according to:

L = λ · LCT C(Y |X) + (1 − λ) · LNLL(Y |X), (6.1)

LCT C and LNLL are computed by appending linear layers with dimension V on top of the
encoder and decoder, respectively. Figure 6.3 shows the proposed joint CTC/NLL loss training
scheme [70]. In practice, the CTC loss models a probabilistic distribution by marginalizing
over all possible mappings between the input (audio features, sampled at 40 ms) and output
sequence (transcription or translation). We refer readers to the original implementation in [45],
for more details. Moreover, CTC loss has been proven to aid ST by helping to stabilize encoder
representations at early stages of training, i.e., allowing the decoder to learn soft alignment
patterns faster [72]. Note that we do not include language tokens, [SL] and [TL], for LCT C

computation because they do not correspond to acoustic features. Following previous work [316,
317], we set the weight λ of the CTC loss to 0.3.

Table 6.1: Fisher-CALLHOME corpus statistics.

Fisher CALLHOME

Statistics train dev dev2 test train dev test

Duration [h] 150 4.0 3.9 4.0 16 4.0 2.7
#Utterance [k] 138 3.9 3.9 3.6 15 3.9 1.8
Speech act. [%] 97 97 98 98 78 80 58

This section introduces the datasets
and metrics we used for evaluation,
as well as architecture and training
details of STAC-ST.

6.1.3 Databases and Experi-
mental Setup

Conversational Multi-Turn & Mul-
ti-Speaker ST We use the Fisher
and CALLHOME corpora which re-
spectively comprises 170 hr and 20 hr of audio and transcripts of telephone conversations in
Spanish.2 The Spanish-to-English translations are available from [303]. We refer to them as
Fisher-CALLHOME and summarize the data statistics in Table 6.1. This corpus is well suited for
MT-MS ST, as it contains a significant amount of labeled data and non-segmented (audio) long
conversation between speakers. We merged Fisher and CALLHOME for training and up-sampled
the audio to 16 kHz.

Segmentation Each conversation on Fisher-CALLHOME occurred between two speakers
with multiple turns over two channels (one speaker per channel). For MT-MS ST experiments,

2LDC2010S01, LDC2010T04, LDC96S35, LDC96T17

132



6.1 Token-Based Multitasking for Encoder-Decoder Models

we merge the two channels into one, which creates natural speaker changes and cross-talks
as illustrated in Figure 6.2. Human annotations in Fisher-CALLHOME provide time-aligned
audio utterances, transcripts and translations, and have been used to segment each channel into
single-turn utterances in prior work [e.g., 298]. Figure 6.4 plots the distributions of segment
duration in the corpus. We observe that the majority of single-turn segments are less than 5
seconds long. To build models with manageable size and computation, following [188], we
segment the merged-channel conversations into chunks of up to 30 seconds. For this step, we
first used an off-the-shelf VAD-based segmentation tool, SHAS [318], but we realised that the
resulting duration histogram is almost uniform and far from the natural segmentation. Hence,
we decided to rely on the manual time annotations as follows. Starting from the first utterance
start, we find the farthest utterance, end such that end − start is up to 30 seconds. We extract
audio within this span as one segment and repeat this procedure until the last utterance end is
reached. Note that one segment may stretch over multiple utterance start and end, so it may
include silences, noise, speaker changes and cross-talks. We use this as the primary MT-MS
segmentation strategy throughout this section unless otherwise stated.

0 5 10 15 20 25 30 35
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0.10

0.15

0.20

0.25

D
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Single-Turn Multi-Turn & Multi-Speaker SHAS

Figure 6.4: Fisher-CALLHOME test set distribution of
segment length with three different segmentation ap-
proaches: single-turn, MT-MS, and SHAS.

Additional ASR & ST Corpora
Fisher-CALLHOME has limited
training data size, so we explore
additional corpora to improve our
model and to evaluate its gener-
alization ability. We also use
the official CoVoST2 [2] splits for
Spanish-English ST (156 hr) and
Common Voice (CV) 3 [97] splits
for Spanish ASR (458 hr) as addi-
tional training data. Even though
these corpora are not in conversation
domain, they may still help speech
modeling in general.

CoVoST2 and CV corpora are composed of single-turn pre-segmented utterances. To generate
data consistent with our MT-MS segmentation, we randomly concatenate audio utterances and
yield segments of up to 30 seconds. Note that these synthetic MT-MS segments contain no
silences and cross-talks, but still have speaker-turn changes (labeled by [TURN]).

Evaluation Metrics We report case-insensitive BLEU using SacreBLEU4 [319] for translation
and Word Error Rate (WER) for ASR. Note that we (1) remove all special task tokens before

3Version: cv-corpus-13.0-2023-03-09.
4Signature: nrefs:N|case:lc|eff:no|tok:13a|smooth: exp|version:2.3.1. (Fisher N=4

and CALLHOME N=1).
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computing each metric and (2) evaluate on MT-MS segmentation unless otherwise stated.

Hyper-Parameters We experiment with three model sizes, S(mall), M(edium), and L(arge),
with increasing dimension (256, 512, 1024), number of encoder layers (12, 14, 16), number of
heads (4, 8, 16), with same number of decoder layers (6) and FFN dimension set to 4x the model
dimension. Their numbers of parameters are 21M, 86M, and 298M, respectively. We use the
S-size model by default and scale up to larger sizes when out-of-domain training data are added.
We apply BPE sub-words [67] on both translations and transcripts with 5K operations. We create
a joint BPE model for the language pair, or when we add CV+CoVoST2 corpora.

We train for 100k steps the S-size models and 200k steps the M- and L-size models. We use
AdamW [186] optimizer with a peak learning rate of 5e−3 for the S model and 1e−3 for M and L
models. The learning rate scheduler has warmup and cooldown phases, both taking 10% of the
total training steps [320]. We set dropout [157] to 0.1 for the attention and hidden layers, and
use GELU (Gaussian Error Linear Units) as the activation function [158]. We use gradient norm
clipping [258]5 and SpecAugment [160] for data augmentation. The training configuration and
architecture are based on a LibriSpeech recipe for Transformer-based ASR from the SpeechBrain
toolkit [289].6

6.1.4 Results & Discussion

Table 6.2: ASR and ST performance of STAC-ST with
different training data configurations. Joint training with
single-turn and multi-turn data of both ASR and ST tasks
achieves the best scores.

Training data configuration Fisher CALLHOME

Single-Turn Multi-Turn WER BLEU WER BLEU
ASR ST ASR ST (↓) (↑) (↓) (↑)

1) ✓ ✓ - 28.3 - 8.5
2) ✓ ✓ 29.4 41.5 49.9 14.7
3) ✓ ✓ ✓ ✓ 25.8 46.8 42.1 17.9

4) ✓ ✓ 40.2 29.3 57.9 8.9
5) ✓ ✓ ✓ 25.8 35.6 42.3 11.7
6) ✓ ✓ ✓ 44.9 43.7 68.2 15.5

Our experimental results document
three properties of the STAC-ST

model: (1) robustness to the MT-MS
ST condition with no degradation
in the single-turn ST condition; (2)
ability to leverage speaker-turn and
cross-talk information, which trans-
lates into improved WER and BLEU
scores; (3) ability to perform time-
aligned speaker change detection.

Multi-Task Learning We explored
various training data configurations
for multi-task learning (see Ta-
ble 6.2). We started with training
a model with only MT-MS data. The
training failed to converge, because combining single-turn utterances to create longer (max 30s)
MT-MS segments greatly reduces the number of training samples. We tackled this issue by

5max_grad_norm = 5.0.
6https://github.com/speechbrain/speechbrain/tree/develop/recipes/LibriSpeech/ASR/transformer
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augmenting the training data with auxiliary tasks, as explained below and reported in Table 6.2.

Joint training of single-turn and multi-turn tasks is beneficial Adding single-turn ST data
shows to stabilize training (Row-1 of Table 6.2). Using both single-turn and multi-turn ST+ASR
data further improves ST quality (Row-3). Although single-turn and multi-turn data share the
same utterances, split/concatenation-based data augmentation is known to be effective in the
low-resource training regime [321, 322].

Joint training of ST and ASR is beneficial Just adding multi-turn ASR data also stabilizes
the training (Row-2). By adding both single-turn and multi-turn ASR data for joint training on
top of Row-1, both BLEU and WER are improved by a significant margin (Row-3).

Table 6.3: ASR and ST performance of STAC-ST with
the incremental addition of task tokens. Modeling speaker-
turn and cross-talk detection with [TURN] and [XT]
tokens enhances ASR and MT accuracy.

Fisher CALLHOME

Task tokens WER ↓ BLEU ↑ WER ↓ BLEU ↑

[SL], [TL] 26.4 45.0 43.7 16.6
+ [TURN] 25.8 45.2 43.1 17.6
+ [XT] 25.8 46.8 42.1 17.9

Multi-turn ASR data help mul-
ti-turn ST In our training data,
there are more labeled single-turn
ST data and multi-turn ASR data
than multi-turn ST data. We tested
a zero-shot setting where, for the
multi-turn condition, is only cov-
ered by ASR training data (Row-5).
Comparing to training with single-
turn ST+ASR data only (Row-4), the
resulting model brings 3-8 BLEU
gains. We hypothesize that, as the
encoder is target-language-agnostic,
the acoustic representations and the turn detection capacity learned from multi-turn ASR data
does partially transfer to the ST task.

On the contrary, multi-turn ST does not seem to help multi-turn ASR, as shown by comparing
WER scores in Row-4 and Row-6. We hypothesize that the non-monotonicity of the multi-turn
ST task disrupts multi-turn ASR performance [72]. However, this can be fixed by adding back
multi-turn ASR data (Row-3). Note that we will use the Row-3 data configuration for the rest of
this work.

Speaker-Turn and Cross-Talk Detection The STAC-ST multi-task learning framework also
encodes speaker-turn and cross-talk information with task tokens [TURN] and [XT]. We run
experiments to study how these task labels impact on ASR and ST performance in MT-MS setting
and how they even enable speaker change detection.
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Figure 6.5: Speaker activity on a Fisher corpus sample. On the top, ground truth human annotation
on two audio channels. On the bottom, CTC spikes of turn and cross-talk tokens detected by
STAC-ST in the merged channel.

Modeling speaker-turn and cross-talk detection helps multi-speaker ST and ASR We run
experiments by ablating the two task tokens. Evaluation results in Table 6.3 show that incremen-
tally adding speaker-turn and cross-talk detection tasks improves translation and transcription
quality measured by BLEU and WER. These results support the hypothesis that explicitly learning
the two tasks helps the model to better handle MT-MS scenarios.

Table 6.4: Speaker change detection performance mea-
sured by F1, MDR and FAR. We compare STAC-ST
with a well-known speaker diarization toolkit, PyAnnote.
The strongest L-size STAC-ST model (from Table 6.5)
shows on-par F1-score with PyAnnote. Tolerance is set
to 0.25s.

Fisher CALLHOME

System F1 ↑ MDR ↓ FAR ↓ F1 ↑ MDR ↓ FAR ↓

PyAnnote 75.8 26.8 21.4 81.2 20.9 15.0
STAC-ST 74.9 31.3 17.7 80.6 25.6 12.1
STAC-ST (L) 77.6 28.6 15.0 81.3 23.5 13.2

Modeling speaker-turn and cross-talk
detection enables the model to
perform speaker change detection
The CTC loss helps the encoder to
align input audio to text tokens per
acoustic frame, including the two task
tokens. We trace speaker-turns and
cross-talks in the timeline by (1) first
running a forward pass on the encoder
to extract audio-text temporal align-
ments and then we (2) locate the spikes
of the liner layer on top of the encoder
(aka. CTC spikes) only for [TURN]
and [XT] tokens. As illustrated in Figure 6.5, the CTC spikes align remarkably well with actual
edges of speaker activities. By leveraging available annotations in Fisher-CALLHOME test sets,
we measure speaker change detection performance with three standard metrics: False Alarm
Rate (FAR), Miss Detection Rate (MDR) and F1-score. The FAR computes the rate at which
STAC-ST outputs a [TURN] CTC spike when there is no speaker change. The MDR computed
the rate that STAC-ST misses generating [TURN] tokens at speaker changes. While the former
two are widely used in speaker segmentation research [323], the F1-score provides an overall
assessment of the performance.

To compute these metrics, we first prepare Rich Transcription Time Marked (RTTM) files for
each test set from the time-aligned CTC [TURN] spikes. We compared performance of two
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Figure 6.6: ST performance on Fisher-CALLHOME test data using different segmentation
techniques for long-form audio: MT-MS (ours), WebRCT, and SHAS. BLEU scores of using
VAD-based tools (either WebRCT or SHAS) for test data segmentation are below the ones using
our MT-MS segmentation.

STAC-ST models (S and L) against a reference system, that is the popular speaker diarization
pipeline of the PyAnnote toolkit [324]. From results listed in Table 6.4, STAC-ST gets on-par
F1-score vs. the reference system in the Fisher-CALLHOME test sets. Also, we note that using a
stronger STAC-ST model improves by 2.5 absolute the F1 score. These results corroborate the
importance of the [TURN] task tokens for improving ASR and ST quality.

6.1.5 Benchmarking STAC-ST

We run extensive benchmarks to compare STAC-ST with related work in various settings,
including (1) different audio segmentation strategies, (2) model size, and (3) evaluation on
single-turn ST.

MT-MS vs. VAD Segmentation A common practice for translating long-form audio files is to
first segment them into smaller chunks based on voice activity detection (VAD). We compare our
MT-MS segmentation approach with two popular VAD-based audio segmenters, i.e., WebRCT
[325] and SHAS [318], on the channel-merged Fisher-CALLHOME test sets.7 When the audio
and reference translation segments are not aligned, like in the case of VAD-based segmentation,
the standard process is to first concatenate translation hypotheses and then align and re-segment
the conversation-level translation based on the segmented reference translation.8 However, our

7More details in Appendix A.1.
8mwerSegmenter [326] has been used in IWSLT [291, 290] for this purpose.
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preliminary results show that this process yields poor BLEU scores, partially because VAD treats
noise as speech, which leads to noisy translation and misalignment. Therefore, we calculate
BLEU scores on concatenated hypotheses and references for the whole conversation. BLEU
scores in this section are not comparable with the ones reported elsewhere.

As shown in Figure 6.6, for both Fisher and CALLHOME test sets, BLEU scores of using
VAD-based tools (either WebRCT or SHAS) for test data segmentation are below the ones
using our MT-MS segmentation. Despite being popular in conventional speech translation,
segmenting long-form audio with VAD-based tools is not the best choice for handling multi-talks
conversations with speaker-turns. Thus, we resort to using MT-MS segmentation based on human
annotations for preparing the test data. This highlights the future work of producing robust
segmentation on noisy long-form conversational audio.

Table 6.5: ASR and ST performance with increasing
model size of STAC-ST and Whisper. STAC-ST achieves
better BLEU and WER scores than Whisper with compa-
rable model sizes.

Fisher CALLHOME

Model WER ↓ BLEU ↑ WER ↓ BLEU ↑

Whisper-tiny (39M) 45.0 11.5 59.8 2.4
Whisper-base (74M) 36.7 29.0 49.2 8.4
Whisper-small (244M) 29.1 46.7 37.9 19.2

STAC-ST S (21M) 25.8 46.8 42.1 17.9
STAC-ST M (86M) 23.8 49.4 38.3 20.4
STAC-ST L (298M) 23.5 50.0 38.5 21.0

Scaled STAC-ST vs. Whisper
Given the lack of prior work on
MT-MS ST, we compare STAC-ST
against a strong multi-task model,
i.e., Whisper [188]. Whisper is
trained with over 2,000 times more
speech data than our model (al-
though Fisher-CALLHOME is not
included among them) and its small-
est version is larger than STAC-ST
S. To fill part of the gap, we
added more speech training data to
STAC-ST with size M and L. Re-
sults in Table 6.5 demonstrate that
when we add out-of-domain training
data and scale the model accordingly [327, 78, 320], STAC-ST achieves better BLEU and WER
scores than Whisper with comparable model sizes, although our training data is still three orders
of magnitude smaller.

STAC-ST for Single-Turn ST To position STAC-ST against previous work on ST, we also
run experiments under the conventional single-turn ST condition. These experiments permit
from one side to see how our end-to-end multi-task learning approach performs on a specific
input condition, and on the other side to compare STAC-ST against four previous models trained
and evaluated on the same task. To allow for comparing results across single-turn and MS-MT
conditions, we also report performance with three Whisper systems. Results of these experiments
are reported in Table 6.6. We observe that all our STAC-ST models show to be competitive with
the previous models, also optimized on the Fisher-CALLHOME task. Comparison against the
Whisper models confirm the trend observed in Table 6.5 under the MS-MT condition. Overall,
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Table 6.6: ASR and ST performance with the official single-speaker manual segmentation.
Previous work results and Whisper baselines are provided. Our strongest model, STAC-ST L
yields the best scores.

Fisher CALLHOME

Model WER ↓ BLEU ↑ WER ↓ BLEU ↑

Casc. ST [303] 36.5 - 65.3 11.6
Multi-task [296] 23.2 48.7 45.3 17.4
ESPnet [328] 18.7 50.5 37.6 21.7
E2E-ST [298] 22.9 46.3 44.5 17.2

Whisper-tiny (39M) 44.1 9.0 58.5 2.2
Whisper-base (74M) 34.8 25.4 48.7 6.5
Whisper-small (244M) 28.1 45.3 36.5 16.8

STAC-ST S (21M) 20.9 49.1 36.3 20.1
STAC-ST M (86M) 18.9 52.3 31.4 22.1
STAC-ST L (298M) 18.8 52.6 31.0 22.4

STAC-ST L yields the best BLEU scores on both Fisher and CALLHOME.

Conclusions In this work, we present STAC-ST, an end-to-end system designed for single-
channel multi-turn & multi-speaker speech translation that uses a multi-task training framework
to leverage both ASR and ST datasets. We demonstrate that STAC-ST generalizes to both
standard pre-segmented ST benchmarks and multi-turn conversational ST, the latter being a more
challenging scenario. STAC-ST also shows to learn the task of speaker change detection, which
helps multi-speaker ST and ASR. We investigate different aspects of STAC-ST, including the
impact of model and data size, automatic segmentation for long-form conversational ST, zero-shot
multi-turn & multi-speaker ST without specific training data. Overall, this work sheds light on
future work towards more robust conversational ST systems that can handle speaker-turns and
cross-talks.
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6.2 Token-Based Multitasking for Transducer Models

In traditional conversational intelligence from speech, a cascaded pipeline is used, involv-
ing tasks such as voice activity detection, diarization, transcription, and subsequent pro-
cessing with different NLU/SLU models for tasks like semantic endpointing and named
entity recognition (NER). This work introduces TokenVerse, a single Transducer-based
model designed to handle multiple tasks. This is achieved by integrating task-specific
tokens into the reference text during ASR model training, streamlining the inference
and eliminating the need for separate NLP models. In addition to ASR, we conduct
experiments on 3 different tasks: speaker change detection, endpointing, and NER. Our
experiments on a public and a private dataset show that the proposed method improves
ASR by up to 7.7% in relative WER while outperforming the cascaded pipeline approach
in individual task performance. Additionally, we present task transfer learning to a new
task within an existing TokenVerse.

Publication Note
The material presented in this section is adapted from the following publication:

• S. Kumar, S. Madikeri, J. Zuluaga-Gomez, I. Nigmatulina, E. Villatoro-Tello, S. Burdisso, P. Motlicek,
K. Pandia, and A. Ganapathiraju, “TokenVerse: Unifying Speech and NLP Tasks via Transducer-based
ASR,” in arXiv:2407.04444, 2024

Minor contributions Contributed to data preparation for TokenVerse, specifically, for the CallHome dataset.
Participated in the article write up and results analysis.

6.2.1 Introduction

Automated analysis of conversational audios has a wide range of practical applications, including
in contact center analytics [329, 109]. Traditionally, conversational audios are transcribed with
intermediate voice activity detection (VAD) [330] or endpointing [331] and diarization [332].
Afterward, separate NLP pipelines are employed on the transcripts to perform tasks such as
named entity recognition (NER) [333], among others, to comprehend the conversation’s structure
and content [108, 334]. Using separate models for each subtask (optimized independently) has
drawbacks [335] such as error propagation and a potential mismatch between automatic speech
recognition (ASR) metrics and the final task. For instance, the best ASR hypothesis may not
be optimal for the final task. Moreover, the cascaded approaches could translate to increased
compute and latency, which will be exacerbated by the introduction of a new task.

In this work, we introduce TokenVerse, a neural Transducer [53] model capable of learning
ASR and multiple additional tasks through the incorporation of task tokens. In contrast to
the multi-head based multitasking approaches explored in previous studies [336, 337, 338],
TokenVerse distinguishes itself by generating tokens directly within the ASR hypothesis, as
illustrated in Figure 6.7a. Leveraging the transducer architecture [53], we can attain text-audio
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hi this is fromagerie du bourg how can i help you i am carlos is gruyere the best
cheese you have over there

hi this is fromagerie du bourg [ENDP] how can i help you [ENDP] i am carlos is
gruyere the best cheese you have over there 

hi this is fromagerie du bourg [ENDP] how can i help you [ENDP] [SCD] i am
carlos is gruyere the best cheese you have over there 

Reference:

T1: [+ENDP]

T2: [+SCD]

T3: [+NER] hi this is [NE] fromagerie du bourg  [/NE] [ENDP] how can i help you [ENDP] [SCD] i
am [NE] carlos [/NE] is [NE] gruyere [/NE] the best cheese you have over there 

Predictor

XLSR
Jo
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or
k

So
ftm

ax

Outputs
- ASR hypothesis 
-Text and time-aligned: 
    - Named-entity recognition 
    - Speaker change detection 
    - End-pointing detection 

b) TokenVerse: Token-based multitasking with XLSR-Transducer

a) Token Augmentation Protocol

Figure 6.7: a) Proposed unified token augmentation protocol for SCD, ENDP, and NER. b)
TokenVerse unifies multiple speech and NLP tasks (e.g., T1+T2+T3) in a single model within the
neural Transducer framework.

alignment for each output token, including those designated as task tokens. For example, we
can perform NER directly in the acoustic domain, presenting potential utility in scenarios such
as audio de-identification [339]. To address challenges in low-resource settings, we use self-
supervised (SSL) trained XLSR-53 [51] model as an encoder in the transducer setup, leading to
the XLSR-Transducer [11] (Figure 6.7b), which is introduced formally in Section 4.2. Previous
works aim at modeling several tasks directly from speech using special tokens [340, 341], or ASR
with speaker change detection (SCD) [342, 343, 338], VAD [188], speech-to-text translation [8],
or timestamps [344], NER [335, 345] and multi-speaker ASR [106, 311].

Token-based multitasking offers multiple benefits, e.g., it has a fixed number of parameters while
all tasks are predicted with standard decoding without increased latency. However, NLP tasks
like NER in conjunction with other tasks from audio domains have not received much attention
in the literature. Therefore, we consider 3 additional tasks alongside ASR: SCD, endpointing and
NER. These tasks are selected to represent both audio and NLP domains. SCD is an audio task
[346]. Endpointing can be viewed as an NLP task when conducting semantic endpointing [347],
or as an audio task [331]. NER is an NLP task [333, 335]. They serve as suitable benchmarks for
evaluating our proposed method.

6.2.2 TokenVerse

Through TokenVerse, we aim to train a single model for ASR (main task), speaker change
detection (SCD), endpointing, and named entity recognition (NER). This is achieved by augment-
ing the reference text, with task tokens that denote special events at the acoustic level. In the
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following sections, we discuss the annotation protocol, dataset preparation, details of our ASR
model and ablation experiments.

Token Augmentation Protocol We introduce “tokens" for tasks apart from ASR: [SCD]
(speaker change detection), [NE] and [/NE] (named entity recognition), and [ENDP] (end-
pointing). An illustrative example is depicted in Figure 6.7a. We insert [SCD] token during text
concatenation if there is a speaker change from one segment to another within an utterance. The
[ENDP] token is inserted at the end of a segment text, considered as a semantic endpoint from
the conversational context perspective. Note that occurrence of [ENDP] will be a superset of
[SCD] because a speaker change indicates the completion of the previous speaker’s sentence.
For NER, we insert [NE] before the start of a named entity (NE) and [/NE] after it is concluded,
since it can comprise multiple words.

Table 6.7: Datasets statistics with token metadata per sub-
set for the public and private datasets.

Datasets metadata Token-based metadata [%]

subset #utt/word dur [h] [SCD] [NE] [ENDP] #NE #uniq

DefinedAI dataset

train 10k/359k 40 1.9 3.6 2.1 6.5k 2350
dev 559/20k 2.25 2.0 3.6 2.1 379 232
test 1.1k/42k 4.5 1.9 3.4 2.0 727 378

CallHome dataset

train 2.7k/198k 13 6.3 2.9 8.7 2.8k 1414
dev 641/52k 3 7.2 3.0 10.4 779 466
test 339/23k 1.5 6.0 3.0 9.6 351 220

Dataset Preparation Our work is
focused on conversational audios,
which are typically long in dura-
tion (avg 5 minutes) and can’t be
directly used for ASR training due
to high GPU memory requirements.
The dataset provides audio-text tran-
scripts together with timestamp in-
formation for every segment within
the long-form audio. For each sam-
ple, we begin with the first segment
start and find the farthest segment
end such that the duration is up to
20 seconds. Audios within this range
are extracted as one utterance, and
this procedure is repeated until the last segment is consumed. Note that an utterance may span
over multiple segments, potentially containing silences, noise, speaker changes, endpoints and
numerous named entities. Afterward, we concatenate the text corresponding to all segments
within an utterance, inserting token at appropriate positions according to our tasks. This multi-task
dataset preparation approach applies universally across all datasets used in our experiments.

6.2.3 TokenVerse Training & Inference

TokenVerse Training We train the XLSR-Transducer model [11] on the multi-task data
which consists of XLSR encoder, state-less predictor [55] and joint networks (linear layer). The
model is trained with pruned transducer loss [60]. We utilize SentencePiece [68] tokenizer to train
subwords from the training text [67]. It is important to note that the text includes task-specific
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tokens, and splitting them into multiple subwords may degrade their prediction accuracy because
the entire sequence of subwords for a token must be predicted correctly to count it as a valid
token prediction. Hence, we ensure that tokens are represented by a single subword during their
training.9

TokenVerse Inference We generate hypothesis with beam search. From the hypothesis,
we can extract and align the predicted task tokens in the time domain. Since NER consists of
two tokens, we extract words between a matched pair of [NE] and [/NE]. We discard any
unpaired tag from the hypothesis. To obtain timestamps for [SCD] or [ENDP], we note the
acoustic frame index for which these tokens are emitted and calculate time information, i.e.,
XLSR acoustic embeddings have a frame duration of 25ms and a stride of 20ms. Particularly for
[SCD], the time-level token prediction enables subsequent tasks, e.g., diarization [343].

6.2.4 Ablations within TokenVerse

We conduct ablation experiments to understand how including or excluding tasks affects other
tasks in the TokenVerse. Note that ASR is our primary task and is always included.

Single task For each task, we retain only the tokens specific to that task in the multi-task dataset
and train our XLSR-Transducer model. This helps eliminate any detractor tasks that may affect
the performance of the task being evaluated and serves as a baseline in this work.

Leave-one-task-out We systematically exclude tokens corresponding to a single task from the
multi-task dataset and proceed to train our ASR model. These experiments aims to examine how
the removal of a task affects all other tasks, including ASR. This provides insights into whether
we should retain or discard any task in TokenVerse for optimal performance on a given task.

Task-Transfer Learning In conventional multi-head multi-task architectures [336, 337], in-
tegrating a new task typically necessitates fine-tuning the model on the specific task while
keeping the base encoder and other heads frozen. We explore the viability of this extension for
TokenVerse by fine-tuning the model, derived from the removal of a task, specifically on the
new task. Furthermore, we evaluate its impact on both existing tasks and the performance of the
new task in comparison to the overall performance when all-tasks are included.

6.2.5 Task-Specific Baselines, Metrics & Evaluation Protocol

In this section, we describe strong independent baselines for each task considered in this work.

9https://github.com/google/sentencepiece
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Automatic Speech Recognition We train our XLSR-Transducer model [11] after removing
all task tokens from the multi-task dataset. This serves as a baseline for comparison with the
multi-task models on the ASR task. Evaluation It is evaluated with WER. For TokenVerse
models, we remove task tokens from both the reference and hypothesis to compute WER for a
fair comparison. We also report WER including task tokens, which reflects its prediction errors.

Named-Entity Recognition We finetune pretrained BERT10 [87] model on our datasets for
subword-level NER classification. We evaluate the models on both reference and hypothesis
from the ASR model. Evaluation NER systems are usually evaluated by comparing their
outputs against human annotations, either using an exact-match or soft-match approach [333].
We adapted these metrics to a scenario where the text comes from an ASR system. Exact-Match:
Let P = {P1, P2, . . . , Pn} be the set of predicted entities, and A = {A1, A2, . . . , An} be the
set of actual entities, where each Pi and Ai is accompanied by its corresponding [NE]-[/NE]
tokens (See Figure 6.7). Thus, an entity Pi is considered correctly identified if and only if:
∀i ∈ {1, 2, . . . , n}, Pi = Ai, including the tokens. Soft-Match: in this case we only count for
the paired sets of [NE]-[/NE] tokens without considering if the predicted entity value Pi was
correctly transcribed. After obtaining each pair, we evaluate NER with F1-score.

Speaker Change Detection For the SCD baseline, we utilize the diarization pipeline11 from
PyAnnote [348] to extract speaker change timestamps from the audio. In literature, the SCD
is predominantly regarded as a task within the audio domain [346], we opt not to establish an
independent text-based baseline for this task. Evaluation We evaluate SCD in two ways:
text-based (only valid for TokenVerse) and time-based. In text-based evaluation, we align
the reference and hypothesis using edit-distance. For each occurrence of the [SCD] token in
the reference, matching with the same token in the hypothesis counts as True Positive; else,
False Negative. Unmatched tokens in the hypothesis are considered False Positive. F1 score is
calculated by standard definitions. In time-based evaluation, we obtain the timestamps where
[SCD] tokens are predicted in the hypothesis. We calculate F1 score [338], using a collar of
250ms during timestamp matching, following common practice in speaker diarization literature
[332]. Additionally, segment coverage, purity [346], and their F1 score are also reported. We use
pyannote.metrics [349] to compute all time-based metrics.

Endpointing Considering semantic endpointing, we fine-tune BERT [87] for [ENDP] token
classification on the multi-task training text, termed as BERT-ENDP. Results are reported on both
reference text and hypothesis text obtained from TokenVerse. From the audio perspective,
we use segmentation pipeline12 from PyAnnote to obtain endpoint timestamps. Evaluation
Endpointing is also evaluated in two ways: text-based and time-based. The text-based evaluation

10https://huggingface.co/google-bert/bert-base-uncased
11huggingface.co/pyannote/speaker-diarization-3.1
12huggingface.co/pyannote/segmentation-3.0
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Table 6.8: WERs (%) for ASR on DefinedAI with TokenVerse. †task tokens are removed
from both referene and hypothesis.

Exp Model w/ token w/o token†

1) ASR (baseline) 15.3

2) all-tasks 15.6 14.7
3-a) single-[SCD] 15.2 15.1
3-b) single-[NE] 15.3 14.7
3-c) single-[ENDP] 14.8 14.7

follows the same approach as described previously for SCD. In the time-based evaluation, the F1
score computation also follows the same approach as for SCD. Additionally, we also report false
alarms (FA), missed speech (MS), and detection error rate (DER), which are common metrics in
endpointing literature [330].

6.2.6 Databases and Experimental Setup

Dataset To train TokenVerse, we require conversational audio data with corresponding
transcripts, NER and segment timestamps, and speaker annotations. We could not find a large-
scale public dataset satisfying all the tasks. Thus, we opt for a private dataset (DefinedAI13)
which contains stereo-audio/transcript pairs for contact center conversations between agents
and customers. We upsampled audio from 8 kHz to 16 kHz to align with the XLSR-53 model’s
requirements. Each segment includes transcripts, speaker ID and NE annotations, facilitating
multi-task dataset preparation. This dataset spans health, banking and finance domains, which
makes it particularly challenging due to variations in NEs. Additionally, we train and evaluate
TokenVerse on the open-source CallHome English dataset (LDC97S42), which contains
natural conversational stereo-audios between multiple speakers. The transcript includes named
entities annotation. This dataset poses challenges due to its natural conversational nature, known
to be hard for ASR modeling, and a large number of short segments without entities, differing
from the DefinedAI dataset. Further details about these datasets are provided in Table 6.7.

Training TokenVerse We train TokenVerse on the multi-task dataset. It involves XLSR-
transducer model, which is constructed from the Icefall’s Transducer recipe14 adapted with XLSR
from fairseq [224] as the encoder. The fine-tuning uses Scaled Adam [186] and a learning rate
scheduler that consists of a 500-step warmup phase followed by a decay phase directed by the
number of steps and epochs. The model is optimized with pruned RNN-T loss [60]. The learning
rate is set to lr= 1.25e−3 and we train the model for 50 epochs. For each dataset, the best epoch
is selected based on the WER on respective dev sets and results are presented on the eval sets.
The task-transfer experiments are trained for an additional 10 epochs on the new task.

13https://www.defined.ai/
14https://github.com/k2-fsa/icefall/tree/master/egs/librispeech/ASR/zipformer
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6.2.7 Results & Discussion

Table 6.9: [SCD] and [ENDP] time-based evaluation.
FA: false alarm; MS: missed speech; DER: detection error
rate. †F1-score computed from the Coverage-Purity per-
spective. ‡single-task model per task, i.e., SCD and ENDP.

SCD EndPointing

Exp Model F1 CP-F1† F1 FA MS DER

b-1/2) PyAnnote 69.6 92.2 73.5 1.1 8.5 9.6
2) all-tasks 79.7 97.7 85.7 4.7 1.4 6.1
3-a/c) single‡ 87.5 97.6 84.1 1.9 2.0 3.9

Automatic Speech Recognition
For the DefinedAI (Table 6.8) set,
WERs are reported both with and
without task tokens in the reference
and hypothesis for multi-task mod-
els. However, the baseline ASR
model is trained without task tokens
in transcripts, so there is no dis-
tinction between them. Including
all tasks in TokenVerse (exp 2)
leads to a 4% relative improvement
in WER compared to the baseline
ASR model (exp 1). For models trained on a single task (exp 3a-c), ASR results remain similar,
except for SCD. When comparing WERs before and after token removal, we observe a relatively
large gap between all-tasks and single-task models, potentially due to higher token insertion or
deletion as compared to non-token words in the hypothesis. In single-task models, a larger gap
is observed for [NE] as the model must accurately predict both tokens, introducing additional
error sources. On the CallHome dataset (Table 6.10), the multi-task model with all tokens yields
a 7.7% relative improvement. Overall, the results on both datasets indicate that the all-tasks
TokenVerse improves ASR performance.

Named-Entity Recognition As expected, compared to evaluating BERT-NER on reference
text, a significant degradation is observed when evaluated on hypothesis (Table 6.11) due to ASR
errors [335]. In exact-match, on both the DefinedAI (Table 6.11) and CallHome (Table 6.10) test
sets, the all-tasks TokenVerse outperforms the baseline BERT-NER models trained on their
respective datasets and evaluated on hypothesis in F1 score. This is not the case for soft-match
evaluation on the DefinedAI test set, where the F1 score is similar. This degradation is mostly
attributed to the incorrect prediction of [/NE] tag by the baseline, resulting in only a partial
match of the named entity words. The absolute F1 score is low on the CallHome dataset due to
higher ASR errors on named entities, attributed to their low repetition in the training text (see
Table 6.7).

Speaker Change Detection On the DefinedAI (Table 6.9), including all tasks in TokenVerse
outperforms the baseline PyAnnote model in time-based evaluations. Interestingly, models
trained for single-task SCD perform better than the all-tasks model in terms of F1, but show
similar results for Coverage-Purity based F1. Upon closer scrutiny, we found that including
[ENDP] delays the prediction for [SCD] tokens, causing the hypothesis timestamps of these
tokens to fall outside the tolerance window (250ms). Increasing the tolerance window further
improves the F1 for both models, with a much higher rate of increase for the all-tasks model.
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Table 6.11: Text-based performances of TokenVerse on the [NE] (exact- and soft-match)
and [ENDP]. P: precision; R: recall. †upper-bound: BERT model evaluated on text references.
‡model trained on [ENDP] or [NE] task.

Exp Model [NE]-Exact [NE]-Soft [ENDP]

@P @R @F1 @P @R @F1 @F1

BERT: fine-tuned on DefinedAI

b-1) Eval. on Ref.† 80.0 77.0 78.5 91.6 87.9 89.7 81.6
b-2) Eval on Hyp. 52.9 53.0 52.9 82.0 81.3 81.6 80.5

2) all-tasks 65.0 51.7 57.6 93.0 73.2 81.9 89.9
3-b/c) single‡ 61.7 49.9 55.2 91.4 73.3 81.4 88.5

This observation is reinforced in the text-based F1 score, where the all-tasks model achieves an
F1 score of 90.3% compared to 88.5% from the single-[SCD] model. On the CallHome test set
(Table 6.10), the all-tasks model outperforms the PyAnnote baseline. These evaluations suggest
that excluding [SCD] from TokenVerse is preferable for precise speaker change timestamps,
while including all tasks improves speaker-attributed text segmentation.

Table 6.10: F1-score and WERs for CallHome
Eval set on different tasks with TokenVerse.
†time-based F1 score. ‡baselines are computed
with PyAnnote for SCD or with fine-tuned BERT
on ENDP and NER (exact-match).

Exp ASR SCD† ENDP NER
WER (↓) F1 (↑) F1 (↑) F1 (↑)

baselines‡ 24.6 91.7 55.9 27.4
all-tasks 22.7 92.5 73.3 30.6

Endpointing In text-based evaluation on the
DefinedAI (Table 6.11) and CallHome (Ta-
ble 6.10) test sets, the all-tasks TokenVerse
outperforms the BERT-ENDP models trained
on respective datasets. Additionally, on the De-
finedAI dataset, we evaluate the BERT-ENDP
model on both reference and hypothesis to un-
derstand the effect of ASR errors on [ENDP]
token prediction. Interestingly, we do not ob-
serve a significant degradation when evaluat-
ing on the hypothesis compared to the refer-
ence. This suggests that errors introduced by
ASR may not drastically affect the semantic meaning of the sentences. In time-based evaluation
on the DefinedAI test set (Tab 6.9), the all-tasks model outperforms the baseline PyAnnote
segmentation model. However, single-task ENDP is better than including all tasks in DER due to
lower false alarms.

Ablation results In ASR, we observed degradation for all ablation experiments, with the largest
relative degradation of 2.4% in WER when [ENDP] was removed. Transfer learning on any
of the 3 tasks does not degrade ASR performance further. The text-based evaluations of other
tasks on DefinedAI are reported in Figure 6.8; absolute change is calculated from the all-tasks
model. Removing a task adversely affects other tasks. Specifically, for SCD and endpointing,
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Figure 6.8: Absolute changes in text-based evaluation w.r.t all-tasks TokenVerse in @F1. We
either remove a task, e.g., remove-[NE], or transfer to the removed task, e.g., transfer-to
→[NE]. Note that all-tasks TokenVerse performs better in all scenarios.

[NE] removal has the least impact on performance. Learning it afterward either improves or
maintain their performance, indicating a stronger correlation between these tasks than with NER;
supported by the degradation in [SCD] performance when [ENDP] is removed. Task transfer on
[ENDP] degrades the performance further, possibly due to confusion during prediction caused
by the insertion of the token before [SCD] during training. Transfer to NER shows relatively
large degradation compared to other tasks, likely because the model must predict both [NE] and
[/NE] accurately. This suggests that tasks encoded with multiple tokens may not transfer as
effectively as those encoded with a single token.

Overall, all-tasks TokenVerse outperforms specialized models for each task and single-task
models, suggesting that additional tasks improve each other. Moreover, our task transfer experi-
ments suggest that a new task can be learned effectively.

Conclusions In this work, we demonstrate the effectiveness of a token-based multi-task model
on speech and NLP using XLSR-Transducer as our ASR model, termed TokenVerse.15 We
consider speaker change detection, endpointing and named entity recognition as 3 additional
tasks alongside ASR. Results on 2 datasets show that our approach improves ASR performance
while outperforming strong task-specific baselines. Ablation experiments suggest that multi-task
training across different domains can enhance performance on all tasks. Our approach offers
flexibility for extension to numerous tasks across various domains.

15Further information about the XLSR-Transducer architecture in Section 4.2.
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7 Conclusions and Future Directions

In the two subsections below, we conclude this thesis and outline possible future research
directions connected to each domain and topic covered.

7.1 Conclusions

This thesis focuses on methodologies and techniques to develop automatic speech recognition and
spoken language understanding systems under multiple low-resource settings. This includes, (1)
data-, (2) compute- and (3) training-time-bounded low-resource settings. This thesis is formed as
a large collection of several innovative works, where many of them are open-sourced on GitHub
or shared directly with industrial partners. More specifically, this thesis focus on databases and
systems such as the ATCO2 corpus, BERTraffic, XLSR-Transducer, HyperConformer, STAC-ST,
and TokenVerse. Based on the outlined contributions and chapters presented in this thesis, we
summarize the conclusions below:

In Chapter 2, we laid the groundwork by introducing the fundamental paradigms of ASR and SLU,
highlighting hybrid-based and end-to-end ASR architectures, as well as cascaded and end-to-end
SLU pipelines. This chapter covers the background needed for the rest of the thesis. It explores
three domains: read and prompted speech, conversational speech, and ATC communications, with
a specific emphasis on the challenges posed by the latter domain. Additionally, we discussed the
evaluation metrics employed to assess ASR and SLU systems across various tasks and domains.

Chapter 3 covers the challenges of ASR applications limited by the amount of supervised data,
particularly focusing on ATC communications. Through benchmarking ASR with open-source
databases, we identified gaps between large-scale ASR systems and niche applications like ATC.
Modern strategies leveraging pretrained foundational speech models (FSMs) were proposed to
mitigate data scarcity, alongside with novel techniques that incorporate contextual information
during decoding and semi-supervised training.

Chapter 4 addressed training-time and compute-bounded challenges in ASR, specifically targeting
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conversational speech scenarios. We introduced methods for rapid development of transducer-
based streaming ASR systems, leveraging FSMs through sequence-level knowledge distillation.
Effective data selection and filtering techniques were presented to enhance training efficiency
and reduce computation time while achieving lower WERs. Furthermore, the XLSR-Transducer
architecture open the doors to developing ASR systems for low-latency streaming settings with
low supervised data. Finally, we demonstrated how the attention sink phenomena can improve
WERs on challenging streaming settings.

In Chapter 5, advancements in SLU were explored across various downstream tasks, including
joint speaker role and change detection and slot filing for air traffic control communications,
a very challenging domain. Finally, we benchmark different representations for intent and
slot-filling, including text, speech, lattice and multimodal based.

Finally, Chapter 6 concluded the thesis by examining joint ASR and SLU architectures, optimizing
single models for multiple tasks such as multilingual ASR and speech-to-text translation, cross-
talk detection, and acoustic-based speaker turn detection. Encoder-decoder and transducer-based
models were leveraged to demonstrate multitask learning with special tokens, enabling a unified
framework for ASR, speech-to-text translation, and acoustic named-entity recognition within
industrial streaming applications.

7.2 Limitations and Future Directions

Test on large-scale databases Conducting experiments and evaluations on larger and more
diverse speech databases beyond those currently used can provide valuable insights into the
generalizability and robustness of ASR and SLU systems. Furthermore, larger datasets can
help uncover performance variations across different domains, accents, and speaking styles. For
instance, we noted that FSMs do not perform that well on under-resourced applications, such as
ATC.

Limited number of speakers Expanding the scope of speaker variability by exploring con-
versations involving more than two speakers can offer a more comprehensive understanding of
system performance in multi-party dialogues [101, 102]. This would require access to datasets
containing conversations with multiple speakers, addressing the limitations of publicly available
datasets focused on two-speaker interactions [350].

Decoder implementation of HyperConformer Further investigation into the integration and
optimization of the HyperConformer architecture into the decoder of AED models could enhance
the overall efficiency. So far, this architecture only supports the encoder [12]. Exploring different
decoding strategies and optimizations specific to HyperConformer could lead to improved
performance in real-world applications, such as low-latency streaming decoding. Another line
of work, could be the integration of HyperConformer encoders into Transformer-Transducer
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models.

Acoustic modality for BERTraffic Exploring the utilization of acoustic modality in conjunc-
tion with BERTraffic, possibly through feature fusion or joint learning techniques, can enhance the
representation and modeling of audio-linguistic interactions in ATC-related contexts, improving
the accuracy and robustness of SLU systems. For instance, leveraging the acoustic modality can
improve the speaker diarization pipeline in cases where the transcripts automatically generated
with the ASR system are very noisy. Furthermore, adding contextual information, such as radar
information at decoding time, can further enhance the overall model quality of BERTraffic.

Unified encoder-decoder and only-decoder LMs for ATC data Developing and fine-tuning
unified LMs specifically tailored to ATC text. For example, (1) only-encoder, (2) encoder-decoder;
or (3) only-decoder models trained with only ATC text could enhance the accuracy and contextual
understanding of ASR and SLU systems in critical communication scenarios. I.e., in cases where
the amount of supervised data is scarce.

Attention sink in other architectures Investigating the applicability and effectiveness of
attention sink mechanisms in alternative ASR and SLU architectures beyond those explored in
the current research can broaden the understanding of the attention mechanisms’ impact on model
performance and efficiency. For instance, the validation of attention sink on Zipformer [58],
Conformer [57] or HyperConformer [12] models.

Multitasking for more tasks and languages Extending the multitasking capabilities of
encoder-decoder and transformer-transducer models to support additional tasks and languages
beyond those considered in the current work can lead to more versatile and adaptable speech
processing systems suitable for diverse applications and environments. Examples of open source
models that follow this line of research are Open Whisper models [351] and its CTC-only
variant [352].

Fine-tuning of foundational speech models Continuously refining and fine-tuning FSMs with
techniques like transfer learning and semi-supervised learning using domain-specific data can
improve model performance and adaptability across various ASR and SLU tasks and domains.
Future work should be directed to knowledge distillation techniques and better approaches to
filter out hallucinated pseudo-labeled data from FSMs.

Exploration of other architectures for ASR and SLU Investigating novel architectures and
frameworks for ASR and SLU, such as hybrid models combining traditional methods with
deep learning approaches or leveraging graph neural networks for structured data representation,

151



Chapter 7. Conclusions and Future Directions

can push the boundaries of performance and scalability in speech technology applications.
Emerging architectures includes (1) structured state-space models [353], (2) MAMBA [354] and
(3) JAMBA [355].

Addressing these limitations and exploring these future directions can contribute to advancing
the state-of-the-art in automatic speech recognition and spoken language understanding, paving
the way for more robust and effective speech processing systems across different domains and
use cases.
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A Appendix to Section 6.1, Chapter 6

A.1 Fisher-CALLHOME Data Distribution

In Table A.1, we list the main characteristics for each train, development, and test set of the
Fisher-CALLHOME corpora. Blue subsets denote splits with the original segmentation provided
by LDC and the authors of the Fisher-CALLHOME translations [303], which is widely used by
previous work [98, 296, 307, 298]. The red denote segmentation with MT-MS data (see §6.1 for
more details) and orange when VAD is applied on the merged audio stream per conversation. It
is worth mentioning that MT-MS segmentation yields fewer samples than VAD segmentation
because our “conversations" might contain, noise and silences between consecutive utterances;
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Figure A.1: Ablation of the CTC weight in the overall loss computation and its impact in BLEU
and WERs for Fisher and CALLHOME development & evaluation sets. Error bars show the
standard deviation between dev/dev2/test sets for Fisher and devset/evlset for CALLHOME.
Single-turn and MS-MS results are shown with straight and dashed lines, respectively.
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Table A.1: Main characteristics of each train, development and test subset of Fisher and
CALLHOME corpora, after pre-processing. Pre-processing includes, segmentation by ground
truth metadata, multi-turn & multi-speaker segmentation, or †voice activity detection-based
segmentation with SHAS [318] algorithm. Minimum and maximum segment length for SHAS
are set to 1 and 30 seconds, respectively.

Development/Test Subset # samples Time [hrs] Speech [hr/%] Non-speech [hr/%]

Fisher
train-single-turn 138764 150.60 146.52/(97.29%) 4.08/(2.71%)
train-multi-turn 22051 150.62 149.40/(99.19%) 1.22/(0.81%)

dev-single-turn 3977 3.99 3.88/(97.30%) 0.11/(2.70%)
dev-multi-turn 572 3.99 3.95/(98.87%) 0.05/(1.13%)
dev-resegemented† 867 3.98 3.55/(89.20%) 0.43/(10.80%)

dev2-single-turn 3958 3.92 3.84/(97.94%) 0.08/(2.06%)
dev2-multi-turn 580 3.92 3.90/(99.47%) 0.02/(0.53%)
dev2-resegemented 849 3.92 3.52/(89.81%) 0.40/(10.19%)

test-single-turn 3641 4 3.90/(97.65%) 0.09/(2.35%)
test-multi-turn 583 4 3.97/(99.41%) 0.02/(0.59%)
test-resegemented† 856 3.99 3.61/(90.50%) 0.38/(9.50%)

CALLHOME
callhome-train-single-turn 15042 16.20 12.65/(78.10%) 3.55/(21.90%)
callhome-train-multi-turn 1905 16.20 13.41/(82.79%) 2.79/(17.21%)

callhome-devtest-single-turn 3956 4 3.19/(79.66%) 0.81/(20.34%)
callhome-devtest-multi-turn 482 4 3.35/(83.63%) 0.66/(16.37%)
callhome-devtest-resegmented† 745 4.00 2.98/(74.41%) 1.02/(25.59%)

callhome-evltest-single-turn 1825 2.71 1.58/(58.29%) 1.13/(41.71%)
callhome-evltest-multi-turn 242 2.71 1.66/(61.41%) 1.04/(38.59%)
callhome-evltest-resegmented† 358 2.71 1.49/(55.06%) 1.22/(44.94%)

A.2 Evaluating Different CTC Weights

In this section, we evaluate different CTC weights for joint ASR & ST training under the
STAC-ST framework. We show in Figure A.1 the results for different S-size models trained on
the Fisher-CALLHOME corpora. We confirm that BLEU and WER scores achieve the best with
a λ = 0.3, akin to previous work [316].

A.3 Complete Main Evaluation Results on Fisher-CALLHOME

We list complete main results on Fisher-CALLHOME corpora for all the official subsets.

Multi-Turn Segments.Table A.2 lists BLEU scores for all subsets of Fisher-CALLHOME, while
Table A.3 lists WER scores.
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Table A.2: BLEU scores on each multi-turn dataset for all the official Fisher-CALLHOME
development and test subset. AVG lists the average between dev and test sets.

Training Data BLEU score (↑)

Single-turn Multi-turn Fisher CALLHOME

ASR ST ASR ST dev dev2 test AVG devtest evltest AVG

✓ ✓ 26.2 27.0 28.3 27.2 8.6 8.5 8.5
✓ ✓ 25.6 27.0 29.3 27.3 8.8 8.9 8.8

✓ ✓ 40.2 40.0 41.5 40.5 15.0 14.7 14.8
✓ ✓ ✓ 32.7 32.9 35.6 33.7 10.6 11.7 11.1
✓ ✓ ✓ 42.3 42.5 43.7 42.8 15.2 15.5 15.4
✓ ✓ ✓ ✓ 45.1 46.1 46.8 46.0 18.4 17.9 18.2

Table A.3: WERs on each multi-turn dataset for all the official Fisher-CALLHOME development
and test subset. AVG lists the average between dev and test sets.

Training Data Word Error Rate (↓)

Single-turn Multi-turn Fisher CALLHOME

ASR ST ASR ST dev dev2 test AVG devtest evltest AVG

✓ ✓ 29.7 30.0 26.1 28.6 44.0 43.5 43.8
✓ ✓ 45.9 46.6 40.2 44.2 58.0 57.9 58.0

✓ ✓ 35.2 35.8 29.4 33.5 51.4 49.9 50.7
✓ ✓ ✓ 29.4 30.0 25.8 28.4 42.9 42.3 42.6
✓ ✓ ✓ 52.8 54.6 44.9 50.8 64.3 68.2 66.3
✓ ✓ ✓ ✓ 30.2 29.6 25.8 28.5 42.6 42.1 42.4

Table A.4: BLEU scores on each single-turn dataset for all the official Fisher-CALLHOME
development and test subset. AVG lists the average between dev and test sets.

Training Data BLEU score (↑)

Single-turn Multi-turn Fisher CALLHOME

ASR ST ASR ST dev dev2 test AVG devtest evltest AVG

✓ ✓ 34.1 34.5 34.3 34.3 11.4 11.0 11.2
✓ ✓ 50.2 51.5 50.0 50.5 21.2 21.2 21.2

✓ ✓ 41.1 41.6 41.7 41.4 14.8 14.9 14.8
✓ ✓ ✓ 47.5 48.1 47.1 47.5 18.5 19.2 18.8
✓ ✓ ✓ 47.2 47.7 46.6 47.2 19.4 18.6 19.0
✓ ✓ ✓ ✓ 49.6 50.4 49.1 49.7 20.5 20.1 20.3

Single-Turn Segments.For the sake of completeness, we also report the performance of STAC-ST
on each subset of Fisher-CALLHOME with the default utterance segmentation (single-turn).
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Table A.5: WERs on each single-turn dataset for all the official Fisher-CALLHOME development
and test subset. AVG lists the average between dev and test sets.

Training Data Word Error Rate (↓)

Single-turn Multi-turn Fisher CALLHOME

ASR ST ASR ST dev dev2 test AVG devtest evltest AVG

✓ ✓ 23.5 22.8 21.0 22.5 35.5 36.3 35.9
✓ ✓ 22.8 22.2 20.7 21.9 34.0 34.6 34.3

✓ ✓ 31.5 31.6 27.9 30.3 48.4 48.4 48.4
✓ ✓ ✓ 23.1 22.5 20.8 22.1 35.2 35.6 35.4
✓ ✓ ✓ 26.0 26.1 23.4 25.2 38.7 39.7 39.2
✓ ✓ ✓ ✓ 23.0 22.2 20.8 22.0 34.6 36.3 35.4

Table A.6: Performance of STAC-ST on speaker change detection on the multi-turn dataset for
all official Fisher-CALLHOME test sets. Tolerance is ablated from 0.1 up to 1 second.

TOL Fisher CALLHOME

(s) F1 MDR FAR F1 MDR FAR

0.1 58.3 46.2 36.4 67.6 37.5 26.4
0.25 74.9 31.3 17.7 80.6 25.6 12.1
0.5 83.4 23.0 9.0 85.5 20.8 7.2
1 87.3 18.4 6.2 89.3 16.2 4.5

Table A.4 lists the BLEU scores, while Table A.5 list WER scores.

A.4 More Examples and Analysis on Speaker-Turn and Cross-Talk
Detection

In Figure A.2, we provide 3 additional examples of ground-truth speaker activities vs. CTC
spikes of [TURN] and [XT] task tokens (see §6.1). The title contains the sample ID, transcript
and translation together with the [TURN] and [XT] task tokens.

In Table A.6 we evaluate different tolerance values when computing the speaker change detection
metrics con both Fisher-CALLHOME test sets. The tolerance (in seconds) allows us to reduce
the granularity that we expect in speaker change detection. Giving the fact that STAC-ST is not
directly optimized for this task, we note that a value of at least 0.25 is critical to reach acceptable
scores – by increasing the tolerance from 0.1 to 0.25 seconds, we see a 22% relative increase in
F1 score. Setting it to 0.5 seconds further brings a 10% relative improvement.
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A.4 More Examples and Analysis on Speaker-Turn and Cross-Talk Detection

0 5 10 15 20 25
Time (in seconds)

[XT] spikes
[TURN] spikes

Activity CH1

Activity CH2

ID: 20051115_212123_516_fsp-0-042565-045054

TRANCRIPTION: yo creo que la tecnología del teléfono han echo avances también porque ya puedo hacer llamadas de largas distancias y no me valen nada
porque uno paga ah una cuota mensual [turn] ajá [turn] [xt] y puede hacer todas las llamadas que uno quiera [turn] oh pero acá en [turn]

[xt] y eso no era as eso no era así hace cinco o diez veinte años [turn] [xt] claro o sea pero aquí en estados unidos [turn] [xt] aquí en
estados unidos sí

TRANSLATION: i think phone technology has made progress because i can also make long distance phone calls and i do not have to pay ah a monthly fee
[turn] yeah [turn] [xt] and you can make all the calls you want [turn] oh but here in [turn] [xt] and that wasn &apos;t that wasn &apos;t

like that in five or ten twenty years [turn] [xt] ofcourse but here in the united states [turn] [xt] here in the united states yes

0 5 10 15 20
Time (in seconds)

[XT] spikes
[TURN] spikes

Activity CH1

Activity CH2

ID: 20051102_180402_391_fsp-0-029287-031612

TRANCRIPTION: así que [turn] [xt] pero pero y qué opinas de que osea de que no va a tener como compañeros de escuela eso eso [turn] [xt] bueno [turn] eso
es una experiencia también no osea [turn] sí tienen muchos aquí en miami programas para la gente que que enseñan sus hijos en la casa [turn]

[xt] ajá [turn] entonces eh normalmente una vez a la semana ellos se se juntan [turn] ah okey
TRANSLATION: so [turn] [xt] but what do you think about her not having school mates [turn] [xt] well [turn] that &apos;s also not an experience bone

[turn] yes there are many programs here in miami for people who teach their children at home [turn] [xt] aha [turn] then usually once a week
they will be together [turn] ah okay

0 5 10 15 20 25 30
Time (in seconds)

[XT] spikes
[TURN] spikes

Activity CH1

Activity CH2

ID: 20051030_193924_371_fsp-0-005150-008128

TRANCRIPTION: eh me gusta la música con ritmo también me gusta bailar [turn] okay [turn] te gusta bailar [turn] sí me gusta para hablar también [turn] oh
que bien [turn] yo bailaba más cuando era joven pero ahora ya no bailo mucho se paró [turn] [xt] oh yo también ahora bailo cuando estoy sola

limpiando la casa eres casada [turn] sí soy casada [turn] ah y hijos [turn] no no no tengo hijos
TRANSLATION: eh i like music with rythm i also like to dance [turn] ok [turn] do you like to dance [turn] yes i also like to talk as well [turn] oh that

is good [turn] i danced more when i was young but now i don &apos;t dance as much it stopped [turn] [xt] oh me too now i dance when i
&apos;m alone cleaning my house are you married [turn] yes i &apos;m married [turn] ah and children [turn] no no i don &apos;t have children

Figure A.2: Ground-truth speaker activities and CTC spikes of [TURN] and [XT] task tokens
on three randomly selected Fisher samples. The Tile list the ID (recording, file number, start and
end time), the ground truth transcript and translation.
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Table A.7: Ablation of the impact of encoding speaker turn and cross-talk information with
[TURN] and [XT]. BLEU scores and WERs are listed for multi-turn dataset for all the official
Fisher-CALLHOME development and test sets. AVG lists the average between dev and test sets.

Special Tokens Fisher CALLHOME

dev dev2 test AVG devtest evltest AVG

BLEU score (↑)

N/A 43.4 44.2 45.0 44.2 17.0 16.6 16.8
[TURN] 44.2 44.7 45.2 44.7 17.6 17.6 17.6
[TURN] + [XT] 45.1 46.1 46.8 46.0 18.4 17.9 18.1

Word Error Rate (↓)

N/A 29.9 30.3 26.4 28.9 43.9 43.7 43.6
[TURN] 29.2 31.1 25.8 28.7 43.2 43.1 43.2
[TURN] + [XT] 30.2 29.6 25.8 28.5 42.6 42.1 42.4

A.5 Complete Ablation Results for [TURN] & [XT] Task Tokens

We provide compete ablation results of adding [TURN] & [XT] task tokens on all the official
development and test sets of Fisher-CALLHOME, as listed in Table A.7.

A.6 More Details of VAD-Based Segmentation

With WebRCT, audio is split when 90% of consecutive frames do not include speech. We set the
frame length parameter to 30 ms and the aggressiveness parameter to 1 as in [318]. With SHAS,
we set 1-30 as the min-max sequence length.

SHAS was trained on monologue corpora with MuST-C [301]. Thus, we perform an additional
pre-processing step to minimize the domain mismatch between SHAS and Fisher-CALLHOME.
(1) We extract the speech activity boundaries for each audio file from the original metadata.
(2) We modify each audio file by masking with 0 all the regions in the signal where there is
no speech activity, i.e., setting all the non-speech activity regions to silence. (3) We then use
the masked long-form audio files with SHAS. This step decreases the false alarms rate that can
be produced by SHAS on noisy segments or between contiguous utterances where there are
close-talks. Close-talks are areas where two utterances are too close and the segmentation tools
might not generalize well. In order to keep comparable the experimental and evaluation setup,
we perform the same pre-processing step when using WebRCT.

Besides SHAS, we also plot the segmentation distribution of WebRCT on the Fisher test set in
Figure A.3. WebRCT yields a more reasonable distribution than SHAS. Note that some samples
are longer than 30 seconds. We compare different segmentation techniques with two training data
configurations in Figure A.4: only Single-turn data, i.e., Row-4 in Table 6.2; Both single-turn
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A.6 More Details of VAD-Based Segmentation
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Figure A.3: Data distribution for Fisher test set with different segmentation approaches.
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Figure A.4: We compare different segmentation techniques with two training data configurations:
only Single-turn data and Both single-turn and multi-turn data. The bars denote different
segmentation techniques for long-form audio, including, MT-MS segmentation (proposed in this
work), VAD via WebRCT [325] or SHAS [318].
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and multi-turn data, i.e., Row-3 in Table 6.2. Using our proposed configuration, Both, helps all
segmentation techniques we tested during inference.

Table A.8: Comparison between Whisper versus scaled STAC-ST using more training data.
WER and BLEU scores are reported on the multi-turn dataset for all the official Fisher-
CALLHOME development and test subsets. AVG lists the average between dev and test sets.

Fisher CALLHOME

Model Size (θ) dev dev2 test AVG devtest evltest AVG

BLEU score (↑)

Whisper-tiny 39M 8.1 7.5 11.5 9.0 1.9 2.4 2.2
Whisper-base 74M 27.4 23.7 29.0 26.7 7.3 8.4 7.9
Whisper-small 244M 44.2 44.1 46.7 45.0 19.2 19.2 19.2
Whisper-medium 769M 48.6 47.7 49.2 48.5 22.5 23.1 22.8

STAC-ST (S) 21M 45.1 46.1 46.8 46.0 18.4 17.9 18.2
STAC-ST (M) 86M 48.1 48 49.4 48.5 20.2 20.4 20.3
STAC-ST (L) 298M 48.6 48.9 50.0 49.2 21.0 21.0 21.0

Word Error Rate (↓)

Whisper-tiny 39M 51.5 50.1 45.0 48.9 60.3 59.8 60.1
Whisper-base 74M 41.8 42.0 36.7 40.2 50.0 49.2 49.6
Whisper-small 244M 33.9 33.7 29.1 32.2 39.1 37.9 38.5
Whisper-medium 769M 31.3 30.9 28.7 30.3 33.9 32.3 33.1

STAC-ST (S) 21M 30.2 29.6 25.8 28.5 42.6 42.1 42.4
STAC-ST (M) 86M 27.0 28.1 23.8 26.3 40.1 38.3 39.2
STAC-ST (L) 298M 27.9 27.9 23.5 26.4 38.98 38.5 38.7

A.7 Complete Results of Scaled STAC-ST vs. Whisper

We list complete evaluation results of scaled STAC-ST vs. Whisper for the MT-MS Fisher-
CALLHOME development and test sets in Table A.8.

A.8 Complete Results of STAC-ST for Single-Turn ST

We list complete evaluation results of STAC-ST vs. prior work for the single-turn Fisher-
CALLHOME development and test sets in Table A.9. Note that in Section 6.1, we only list the
work that (1) released the Fisher-CALLHOME corpora [303] and (2) the top three models that
report both WER and BLEU scores.
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A.8 Complete Results of STAC-ST for Single-Turn ST

Table A.9: Comparison between previous work vs. scaled STAC-ST. WER and BLEU scores
are reported on single-turn segments of all the official Fisher-CALLHOME development and
test subsets. AVG lists the average between dev and test sets. We list the best BLEU/WER
scores for each model from previous work. In some cases, it includes ASR or MT pre-training.
†Multilingual model, name convention in [298].

Fisher CALLHOME

Model Size (θ) dev dev2 test AVG devtest evltest AVG

BLEU score (↑)

Cas. ASR-MT [303] - 35.5 - - - 11.6 -
Multi-task ASR/ST [296] 48.3 49.1 48.7 48.7 16.8 17.4 17.1
E2E-ST M2Mc† [298] 44.1 45.4 45.2 44.9 16.4 16.2 16.3
EMc2+ASR-PT† [298] 46.3 47.1 46.3 46.6 17.3 17.2 17.3
E2E-ST streaming [309] 47.9 48.2 47.7 47.9 15.5 15.3 15.4
ESPnet [328] 51.8 52.3 50.5 51.5 22.3 21.7 22.0

Whisper-tiny 39M 7.4 5.6 9.0 7.3 2.0 2.2 2.1
Whisper-base 74M 19.1 20.4 25.4 21.6 6.0 6.5 6.2
Whisper-small 244M 45.4 40.7 45.3 43.8 17.5 16.8 17.1
Whisper-medium 769M 51.7 49.2 48.8 49.9 23.5 23.5 23.5

STAC-ST (S) 21M 49.6 50.4 49.1 49.7 20.5 20.1 20.3
STAC-ST (M) 86M 52.0 51.9 52.3 52.1 23.0 22.1 22.6
STAC-ST (L) 298M 52.4 52.8 52.6 52.6 22.7 22.4 22.5

Word Error Rate (↓)

SAT-fMLLR [303] 41.3 40.0 36.5 39.3 64.7 65.3 65.0
SAT-SGMM [98] 35.9 34.5 - - - - -
Multi-task ASR/ST [296] 25.7 25.1 23.2 24.7 44.5 45.3 44.9
E2E-ST M2Ma† [298] 25.6 25.0 22.9 24.5 43.5 44.5 44.0
Joint ASR+MT [308] 22.8 22.3 20.5 21.9 39.5 39.4 39.5
From ESPnet [328] 20.5 20.2 18.7 19.8 37.8 37.6 37.7

Whisper-tiny 39M 50.9 49.9 44.1 48.3 60.5 58.5 59.5
Whisper-base 74M 41.4 39.5 34.8 38.6 49.0 48.7 48.8
Whisper-small 244M 32.2 30.5 28.1 30.2 36.9 36.5 36.7
Whisper-medium 769M 28.3 26.8 25.8 27.0 29.8 29.3 29.6

STAC-ST (S) 21M 23.0 22.2 20.9 22.0 34.6 36.3 35.4
STAC-ST (M) 86M 21.1 20.4 18.9 20.1 30.2 31.4 30.8
STAC-ST (L) 298M 21.0 20.6 18.8 20.1 30.4 31.0 30.7
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Table A.10: Main characteristics of MSLT dataset [1] used in our experiments. We list the details
for each language pair and for each task, i.e., ASR and ST.

Characteristics FR → FR & EN DE → DE & EN EN → EN & DE

ASR ST ASR ST ASR ST

dev test dev test dev test dev test dev test dev test

Nb. of samples [k] 1.5 1.5 1.4 1.5 1.5 1.7 1.5 1.7 2.4 2.4 2.4 2.4
Duration [hr] 2.94 3.02 2.91 3.0 3.32 3.56 3.31 3.56 3.79 3.84 3.79 3.84

A.9 Microsoft Speech Language Translation (MSLT) Corpus De-
tailed Results

This appendix list the detailed results for the official development and evaluation subsets for
the Microsoft Speech Language Translation Corpus (MSLT) [1].1 MSLT dataset was created
from real-life conversations over Skype. The authors provided metadata and manually segmented
audio together with translations, i.e., a 3-way dataset. This corpus was part of IWSLT-2016
campaign [1]. In this work we use three different language pairs: EN→DE, DE→EN and,
FR→EN. Details for each language pair are listed in Table A.10. Note that, differently from
previous work, we list ASR and BLEU scores results on both dev and test sets.

A.9.1 Dataset characteristics

Table A.11 list the results for the DE → DE & EN direction, while Table A.12 and Table A.13,
cover the results for EN → EN & DE and FR → FR & EN, respectively.

1See: https://www.microsoft.com/en-us/download/details.aspx?id=54689
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A.9 Microsoft Speech Language Translation (MSLT) Corpus Detailed Results

Table A.11: BLEU scores and WERs for different models trained with CoVoST2 and Com-
monVoice and evaluated on the DE → DE & EN direction of MSLT corpus. †note that this row
denotes a second round of training: we fine-tune the given model on the dev set (+FT-DEV) and
evaluate on test. ‡models pre-trained with at least 10k hours of Microsoft data.

Language
Pair

Size (θ) DE → DE & EN

ASR ST
dev test dev test

Baselines

LAMASSU-UNI‡ [300] - - - 18.7

DE → DE/EN 21M 45.8 45.6 4.0 4.1
↪→ +FT-DEV† 21M - 28.4 - 14.3

DE → DE/EN 86M 40.4 40.1 3.3 3.0
↪→ +FT-DEV† 86M - 27.1 - 15.3

ALL→ALL 86M 36.1 35.4 8.4 8
↪→ +FT-DEV† 86M - 25.2 - 18.5

ALL→ALL 298M 33.3 33.0 9.3 8.9
↪→ +FT-DEV† 298M - 22.6 - 19.9

Table A.12: BLEU scores and WERs for different models trained with CoVoST2 and Com-
monVoice and evaluated on the EN → EN & DE direction of MSLT corpus. †note that this row
denotes a second round of training: we fine-tune the given model on the dev set (+FT-DEV) and
evaluate on test. ‡models pre-trained with at least 10k hours of Microsoft data.

Language
Pair

Size (θ) EN → EN & DE

ASR ST
dev test dev test

Baselines

TT‡ [310] - - - 30.7
LAMASSU-UNI‡ [300] - - - 20.0

EN → EN/DE 21M 54.4 58.0 5.6 5.3
↪→ +FT-DEV† 21M - 29.9 - 13.8

EN → EN/DE 86M 53.4 52.6 8 8.4
↪→ +FT-DEV† 86M - 26.6 - 17.3

ALL→ALL 86M 35.8 37.5 8.9 8.6
↪→ +FT-DEV† 86M - 24.8 - 17.0

ALL→ALL 298M 32.5 34.1 8.8 8.3
↪→ +FT-DEV† 298M - 22.2 - 19.3
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Table A.13: BLEU scores and WERs for different models trained with CoVoST2 and Com-
monVoice and evaluated on the FR → FR & EN direction of MSLT corpus. †note that this row
denotes a second round of training: we fine-tune the given model on the dev set (+FT-DEV) and
evaluate on test.

Language
Pair

Size (θ) FR → FR & EN

ASR ST
dev test dev test

FR → FR/EN 21M 57.5 54.8 10.7 12.2
↪→ +FT-DEV† 21M - 32.2 - 22.2

FR → FR/EN 86M 52.8 50.4 12.5 13.6
↪→ +FT-DEV† 86M - 29.1 - 24.0

ALL→ALL 86M 45.8 44.5 15.0 15.9
↪→ +FT-DEV† 86M - 27.5 - 25.7

ALL→ALL 298M 43.0 41.7 14.8 16.3
↪→ +FT-DEV† 298M - 25.0 - 27.5
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A.10 STAC-ST on CoVoST2 & CommonVoice

A.10 STAC-ST on CoVoST2 & CommonVoice

In this work, we also intend to demonstrate that STAC-ST also generalizes to non-conversational
ST and ASR. This appendix supports that STAC-ST, (1) generalizes to two well-known non-
conversational ST & ASR benchmarks. (2) generalizes to language pairs not covered by Fisher-
CALLHOME corpora, including two additional XX→EN directions (DE/FR) and EN→DE
direction. (3) can be scaled up in both, data and model size. The train/dev/test sets sizes for this
ablation are listed in Table A.14.

Table A.14: CoVoST2 and CommonVoice dataset splits used in our work. We list the number of
samples (#) and cumulative hours (Hr.) per each subset. †this experiment joins all the available
train datasets per each language pair, during evaluation, we test on each single-language pair.

Language Pair CommonVoice [97] CoVoST2 [2]

TRAIN DEV TEST TRAIN DEV TEST

# Hr. # Hr. # Hr. # Hr. # Hr. # Hr.

FR → FR & EN 507k 731 16k 25 16k 26 205k 264 14k 21 14k 23
DE → DE & EN 537k 855 16k 27 15k 27 127k 184 13k 20 13k 21
EN → EN & DE 1012k 1602 16k 27 16k 26 287k 428 15k 26 15k 24
ES → ES & EN 277k 406 15k 26 15k 26 78k 113 13k 21 13k 22
ALL → ALL† 2333k - - - - 697k - - - - -

Baseline ResultsTable A.15 list the results for each proposed language direction from CoVoST2
and CommonVoice against baselines from previous work. Note that in practice, all our models
are bilingual because they are optimized for both, ASR and ST.

A.10.1 Scaling Up STAC-ST

We evaluate STAC-ST on four +CoVoST2+CV language directions (see §6.1). We confirm that
BLEU and WER scores improves as we scale up STAC-ST model size. This result is not surpris-
ing as it has already being proven in computer vision [320], speech [78] and NLP [327]. Yet, it
is fundamental to verify that STAC-ST can be scaled up in standard ST and ASR benchmarks.
Similarly, Table A.9 shows that bottom most STAC-ST model, with 298M parameters, beats
strong baselines based on Whisper, further proving our system as a good fit to jointly model ASR
& ST.
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Table A.15: WERs and BLEU scores on different language directions of CoVoST2 [2] corpus.
Numbers denote performance on the test set.

Nb. Parameters DE → DE & EN EN → EN & DE FR → FR & EN ES → ES & EN

θ (M) WER (↓) BLEU (↑) WER (↓) BLEU (↑ WER (↓) BLEU (↑ WER (↓) BLEU (↑)

Baselines

Whisper [188]† 13.0 25.3 14.5 - 22.7 27.3 10.3 33.0
XLSR model [50]‡ - 26.7 - 23.6 - 32.9 - 34.1

21M 11.8 19.7 21.6 14.0 15.1 29.2 10.1 29.1
86M 8.9 20.5 15.7 20.7 12.8 31.8 8.0 32.6
298M 7.8 21.4 14.5 21.0 13.3 25.2 7.5 33.0
ALL–>ALL 298M 7.6 27.5 14.6 20.7 11.4 34.0 6.5 35.8
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Figure A.5: WERs and BLEU scores on four different language directions of CoVoST2 [2, 356]
corpus. Note that the top left systems denote better overall performance, i.e., higher BLEU and
lower WER. Star markers denote performance by Whisper-small. Note that there is no reference
for EN→EN/DE as it only runs on XX→EN language pair.
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Doctor of Philosophy (Ph.D.) - Candidate

• Automatic speech recognition (ASR) for air traffic control (ATC): ATCO2 EU-H2020.
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• Led the integration of natural language processing (NLP) techniques. 50% improvement in named-
entity recognition from ASR transcripts (breakthrough).

• Developed systems for speaker role and speaker change detection based on ASR transcripts.
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• Participation on industrial projects: spoken language understanding (use case: call-centers).
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Master of Science Thesis

• Participated: SBRA-”Smart BRA” project, financed by INTERREG (France-Suisse)
• Developed a system for breast cancer diagnosis based on thermal images.
• Early research in multi-modal techniques (vision & signal) for breast cancer diagnosis.
• Published two journal papers.
• Master Thesis: Breast Cancer Diagnosis Using Machine Learning.
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• Participation in national and international events (7), co-authorship in publications (4), 2 patents.
• Active member of the GIIM research group of mechatronic, as a senior research student for three
consecutive years and then an active member.
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• Main topics covered: automatic control, electronics, mechanical systems, robotics, nanotechnology,
machine learning and computer science.

• Research on Titanium dioxide (TiO2) for wastewater decontaminaton: work as student on the GIIM
research group in Mechatronics.

• Thesis: developed a system to capture and analyze precordial signals by Seismocardiography and signal
processing.

PUBLICATIONS (JOURNAL, PEER REVIEWED)
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3. Ahrenhold, N., Helmke, H., Mühlhausen, T., Ohneiser, O., Kleinert, M., Ehr, H., Klamert, L., &
Zuluaga-Gomez, Juan. (2023). Validating Automatic Speech Recognition and Understanding
for Pre-Filling Radar Labels – Increasing Safety While Reducing Air Traffic Controllers’ Workload.
Aerospace, 10 (6). https://doi.org/10.3390/aerospace10060538.

2. Zhan, Q., Xie, X., Hu, C., Zuluaga-Gomez, Juan, Wang, J., & Cheng, H. (2021). Domain-adversarial
based model with phonological knowledge for cross-lingual speech recognition. Electronics, 10 (24).
https://doi.org/10.3390/electronics10243172.

1. Zuluaga-Gomez, Juan et al. (2021a). A CNN-based methodology for breast cancer diagnosis us-
ing thermal images. Computer Methods in Biomechanics and Biomedical Engineering: Imaging &
Visualization, 9 (2).



PUBLICATIONS (JOURNAL, REVIEW PAPER, PEER REVIEWED)

2. Zuluaga-Gomez, Juan, Bonaveri, P., Zuluaga, D., et al. (2020). Techniques for water disinfection,
decontamination, and desalinization: A review. Desalination And Water Treatment.

1. Zuluaga-Gomez, Juan et al. (2019). A survey of breast cancer screening techniques: Thermography
and electrical impedance tomography. Journal of medical engineering & technology, 43 (5).

PUBLICATIONS (CONFERENCE, PEER REVIEWED)

22. Zuluaga-Gomez, Juan, Huang, Z., Niu, X., Paturi, R., Srinivasan, S., Mathur, P., Thompson,
B., & Federico, M. (2023). End-to-End Single-Channel Speaker-Turn Aware Conversational Speech
Translation. Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing
(main). https://arxiv.org/abs/2311.00697.

21. Zuluaga-Gomez, Juan, Ahmed, S., Visockas, D., & Subakan, C. (2023). CommonAccent: Exploring
Large Acoustic Pretrained Models for Accent Classification Based on Common Voice. Proc. Interspeech
2023 [Nominated as best student paper award].

20. *Mai, F., *Zuluaga-Gomez, Juan, Parcollet, T., & Motlicek, P. (2023). HyperConformer: Multi-
head HyperMixer for Efficient Speech Recognition. Proc. Interspeech 2023. [Equal contribution].

19. Nigmatulina, I., Madikeri, S., Villatoro-Tello, E., Motliček, P., Zuluaga-Gomez, Juan, Pandia, K.,
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Device for Cardiac Signals Detection, Granted September 2019
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• Registration number: NC16-175508
• Phase: Granted 2020
• Financing partners: Commerce Chamber of Barranquilla - CIENTECH

Robot for Martial Arts Training - RobPam, Granted October 2020
• Robotic humanoid to practice martial arts
• Registration number: NC201-0007622
• Phase: Granted 2020
• Financing partners: Commerce Chamber of Barranquilla - CIENTECH

SUPERVISION ACTIVITIES
Universidad Autonoma del Caribe, Barranquilla, Colombia

Mechatronic Engineering Undergraduate Program October 2016
• Development of a biomedical instrument and mobile APP for cardiac signals (SCG) and pulse oximetry
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electrocardiogram signals in a web page. Student: Juan Villalobos, Daniel Castaneda.
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