
Assessing the Reliability of Biometric Authentication on Virtual Reality Devices

Ketan Kotwal1, Gökhan Özbulak1,2, and Sébastien Marcel1,3

1 Idiap Research Institute, Switzerland
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Abstract

Recent developments in Virtual Reality (VR) headsets
have unlocked a plethora of innovative use-cases, many of
which were previously unimaginable. However, as these
use-cases, such as personalized immersive experiences, ne-
cessitate user authentication, ensuring robustness and re-
sistance to spoofing attacks becomes imperative. The ab-
sence of appropriate dataset has constrained our under-
standing and assessment of VR devices’ susceptibility to
presentation attacks. To address this research gap, we in-
troduce VRBiom: a new periocular video dataset acquired
from a VR headset (Meta Quest Pro), comprising 900 gen-
uine and 1104 presentation attack videos, each spanning
10 seconds. The bona-fide videos consist of variations in
terms of gaze and glasses; while the attacks are constructed
with 6 different types of instruments. Additionally, we eval-
uate the performance of two prominent CNN architectures
trained using various configurations for detecting presen-
tation attacks in the newly created VRBiom dataset. Our
benchmarking on VRBiom reveals the presence of spoof-
ing threats in VR headsets. While baseline models exhibit
considerable efficacy in attack detection, substantial scope
exists for improvement in detecting attacks on periocular
videos. Our dataset will be a useful resource for researchers
aiming to enhance the security and reliability of VR-based
authentication systems.

1. Introduction
In recent years, the advancement in the wearable devices

such as Head-Mounted Display (HMD) made it possible to
interact with real and/or virtual environments for specific
purposes. The HMD device operated in such virtual on real
(Augmented Reality), virtual only (Virtual Reality) and vir-
tual/real blended (Mixed Reality) environments enable the
people to play computer games, interact with multimedia
including video and train for profession-purpose. There are
many vendors such as Meta, Apple, Microsoft and HTC fo-

BF

PA

PAD
CNN

PAD CNN = 
Backbone + 

Classifier

Figure 1. In top left, a user attempting to spoof the Iris/Periocular
authentication of the Virtual Reality (VR) headset by presenting a
print-out of face of another real or synthetic identity. The cameras,
mounted on the inner surface of the device, are intended to capture
the periocular regions of the wearer of headset. This picture is rep-
resentational as controlled exposure of incident light is necessary
to record good quality attacks. The bottom row depicts attack (left)
and bona-fide (right) samples from the VRBiom dataset.

cusing on the development of these kind of devices in dif-
ferent real/virtual level.

Beyond gaming, the HMD devices have many applica-
tion areas ranging from healthcare to communication. In
healthcare, it can be adopted for use in surgical training and
planning [13, 26], and in more specifically for the ophthal-
mology and psychology, it may be possible to diagnose the
eye diseases [29], as well as to analyze the human emo-
tion/behavior [3] based on the data collected by such de-
vices. In communication, the avatar as digitization of the
real people in the Metaverse, which is defined as the virtual
world’s access by HMD devices, provides a way of interac-



tion for people to communicate with each other on virtual
platforms [4]. This kind of communication requires the as-
surance regarding the validity on person on the other side,
and needs additional security layers such as identity recog-
nition using biometric traits. The use of iris or periocular
region, being inherently visible to the HMD, as biometric
trait can be natural choice in this regard.

The existence of the biometric systems is vital for these
devices in order to provide secure access to the personal
information regarding to healthcare or privacy. The intro-
duction of such systems also requires the robustness against
presentation attacks that are realized over various instru-
ments (mask, paper etc.). A Presentation Attack Detection
(PAD) system must be co-exist with the biometric system
in order to keep unauthorized access, which mimics as an
authorized person over printed paper etc., away. Although
it’s an achievable data-driven machine learning task because
of the plenty number of the PAD dataset in the mainstream
biometric recognition [6, 21], to the best of our knowledge,
there is no PAD dataset collected specifically from HMD
devices.

With emergence of VR devices, and possible diverse us-
age, it is important to envisage upcoming challenges and
conduct research to address these well in advance. The
critical missing factor is no such data is publicly avail-
able given the novelty or recentness of such data. In this
work, we address both challenges associated: first, we cre-
ate a dataset of nearly 2000 periocular videos, approxi-
mately 10s long, captured by the headset cameras of Meta
Quest Pro (a VR headset released by Meta, formerly Face-
book). This dataset consists of recordings of 25 bona-fide
users with steady gaze, moving gaze, as well as partially
closed eyes. For selected recordings, we construct a pre-
sentation attack (PA) by fake 3D eyeballs, print-outs of pe-
riocular regions of other enrolled users as well as that of
synthetic identities. This dataset- Virtual Reality Dataset
for Biometric Applications (VRBiom)- will be publicly re-
leased to the research community for furthering work in
biometrics.1 Secondly, we conduct PAD assessment of
the newly created VRBiom dataset using two most com-
monly used convolutional neural network (CNN) architec-
tures: ResNet and MobileNet. For each architecture, we
select three different strategies based on which components
of the CNN are adapted (trained/ finetuned) or regarded as
constant (frozen). For each of these combinations, we eval-
uate their robustness towards detection of PA from the VR-
Biom.

The main contributions of the paper can be summarized
as below:
• We create a new dataset, VRBiom, consisting of 900 iris/

periocular videos of 25 subjects captured by the cameras

1The VRBiom dataset can be downloaded from https://www.
idiap.ch/dataset/vrbiom.

of a VR headset, specifically the Meta Quest Pro. We also
capture 1,104 videos of presentation attacks constructed
using 92 PA instruments comprising fake eyeballs, print-
outs, and synthetic eyes using a variety of masks and man-
nequins [16].

• We conduct PAD assessment of the newly created dataset
using two state-of-the-art architectures, by training them
in different strategies. Results of our experiments indicate
that while the existing CNN architectures, along with pre-
trained weights, are able to detect the PAs to a large ex-
tent, there is a systematic opportunity for improvement.

2. Related Work

In this section, we first provide an overview of recent ad-
vances in iris/ periocular PAD methods, then we discuss in
brief some existing datasets acquired using HMD devices.

Iris/Periocular PAD: The PAD for iris or periocular re-
gions as biometric trait is a well-studied area of research.
In [22], Sharma et al. proposed a DenseNet based PAD
system in order to expose the complicated features of the
iris stroma by the multi-resolution analysis capability of
the DenseNet. Similar to [22], Swarup et al. also used
the DenseNet combined with attention mechanism between
the dense blocks of the DenseNet [23]. Li et al. leveraged
the frequency domain to alleviate the cross-dataset perfor-
mance degradation because of the limited data on the bona-
fide samples [17]. Fang et al. proposed an attention-based
deep pixel-wise method, which detects the regions effecting
the performance of the PAD, in [10] for infrared and visi-
ble domains. In [1], the problem of iris PAD is considered
for the contact lens scenario and a generalized CNN topol-
ogy is used combined with early and late fusion strategies
in order to have robust PAD methods in cross-dataset set-
ting. Dhar et al. proposed a multitask system for both eye
authentication and PAD [8]. They mitigated the problem of
forgetting in the Multitask Learning (MTL) by introducing
the distillation-based approach. In [28], a Generative Ad-
versarial Network (GAN) based approach is used in order
to generate synthetic PA samples that are underrepresented
in the training set. Agarwal et al. proposed a PAD system
by combining gener-covariate based classifiers in [2]. In the
same study, fairness based observations are also shared re-
lated with gender bias in the PAD datasets. In [18], Li et al.
proposed a PAD system for better generalization in a cross-
dataset setting by exposing domain-invariant and domain-
specific features in the samples.

Iris/Periocular PA Datasets: Various PA datasets have
been considered to design and benchmark different iris PAD
methods. The Iris Liveness dataset [24] is one of the most
recent such datasets, which was used as a benchmarking
dataset for LivDet-Iris competition. A variety of PA instru-
ments used in this dataset make it highly comprehensive and

https://www.idiap.ch/dataset/vrbiom
https://www.idiap.ch/dataset/vrbiom


challenging. These PA instruments include devices such as
contact lenses, fake eyeballs, print and synthetic eyes. The
IIITD Contact Lens Iris [14] is a PA dataset specialized to
contact lens attacks. It contains real eye images combined
with two different types of lenses- transparent and cosmetic
ones. Another iris PA dataset collected for prosthetic/glass
eye attacks has been released by the University of Notre
Dame [7]. Both datasets [14] and [7] have also been dis-
tributed as part of the LivDet-Iris dataset for challenge pur-
poses. A synthetic eye dataset, CASIA-Iris-Syn [27], con-
sists of PA scenarios under synthetic attacks. The VRBiom
dataset has also been constructed using similar PA instru-
ments, except contact lenses, as described the datasets men-
tioned above. It, however, mainly differs in terms of data
acquisition modality with specific focus on HMD devices.

HMD Datasets: HMD based datasets are severe in the
literature as the topic is relatively new. The most recent
study is proposed as the OpenEDS dataset by Garbin et
al. [11]. This dataset consists of 356k infrared images with
an image size of 640 × 400 collected from 152 subjects.
Another recent dataset is the NVGaze proposed by Kim et
al. [12] and it contains 2.5 million infrared images with di-
mensions of 640 × 480 for 30 subjects. Tonsen et al. pro-
posed a similar dataset named as the LPW [25] with 22 sub-
jects in a head-mounted fashion and it consists of 130k im-
ages with a spatial resolution of 640 × 480. The Point of
Gaze dataset, by McMurrough et al. [19], is collected from
20 subjects and contains images with a spatial resolution
of 768× 480 pixels. The VRBiom dataset, similar to HMD
datasets mentioned above, consists of bona-fide samples but
distinctively differs from other datasets by additionally pro-
viding PA samples with various PA instruments.

3. New Periocular Dataset: VRBiom
This section briefly describes the details regarding to the

VRBiom dataset including the statistics for bona-fide and
attack samples, the PA instruments used during the data col-
lection session and the protocol information. For more de-
tails related to dataset, its acquisition, and possible uses,
refer [16].

3.1. Description

The VRBiom dataset, to the best of our knowledge, is the
first periocular PAD dataset acquired from HMD devices
such as Meta Quest Pro. Since the environment of data ac-
quisition is highly controlled (the HMD closely fits around
the head of the subject), we recorded every identity, either
bona-fide or PAIs, in one session. Each recorded sample
is composed of two sub-samples referring to Near Infrared
(NIR) cameras of Meta Quest Pro looking in and around left
and right eyes of the wearer.

During bona-fide session, each participant was briefly in-
formed about the project, and was required to sign a consent

(a) (b) (c)

(d) (e) (f)
Figure 2. Samples of bona-fide recordings from the VRBiom
dataset. Each row presents a sample of steady gaze, moving gaze,
and partially closed eyes (from left to right). Top and bottom rows
refer to recordings without and with glasses, respectively.

form. As seen in Fig. 2, each subject was recorded in two
sub-sessions: one with wearing glasses and another with-
out. For each sub-session, the subject was asked to maintain
three specific conditions as steady gaze, moving gaze, and
partially closed eyes. We recorded each video for nearly
10s at 72 fps. Post recording, we often observed that dur-
ing initial first second or so, several recordings were over-
exposed, and thus, initial 70 frames were discarded. The
videos, thus, have around 650 frames and spatial resolution
is 400× 400.

We constructed presentation attacks with different com-
binations of Presentation Attack Instruments (PAIs) to cre-
ate a wide range of attack dataset. The summary of com-
bination of 3D masks (and mannequins) and fake eyes con-
sidered to create attacks is provided in Table 1. Fig. 3 de-
picts some samples of PAIs which include rigid masks with
own eyes, rigid masks with fake 3D eyeballs, generic flex
masks with printouts of synthetic eyes, custom flex masks
with fake 3D eyeballs, and attacks constructed from prints
of bona-fide samples. Some auxiliary instruments such as
fake eyeballs, eyelashes and glasses were also used to bring
more variations and realism to PAIs. Some samples from
PA sessions can be examined in Fig. 4.

3.2. Dataset Statistics

Our dataset comprises video recordings of 25 bona-fide
subjects. For each subject, a total of 36 video samples were
captured: which are combinations of 3 gaze scenarios, 2
glass/no-glass, and 3 repetitions from each left and right
camera. In total, 900 bona-fide videos were recorded. Sub-
sequently, for each subject, we chose a suitable near-frontal
frame from with and without glass recordings. A print-
out of this frame from a laser printer (which is visible in
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(d) (e) (f)
Figure 3. PA instruments used to construct attacks in the VRBiom
dataset: (a) Rigid masks with own eyes, (b) rigid masks with fake
eyeballs, (c) flex masks with print attacks, (d) flex masks with
print attacks, (e) flex masks with fake eyeballs, and (f) auxiliary
instruments (fake eyeballs, prints with synthetic eyes, eyelashes,
glasses).

NIR spectrum) was used to create print-attacks. For each
eye (left and right), we recorded three repetitions, with and
without glasses for such attacks; thereby obtaining a set of
300 attacks videos that can be assessed for not only obfus-
cation, but also for vulnerability of recognition system.

For PAs, each instrument was recorded 3 times with and
without glasses. Thus, for each fake identity, we obtained
18 attack videos. For instance, the VRBiom dataset en-
compasses 7 unique mannequins that were used to obtain
(7 × 3 × 2 =) 86 videos. Similarly, for two types of cus-
tom rigid masks (ones with own eyes and ones fake 3D eye-
balls), we obtained 120 and 168 attack presentations. For
flexible masks with printed eyes and fake 3D eyeballs, we
recorded 240 and 192 videos, respectively.

(a) (b) (c)

(d) (e) (f)
Figure 4. Samples of PA recordings from the VRBiom dataset: (a)
Mannequins with own eyes, (b) rigid masks with own eyes, (c)
rigid masks with fake eyeballs, (d) flex masks with print attacks,
(e) flex masks with fake eyeballs, and (f) print attacks from bona-
fide samples.

3.3. Experimental Protocol

To conduct PAD assessment and establish baselines on
the VRBiom dataset, we created an experimental protocol
by dividing the dataset into train, val, and test parti-
tions. We ensured that these partitions are disjoint in terms
of identities, and nearly equal in volume (i.e., 33% of total
dataset). With uniform sampling, we selected every 10-th
frame of each video for processing. It should be noted that
all experiments described in this work have been conducted
at frame-level. That is, each constituent frame is regarded as
an independent data, irrespective of the implicit correlation
frames of the same video may have. Detection of attacks
from video data, by exploiting temporal information, is not
considered in this work. For frame-level PAD assessment,
the train partition of VRBiom consists of 39,620 frames
from 624 videos. The val partition has 41,683 frames from
648 videos—which have different identities as that from the
training partition. For the test partition, our experimental
protocol consists of 47,548 frames from 732 videos (bona-
fide and attacks combined). Some samples which were not
recorded correctly, due to technical or manual glitches were
removed after manual inspection. Fig. 2 shows samples of
bona-fide recordings, and Fig. 4 presents different types of
PAs.

4. PAD Assessment of the VRBiom Dataset
Initially, we provide the specifics of the experimental

setup, models, and evaluation metrics used. Subsequently,
we discuss the outcomes of the PAD experiments conducted
on the VRBiom dataset. These experiments are combina-
tions involving two backbone architectures and three differ-
ent models (training configurations).

4.1. Experimental Setup

Since the periocular region is considered as a biometric
trait to be assessed for PAD, we adopt the entire frame as
the input. From samples in Figs. 2 and 4, it can be observed
that the frame of Meta Quest Pro encompasses the eyes and
surrounding areas, validating the use of the entire frame as
the periocular region. Additionally, due to the variability
in eye positions (relative to the frame borders), cropping a
fixed region cannot guarantee a more precise and confined
periocular region. We conducted experiments to identify
iris regions to dynamically obtain a smaller periocular re-
gion. However, our preliminary experiments indicated that
commonly available eye detectors, such as OpenCV, are not
reliable for accurate detection of eyes from the VRBiom
samples. Although we did not conduct a detailed analysis
of detection failures, potential reasons include:
• Non-frontal Views: Most state-of-the-art eye or iris de-

tectors are trained to process frontal views. The non-
frontal, oblique nature of the VRBiom samples, resulting



Type Subtype # Identities # Videos Attack Types
bona-fide [steady gaze, moving gaze, partially

closed] × [glass, no glass]
25 900 –

Presentation
Attacks

Mannequins 2 7 84 Own eyes (same material)

Custom rigid mask (I) 3 10 120 Own eyes (same material)

Custom rigid mask (II) 4 14 168 Fake 3D eyeballs

Generic flexible masks 5 20 240 Print attacks (synthetic data)

Custom silicone masks 6 16 192 Fake 3D eyeballs

Print attacks 7 25 300 Prints attacks (real data)
Table 1. Details of bona-fide and different types of PAs from VRBiom. Each video is recorded at 72 FPS for approximately 10s. The
numbers in x are used to refer type of PAI (called attack series, hereafter) in rest of the discussions.

in elliptical iris shapes instead of circular ones, leads to
poor detections.

• Domain Shift: Common models for eye detection are
trained on RGB or visible spectrum data, whereas the VR-
Biom samples are acquired in the NIR spectrum, causing
a domain shift.

• Size: The samples in VRBiom dataset are relatively
small, with an average iris diameter of less than 60 pixels.

Nevertheless, qualitatively and quantitatively improved
iris detection from single or multiple frames remains an
open research problem. We anticipate that advancements
in iris detection will yield positive impacts on PAD or
any pertinent applications of the VRBiom dataset. We did
not perform specific studies, such as domain adaptation
or transfer learning, on eye/iris detection as the focus of
this work is confined to understanding the threat of PAs to
VR-based authentication systems.

PAD CNN Models: The PAD CNN models can be consid-
ered as a sequential combination of a backbone and a classi-
fier. The backbone comprises a convolutional stem derived
from a well-established CNN architecture, while the classi-
fier is a conventional feed-forward neural network (FF-NN)
tailored for binary classification. Prior to being fed into the
classifier, the output of the backbone may undergo process-
ing steps such as flattening, batch normalization, or dimen-
sionality reduction. The output of the classifier is a scalar
obtained via a Sigmoidal activation function, constraining
its range to [0, 1]. This output indicates the probability of a
sample being bona-fide. In this work, we have investigated
two widely recognized architectures as backbones for PAD
CNN:

• ResNet-34: This architecture represents a 34-layer vari-
ant of the improved ResNet architecture [9]. The ar-
chitectures based on residual connections have demon-
strated superior performance across various applications.
They facilitate the learning of subtle data features, such as

micro-textures potentially containing discriminative in-
formation related to PAs, while mitigating issues like van-
ishing gradients.

• MobileFaceNet: This architecture belongs to a family
of compact architectures specifically optimized for oper-
ation in resource-constrained environments in handheld
devices. This characteristic makes MobileNets an attrac-
tive choice for scenarios where the PAD model may op-
erate on an HMD device. With use of depthwise separa-
ble convolutions, MobileNets achieve high performance
while maintaining a low parameter count. In this work,
we utilize MobileFaceNet [5], a variant of MobileNets
tailored for face recognition tasks, as our backbone.

Training Configurations: Based on the selection of layers
within the PAD CNN and the chosen training strategy, we
conducted experiments with three distinct configurations
outlined below:
• Model1: The entire PAD CNN (i.e., both the backbone

and classifier) is trained from scratch on the train par-
tition of the VRBiom dataset. The models are initialized
with random weights.

• Model2: The backbone utilizes weights from a pretrained
model and remains fixed (frozen) throughout training,
while the classifier is trained from scratch. In this config-
uration, the backbone serves as a fixed feature extractor,
providing an embedding of the input sample to the classi-
fier for detection of PAs.

• Model3: Similar to the previous configuration, the back-
bone employs pretrained weights while the classifier is
initialized with random weights. However, during train-
ing, the entire PAD CNN (including the backbone) un-
dergoes training or fine-tuning for the PAD objective. No
layers of the backbone are frozen.
We selected these configurations to provide an overview

of commonly employed strategies for training PAD mod-
els. In the case of pretrained weights (Model2 and Model3),



we opted for models pretrained for face recognition for two
reasons2. Firstly, since the periocular region is a subset of
the face, the initial layers of the backbone may be more
effective at learning the desired features of the present use-
case. Secondly, the efficacy of face recognition CNNs to-
ward PAD via transfer learning has been extensively stud-
ied [15, 20].

During training, frames from various videos (bona-fide
+ PA) are randomly grouped to form training batches of 64
samples. Preprocessing and data augmentation involved re-
sizing the samples to 112 × 112, as required by the PAD
CNN backbones. The output of the backbone, an intermit-
tent layer pf the PAD CNN, was configured to be 512-d. We
employed random horizontal flipping and random rotation
up to 20◦ to improve generalization. Additionally, dropout
was applied across multiple layers of the PAD CNNs.

An SGD-based optimizer with an initial learning rate of
1e-3 was utilized alongside a step-wise rate scheduler. The
weight decay and momentum of the optimizer were set to
1e-4 and 0.90, respectively.

PAD Pipeline:3 To establish PAD baselines, we have used
to the conventional pipeline where the preprocessed image
(or frame) of the input presentation is fed into a CNN,
which yields a PAD score. This score, within a predefined
range, is then thresholded to obtain a binary decision
(bona-fide or attack). Our training utilizes the train
partition, while the val partition is employed for model
validation at each training epoch and to determine the score
threshold τ . Finally, the results are reported on the test
partition of the VRBiom dataset.

Evaluation Metrics: We report the performance of afore-
mentioned configurations toward PAD on the VRBiom us-
ing the following evaluation metrics:
• APCER (Attack Presentation Classification Error Rate):

APCER measures the proportion of PAs incorrectly clas-
sified as genuine (bona-fide). For NPAIs PAIs, APCER is
calculated as:

APCERPAIs = 1− 1

NPAIs

NPAIs∑
i=1

scorei, (1)

where scorei is 0 if the i-th presentation is classified as
genuine, and 1 otherwise. When multiple categories of
PAIs exist, we report the overall APCER as the average
across all attack categories.

• BPCER (bona-fide Presentation Classification Error
Rate): BPCER measures the proportion of genuine pre-

2ResNet: https://github.com/deepinsight/insightface, MobileFaceNet:
https://github.com/yeyupiaoling/Pytorch-MobileFaceNet

3The source code of PAD experiments described in this work is avail-
able at https://gitlab.idiap.ch/bob/bob.paper.vrbiom pad ijcb2024.

sentations incorrectly classified as attacks. For NBF gen-
uine presentations, BPCER is calculated as:

BPCER =
1

NBF

NBF∑
i=1

scorei. (2)

• ACER (Average Classification Error Rate): ACER is the
average of APCER and BPCER:

ACER =
APCER+ BPCER

2
. (3)

The Equal Error Rate (EER), used to determine the
score threshold on the validation (val) set, approximates
the ACER for the validation set, where APCERval ≈
BPCERval.

4.2. Results of PAD Experiments

Results of Model1: In our initial experiment, we trained the
entire PAD CNN from scratch using the train partition of
VRBiom dataset, comprising 624 video samples. With a
selection of every 10-th frame, the training dataset encom-
passed a total of 39.6k frames. Despite unequal volumes of
classes (bona-fide v/s PA) and various attack instruments,
we did not perform any class balancing during data loading
or loss calculations. For baseline experiments, we relied
on the default setup, although techniques for balancing data
distributions could potentially improve PAD performance.

For Model1 with a ResNet-34 backbone, an EER of
11.78% was achieved on the val partition. Applying the
same score threshold on the test partition an APCER (av-
erage) of 11.41% and BPCER of 7.34% were obtained. This
indicates overall approximately 8,400 frames out of 44.5k
(number of valid frames after removing poor quality cap-
tures) were inaccurately classified by Model1 of the PAD
CNN. Similarly, when the PAD CNN with a MobileFaceNet
backbone was trained from scratch, a drop of nearly 2%
was observed in the EER compared to the ResNet back-
bone. The APCER and BPCER on the test partition were
8.96% and 4.68%, respectively. The results of PAD assess-
ment are presented in Table 2, while Receiver Operating
Characteristic (ROC) curves for both backbones are shown
in Fig. 5a. Although both backbones exhibited similar per-
formance around the EER operating point (of the validation
partition), the ROC analysis reveals relatively superior per-
formance of the MobileFaceNet architecture at lower ranges
of APCER. Table 2 also provides a summary of incorrectly
classified attack series (such as mannequins or flex masks).
It can be observed that no backbone for this configuration is
particularly better at detecting all types of attacks compared
to the other one.
Results of Model2: In this configuration, the pretrained
backbone serves as a fixed feature extractor, and training

https://gitlab.idiap.ch/bob/bob.paper.vrbiom_pad_ijcb2024


PAD Model Backbone EER APCER (test) APCER BPCER ACER

(val) 2 3 4 5 6 7 (test) (test) (test)

Train from scratch
ResNet 11.78 2.44 0.42 61.60 13.88 1.50 0.00 11.41 7.34 9.37

MobileFaceNet 9.56 12.09 0.0 63.82 0.66 4.62 0.03 8.96 4.68 6.82

Fixed backbone
ResNet 27.23 48.59 22.34 33.79 18.77 20.32 8.97 21.71 19.21 20.46

MobileFaceNet 10.88 7.31 0.0 38.13 1.34 6.37 0.0 7.65 5.81 6.73

Finetune
ResNet 12.90 28.03 0.06 17.87 2.07 15.0 0.01 8.19 4.43 6.31

MobileFaceNet 6.46 33.68 0.0 9.44 0.0 4.68 0.0 5.18 1.04 3.11
Table 2. Assessment of PAD on the VRBiom dataset using three training configurations on both backbones. The EER values are obtained
from the val partition, while all other metrics are computed on the test partition. The interim columns with APCER x refer to the
APCER obtained for specific attack series (Refer Table 1). All values are indicated as percentages. As each value is an error metric, lower
values are desirable.
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Figure 5. ROC (Receiver Operating Characteristics) plots reflecting the performance of PAD using each Model configuration on the test
partition of the VRBiom dataset.

is restricted to the classifier component only. The ResNet
and MobileFaceNet backbones comprise 34,171,713 and
1,233,409 parameters, respectively, while our FF classifier
has 32,897 parameters. Thus, in the Model2 setup, only
0.09% (for ResNet) and 2.66% (for MobileFaceNet) of the
overall PAD CNN parameters are trainable. For the ResNet
backbone, we observed BPCER of 19.21%, along with a
notably high APCER of 21.71%, indicating that nearly one
in every five frames were misclassified for both classes- at-
tacks and genuines. Using the MobileFaceNet backbone,
the error rates were nearly reduced to one third compared
to the ResNet backbone, although they exhibited similar
trends. The subpar performance of the Model2 configura-
tion is further evident from Fig. 5b. This can potentially be
attributed to the fact that less than 0.09% of the overall CNN
was trainable, which may be insufficient, for the given train-
ing setup, to effectively mitigate the threat of presentation
attacks on the HMD. Additionally, employing a different
backbone, such as one trained on more diverse and generic
datasets, may lead to different conclusions.

Results of Model3: This configuration involves overall
finetuning of the PAD CNN, where the pretrained back-
bone is finetuned while the classifier is trained. Thus, it can
be anticipated to harness the benefits of pretrained weights

(from rich and dynamic data) and adapting the same for the
specific task using the appropriate dataset, i.e., the train-
ing partition of the VRBiom dataset. The PAD assessment
provided in Table 2 validates this assumption. In case of
the ResNet backbone, the APCER and BPCER reduced by
around 3% each compared to the scenario when the entire
PAD CNN was trained from scratch. Although there was
a major increase in detecting specific types of attacks (se-
ries 2 and 6) (on the test partition) for this backbone, the
overall performance on the test partition exhibited improve-
ment. For the MobileFaceNet backbone, Model3 demon-
strated the best performance, with the average error rate on
the test partition of VRBiom dataset as low as 3.11%. Both
error rates (APCER and BPCER), too, showed the improve-
ments compared to the other configurations. Except detect-
ing mannequins, for each type of attack (denoted by attack
series), the MobileFaceNet outperformed the ResNet-based
model by a considerable margin. The ROC plots in Fig. 5c
clearly indicate that Model3, particularly for the Mobile-
FaceNet backbone, offers better capabilities for PA detec-
tion.

A simple visual comparison of ROCs from Fig. 5 pro-
vides two clear observations: first, Model3 (involving over-
all finetuning of pretrained weights) outperforms the detec-



tion of PAs from the VRBiom dataset. Second, across all
model configurations, MobileFaceNet is significantly bet-
ter than ResNet34 for PAD within the given experimental
setup.

5. Conclusions
As VR headsets continue to gain traction across diverse

biometric applications, it is imperative for research commu-
nity to anticipate and address the potential risks associated
with their use, particularly in use-cases involving user au-
thentication. Despite the awareness of possible risks, the
lack of periocular video data captured from VR headsets has
hindered the validation and study of these concerns. In this
work, we made an important contribution by introducing a
new dataset of periocular videos captured from the internal
camera of a specific VR device (Meta Quest Pro). This pub-
licly available dataset, VRBiom, comprising 900 bona-fide
videos from 25 subjects and 1104 presentation attacks from
92 PAIs, enables researchers to comprehensively investigate
the risks associated with biometric authentication systems
based on VR headsets to various types of PAs. Notably, the
bona-fide videos are captured under different conditions, in-
cluding steady gaze, moving gaze, and partially closed eyes,
with and without glasses, while the presentation attacks en-
compass six distinct instruments.

The second contribution of our work involves assess-
ing the performance of two prominent CNN architectures
(ResNet34 and MobileFaceNet) using different training
configurations on the newly created dataset. Our exper-
iments establish baseline performance metrics and reveal
the vulnerability of samples from VR headset to spoof-
ing attacks. Despite achieving acceptable performance in
terms of ACER around the specific operating point, we ob-
serve a significant drop in performance at lower values of
APCER, indicating a significant risk of spoofing attacks.
For instance, when the APCER falls below 1%, the BPCER
reaches nearly 50% in some experiments– implying that
nearly every other bona-fide frame is incorrectly classified.

Our experiments demonstrate that the MobileNet-based
architecture consistently outperforms the ResNet-based ar-
chitecture, indicating the significance of architecture se-
lection in mitigating the PAD threat. Further research is
warranted to enhance the accuracy and robustness of PAD
methods, particularly in anticipation of potential advance-
ments in spoofing techniques.

As a future work, we aim to explore suitable PAD mod-
els and training strategies to detect these attacks effectively.
Additionally, developing better methods for detecting or lo-
calizing eye or iris regions may lead toward improving PAD
performance and adapting existing techniques to VR head-
set data. Addressing these challenges in a timely manner is
crucial to ensuring the security and reliability of VR-based
authentication systems in the face of evolving threats.
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