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Abstract

Demographic bias in deep learning-based face recog-
nition systems has led to serious concerns. Often, the bi-
ased nature of models is attributed to severely imbalanced
datasets used for training. However, several studies have
shown that biased models can emerge even when trained on
balanced data due to factors in the data acquisition pro-
cess. Considering the impact of input data on demographic
bias, we propose an image to image transformer for demo-
graphic fairness (DeFT). This transformer can be applied
before the pretrained recognition CNN to selectively en-
hance the image representation with the goal of reducing
the bias through overall recognition pipeline. The multi-
head encoders of DeFT provide multiple transformation
paths to the input which are then combined based on its
demographic information implicitly inferred through soft-
attention mechanism applied to intermittent layers of DeFT.
We compute probabilistic weights for demographic infor-
mation, as opposed to conventional hard labels, simplifying
the learning process and enhancing the robustness of the
DeFT. Our experiments demonstrate that in a cross-dataset
testing (pretrained as well as locally trained models), inte-
grating the DeFT leads to fairer models, reducing the vari-
ation in accuracies while often slightly improving average
recognition accuracy over baselines.

1. Introduction
The issue of demographic bias in Face Recognition

(FR) systems has implications that extend beyond techni-
cal concerns to include social, societal, and ethical dimen-
sions [2, 32, 27]. Certain demographic groups based on
ethnicity/race or gender often experience unequal treatment
from modern FR systems utilizing deep convolutional neu-
ral networks (CNNs) [25, 31]. For instance, as indicated in
Fig. 1 (upper path in each example), one of the state-of-the-
art FR CNN, using improved ResNet-50 [9] architecture,
results in variation of around 2% in recognition accuracy
across four ethnic groups (Asian, African, Caucasian, and
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Figure 1. Illustration of demographic bias in the form variation in
recognition accuracy across different demographic groups in RFW
dataset [36]. In each example, the upper path and corresponding
numbers refer to the baseline performance; while lower path and
numbers indicate the output of the proposed DeFT.

Indian) in the RFW dataset [36]. These disparities in recog-
nition inaccuracies can potentially put these groups at risk
of negative outcomes in social, criminal, and financial con-
texts. In access control systems, such biased treatment can
lead to undue inconvenience [8, 15].

The imbalance in training data has been regarded as one
of the primary cause for demographically biased FR sys-
tems [4, 17, 12]. Most publicly available training datasets
show significant imbalance in terms of demographic repre-
sentation. For example, the CASIA-WebFace dataset [38]
is comprised of more than 80% Caucasian subjects, while
Asians and Indians together make up less than 5% [36].
Similarly, out of the 55k samples in the MORPH-II dataset,
more than 46k samples are male and only around 8k sam-
ples are female [1]— which indicates the extent of skew-
ness in the distribution of demographic groups in the train-
ing data.

Recent studies, however, have shown that even with de-
mographically balanced datasets, the FR CNNs may still
exhibit demographic bias [14, 17]. Therefore, achieving
balance alone in the dataset does not ensure complete elim-
ination of demographic bias. As demonstrated by several
works [5, 21, 28], the process of data acquisition also sig-
nificantly influences several aspects of input presentations
that can contribute to bias in FR systems. Several com-
prehensive studies conducted by the Maryland Test Facility



(MdTF) have revealed that image acquisition plays a cru-
cial role in shaping demographic disparities [28] and that
the characteristics of skin tone in acquired presentations are
significant demographic covariates [6]. Thus, not only ex-
tent of balance in data, but also their acquisition and char-
acteristics play important role in contributing to biased out-
comes of the subsequent FR CNN.

In a typical FR pipeline, the input presentations (images
of subjects’ faces) are preprocessed (detection, cropping,
alignment, etc.) to meet the requirements of the FR CNN.
These preprocessed images are then passed through the lay-
ers of deep CNN to obtain feature representations (embed-
dings) for matching and score generation. It is commonly
known that early layers in deep CNNs are tailored to the
specific data or domain, while later layers tend to be task-
specific. Therefore, if demographic bias primarily stems
from the data acquisition process, it would be more effec-
tive to address this issue during the initial stages or even at
the preprocessing phase. If bias exists within the charac-
teristics of input data itself, transforming its representation
before subjecting it to a pretrained FR CNN could be ben-
eficial in producing less biased outcomes at lower compu-
tational cost. Otherwise, addressing bias at higher network
layers or post-processing stages where pixel-level relation-
ships are no longer present would be necessary.

In this work, we propose an image preprocessing
module- Demographic Fairness Transformer (DeFT) to
address demographic bias in FR CNN. The DeFT con-
sists of a multi-head attention-based module with a shared
decoder, transforming input images into representations
that selectively enhance their subtle features while preserv-
ing identity-related information. Our approach involves
demographic-specific image enhancement before process-
ing them through the FR CNN. While individual subject-
specific enhancement would be ideal for higher accuracy, it
is computationally challenging. Therefore, our model is de-
signed to enhance input image representations to improve
recognition accuracy as a function of their demographic at-
tributes. The multi-head encoder offers diverse transfor-
mation functions for each input image, tailored to differ-
ent demographic groups’ characteristics. These outputs are
combined using an attention-based fusion module that dy-
namically generates weight vectors responsive to the image
content. By utilizing probabilistic weights instead of hard-
label demographic classifiers, our learning process becomes
more simplified and resilient against label noise. Unlike
previous works [13, 11], our model eliminates the need for
a separate extra demographic classifier. The relative im-
provement in recognition accuracy, on the RFW dataset, for
FR CNN using ResNet-50 backbone has been indicated in
Fig. 1.

Our contributions can be summarized as follows:
• We propose a lightweight image transformer, DeFT,

that can be prepended to an existing FR system to ob-
tain fairer outcomes (less bias) without impacting the
recognition performance. The default configuration
consists of 0.6M parameters.

• We propose the use of probabilistic weights to implic-
itly infer demographic information of the input. This
mechanism based on soft attention-based fusion mod-
ule underscores our system’s flexibility and robustness
to noisy training samples.

• The DeFT achieves state of the art performance on
the RFW dataset (well-referenced benchmark) in terms
of recognition accuracy and fairness to demographic
groups. These results are consistent for different com-
binations of training datasets.

2. Related Work
The existing literature on bias mitigation in FR can be

categorized into three main approaches: data-processing,
in-processing, and post-processing. Given that the focus of
the present work is more relevant to data-processing-based
methods, we aim to provide a detailed explanation of these
techniques.

In data-processing approaches, the main goal is to ad-
dress bias by manipulating the training data before it is fed
into the FR system [3]. This can be done through various
techniques such as data augmentation, sampling strategies,
and feature transfer methods.

In [18], Kortylewski et al. investigated the advantages
of using synthetic data during the initial training phases of
an FR CNN, followed by the application of real-world data
for fine-tuning to mitigate biases. It should be noted that
their study focuses on addressing biases related to yaw and
pose of the face rather than demographic factors. Nonethe-
less, this approach highlights the potential of synthetic data
in preparing the training process and demonstrates that a
fractional amount of real-world data may suffice to mitigate
bias issues compared to what would be needed for training
from scratch.

Wang et al. introduced a new technique for augmenting
features with large margins [37]. The aim of their tech-
nique is to balance demographic-class distributions in FR
systems, leading to a more equitable representation of dif-
ferent classes. In addition to enriching the feature set, such
augmentation also improves the model’s ability to general-
ize across diverse facial representations.

To enhance the representation of under-represented
groups in the feature space, Yin et al. proposed a fea-
ture transfer technique [39]. Their technique involves trans-
ferring features from well-represented individuals to those
who are less represented, with the goal of reducing dispari-
ties observed in FR dataset distributions. This transfer pro-
cess facilitates a more equitable representation and recogni-
tion accuracy across diverse demographic groups.



Wang et al. introduced an in-processing bias mitiga-
tion technique based on reinforcement learning to adjust
margins for demographics, to obtain balanced performance
across different races [35]. In this work, they also in-
troduced the BUPT-GlobalFace and BUPT-Balancedface
datasets which are often used to train the bias mitiga-
tion CNNs. A group-adaptive training strategy incorpo-
rating adaptive convolution kernels and attention mech-
anisms into FR CNN backbones was proposed in [13].
The work in [11] introduced an adversarial network for
debiasing employing one identity classifier and three de-
mographic classifiers (gender, age, race) to achieve unbi-
ased FR. In [23], authors proposed a two-stage method
for adversarial bias mitigation through disentangled rep-
resentations and additive adversarial learning. In [20],
the FR CNN has been finetuned by imposing regulariza-
tion constraints based on score-calibrations for each de-
mographic groups. Li et al. formulated the bias mitiga-
tion problem as a signal-denoising problem and proposed
a progressive cross-transformer architecture that removes
race-induced identity-unrelated components from identity-
related ones [22]. Some of the recent works have advocated
contrastive setup to enhance intra-class similarity and di-
minish similarity between negative samples [24, 40]. It may
be noted that most aforementioned works, based on train-
ing or finetuning the FR CNNs, have considered positive
and negative samples (same and different identities) from
the same demographic groups.

Post-processing techniques for bias mitigation have re-
ceived less attention compared to the other techniques.
These methods focus on score calibration [30] or score nor-
malization [26] to mitigate demographic bias. Terhöst et al.
proposed a use of shallow network instead of conventional
cosine or Euclidean distance based score computation [33].
A variety of score fusion and ensemble strategies were stud-
ied by Srinivas et al. to address age related bias in FR at
post-processing stage [29].

3. DeFT: Transformer for Bias Mitigation
We begin with motivation towards design choices of the

proposed image transformer and then describe the actual ar-
chitecture and functioning of the DeFT. Following that, we
explain our loss functions towards training of the DeFT.

If FR CNNs exhibit non-equitable performance for sub-
jects from particular demographic groups, tailored transfor-
mations based on demographic attributes could potentially
reduce this disparity. Thus, we develop a novel approach
involving preprocessing input images to enhance subtle
features essential for improving matching accuracy and
thereby minimizing demographic bias. While unique trans-
formations may be necessary for individual subjects or pre-
sentations to achieve optimal recognition, grouping based
on demographics significantly simplifies the enhancement

process. The concept of domain alignment (DA) through a
prepended modules is a well-established technique in the
field of adaptation problems [41, 42]. A similar trans-
formation of presentations acquired from different modal-
ities has been employed for heterogeneous face recogni-
tion [10]. These modules primarily aim to align the sub-
spaces of target domain input data with those of the train-
ing set (source domain), achieved by minimizing Kullback-
Leibler (KL) or Maximum Mean Discrepancy (MMD) loss.
However, it is important to note that our objective in ad-
dressing bias in FR differs distinctly from DA methods:
aligning distributions within the same demographic group
may inadvertently reduce inter-subject distances in feature
space whereas our goal is enhancing demographic-specific
features to improve recognition accuracy without compro-
mising subject-specific discriminatory information.

For mitigation approaches based on demographic-
specific processing, accurate knowledge of the demographic
label of the data by implicit or explicit means is critical.
However, learning the corresponding classifier with noisy
training labels presents a complex challenge. Additionally,
certain demographic variables such as race or skin color
often tend to be non-discrete. To address these complex-
ities, we calculate a probabilistic weight vector for demo-
graphic information obtained from the intermediate lay-
ers of the DeFT. Taking inspiration from multi-head at-
tention mechanisms that are prominent in transformer ar-
chitectures, we develop a dynamic, data-dependent module
to generate a probabilistic representation of demographic
group membership—which reduces the necessity for near-
perfect accuracy in demographic classification.

3.1. Architecture of DeFT

Figure 2a shows the architecture of the DeFT comprising
of an encoder module, fusion module, and a decoder mod-
ule. Let the DeFT be prepended to a pre-trained FR CNN,
F which accepts an RGB input image, x ∈ R3hw, where
h and w denote the height and width of the image, respec-
tively. We assume that x has undergone necessary prepro-
cessing to align with the requirements of F . The DeFT also
accepts the same input image x.
Encoder Module: The multi-head encoder provides sev-
eral transformation paths to the input through a sequence of
conv-ReLU-conv-ReLU-conv operations. The con-
volutional operations use a kernel size of 3 and a stride
of 1 to maintain the spatial dimensions (h × w) of the in-
termediate feature representations. For a dataset contain-
ing D demographic groups, we structure the DeFT with
K heads (encoder blocks) such that K ≥ D. This de-
sign has three advantages: (a) It avoids enforcing 1:1 corre-
spondence between encoder paths and demographic groups,
facilitating diverse configuration possibilities and enabling
ablation studies. (b) The final transformation for any demo-
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Figure 2. The architecture of the proposed DeFT with encoder, fusion, and decoder modules is shown in (a). The schematic of overall FR
pipeline inclusive of the DeFT is provided in (b).

graphic group is achieved as a linear combination of indi-
vidual block transformations, simplifying the training pro-
cess. (c) This structure reduces the learning requirements
for the demographic classifier by utilizing an over-complete
decomposition dictionary framework underlying features.
Fusion Module: It employs a channel-wise attention mech-
anism to combine the outputs of encoder blocks. If each
block (output of encoder) consists of J channels or feature
maps, for the j-th channel in the k-th encoder block, the
feature map Cjk is assigned a weight zjk through channel
attention (ChAtt), formulated as,

zjk = ChAtt(Cjk), j = 1 to J ; k = 1 to K. (1)

A weight matrix Z ∈ RJ×K is generated and processed by
a shallow feed-forward (FF) network followed by a softmax
operation across the dimensions representing the number of
heads (K). If Z′ represents the output of FF network, this
softmax operation can be described by Eq. 2.

z′′jk =
exp (z′jk)∑K
k=1 exp (z′jk)

, for j = 1, 2, . . . , J, (2)

The normalized weights Z′′ are then used to fuse the out-
puts of K encoders into a single feature map as given by
Eq 3.

C′j =

K∑
k=1

Cjk · z′′jk, for j = 1, 2, . . . , J. (3)

Additionally, we obtain an auxiliary output from the fu-
sion module to facilitate learning of probabilistic weights
indicating demographic information using a fully connected
(fc) layer on individual channels of normalized fusion
weights Z′′ to output a D-dimensional output. This layer
has K and D as the input and output dimensions respec-
tively. It may be noted that the weight vector is not di-

rectly tied to the labels; rather, it serves as a linear com-
bination mechanism for encoder outputs. The auxiliary out-
put (∈ RD) is used to compute the demographic loss as
explained in the next Section.
Decoder Module: The architecture of the decoder is same
as that of an individual encoder head, except that it produces
an output with 3 channels (same as input). This output is
subsequently processed by F to yield an embedding that
is expected to enhance recognition accuracy and mitigate
demographic biases.

It is important to clarify that while image enhancement
typically aims for visually pleasing results or noise reduc-
tion, our goal is to enhance the representation in a manner
that enables the subsequent pre-trained and frozen FR CNN
to extract higher quality features across layers. This ulti-
mately enhances recognition performance for the given in-
put.

3.2. Loss Functions

We consider ArcFace, an angular margin-based variant
of of cross entropy loss [7], that operates on embedding
(output of F) and subject’s identity label. This loss, LFR,
ensures that the recognition accuracy is improved: Initially,
an ArcFace classifier head is appended to the FR CNN and
trained to align it to the pre-trained FR CNN parameters.
Post alignment, the cross-entropy loss is computed using
Eq. 4 and backpropagated to the DeFT via frozen layers of
the FR CNN.

LFR = −
N∑
i=1

yi log

(
exp (fi)∑N
j=1 exp (fj)

)
, (4)

where f and y represent the normalized embedding and sub-
ject identity (label) respectively. N is the batch size.

We use a supervisory loss function to learn the soft-
weights (related to demographic information) from the aux-



iliary output of the fusion module. We consider cross-
entropy loss with label smoothing, serving as a regular-
ization strategy that enhances tolerance towards errors in
demographic labels of training data. Label smoothing
prevents the DeFT from being overly confident about its
predictions- which is particularly useful when working with
noisy or uncertain demographic labels. Eq. 5 provides for-
mula to compute the aforementioned demographic recogni-
tion loss, LDR.

LDR = −
N∑
i=1

d̃i log

(
exp (zz′′i )∑N
j=1 exp (zz′′j )

)
, (5)

where zz′′ denotes the auxiliary output of the fusion mod-
ule, and d̃ is the smoothed demographic label.

To minimize the difference between the scores of con-
stituent demographic groups, we first compute cosine sim-
ilarity between the mated pairs of each demographic in the
training batch. Following which we obtain the average
intra-group score s̄d as follows:

s̄d =
1

Nd

∑
#pairs

1− cos(fi, fj), (6)

where fi, fj represent the feature vectors of the same sub-
ject (i.e., mated pair) belonging to demographic group d,
and Nd is the number of such pairs in the given batch. In-
spired from loss functions in [13], we design our bias loss
function (Lbias) to minimize the absolute variation in aver-
age intra-group scores of constituent demographic groups.
Our loss term, however, differs from [13] in terms of dis-
tance function as well as formulation of intra-group scores.
Eq. 7 describes the bias loss function.

Lbias =

D∑
d=1

∣∣s̄d − 1

D

D∑
g=1

s̄g
∣∣ (7)

The overall lossLtot to train the DeFT is a weighted com-
bination of the FR, DR, and bias losses, where λw1 and λw2

are the relative weights of the DR and bias loss, respectively.
The overall loss is given as:

Ltot = LFR + λw1LDR + λw2Lbias (8)

By optimizing Ltot, it ensures that the DeFT learns to gen-
erate embeddings that are not only discriminative for recog-
nition purposes but also sensitive to the nuances of demo-
graphic diversity, thereby helping in reducing in bias within
the FR CNN.

4. Experimental Results
We first present details related to the experimental setup

and then discuss the results of the proposed DeFT-based

enhancement towards mitigating demographic bias in FR.
We conduct three different sets of experiments with spe-
cific goals: In the first set of experiments, we utilize the
same dataset for training both FR CNN and subsequently
the DeFT, followed by a comparison of their effectiveness
in terms of recognition accuracy and bias mitigation. The
objective is to investigate whether training the DeFT with
same training data as that of the FR CNN allows improve-
ment in its fairness. If access to the original training data
is no longer possible, we explore whether it is feasible to
use a different dataset to train only DeFT (while freezing
FR CNN) and achieve enhanced and equitable performance
from this combined model (DeFT + backbone). Our second
set of experiments was conducted to evaluate this practical
scenario where we essentially test our proposed method on
pre-trained models. In the final set of experiments, we con-
duct ablation study to understand how number of encoder
heads in DeFT and relative weight factors (from Eq. 8) im-
pact the performance of overall FR pipeline.

4.1. Experimental Setup

FR CNN Backbones: The ResNet architectures, which in-
corporate adapted residual blocks, have demonstrated state-
of-the-art performance in FR [9]. For evaluation of the pro-
posed DeFT, we utilized the FR CNNs based on the ResNet
architecture with variations of 34, 50, and 100 layers.
FR Pipeline:1 The FR pipeline remains consistent regard-
less of the dataset and FR backbone used. Prior to training
and testing, each input image underwent a standard prepro-
cessing procedure. This involved initial face detection and
landmark identification using MTCNN, followed by align-
ing and resizing the face region to 112×112 (RGB) to meet
the specified requirements of each ResNet-based FR CNN
architecture. This preprocessed input requirement is con-
sistent across all experiments described in this work. The
aligned fixed-size input images were then passed to either
the FR CNN or DeFT; the FR CNN produced a 512-d fea-
ture vector or embeddings which were then matched using
cosine similarity.

To train the DeFT (or the FR CNN for selected exper-
iments), we used an SGD-based optimizer with an initial
learning rate of 1e-2 and momentum of 0.9. A multistep rate
scheduler was implemented to decrease the learning rate by
a factor of 0.2 after every 30–40 epochs. We also imple-
mented an early stopping criteria based on training loss with
a patience of 5. For each backbone architecture (ResNet-34,
ResNet-50, and Resnet-100), batch size was set at 64 during
SGD-based optimization and ten positive samples and ten
negative samples per subject were predetermined for con-
trastive setup required by loss functions.

For training the FR CNN from scratch, we used up to

1The source code of DeFT experiments described in this work is avail-
able at https://gitlab.idiap.ch/bob/bob.paper.deft ijcb2024.



80 epochs, while the DeFT was trained for up to another
80–100 epochs. To provide initial warm-up, the DeFT is
trained with higher learning rate (10–20×) by freezing the
Arcface-head for initial 20 epochs. Fig. 3 summarizes our
training process across epochs.

ArcFace (Alignment)

FR CNN + ArcFace

DeFT

DeFT

DeFT + ArcFace

DeFT + ArcFace

Training Epochs

SET
I

SET
II

Figure 3. Timeline of training procedure for Set-I and Set-II of our
experiments outlined in this Section.

For the second set of experiments (using pretrained FR
CNNs), we obtained the weights for our models from the
InsightFace repository2. These models were trained on
MS1MV2 dataset with ArcFace loss.

Datasets: We used the BUPT-BalancedFace dataset [34]
for training. This dataset categorizes individual sub-
jects into four ethnicity labels: African, Asian, Cau-
casian, and Indian. For evaluation, we employed the RFW
dataset [36], which has become a de-facto benchmark in
the academic community for evaluation for demographic
bias in FR. This dataset provides a well-balanced protocol
for four demographic groups almost 6000 comparisons per
group—resulting in a total of 24k comparisons3.

Performance Evaluation: To assess the effectiveness of
the proposed approach towards mitigating demographic
bias, we follow the methods adopted in [11, 13, 22]. These
methods utilize average recognition accuracy and standard
deviation in accuracy across demographic groups as per-
formance metrics. A higher average accuracy with re-
duced standard deviation indicates a more equitable FR sys-
tem with respect to demographic fairness. It also ensures
that bringing fairness has not led to severe degradation in
the recognition accuracy. Additionally, we compute the
Skewed Error Ratio (SER), which represents the ratio of
the highest error rate to the lowest error rate among all de-
mographic groups [35]. We calculate these measures for
baseline models (i.e., FR CNNs without any specific prepro-
cessing for demographics) and compare them with results
obtained after applying our enhanced preprocessing tech-
nique using DeFT. We also compare the performance of our
method against various SOTA methods namely, GAC [13],
MTL [22], PCT [22], and ScoreReg [20]. We omit the de-
scription of other methods due to brevity of space.

2https://github.com/deepinsight/insightface
3We removed identities that were incorrectly labeled as suggested in

bob.bio.face

4.2. Results: Set I

In the first set of experiments, we utilized the BUPT-
Balancedface dataset to train the FR CNN backbones from
scratch and obtained the corresponding baselines. Subse-
quently, we employed the same BUPT-Balancedface dataset
to train the DeFT prepended to the frozen FR CNN and eval-
uated its effectiveness in mitigating demographic bias us-
ing the RFW dataset. This experimental formulation aligns
with previous studies in this field [22, 11, 13], facilitating
the use of results reported by the respective publications.

Method African Asian Caucasian Indian Avg (↑) STD (↓) SER (↓)
Baseline 93.15 92.85 96.13 93.03 93.78 1.36 1.84

GAC [13] 94.12 94.10 96.02 94.22 94.62 0.81 1.48
MTL [22] 94.82 94.47 96.60 95.23 95.28 0.93 1.62

ScoreReg [20] 94.64 94.43 96.41 95.05 95.13 0.77 1.55

DeFT (ours) 95.08 94.38 96.31 95.56 95.33 0.71 1.52

Method African Asian Caucasian Indian Avg (↑) STD (↓) SER (↓)
Baseline 93.98 93.72 96.18 94.67 94.64 1.11 1.64

GAC [13] 94.77 94.87 96.20 94.98 95.21 0.59 1.37
MTL [22] 96.05 95.25 97.20 96.05 96.13 0.70 1.69

ScoreReg [20] 95.42 95.31 96.92 95.57 95.80 0.65 1.52

DeFT (ours) 95.90 95.73 97.14 95.75 96.13 0.59 1.49

Table 1. Performance evaluation of the proposed method (train:
BUPT-BalancedFace, test: RFW dataset). top: ResNet-34 and bot-
tom: ResNet-50 FR backbones. All accuracy values are indicated
as percentages.

Table 1 shows the results of our experiments using the
BUPT-Balancedface dataset to train the FR CNNs and
DeFT. Following application of our enhanced preprocess-
ing technique using DeFT, the overall recognition accuracy
for the 34- as well as 50-layered FR CNN backbones in-
creased by 1.55% and 1.48% respectively, over baselines.
This increment may possibly be attributed to additional pa-
rameters being added to the overall model. However, along
with this improvement in the FR accuracy, we also observed
significant reduction in the standard deviation among con-
stituent demographic groups for each of the FR backbone—
which is the primary objective of DeFT’s incorporation.
For instance, when input presentations were transformed by
DeFT, the standard deviation (STD) in recognition accuracy
for ResNet-34 backbone decreased from 1.36 to 0.70, while
for ResNet-50, this value reduced from 1.11 to 0.47- which
amounts to more than 50% reduction from baseline. Simi-
lar trends were observed regarding SER where the ratio of
extreme errors reduced by approximately 0.30 for each FR
CNN backbone. While our method did not necessarily out-
perform every compared work in the accuracy; it can be
ranked first when a combined impact of accuracy and its
STD are taken into account.

Fig. 4 shows the comparison of distributions of matching
scores for the baseline FR CNNs and the models with en-
hanced preprocessing using DeFT. While the performance

https://www.idiap.ch/software/bob/docs/bob/bob.bio.face/stable
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Figure 4. The violin plots, along with their zoomed versions, representing distribution of mated (in green) and non-mated (in red) scores
for each demographic group of the RFW dataset for different FR CNNs. Top row shows baselines and bottom row shows the results of our
work. The BUPT-Balancedface dataset was used to train both DeFT and FR CNN.

evaluation uses accuracy metrics, it refers to binarized de-
cisions (match or no-match), whereas evaluation based on
actual scores, independent of classification threshold, shed
light on different perspective– also known as differential
performance [16, 19]. The areas of overlap of mated and
non-mated distributions correspond to the sample pairs that
are likely to be incorrectly classified depending on the score
threshold to be applied. It can be seen from the compari-
son of baseline and resultant score distributions that the use
of DeFT has slightly reduced this overlap, especially at the
tails of distributions (tapered edges in the zoomed versions).
These improvements are visually subtle as the overall im-
provement often results in 1–2% increase in the accuracy.
Fairness of the FR system can be understood by observing
the alignment of inflection points (where both distributions
tend to crossover) across demographics.

4.3. Results: Set II

In our second series of experiments, we utilized three
different datasets: the MS1MV2 for training the FR
CNN, BUPT-Balancedface for training the DeFT, and RFW
dataset for evaluating performance. However, in these ex-
periments, instead of training the FR CNN by ourselves,
we employed pre-trained models (weights) from the In-
sightface repository. The results of these experiments are

Backbone Method African Asian Caucasian Indian Avg (↑) STD (↓) SER (↓)

34 Baseline 88.47 87.19 91.90 90.39 89.49 1.79 1.58

34 Proposed 89.94 89.43 93.06 91.42 90.96 1.42 1.52

50 Baseline 91.27 89.06 94.40 91.85 91.64 1.90 1.95

50 Proposed 92.57 91.61 95.96 93.42 93.39 1.62 2.07

100 Baseline 96.83 95.53 98.10 96.93 96.84 0.91 2.35

100 Proposed 97.26 96.09 98.30 97.26 97.22 0.78 2.30

Table 2. Performance evaluation of the proposed method (train FR
CNN: MS1MV2 (pretrained), train DeFT: BUPT-BalancedFace,
test: RFW dataset). top: ResNet-34 and bottom: ResNet-50 FR
backbones. All accuracy values are indicated as percentages.

presented in Table 2. The use of DeFT resulted in mea-
surable improvement in recognition accuracy across all FR
CNN backbones (34, 50, and 100 layers), with an in-
crease from 0.4–1.6% compared to baselines trained using
MS1MV2. Additionally, our enhancement reduced stan-
dard deviation among recognition accuracies within indi-
vidual demographic groups by 0.37, 0.28, and 0.13 for
backbones with 34, 50, and 100 layers respectively. We
observed that the relative improvement was highest for the
smallest FR backbone and vice-versa. This could possibly
be due to near-saturated performance of deep FR CNNs.
The SER which indicates highest ratio of error rates be-
tween different demographic groups, also showed a nominal
decrease of 0.06 in two out of three experiments. The vio-
lin plots in Figure 5 provides a visual representation of the
improvements in recognition accuracy indicated by lesser
extent of overlap in the scores via slightly tapered tails of
distributions; and fairness indicated by a better alignment
of scores distributions across demographic groups.

4.4. Results: Set III

Finally, we conducted ablation studies to investigate the
efficacy of design choices of the DeFT. The fusion mod-
ule in the DeFT decouples the requirement of matching the
number of encoder blocks with the demographic groups in
the data. We leverage this flexibility to study impact of
number of blocks (or width) of the encoder towards improv-
ing fairness of the FR CNN. Additionally we also study the
impact of relative weights (by varying λw) while training
the DeFT. For the ablation, we report results on the FR CNN
with ResNet-34 backbone as it has relatively high margins.

Table 3 provides summary of our experiments for 2 vari-
ations in encoder design and 4 values of relative weights to
the loss term. Our experiments indicate that when higher
weightage is assigned to bias loss, the output of FR CNN
results in better fairness, however at the cost of slightly re-
duced recognition accuracy. However, we did not observe
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Figure 5. The violin plots representing distribution of mated (in green) and non-mated (in red) scores for each demographic group of the
RFW dataset for different FR CNNs. Top row shows baselines and bottom row shows the results of our work. The BUPT-Balancedface
dataset was used to the DeFT and the FR CNN has been pretrained on the MS1MV2 dataset.

any clear pattern between the recognition accuracy (of indi-
vidual groups and overall) and ablation parameters.

5. Conclusions

In this work, we developed an image-to-image trans-
former aimed at selectively enhancing the representation
of face images such that the demographic fairness of the
subsequent FR CNN improves without compromising its
recognition accuracy. This lightweight transformer, called
DeFT, consists of a multi head encoder that offers multiple
transformation paths for input images. The encoder outputs
are fused using a dynamically weighted combination deter-
mined by an attention mechanism. This approach neces-
sitates knowledge of demographic information—possibly
in implicit manner and with minimal computational over-
heads. Addressing challenges such as noisy training data,
learning precise demographic attributes and their non-
discrete nature, we propose the use of probabilistic weights
for demographic attributes instead of conventional hard

Encoder λw African Asian Caucasian Indian Avg (↑) STD (↓) SER (↓)

8 0.01 95.13 94.20 97.31 95.56 95.55 1.13 2.16

8 0.1 95.15 94.15 97.25 95.55 95.52 1.08 2.12

8 1.0 95.08 94.38 96.31 95.56 96.13 0.70 1.52

8 10.0 94.80 94.10 96.26 95.23 95.09 0.78 1.58

12 0.01 94.91 94.10 97.16 95.55 95.43 1.12 2.08

12 0.1 94.86 94.06 97.25 95.53 95.43 1.17 2.15

12 1.0 95.05 94.20 97.23 95.43 95.47 1.10 2.09

12 10.0 94.68 93.83 96.21 95.16 94.97 0.86 1.62

Table 3. Ablation of encoder width (number of heads) and rela-
tive weights in loss for the DeFT for ResNet-34 FR CNN back-
bone. Relative weights λw = λw1 = λw2 from Eq. 8. (train FR
CNN: MS1MV2 (pretrained), train DeFT: BUPT-BalancedFace,
test: RFW dataset). All accuracy values are indicated as percent-
ages.

labels. This approach not only mitigates the aforemen-
tioned challenges but also simplifies the image transforma-
tion/enhancement process and decouples the DeFT archi-
tecture from the number of demographic groups present in
the data.

Through experiments conducted on pretrained and lo-
cally trained FR CNNs, we have demonstrated the effective-
ness of the DeFT in reducing the non-equitable treatment to
various ethnic groups. Our results indicate a reduction of up
to 50% in the standard deviation among recognition accu-
racies of individual demographic groups (ethnicities) with-
out compromising the average recognition accuracy. These
results are consistent across different combinations of train-
ing datasets and FR CNN backbones, suggesting that the
proposed transformer functions as an independent module
without requiring the same training data as that of FR back-
bones.

Given that this is initial work on using probabilistic
weights for demographic information to achieve fairer out-
comes, our experiments on designing the weighting strategy
have been limited. The primary objective was to demon-
strate the effectiveness of employing soft attention with-
out explicit demographic labels (hard attention). Building
on this success, future research could explore alternative
weighting or decomposition strategies to further improve
fairness in FR systems.
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