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Abstract—The signed distance field (SDF) is a popular implicit
shape representation in robotics, providing geometric information
about objects and obstacles in a form that can easily be combined
with control, optimization and learning techniques. Most often,
SDFs are used to represent distances in task space, which
corresponds to the familiar notion of distances that we perceive
in our 3D world. However, SDFs can mathematically be used in
other spaces, including robot configuration spaces. For a robot
manipulator, this configuration space typically corresponds to
the joint angles for each articulation of the robot. While it is
customary in robot planning to express which portions of the
configuration space are free from collision with obstacles, it is
less common to think of this information as a distance field
in the configuration space. In this paper, we demonstrate the
potential of considering SDFs in the robot configuration space
for optimization, which we call the configuration space distance
field (or CDF for short). Similarly to the use of SDF in task space,
CDF provides an efficient joint angle distance query and direct
access to the derivatives (joint angle velocity). Most approaches
split the overall computation with one part in task space followed
by one part in configuration space (evaluating distances in task
space and then computing actions with inverse kinematics).
Instead, CDF allows the implicit structure to be leveraged by
control, optimization, and learning problems in a unified manner.
In particular, we propose an efficient algorithm to compute
and fuse CDFs that can be generalized to arbitrary scenes.
A corresponding neural CDF representation using multilayer
perceptrons (MLPs) is also presented to obtain a compact
and continuous representation while improving computation
efficiency. We demonstrate the effectiveness of CDF with planar
obstacle avoidance examples and with a 7-axis Franka robot
in inverse kinematics and manipulation planning tasks. Project
page: https://sites.google.com/view/cdfmp/home

I. INTRODUCTION

Distances are the most fundamental and intuitive metrics
for expressing the interrelation among multiple variables. In
robotics, they are typically used to measure the geometric
relationship among diverse representations, such as points,
poses, trajectories, surfaces and shapes, which are exploited
in various tasks including inverse kinematics [22, 4] and
manipulation planning [18]. The signed distance field (SDF)
representation has become a popular representation, that can
for example be used to encode the Euclidean distance from a
point to an object boundary. The differentiability and unit norm
gradient properties make it easy to integrate into learning [41,
6, 37], optimization [27, 28, 36], and control [5, 26, 17].

SDFs are conventionally employed in 3D task spaces. In the
context of manipulation, a typical control task is composed
of two steps, first using an SDF in task space to evaluate
the distance to the object, followed by an inverse kinematics

step to find the joint angle configuration that can reduce this
distance. Because of the nonlinear mapping between task space
and joint space, this problem is typically solved with a few
iterations by second-order optimization (corresponding to the
use of a Jacobian pseudoinverse at each iteration).

Figure 1-left depicts this process visualized in the configu-
ration space, where the full distance field has been computed
to be depicted as colored level sets (in practice, we evaluate
the forward kinematics function and associated Jacobian only
at the current joint configuration of the robot).

While conventionally employed in 3D task spaces, SDFs
can be considered in other spaces, including robot joint
configuration spaces in which planning and control problems
take place. We see in Figure 1-left that when we transpose
an SDF from task space to configuration space, the property
of unit norm gradient disappears, while in Figure 1-right,
this property is maintained. We will refer to this approach
as a Configuration Space Distance Field (CDF), a scalar
field measuring the angular distance between joint angles
and the object geometry in configuration space (Fig. 1-right).
For manipulation tasks, CDF directly estimates the minimum
joint motion required by the robot to establish contact with
an object, with gradients consistently pointing toward the
object. Unlike SDFs in task space, CDF is directly formulated
in configuration space, preserving the Euclidean property of
the distance field, ensuring a uniform span of distances and
maintaining unit magnitudes in gradient directions.

CDF offers several advantages. It naturally bridges task
space and configuration space, providing a unified approach
to solving problems that traditionally involve computation in
separate spaces. For instance, the inverse kinematics problem
is usually solved by evaluating the task space distance and
then computing joint space motions. In contrast, CDF solves
this problem through one-step gradient projections, avoiding
Gauss-Newton iterations. It also offers intuitive geodesics that
reflect object geometry in configuration space, see Fig. 1.
Furthermore, CDF inherits the merits of SDFs, including im-
plicit structure, Boolean operations for composition involving
multiple SDFs, efficient queries, and differentiability. We also
propose a neural variant called neural CDF. Analogously to
neural SDFs, neural CDFs also offer a compact, continuous,
analytical, and latent space representation, thereby facilitating
seamless integration into learning, optimization, and control
frameworks. Most approaches developed for SDFs can be
directly applied to CDF, which directly solves problems in
configuration space.

https://sites.google.com/view/cdfmp/home
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Fig. 1: Differences between SDF and CDF. The colored level sets depict the distances to the object, where the black contours represent
joint angles leading to robot-object surface contact. The zero-level-set of SDF and CDF is the same, but the other level sets of CDF are
characterized by evenly expanded distances and unit norm gradient. This property leads to gradient projection that can directly be computed,
which solves the inverse kinematics problem for the contact task in one step (see trajectories in cyan and pink), whereas SDF requires
multiple iterations while encountering singularities, which can even fail due to gradient vanishing (see trajectory in yellow). Geodesics on
the CDF naturally wrap around the shape of the object in configuration space (see trajectories in blue, green and purple).

The organization of this paper is as follows. Section II
reviews the related work. Section III discusses the formulation,
properties, computation and fusion strategy of CDF. Section IV
presents the implicit neural CDF representation. Section V
and VI demonstrate the effectiveness of CDF in whole-
body inverse kinematics and manipulation planning tasks.
Section VII discusses and concludes the paper. The primary
contributions of this paper are:

• The introduction of the CDF representation, offering
a unified framework for addressing robot manipulation
challenges within configuration space.

• An efficient algorithm for calculating the zero-level-set
geometry of the object in configuration space, corre-
sponding to the set of robot configurations that will
lead to a collision. A subsequent fusion strategy is also
proposed to combine multiple CDFs online, enabling the
generalization of CDF to diverse scenes.

• A neural CDF variant utilizing a multilayer perceptron
(MLP), together with the design of the corresponding
loss functions, resulting in a concise and continuous
representation. This variation provides trade-offs across
efficiency, accuracy, and compression capabilities while
keeping a simple and flexible structure.

• Experiments comparing CDF with SDFs and their deriva-
tives on a planar robot and a 7-axis Franka robot. The
conducted experiments highlight the efficiency of CDF
in solving inverse kinematics tasks through gradient pro-
jection and its effectiveness in addressing manipulation
planning challenges, leading to the generation of natural
robotic motions.

II. RELATED WORK

SDFs have garnered extensive attention in the field of
computer version and graphics, particularly in shape encod-
ing [25, 9], mesh generation [31], and differentiable render-
ing [39, 20]. Their efficacy in distance and gradient queries
has made them popular in robotics, with applications in

planning [27, 45], mapping [10], and manipulation [6]. Recent
studies proposed to encode SDF with joint angles [14], or
learn an SDF representation of the swept volume of robot
manipulators [19], to model the SDF of articulated robots and
apply it to manipulation tasks [16].

The prevailing focus on SDFs in robotics centers on
task space, where configuration space actions are typically
computed independently through mappings between the two
spaces [33, 29]. Existing approaches often model the config-
uration space using binary maps denoting collision status of
joint configurations [32, 42], to support sample-based motion
planning algorithms [43, 3, 11]. Despite significant progress,
these control and planning strategies are computationally ex-
pensive in high dimensional space due to the lack of gradient
information.

In contrast, considering a distance field in the configuration
space introduces new control and planning strategies, by
shifting the focus from conventional binary collision masks to
continuous and structured representations. For instance, with
this approach, the inverse kinematics problem simplifies to
an SDF pullback in configuration space, requiring only one-
step gradient projection. More generally, CDF enables the
transposition of SDF methodologies developed for task space
to configuration space. The computation can be viewed as
a point-mass system, while obstacles form topological holes
in configuration space and geodesics produce natural curved
paths around them [28]. The approach can be extended to
geometric motion planning frameworks, including Riemannian
motion policies [29], geometric fabrics [38], and dynamic-
aware motion optimization by assigning metrics on the dis-
tance field [13, 1].

III. CONFIGURATION SPACE DISTANCE FIELD (CDF)

In this section, we introduce CDF and delve into its proper-
ties. We then present an efficient algorithm to compute CDF,
as well as a fusion strategy for online combination of multiple
CDFs.



Algorithm 1 Finding 0 level-set configurations

Input: point p, robot SDF model fs
Output: joint configuration q′ that satisfies fs(p, q

′) = 0
Initialization: q ← q0 ▷ Batch initialization
for t = 1, . . . , T ▷ T iterations
c← c(q) ▷ Compute cost
δq ← −H−1∇qc ▷ Batch L-BFGS update
q ← q +αδq ▷ Line search

end
q′ ← q : fs(p, q) < ϵ ▷ Return final configurations

A. Problem Formulation

CDF is inspired by recent work encoding SDF with robot
joint configurations [17, 14, 16]. Let r(q) denote a robot at
configuration q ∈ Rn and p ∈ R3 be a point set in the robot
workspace, for a robot with n degrees of freedom (DoF).
The robot SDF fs is a function of p and q that measures
the distance from p to the closest point on the robot surface
∂r(q)1:

fs(p, q) = ± min
p′∈∂r(q)

∥p− p′∥, (1)

where ± indicates the sign of the distance, which is positive if
p is outside, zero on the surface, and negative otherwise. The
differentiability of the robot SDF with respect to both p and
q enables various gradient-based manipulation planning tasks.

The robot SDF representation encodes the robot geometry
through forward kinematics, where the distance is Euclidean
in the workspace but highly nonlinear in configuration space.
In contrast to using task space distances, CDF is defined as
a function fc that measures the minimal distance in radians
from q to zero-level-set joint configurations q′ : fs(p, q′) = 0
at p, which would establish contact between the robot and the
point:

fc(p, q) = min
q′
∥q − q′∥. (2)

This distance in radians corresponds to the movement of
joint angles, where the constraint fs(p, q

′) = 0 implicitly
solves the inverse kinematics problem by finding the configu-
ration set q′ on the zero-level-set of robot SDF model, given
a point p. CDF is unsigned according to this definition, as
we focus more on the value of distance and gradient, where
the sign can be determined either by combining it with SDF
or by estimating the normal direction on boundary samples.
The derivative of CDF with respect to q corresponds to joint
velocity.

B. Properties of CDF

An SDF satisfies the eikonal equation ∥∇pfs(p, q)∥ = 1
almost everywhere. Thus, the closest point on the robot surface
to p can be calculated by projecting p along the gradient
direction:

p′ = p− fs(p, q) ∇pfs(p, q). (3)

1All variables support batch operations, i.e. p ∈ Rb1×3 and q ∈ Rb2×n

accounting for fs ∈ Rb1×b2 .

For surface points, gradients correspond to normal di-
rections. Similarly, CDF satisfies the eikonal equation
∥∇qfc(p, q)∥ = 1 almost everywhere in configuration space.
The closest configuration on the zero-level-set manifold can
be found by projecting the current configuration along the
gradient direction:

q′ = q − fc(p, q) ∇qfc(p, q). (4)

This property makes CDF useful in manipulation planning
tasks. It allows for direct computation of zero-level-set joint
configurations through gradient projection, efficiently solving
the inverse kinematics problem in one-step computation. For
motion generation tasks, this implies having a more structured
distance field in the configuration space, where gradients
always point toward objects to reach or away from obstacles.
Moreover, geodesics in the configuration space will naturally
curve around the zero-level-sets, which can for example be
used to move around an object while maintaining a constant
joint angle distance to the object. From a control perspective,
it means that the object remains reachable/avoidable within
the robot joint angle velocity limits.

C. Computation of CDF

The derivation of CDF is based on Eq. (2), involving three
components: 1. constructing the SDF model fs of the robot;
2. given a point p, calculating zero-level-set configurations q′

that satisfy fs(p, q
′) = 0; 3. Given current joint configuration

q, finding the closest configuration on the zero-level-set q′,
coupled with the calculation of the ℓ2 norm distance to yield
the CDF value. We will discuss each step in detail.

1) Robot SDF model: Various approaches exist for calcu-
lating the signed distance from a point in the robot workspace
to the robot surface. Early approaches involve representing
the robot geometry using spheres or meshes to approximate
a coarse SDF. Recent investigations employ deep neural
networks [17, 14] for encoding the robot SDF. We adopt
the method presented in [16] that exploits kinematic chains
and basis functions to represent the robot SDF fs, trading
off accuracy and efficiency by providing a balance between
explicit and implicit representation.

2) Finding zero-level-set configurations: The challenge of
determining zero-level-set configurations parallels the inverse
kinematics (IK) problem. While IK only focuses on the end-
effector, CDF provides a more expressive approach that fo-
cuses on the whole robot geometry. We cast it as an optimiza-
tion problem and employ the L-BFGS algorithm [23]. L-BFGS
is a quasi-Newton method that has demonstrated effectiveness
in robot motion planning [36]. The choice of L-BFGS is
motivated by its relative simplicity and efficient parallelization.
Alternative methods based on Gauss-Newton optimization
could also be chosen. We formulate the cost function as a
squared sum of SDF values, denoted as c =

∑
f2
s (p, q). The

search direction is updated using standard L-BFGS steps, and
a line search approach is conducted for stable updates. The al-
gorithm, outlined in Algorithm 1, involves initializing a batch
of joint configurations q, by concurrently optimizing them to



establish dense zero-level-set configurations. Additionally, our
SDF model provides the link index of the robot in contact with
the point p at configuration q′, offering valuable information
for subsequent computations.

3) Retrieving CDF value: Given an input point p and
configuration q, the procedure outlined in Section III-C step 2
identifies zero-level-set configurations q′ corresponding to p.
Calculating the CDF value involves determining the closest q′

from q. However, the sparse sampling of q′ may result in an
overly smooth CDF. To mitigate this, we reformulate (2) as

fc(p, q) = min
k=1,...,K

(min
q′
∥q:k − q′:k∥), (5)

where k denotes the kth robot link in contact with p, K is
the total number of robot links, and q:k represents all joint
configurations before link k. This adjustment is rooted in the
observation that CDF is influenced solely by preceding joint
angles before the contact link. This modification exploits the
inherent kinematic structure of the robot, leading to a more
accurate approximation of CDF and reducing uncertainty,
especially when q′ samples are limited. The corresponding
gradient of CDF is expressed as

q′min, kc = argmin
q′,k

∥q:k − q′:k∥,

∇qfc(p, q) =
q:k − q′min,:kc

∥q:k − q′min,:kc
∥
,

(6)

where q′min is the closest joint configuration and kc is the
corresponding contact link. The gradient possesses a unit ℓ2

norm and points against the direction of the nearest joint
configuration on the zero-level-set.

D. Fusion of CDF

The computation of CDF described in Section III-C is
applicable to both single points and batches of points. How-
ever, this process typically requires 1–10 seconds to find joint
configurations and is scene-dependent. To address this chal-
lenge, we introduce a fusion strategy that computes the CDF
independently for each point and combines them, yielding
a scene-agnostic CDF representation conducive to efficient
online calculations. Specifically, the point cloud p with N
points can be partitioned into M subsets (M ≤ N ):

p = {p1, · · · ,pM}, (7)

where pi represents a subset of p with Ni points. The CDF
fc is constructed by fusing the CDFs f i

c of each subset:

fc(p, q) = min
i=1,...,M

f i
c(p

i, q). (8)

For the extreme case where M = N , each subset contains
only one point, allowing for offline computation and storage.
The online inference stage only involves subtraction and
minimum operations to fuse the CDFs based on the input,
ensuring simplicity and efficiency. For example, initializing the
workspace into a Cartesian grid, pre-computing corresponding
joint configurations for each grid cell, and updating occupied
cells during scene changes (see Figure 2). This fusion strategy

Fig. 2: Illustration of the computation of CDF. During the offline
phase, we initialize the workspace of the robot as a volumetric grid
and compute zero-level-set joint configurations for each grid point.
For online computation, given an object O, we identify the closest
configuration in the set Q associated with occupied grids to calculate
the ℓ2 distance. We further encode the CDF with neural networks to
obtain a compact and grid-free representation.

enables a non-parametric CDF representation and can be
generalized to arbitrary environments.

The fusion of CDF also connects to the union operation of
SDFs, albeit performed in configuration space. Consequently,
other Boolean operations used to compose and transform SDFs
can also be applied to CDF, such as subtraction, intersection,
repetition, and rounding.

IV. NEURAL CONFIGURATION SPACE DISTANCE FIELD

In this section, we elaborate on the extension of the CDF
through a learning-based approach to formulate an implicit
representation, referred to as neural CDF. In contrast to the
online computation detailed in Section III, employing neural
networks for CDF offers additional advantages. It disentangles
from spatial resolution constraints, allowing for an expressive
representation with reduced memory requirements. The neural
CDF, being grid-free, facilitates distance queries between
arbitrary joint configurations and points, enhancing flexibility
and efficiency. Additionally, it presents a continuous represen-
tation, providing access to analytical gradients. Lastly, neural
CDF operates in latent space and serves as a feature extractor
for downstream tasks. In summary, neural CDF introduces
trade-offs between accuracy, efficiency, and compression ca-
pabilities while enhancing flexibility.

Neural CDF approximates the batched function fc(p, q) :
Rb1×3 × Rb2×n → Rb1×b2 by learning the weights of a mul-
tilayer perceptron (MLP) network. It takes the concatenation
of p and q as input, with size Rb1b2×(3+n) and outputs the
CDF value Rb1b2×1. The neural CDF remains scene-agnostic,
allowing the straightforward online fusion of different points.
Subsequent sections will delve into data generation proce-
dures, loss function design, training, and learning results.

A. Dataset Generation

The dataset generation process aligns with the computa-
tional and fusion procedures detailed in Section III, comprising
both offline and online components. In the offline phase,
we construct a T ×T ×T volumetric grid in the 3D robot
workspace. Utilizing Algorithm 1, joint configurations q′ that
satisfy fs(p, q

′) = 0 for each grid point p are computed.
Subsequently, a farthest point sampling algorithm is applied



Algorithm 2 Neural CDF Data Generation

Initialization: volumetric grid G
### offline data
for each p ∈ G: ▷ For each point on the grid
q′ ← q : fs(p, q) = 0 ▷ Find q′ using Algorithm 1
q′ ← Downsample(q′) ▷ Downsample q

### online data
for t = 1, . . . , T ▷ Iterate over T epochs
p, q′ ← SampleOffline() ▷ Sample p,q′ from offline data
q ← RandomSample() ▷ Online sample q that satisfies

joint limits
Compute fc,∇qfc using (5) and (6) ▷ Ground truth
· · ·
ComputeLoss() ▷ Network training
· · ·

end for

to downsample the obtained configurations. The resulting zero-
level-set configurations for each grid point serve as templates
for online computations. In the online phase, b1 points and b2
joint configurations, randomly sampled within joint limits, are
selected. The closest template is identified, and the ℓ2 norm
distance is computed using (5). Simultaneously, the gradient
concerning the joint configuration is calculated. The dataset
generation process is outlined in Algorithm 2.

B. Loss Function

We design a loss function for training the neural CDF based
on existing neural SDF representations [25, 9, 24]. The loss
function consists of four components: distance loss, gradient
loss, eikonal loss and tension loss, each serving a distinct
purpose.

Distance loss. The distance loss is characterized by the
mean squared error between the predicted CDF and the ground
truth, expressed as

Ldist =
1

b1b2

b1∑
i=1

b2∑
j=1

(
f̂c(pi, qj)− fc(pi, qj)

)2
, (9)

where f̂c and fc denote the predicted and ground truth C-space
distances for point pi and configuration qj , respectively.

Gradient loss. This term constrains the gradient of the
predicted CDF to consistently point against the direction of
the closest joint configuration on the zero-level set. It employs
cosine similarity loss to penalize deviations, given by

Lgrad =
1

b1b2

b1∑
i=1

b2∑
j=1

(
1− ∇q f̂c(pi, qj)

⊤
∇qfc(pi, qj)

∥∇q f̂c(pi, qj)∥ ∥∇qfc(pi, qj)∥

)
.

(10)
Eikonal loss. This term regulates the predicted CDF by

encouraging its gradients to have a unit ℓ2 norm. This regu-
larization, inspired by the eikonal partial differential equation,
ensures a valid signed distance field [9, 24]. The eikonal

regularization term is formulated as

Leikonal =
1

b1b2

b1∑
i=1

b2∑
j=1

∣∣∣∥∇q f̂c(pi, qj)∥ − 1
∣∣∣. (11)

Tension loss. The tension loss term aims to regularize the
curvature of the CDF, promoting smoothness. It penalizes the
squared sum of the Laplacian, which measures the second
derivatives of the predicted CDF [12, 44], namely

Ltension =
1

b1b2

b1∑
i=1

b2∑
j=1

∥∇2
q f̂c(pi, qj)∥2, (12)

where ∇2
q is the Laplacian operator computed via automatic

differentiation.
Total loss. The network is optimized to minimize the

weighted sum of the four loss terms

Ltotal = λ1Ldist + λ2Lgrad + λ3Leikonal + λ4Ltension, (13)

In the experiments, we set λ1 = 5.0, λ2 = 0.1, λ3 =
0.01, λ4=0.01.

C. Implementation Details

For the training of the neural CDF model, we employ a
simple fully connected MLP. To assess its effectiveness in
handling high-dimensional inputs, we evaluate the neural CDF
on a 7-axis Franka robot. The resolution of the volumetric
grid T is set to 20 for data generation. The input dimension
is 3+7, and the output corresponds to the configuration space
distance. In line with previous work [14], we adopt a 5-
layer MLP architecture, where the input data is enriched with
position encoding [20]. During training, we randomly sample
b1 = 4000 points with corresponding joint configurations and
b2 = 100 configurations. Thus, the batch size is 4000 × 100.
The network is trained for 50, 000 epochs using the Adam
optimizer with a learning rate of 0.001, decayed by a factor
of 0.5. The training process spans approximately 2 hours on
a single NVIDIA RTX 3090 GPU.

D. Learning Results

We evaluate the trained neural CDF model through a
comprehensive evaluation for both accuracy and efficiency.
The results are presented in Table I. Specifically, we run
the forward pass of the network, which outputs predicted C-
space distance values fc for input pairs p and q. Then we
compute the gradient via automatic differentiation and project
configurations q to points p along gradient direction using (4).
According to the definition of CDF, the distance between the
robot surface, defined by projected configurations qproj to input
points q, should be 0. Thus, we measure the mean absolute
error (MAE) and root mean squared error (RMSE) as metrics.
The success rate (SR) denotes the percentage of configurations
successfully projected to input points within a threshold of
3cm. The projection process is designed to run iteratively
for improved accuracy. Each experiment involves the random
sampling of 1000 points and 1000 configurations (the results
are reported as averages). The outcomes reveal that our model
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Fig. 3: Comparison between CDF and SDF in solving whole-body inverse kinematics problem. (a) The initial sampled joint configurations.
(b) Gradient projection by CDF. (c) Task space visualization of feasible solutions in (b). (d) Results for distance query-based method with
L-BFGS optimizer. We can see that with the baseline SDF approach, the system can get stuck when the gradient of the SDF vanishes or
reaches the singularity.

TABLE I: Accuracy and computation time (GPU / CPU) of Neural
CDF on the Franka robot.

Accuracy Computation Time
Projection MAE (cm) RMSE (cm) SR(%) Batch Inference Projection
Iterations Size Time (ms) Time (ms)

1 4.99±1.93 8.59±3.15 60.3±12.20 1 0.49/0.37 0.71/0.34
2 1.64±0.62 2.80±1.20 87.8±9.50 10 0.51/0.59 0.72/0.66
3 1.39±0.51 2.09±0.94 91.1±8.12 102 0.56/0.95 0.75/1.03
4 1.36±0.49 2.00±0.89 91.6±8.23 103 0.58/10.20 0.97/5.48
5 1.34±0.48 1.92±0.79 91.8±8.31 104 0.79/25.00 1.01/36.00
10 1.35±0.52 1.89±0.80 91.6±8.39 105 4.61/329.00 11.30/310.00

accurately predicts CDF values and gradients, facilitating a
projection process that successfully identifies the closest joint
configurations on the zero-level-set. Stability is achieved after
2 iterations. As for computation time, results are provided
for a single NVIDIA RTX 3090 GPU and a 30-core 2.2GHz
CPU. Inference time denotes the duration for a single forward
pass of the network, while projection time encompasses the
time for automatic differentiation and the projection process.
These results underscore the efficiency, high parallelizability,
and scalability of our neural CDF, particularly when dealing
with large batch sizes.

V. CDF FOR WHOLE-BODY INVERSE KINEMATICS

CDF inherently encodes the kinematic structure of the
robot, offering a solution to the inverse kinematics problem
through gradient projection without the need for iterative
procedures. Given its holistic modeling of the robot geometry,
our approach extends the inverse kinematics problem to whole-
body inverse kinematics problems, instead of only focusing on
the end-effector. We assess our approach with a planar robot
and the 7-axis Franka robot.

A. 2-DoF Planar Robot

We start with a straightforward example involving a 2D
planar robot with link lengths l1 = l2 = 2 and joint limits
q1, q2 ∈ [−π, π]. The CDF is computed online using the
methodology outlined in Section III. Two circular objects with
radii r1 = 0.8 and r2 = 0.5 are positioned at (1.8,−1.8)

and (−2.0, 3.0), respectively. The objective of the whole-
body inverse kinematics task is to identify joint configurations
that make the robot reach the objects. We compare our CDF
representation with SDF and present qualitative results in
Figure 3. The results demonstrate that in this 2D scenario, CDF
effectively solves the problem through a one-step gradient
projection, while SDF-based optimization struggles to find
solutions when the gradient vanishes and gets stuck in local
minima due to the nonlinearity of the forward kinematics
function.

B. 7-DoF Franka Robot

To further evaluate the performance of CDF, we conducted
experiments with a 7-axis Franka robot, utilizing the trained
neural CDF model outlined in Section IV. The evaluation
focused on the whole-body inverse kinematics performance for
various target points, employing 10′000 randomly initialized
configurations. The gradient projection process was iteratively
performed in three steps to enhance performance. For com-
parison, two baseline representations were included in the
evaluation: the whole-body SDF representation proposed in
[16] and the neural joint space SDF representation (Neural-
JSDF) proposed in [14]. Both approaches are followed with
an L-BFGS algorithm for optimization, which is also described
in cuRobo [36], achieving state-of-the-art performance. Exper-
iments are repeated 100 times and average results are shown
in Table II. CDF demonstrated the ability to compute over
700′000 valid solutions per second, outperforming the state-
of-the-art distance query-based approach by 180 times, which
could only find 3′700 solutions. Additionally, the inference
and projection process of CDF took only 1−2 milliseconds,
with the primary time cost attributed to the post-processing of
distance checking to select valid solutions that satisfy the error
threshold. Figure 4 shows the results of a 1-step projection for
different target point positions.

C. Applications

We demonstrate two applications that leverage the gradient
projection capabilities of CDF. The first application involves a



Fig. 4: Gradient projection for whole-body inverse kinematics using neural CDF. The centers of the red spheres are target points, where the
radius of spheres is set to 0.05m.

Fig. 5: Goalkeeper task in simulation.

Fig. 6: Planned configurations to reach the box. The first image shows the initial configurations of the two arms.

TABLE II: Comparison of CDF and SDFs in whole-body inverse
kinematics task with a 7-axis Franka robot. CDF solves 8773
solutions in 10.6 ms while the SDF based method only finds 3652
solutions in 971 ms.

Methods Valid Solutions Time (ms)
CDF + 1-step Projection 6089 8.72
CDF + 2-step Projection 8773 10.60
CDF + 3-step Projection 9163 12.70

SDF + L-BFGS optimizer 3652 971.00
Neural-JSDF + L-BFGS optimizer 264 272.00

goalkeeper task where the robot intercepts a thrown ball using
its arm links. The second one is a dual-arm lifting task exploit-
ing the whole-body structure of the robot to establish contact
with a large box, which is hard to accomplish conventionally
using an end-effector.

1) Goalkeeper task: In contrast to tasks involving rapid
robot responses to avoid obstacles, the present task entails the
robot acting as a goalkeeper, utilizing its arm to intercept a
propelled ball. This task poses increased difficulty as the robot
must promptly determine a whole-body inverse kinematics so-
lution and transition to the requisite configuration to intercept
the ball. The experimental configuration is outlined as follows:
(1) a rectangular goal, measuring 0.8m in width and 0.6m in
height, is positioned behind the robot, whose configuration is

initialized in the middle of the joint angle range; (2) a ball
is thrown toward the goal from the front of the robot with
a randomly assigned direction and velocity; (3) the robot is
tasked to move its arm to intercept the ball.

The conducted evaluations are performed in a simulated
environment, with the assumption that the robot can only
perceive the current position of the ball, necessitating swift
movements to ensure an effective defense. A joint position
controller is employed to govern the robot arm, directing it
to the designated joint configuration. The task is executed
100 times, resulting in an 82% success rate for our CDF
representation. In comparison, the SDF-based method achieves
a success rate of only 35%. Snapshots of our approach are
depicted in Fig. 5.

2) Large box lifting: The objective of this task is to plan
joint configurations for two robot arms to establish contact
with a designated box. We assume that the contact points on
the box are predefined, and the robots can use any surface
points on their body for establishing contact. This task typ-
ically involves a multi-objective optimization problem with
constraints, including joint limits, collision avoidance, and
goal-reaching. The combination of these objectives introduces
non-convexity and makes the problem hard to solve. Leverag-
ing the efficient and parallelizable gradient projection inherent
to CDF, we instead present a straightforward sample-filter



approach to address this problem. Specifically, we iteratively
sample a batch of initial configurations, project them onto the
contact points, and filter out configurations in collision with
the box or violating joint limits. This process continues until
feasible solutions satisfying all constraints are identified. An
evaluation of our approach, compared with the Gauss-Newton
optimization method outlined in [16], is presented in Table III.
The results indicate that CDF reduces the planning time by
a factor of 7 and generates shorter paths. During the lifting
phase, the Jacobian matrix of the contact point w.r.t. the joint
configuration is computed. A joint impedance controller is
used in the experiment. Qualitative results are shown in Fig. 6.

TABLE III: Comparison results on large box lifting task.

Methods Planning Time(s) Average Distance(rad)
CDF + Filter 7.65 1.37

SDF + Optimizer 54.80 2.85

VI. CDF FOR MANIPULATION PLANNING

In this section, we investigate the use of CDF for ma-
nipulation planning tasks. The key advantage of CDF is the
structured representation that alleviates challenges arising from
nonlinearity and singularity, making motion optimization in
configuration space easier. Similarly to conventional SDF,
CDF provides efficient queries of distances and gradients,
enabling large-scale parallel computation. To demonstrate its
efficacy, we initially explore qualitative results through 2-
DOF examples and then progress to 7-DOF robot scenarios,
including real-world experiments.

A. Benchmark Approaches and Evaluation metrics
We evaluate the CDF representation on several gradient-

based motion optimization approaches:
1) Quadratic programming: We first formulate the motion

planning task as reactive quadratic programming (QP) prob-
lem, drawing inspiration from the work of Mirrazavi et al. [21].
The QP formulation is:

u∗
k = argmin

q,u
e(qk)

⊤He(qk) + uk
⊤Ruk, (14a)

s.t. qk+1 = Aqk +Buk, (14b)
qk ∈ Q, uk ∈ U , (14c)
−∇qfc(p, q)uk∆t ≤ ln(fc(p, q) + γ), (14d)

where qk and uk are the state and control input at time step k,
H and R are the positive definite matrices for tracking errors
and control efforts, e(qk) = qk−qdesire is the error vector be-
tween the initial and goal configurations, fc(p, q) is the CDF,
∆t is the time step, γ is a scalar hyperparameter that acts as a
safety buffer, and Q and U are the admissible state and control
constraints. The constraint (14d) ensures collision avoidance,
where the robot is allowed to get close to the obstacle when
far away, and it is forced to follow the tangent or normal
direction of the gradient field when close. For implementation,
we use the CasADi [2] library and solve it with popular solvers
including OSQP [35], qpOASES [7]. Nonlinear programming
solvers like IPOPT [40] and QRQP [8] are also tested.

2) iterative Linear Quadratic Regulator (iLQR): Another
benchmark approach involves employing an iterative Linear
Quadratic Regulator that solves the optimal control problem by
iteratively linearizing the dynamics and cost function around
the current trajectory [15]. The dynamic system is defined as
∆qk+1 = A∆qk +B∆uk. We minimize the cost function

c(q,u) = e(qK)⊤Q1e(qK)

+

K−1∑
k=1

h(qk)
⊤Q2h(qk) + uk

⊤Ruk

(15)

where Q1 and Q2 are precision matrices for tracking er-
rors and collision avoidance, R is the control effort matrix.
h(qk) = min(fc(p, q) − γ, 0) represents the collision
avoidance term. The solution of iLQR can be computed either
in batch or recursive form, see [1] for details.

3) Geometric fabrics: Geometric fabrics is a reactive
acceleration-based control policy q̈ = π(q, q̇). q̈ is computed
through the motion of equation Mq̈ + F = 0, where
M(q, q̇) and F (q, q̇) model the generalized mass matrix and
external forces based on positions and velocities , see [30]
for details. The obstacle avoidance geometry is defined as
h = λ∥q̇∥2∇qψ(fc(p, q)). When the robot gets close to
the obstacle, the value ψ(p, q) increases and repels the robot
away from the collision boundary. The geometric fabrics are
adapted from the open-source implementation of optimization
fabrics [34].

For a comprehensive evaluation, we estimate both CDF and
SDF. The implementation of SDF is achieved by replacing
the distance function fc with fs. Several evaluation metrics
are adopted for comparison.

• Success Rate: the success rate shows the percentage of
collision-free trajectories generated while reaching the
goal. As the evaluation involves randomly sampling initial
and goal configurations, for the cases when all algorithms
failed, the corresponding samples were excluded when
reporting the success rate.

• Tracking Error: As reactive approaches may get stuck
at a local minimum, we introduce the tracking error to
measure the final ℓ2 norm distance between the final
configuration and the desired configuration.

• Time Step: The time step denotes the average number of
time steps the agent requires to reach the goal configura-
tion.

B. Planar Robot Test

For the 2D experiment, we follow the previous section that
defined a 2D planar robot with link lengths l1 = l2 = 2
and joint limits q1, q2 ∈ [−π, π]. Two circle obstacles with
radius of 0.3 are placed at (2.3,−2.3) and (0.0, 2.45). We
randomly sample initial and goal configurations for 100 cases
and report the experimental results in Table IV. It shows that
the approach based on CDF has a higher success rate and
better tracking accuracy than SDF. The average number of time
steps is smaller, increasing efficiency. To further investigate the



(a) CDF C-Space (b) SDF C-Space (c) CDF T-Space (d) SDF T-Space

Fig. 7: CDF/SDF-based motion planning approaches. Different methods are shown in different colors. We also demonstrate how the safety
buffer affects the planning results of CDF and SDF.

TABLE IV: Experiments for motion planning on SDF and CDF.
2D - CDF 2D - SDF 7D - CDF 7D - SDF

Success Rate Tracking Error (cm) Time Step Success Rate Tracking Error (cm) Time Step Success Rate Tracking Error (cm) Time Step Success Rate Tracking Error (cm) Time Step
IPOPT 92% 1.27 253 51% 2.19 284 93% 0.98 231 51% 1.12 290
QRQP 94% 1.16 245 52% 2.07 279 91% 0.99 226 38% 1.31 297
OSQP 88% 1.21 300 40% 2.19 321 91% 0.92 279 48% 1.04 301

qpOASES 91% 1.04 241 63% 1.74 263 93% 0.99 229 51% 1.13 289
Geometric Fabrics 95% 1.03 - 68% 1.76 - 88% 2.02 - 74% 2.18 -

iLQR 76% 0.06 - 55% 0.12 - 48% 0.02 - 38% 0.03 -

mechanism behind this, we visualize some cases in Fig. 7-
a,b. It shows that the structured distance field can benefit
all approaches mentioned above, as their trajectories follow
the geodesics of CDF. In contrast, the nonlinearity of the
configuration space when using the conventional SDF makes
the optimizer get stuck into local minima. Additionally, we
visualize the planning results of IPOPT with different safety
buffers γ ranging from 0.1 to 0.9. The planner exhibits a
more conservative behavior as the value of γ decreases to
ensure safety. With CDF, the planned trajectory scaled well
with different γ. In contrast, for SDFs, the planner only finds
a solution when γ = 0.9 and the trajectory in joint space is
very close to the obstacle. It is also reflected in the task space
(Fig. 7-c,d), where the robot reaches a singularity when it is
close to the obstacle.

C. 7-axis Franka Robot Experiments

We further conduct experiments on the Franka robot to
demonstrate the effectiveness of CDF.

We place several different obstacles such as spheres, walls,
and rings, with randomly sampled initial and goal configura-
tions. For a fair comparison, we use the neural representation
for both CDF and SDF. Experiments are also repeated 100
times and we report the average results in Table IV. The CDF-
based planners demonstrate better performance than SDF-
based approaches in terms of success rate, tracking error and
number of time steps. For QP controllers, our methods can run
over 200Hz frequency, thanks to the high efficiency of neural
networks.

For real-world experiments, we set up two different sce-
narios: static and dynamic environments. In the static envi-
ronment, we place some obstacles in the robot workspace,
such as blocks (for simple cases) and a shelf (for hard cases

being highly non-convex). We use a RealSense D435 camera
to capture the point cloud of the obstacles. For dynamic
environments, we simply detect the obstacle according to the
HSV color and convert it to point clouds. The same QP
controller with IPOPT optimizer is used for motion planning.
For static scenes, we wait for the QP controller to compute the
full trajectory and then execute it on the robot. For dynamic
scenes, we test the reactive motion generation and send the
control commands online. Qualitative results are shown in
Fig. 8, showing the effectiveness of our approach.

VII. DISCUSSION AND CONCLUSION

In this paper, we proposed to consider the geometry of
robot configuration space as a distance field, and present a
new representation called CDF to describe the topological
structure of objects in configuration space. After discussing
the formulation and properties, we introduced an efficient
algorithm to compute and fuse CDFs. An implicit neural
network encoding was also proposed to balance the accuracy,
efficiency, and compression of CDF. We demonstrated the
effectiveness of CDF with planar examples and with a 7-axis
Franka robot in whole-body inverse kinematics and motion
planning tasks.

CDF serves as a representation implicitly encoding inverse
kinematics through a distance field. Both Cartesian grid and
neural network representations facilitate the offline compu-
tation of inverse kinematics, thus enabling efficient online
queries. In contrast, SDFs can be perceived as representations
encoding the forward kinematics of a robot.

The pivotal step in CDF computation involves identifying
zero-level-set configurations from a given point or object. Re-
cent advancements in differentiable robot SDF representations
have paved the way for efficient, accurate, and parallelizable



Fig. 8: Motion planning and reactive collision avoidance using CDF. The top two rows show static environments. The two bottom rows show
dynamic environments.

robot SDF computation. This advancement ensures efficient
solutions in optimization problems. The fusion strategy and
neural network representation further enhance the computa-
tional efficiency of online queries.

CDF offers a global view of configuration space geome-
try. In practical applications, it is unnecessary to reconstruct
the entire CDF, and selective querying of points of interest
suffices. This adaptability enables the application of off-the-
shelf techniques developed for task space to be extended to
configuration space. Additionally, the combined use of SDFs
and CDFs allows for a holistic understanding of geometry in-
formation across both task and configuration spaces, avoiding
the need for calculating the nonlinear mapping.

Acknowledging the challenges posed by the high-
dimensional configuration space and limited data, CDF com-
putations encounter issues such as time consumption for
offline computation, memory inefficiency for non-parametric
representation, or compromised accuracy in neural network
representation. The preference for neural representation is due
to the trade-off between efficiency, compression, and accuracy,
as well as the flexible structure that can be integrated into
other frameworks. The learning results of neural networks are
not fully optimized, as we mainly focused in this paper on the
representation. Nevertheless, once a model is trained, the robot
can re-use it multiple times later as a function approximator.

In addition to the balance between accuracy and efficiency,

CDF currently has other limitations that need to be improved.
First, the unsigned distance field is always non-negative, and
using limited zero-level-set configuration samples can result
in an inaccurate approximation for configurations close to the
zero-level-set. It can be solved by computing the gradient
of zero-level-set configuration samples and adding sign in-
formation to the CDF representation. Additionally, although
CDF can be generalized to any points in the workspace and
arbitrary configurations, the representation is based on the
geometry and kinematics of the robot. It has to be computed
separately for different robot models. The scalability of CDF
to high-dimensional kinematic chains (e.g., full humanoids)
also remains a challenge. Finally, the CDF measures the
angular distance of joint configurations, which could be further
extended to other distance metrics, such as the geodesic
distance on the configuration space manifold, for better under-
standing the topology of the configuration space and benefiting
manipulation planning tasks. Future work will delve into
exploring the broader applicability of CDF in various robotic
problem domains, such as collision-free inverse kinematics,
geometric motion planning, operation space control, multi-
objective optimization, and robotic learning.
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[12] Bert Jüttler and Alf Felis. Least-squares fitting of
algebraic spline surfaces. Advances in Computational
Mathematics, 17:135–152, 2002.

[13] Holger Klein, Noémie Jaquier, Andre Meixner, and
Tamim Asfour. On the design of region-avoiding met-
rics for collision-safe motion generation on riemannian
manifolds. In 2023 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 2346–
2353. IEEE, 2023.

[14] Mikhail Koptev, Nadia Figueroa, and Aude Billard. Neu-
ral joint space implicit signed distance functions for
reactive robot manipulator control. IEEE Robotics and
Automation Letters, 8(2):480–487, 2022.

[15] Weiwei Li and Emanuel Todorov. Iterative linear
quadratic regulator design for nonlinear biological move-
ment systems. In First International Conference on Infor-
matics in Control, Automation and Robotics, volume 2,
pages 222–229. SciTePress, 2004.

[16] Yiming Li, Yan Zhang, Amirreza Razmjoo, and Sylvain
Calinon. Representing robot geometry as distance fields:
Applications to whole-body manipulation. In Proc. IEEE
Intl Conf. on Robotics and Automation (ICRA), pages
15351–15357, 2024.

[17] Puze Liu, Kuo Zhang, Davide Tateo, Snehal Jauhri,
Jan Peters, and Georgia Chalvatzaki. Regularized deep
signed distance fields for reactive motion generation. In
Proc. IEEE/RSJ Intl Conf. on Intelligent Robots and
Systems (IROS), pages 6673–6680. IEEE, 2022.

[18] Kevin M Lynch and Frank C Park. Modern robotics.
Cambridge University Press, 2017.

[19] Jonathan Michaux, Qingyi Chen, Yongseok Kwon, and
Ram Vasudevan. Reachability-based trajectory design
with neural implicit safety constraints. arXiv preprint
arXiv:2302.07352, 2023.

[20] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,
Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng.
NeRF: Representing scenes as neural radiance fields for
view synthesis. Communications of the ACM, 65(1):99–
106, 2021.

[21] Seyed Sina Mirrazavi Salehian, Nadia Figueroa, and
Aude Billard. A unified framework for coordinated
multi-arm motion planning. The International Journal
of Robotics Research, 37(10):1205–1232, 2018.

[22] Yoshihiko Nakamura and Hideo Hanafusa. Inverse
kinematic solutions with singularity robustness for robot
manipulator control. Journal of Dynamic Systems, Mea-
surement, and Control, 108(3):163–171, 1986.

[23] Jorge Nocedal and Stephen J Wright. Numerical opti-
mization. Springer, 1999.

[24] Joseph Ortiz, Alexander Clegg, Jing Dong, Edgar Su-
car, David Novotny, Michael Zollhoefer, and Mustafa

https://intelliman-project.eu/
https://intelliman-project.eu/
http://sestosenso.eu/
https://rcfs.ch/


Mukadam. isdf: Real-time neural signed distance fields
for robot perception. arXiv preprint arXiv:2204.02296,
2022.

[25] Jeong Joon Park, Peter Florence, Julian Straub, Richard
Newcombe, and Steven Lovegrove. Deepsdf: Learning
continuous signed distance functions for shape represen-
tation. In Proc. IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR), pages 165–174, 2019.
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APPENDIX

A. Differentiability of CDF

The signed distance field is differentiable almost everywhere
and satisfies the eikonal equation ∥∇f∥ = 1. An illustration
of the 1D signed distance field is shown in Figure 9-a (left).

The CDF defined by Eq. (2) is an unsigned distance field.
Although it still satisfies the eikonal equation, it is not differen-
tiable at the zero-level-set (shown in Figure 9-a (right)). Since
the CDF is computed by finding the closest configuration point
on the zero-level-set, it may also lead to non-differentiable
points when the closest joint configuration changes (shown in
Figure 9-b). The CDF is thus differentiable in configuration
space except at the isosurface (zero-level-set) samples and
points where the closest joint configuration changes. Never-
theless, the left and right derivatives at those points are well-
defined and satisfy the eikonal equation. Additionally, the non-
differentiable interval is sparse in the configuration space, and
we can use the subgradient instead if needed.

(a)

(b)

Fig. 9: Illustration of the differentiability of CDF.

The neural CDF approximates the function using a multi-
layer perceptron (MLP). The oscillation of training data near
the isosurface may cause an inaccurate estimation of CDF
and its gradient for inputs close to the zero-level-set. The
differentiability of the neural CDF depends on the activation
function of the network (for example, the ReLU function is
not differentiable at zero) and the gradient can be analytically
computed through backpropagation.

B. Sensitivity to Noise

In real-world scenarios, the observed data usually have noise
and may affect the performance of CDF. To further evaluate
the sensitivity of the neural CDF representation, we introduce
Gaussian noise on input points with zero mean value (µ)
and standard deviation (σ) ranging from 0.01 to 0.03 and
visualize the mean absolute error (MAE) and success rate
(SR) in Figure 10. Although performance decreases with the

increase of noise, the overall MAE and SR are still acceptable,
particularly in scenarios with less noise (σ = 0.01).

Fig. 10: The sensitivity of Neural CDF to Gaussian noise.
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